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a b s t r a c t 

We present the first dataset that aims to serve as a bench- 

mark to validate the resilience of botnet detectors against 

adversarial attacks. This dataset includes realistic adversarial 

samples that are generated by leveraging two widely used 

Deep Reinforcement Learning (DRL) techniques. These adver- 

sarial samples are proved to evade state of the art detectors 

based on Machine- and Deep-Learning algorithms. The ini- 

tial corpus of malicious samples consists of network flows 

belonging to different botnet families presented in three pub- 

lic datasets containing real enterprise network traffic. We use 

these datasets to devise detectors capable of achieving state- 

of-the-art performance. We then train two DRL agents, based 

on Double Deep Q-Network and Deep Sarsa , to generate real- 

istic adversarial samples: the goal is achieving misclassifica- 

tions by performing small modifications to the initial mali- 

cious samples. These alterations involve the features that can 

be more realistically altered by an expert attacker, and do 

not compromise the underlying malicious logic of the orig- 

inal samples. Our dataset represents an important contribu- 

tion to the cybersecurity research community as it is the 
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first including thousands of automatically generated adver- 

sarial samples that are able to thwart state of the art clas- 

sifiers with a high evasion rate. The adversarial samples are 

grouped by malware variant and provided in a CSV file for- 

mat. Researchers can validate their defensive proposals by 

testing their detectors against the adversarial samples of the 

proposed dataset. Moreover, the analysis of these samples 

can pave the way to a deeper comprehension of adversarial 

attacks and to some sort of explainability of machine learn- 

ing defensive algorithms. They can also support the defini- 

tion of novel effective defensive techniques. 

© 2020 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications Table 

Subject Computer Science Applications 

Specific subject area Cyber security, Adversarial attacks, Deep Reinforcement Learning, Intrusion 

Detection System, Botnet 

Type of data CSV files 

How data were acquired We submit malicious botnet samples from three public datasets to DRL agents 

trained to evade botnet detectors by inserting tiny and feasible feature 

modifications. The dataset is composed of the modified samples that were able 

to evade the detection provided by the botnet detectors. 

Data format Raw: Adversarial samples, generated by leveraging DRL agents based on 

Double Deep Q-Network and Deep Sarsa, that evade the detection of botnet 

detectors based on Random Forest and Wide and Deep [ 1 ] classifiers. As 

additional contributions, we also provide: the original malicious samples used 

for the generation of the adversarial samples; the benign traffic to ease the 

reproduction of our experiments; the traffic of the BOTNET2014 dataset in a 

labelled network flow format. 

Parameters for data collection In the following sections, we provide the most important parameters for the 

Random Forest and Wide and Deep classifiers in Table 8 and Table 9 ; while in 

Table 11 we report the most important settings for the DRL agents. 

Description of data collection The collection of data is divided in three phases: DATA NORMALIZATION: We 

retrieve three public datasets containing a mix of legitimate and botnet traffic 

captured in enterprise networks. PREPROCESSING: The obtained network flows 

are then subject to a preprocessing step with a twofold goal: (i) removing 

some outliers and (ii) obtaining a uniform feature set. ADVERSARIAL SAMPLE 

GENERATION: The resulting malicious flows are used to devise the botnet 

detectors used as “target” for the DRL agents. Then, we train DRL agents to 

achieve misclassifications by performing small alterations to some netflow 

features. The adversarial samples that have obtained a misclassification form 

the DReLAB dataset. 

Data source location Institution: Department of Engineering “Enzo Ferrari”, University of Modena 

and Reggio Emilia City: Modena Country: Italy Primary data sources: CTU13 

[2] : https://www.stratosphereips.org/datasets- ctu13#CSE- CIC- IDS2018 [3] : 

https://registry.opendata.aws/cse- cic- ids2018/BOTNET2014 [4] : 

https://www.unb.ca/cic/datasets/botnet.html For simplicity, in the rest of the 

paper we will refer to the above-mentioned datasets respectively as CTU, 

CICIDS and BOTNET. 

Data accessibility Repository name: DReLAB dataset – Deep Reinforcement Learning Adversarial 

Botnet dataset [5] Data identification number: 10.17632/nf22d786tj.1 Direct 

URL to data: https://data.mendeley.com/datasets/nf22d786tj/1 Github tutorial: 

https://github.com/andreaventuri01/DReLAB _ tutorial 

Related research article Apruzzese, Giovanni and Andreolini, Mauro and Marchetti, Mirco and Venturi, 

Andrea and Colajanni, Michele. “Deep Reinforcement Adversarial Learning 

against Botnet Evasion Attacks.” IEEE Transactions on Network and Service 

Management . DOI: 10.1109/TNSM.2020.3031843 [6] 

http://creativecommons.org/licenses/by/4.0/
https://www.stratosphereips.org/datasets-ctu13#CSE-CIC-IDS2018
https://registry.opendata.aws/cse-cic-ids2018/BOTNET2014
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Value of the Data 

• Our dataset includes realistic adversarial samples automatically generated by leveraging DRL

techniques against botnet detectors. The dataset aims to serve as a benchmark for evaluating

the robustness of novel ML-based IDS, avoiding the researchers the manual production of

adversarial samples to test their solutions. 

• Researchers can consider this dataset for several reasons: it can be used to validate the ef-

ficacy of existing countermeasures against adversarial threats; moreover, it can help cyber-

security researchers to propose novel methods to counter adversarial attacks against botnet

detectors. 

• Our dataset al1lows researchers to focus only on the proposal of novel defensive strategies

without working on procedures for generating meaningful adversarial samples. 

• Furthermore, the proposed dataset includes samples from a novel source, CSE-CIC-IDS2018

[3] , that is not considered in the main research paper [6] . This additional source further en-

hances the quality of the proposed dataset as it contains thousands of adversarial samples

belonging to several botnet families and resembling multiple attack scenarios. 

1. Data Description 

We organize the structure of the dataset as shown in Fig. 1 . From top to bottom, we divide

the dataset into three directories corresponding to the original datasets CTU, CICIDS and BOTNET,

respectively. In each of these dataset-directories, we separate the adversarial samples according

to the ML algorithm at the basis of the “target” botnet detector that they have evaded: Random

Forest ( RF ), and Wide and Deep ( WnD ). We then distinguish the DRL algorithm that has modi-

fied the samples: Double Deep Q-network ( 2DQN ) and Deep Sarsa ( Sarsa ). Finally, each CSV file

contains the adversarial samples belonging to a specific botnet family of the original datasets.

As an example, the file CTU/RF/2DQN/Neris.csv contains the adversarial samples of the

Neris botnet family from the CTU dataset that have been modified by the 2DQN agent to evade

the RF -based botnet classifier, trained to detect the samples of Neris . In Table 1 we summarize
Fig. 1. Dataset structure. 

Table 1 

Number of adversarial samples in each CSV file. 

Dataset CTU CICIDS BOTNET 

Detector DRL agent Neris Rbot Virut Menti Murlo Zeus&Ares Neris Rbot Virut Menti Murlo 

RF 2DQN 58,429 27,452 31,941 2825 1106 285,351 64,082 29,503 564 7754 5815 

Sarsa 58,213 27,425 31,317 2823 1106 285,905 65,551 28,267 548 7920 4982 

WnD 2DQN 54,729 21,709 15,146 2825 1106 285,282 67,469 29,599 635 7893 5812 

Sarsa 53,920 26,320 11,001 2824 1106 285,905 66,547 29,515 634 7923 4212 



4 A. Venturi, G. Apruzzese and M. Andreolini et al. / Data in Brief 34 (2021) 106631 

Table 2 

Feature set of our samples. 

Feature Description Type 

IP Src/Dst Type ∗ It indicates whether the Source / Destination Ip Address belongs to the 

internal network or not. 

Binary (0 external, 

1 internal). 

SrcPortWellKnown ∗ / 

DstPortWellKnown 

1 if the Source / Destination Port number is between 0 and 1023. 0 

otherwise. 

Binary (0 or 1). 

SrcPortRegistered ∗ / 

DstPortRegistered 

1 if the Source / Destination Port number is between 1024 and 49,151. 0 

otherwise. 

Binary (0 or 1). 

SrcPortPrivate ∗ / 

DstPortPrivate 

1 if the Source / Destination Port number is higher than 49,151. 0 

otherwise. 

Binary (0 or 1). 

Duration Duration in seconds of the flow communication. Float 

InBytes Incoming Bytes. Float 

OutBytes Outgoing Bytes. Float 

TotBytes Total number of bytes in the communication. Obtained by summing 

OutBytes and InBytes feature values. 

Float 

TotPkts Total number of packets in the communication. Float 

BytesPerPkt Average number of bytes exchanged per packet. Ratio between TotBytes 

and TotPkts . 

Float 

PktsPerSec Average number of packets exchanged per second. Ratio between 

TotPkts and Duration . 

Float 

RatioOutIn Ratio between OutBytes and InBytes . Float 

State ∗ State of the TCP communication. Categorical 

Direction ∗ Direction of the communication. Categorical 

Protocol Type of protocol considered in the flow. (Only TCP) Categorical 

Src/Dst ToS ∗∗ Source and Destination Type of Service. Categorical 

Number of Actions Number of actions required to obtain an evasion Integer 

A ∗ means that the feature is not present in flows coming from the CICIDS dataset. A ∗∗ means that the feature is not 

present in flows coming from both CICIDS and BOTNET datasets. 
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he number of samples contained in each CSV file of the dataset. Each entry in the table contains

he amount of adversarial samples that evaded the botnet classifier for each botnet family of the

hree datasets using the 2DQN and Sarsa agents. As an example, CTU/RF/2DQN/Neris.csv
ontains 58,429 samples. Similarly, CICIDS/WnD/Sarsa/Zeus_Ares.csv contains 286,160

amples. 

We report in Table 2 the set of features associated to each sample included in the dataset.

s data come from different sources, their relative feature sets differ accordingly to the available

eatures in the original dataset. For example, CICIDS does not provide information on the Source

nd Destination IP Addresses of the flows as CTU and BOTNET. Similarly, the CTU flows contain

he Type of Service feature, while the other datasets do not give this information. We also add in

 dedicated feature the number of actions that each sample required to evade the detection in

 dedicated feature. 

Along with our adversarial samples, we also provide the following files: 

• BOTNET/raw_labelled_flow.csv , which contains the already labeled flow version of

the BOTNET PCAP traffic obtained following the process indicated in the next section (see

Data Normalization phase). BOTNET/argus.conf and BOTNET/ra.conf are the configu-

ration files we use for this procedure. 

• < dataset > /malicious/ is a directory for each of the considered dataset which contains

the malicious samples obtained at the end of the preprocessing phase. These are the original

malicious samples we exploit to devise the adversarial ones. 

• < dataset > /benign.csv contains the benign flows from each dataset at the end of the

preprocessing phase. 
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Table 3 

Feature set for the CTU dataset. 

Feature 

Start Time 

Source/Destination IP Address 

Source/Destination Port 

Protocol 

Duration 

Direction 

State 

Source/Destination Type of Service

Total Packets 

Total Bytes 

Source Bytes 

Label 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Experimental Design, Materials and Methods 

We consider the malicious flows provided by three publicly available datasets for botnet de-

tection (CTU, CICIDS and BOTNET) as a basis for crafting realistic adversarial samples. The ma-

licious flows are submitted to Deep Reinforcement Learning (DRL) agents that are trained to

automatically modify the samples and to generate their evading “adversarial” versions. 

The entire procedure consists of three phases: Data Normalization, Preprocessing , and Adver-

sarial Sample Generation . 

2.1. Data normalization 

This phase aims to obtain a common representation of the data provided by the three con-

sidered datasets: 

• CTU-13 [2] is a dataset that is captured at the Czech Technical University in Prague. It col-

lects labeled network traffic in 13 collections (called scenarios): in each scenario, the authors

executed a specific botnet variant and recorded its malicious activity along with normal and

background traffic in PCAP files. Then, these files were converted in network flows through

Argus 1 that is a network audit system generating flows from raw network packets data. A

network flow (netflow) can be considered as a tabular representation of the network traffic,

in which the information of the connection between two hosts in the network is gathered in

a single entry. Table 3 reports the features of the network flows of the CTU dataset. Before the

preprocessing phase, we merge the malicious flow belonging to each botnet family in dedi-

cated collections. Thus, we obtain five collections containing only malicious flows belonging

to five different botnet variants ( Neris , Rbot , Virut , Murlo , Menti ). Moreover, we create

a separate collection containing all the benign flows included in the CTU. As the CTU dataset

contains a limited amount of malicious samples belonging to Sogou and NSIS.ay botnet,

we do not consider these two variants. 

• CSE-CIC-IDS2018 [3] is a dataset coming from a collaborative project between the Communi-

cations Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC). The

aim was to generate a dataset for intrusion detection referring to multiple attack scenarios.

The dataset is publicly available on Amazon AWS. 2 It includes thousands of labeled netflows

with 80 features extracted through CICFlowMeter that is a network traffic flow generator
1 https://openargus.org/ 
2 https://registry.opendata.aws/cse- cic- ids2018/ 

https://openargus.org/
https://registry.opendata.aws/cse-cic-ids2018/
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Table 4 

Main features for the CICIDS 

dataset. 

Feature 

Destination Port 

Protocol 

Duration 

Source/Destination Bytes 

Bytes per Packet 

Bytes per Second 

Total Packets 

Total Bytes 

Packets per Second 

Ratio Out/In 

Label 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

i  
from the CIC Institute. For space reasons, we do not list all the 80 features of the dataset, in-

stead we report in Table 4 the features we will analyze in the next phases. Since we focus on

botnet traffic, we consider only the flows collected on Friday 02–03–2018, that includes data

related to the use of Zeus and Ares botnet variants. As we cannot distinguish the flows

belonging to each botnet, we create one collection for malicious samples referring to both

Zeus and Ares botnets, and one collection with the benign flows. 

• BOTNET2014 [4] is a dataset provided by the Canadian Institute for Cybersecurity. The au-

thors used an overlay methodology to merge three different data traces: ISOT [7] , ISCX 2012

IDS [8] , and botnet traffic generated by the Malware Capture Facility Project. Unlike the

other considered datasets, the authors provide data as full packet captures (PCAP) format:

ISCX_Botnet_Training.pcap and ISCX_Botnet_Testing.pcap . In order to convert

PCAP in network flows and obtain the final CSV files, we truncate these files to protect the

user privacy (as indicated by the authors of the CTU dataset 3 ), and then we uses argus and

ra tools. We facilitate the reproducibility of our experiments by providing: 

◦ the configuration files: argus.conf and ra.conf (see the previous section), 

◦ and the adopted commands: 

i argus -r InputFile.pcap -F argus.conf > OutFile.argus 
ii ra -r InputFile.argus -F ra.conf > OutFile.csv 

At the end of these operations we obtain two CSV files, respectively from the training and

testing original PCAP files. As a similar division is useless for the purposes of our dataset,

we merge these files, and generate one file containing the entire BOTNET traffic in netflow

format. As indicated by the authors of the dataset, we label as malicious the flows containing

the malicious IP addresses listed in the Web page of the dataset 4 either in their Source or

Destination IP features, and we label as benign the remaining flows. In this way, we obtain

a labeled netflow representation of the traffic of the BOTNET dataset. As a further contribu-

tion, we provide the labeled network flows that is obtained after the above operations. In

Table 5 we report the feature set for this dataset. At the end, we divide the flows pertain-

ing to each botnet family by considering the botnet variant contained a sufficient amount of

flows: Neris , Rbot , Virut , Murlo , Menti . The benign flows are gathered in a dedicated

collection. 

At the end of this phase, for each considered dataset we obtain one collection containing

ll the benign flows, and several collections of malicious flows generated by each botnet family

ncluded in each original dataset (namely, 5 collections for CTU, 1 for CICIDS and 5 for BOTNET).
3 https://www.stratosphereips.org/blog/2015/7/17/new- dataset- ctu- 13- extended- now- includes- pcap- files- of- normal- traffic 
4 https://www.unb.ca/cic/datasets/botnet.html 

https://www.stratosphereips.org/blog/2015/7/17/new-dataset-ctu-13-extended-now-includes-pcap-files-of-normal-traffic
https://www.unb.ca/cic/datasets/botnet.html
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Table 5 

Feature set for BOTNET dataset. 

Feature 

Start Time 

Source/Destination IP Address 

Source/Destination Port 

Protocol 

Duration 

Direction 

State 

Source/Destination Type of Service

Total Packets 

Total Bytes 

Source Bytes 

Label 

Table 6 

Derived features. 

Derived feature Description Type 

TotBytes Total number of Bytes in the communication. Sum of OutBytes and InBytes feature values. Float 

BytesPerPkt Average number of bytes exchanged per packet. Ratio between TotBytes and TotPkts . Float 

PktsPerSec Average number of packets exchanged per second. Ratio between TotPkts and Duration . Float 

RatioOutIn Ratio between OutBytes and InBytes . Float 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a further benefit, the flows of the datasets are characterized by a uniform representation that

is ready for the preprocessing phase. 

2.2. Preprocessing 

This phase performs some preliminary operations on the resulting flows after Data Normal-

ization. The goal is to generate ready-to-use datasets for training state-of-the-art level botnet

detectors. In this phase, we eliminate outliers and unwanted traffic, and we enrich the feature

set with additional derived features leading the considered classifiers to achieve superior detec-

tion performance. 

The first filtering operation removes all the non-TCP traffic included in CTU, CICIDS and BOT-

NET. As the botnet flows of the datasets are mainly based on modern IRC and HTTP protocols

using TCP, this operation allows us to focus on a specific transport protocol, while maintaining

most traffic. Moreover, we filter out the samples containing either NaN or unavailable values in

one or more of their features. 

Then, the samples are processed to compute the following derived features: TotBytes, Bytes-

PerPkt, PktsPerSec, RatioOutIn ( Table 6 ), when they are not present. As pointed in [4] , the inclu-

sion of these features can improve detection rate. Some samples come with null Duration and

InBytes , which may result in infinite values for the PktsPerSec and RatioOutIn . Hence, we replace

the infinite values with the maximum finite value of the correspondent feature in the considered

dataset. For example, let us assume that a flow f has 0 InBytes and 300 OutBytes . To compute the

RatioOutIn value, we should calculate the ratio between OutBytes and InBytes , but this operation

would result in an infinite value. Thus, we replace this value with the maximum finite value in

the considered dataset for RatioOutIn . 

We also remove outlier samples by considering only the flows in which the numerical fea-

ture values are below a threshold that is set according to the 95th-percentiles of the numerical

feature values of the flows in the CTU dataset. We consider the CTU as a baseline because it con-

tains the highest amount of samples and is a meaningful representation of a realistic scenario.

The threshold values are reported below: 
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Table 7 

Categorical features. 

Feature Description Type 

IPSrcType / IPDstType It indicates whether the Source / Destination Ip Address 

belongs to the internal network or not. 

Binary (0 external, 

1 internal). 

SrcPortWellKnown / 

DstPortWellKnown 

1 if the Source / Destination Port number is between 0 and 

1023. 0 otherwise. 

Binary (0 or 1). 

SrcPortRegistered / 

DstPortRegistered 

1 if the Source / Destination Port number is between 1024 

and 49,151. 0 otherwise. 

Binary (0 or 1). 

SrcPortPrivate / 

DstPortPrivate 

1 if the Source / Destination Port number is higher than 

49,151. 0 otherwise. 

Binary (0 or 1). 
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- Duration < 300 s (5 min) 

- InBytes < 60,0 0 0 

- OutBytes < 10,0 0 0 

- TotPkts < 100 

- BytesPerSec < 40 0,0 0 0 

- PktsPerSec < 10,0 0 0 

The application of these filters eliminates all the outliers while preserving the majority of

alicious samples (over 90%). 

We also observed that most malicious flows come from a narrow subset of network hosts,

nd the communications occur on a limited number of TCP ports. Training classifiers with sim-

lar features can cause overfitting problems and induce them to learn to distinguish malicious

ows only on the basis of IP addresses and/or port numbers. For these reasons, we transform

ource and Destination IP Addresses and Port numbers into the categorical features reported in

able 7. IPSrcType and IPDstType indicate whether or not the hosts involved in the communica-

ion belong to the enterprise internal network without expressively report the addresses. Simi-

arly, PortWellKnown, PortRegistered and PortPrivate indicate to which category belongs the port

umber of the original sample. Thanks to these operations, we avoid training issues while main-

aining information on the overall structure of the network. 

Finally, we perform a one-hot encoding operation to make remaining categorical features

uitable to the neural networks of the DRL agents of the next phase. The final set of features

or samples belonging to CTU, CICIDS and BOTNET are listed in Table 2 of the previous section. 

At the end of the preprocessing phase we obtain ready-to-use samples to train state-of-the-

rt botnet detectors and DRL agents. 

.3. Automatic adversarial sample generation 

This phase focuses on the generation of the adversarial samples that are contained in the

ReLAB dataset. These samples are generated by using the malicious flows of the three consid-

red sources (CTU, CICIDS, BOTNET) and applying small modifications to a subset of their fea-

ures by means of DRL algorithms. This phase can be divided into three steps: proposal of botnet

lassifiers that achieve state-of-the-art detection performance; use of these classifiers as a basis

o train DRL agents evading detection; letting the trained DRL agents generate the adversarial

amples by applying the modifications learned in the previous step. 

Experiments are performed on a machine based on Intel Core i7-7700HQ CPU (2.80 GHz x 4),

6 GB RAM, 1TB SSD, Nvidia Geforce GTX 1050M. 

• We base our botnet detectors on two famous ML and DL algorithms: Random Forest (RF)

and Wide and Deep (WnD). The RF algorithm consists of an ensemble learning method that

uses multiple Decision Trees to yield its final classification. WnD is a deep learning tech-

nique proposed by Google that obtains good classifications results in other contexts [9] . Each
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Table 8 

Parameters for RF classifiers. 

Parameter Value 

Number of Estimators 100 

Quality function Gini 

Minimum samples to split 2 

Minimum samples to leaf 1 

Features for best split 
√ 

N. F eatures 

Table 9 

Parameters for WnD classifiers. 

Parameter Value 

Wide part - input neurons 256 

Deep part - number of layers 5 

Deep part - Neurons in each hidden layer 64 – 16 – 16 – 4 - 4 

Activation ReLU 

Optimizer Adam 

Alpha 0.0 0 01 

Table 10 

Action space. 

Modified feature Perturbation 

Duration + 1 or + 2 

InBytes + 1 or + 2 

OutBytes + 1 or + 2 

TotPkts + 1 or + 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detector is composed by an ensemble of classifiers, where each classifier is trained to iden-

tify one specific botnet family from legitimate traffic. Thus, we obtain 5 RF and 5 WnD clas-

sifiers for both the CTU and BOTNET datasets (one for each of the botnet variants in these

datasets), 1 RF and 1 WnD classifiers for CICIDS. To reproduce a realistic enterprise network

scenario, we add benign samples to the malicious collections in a 20:1 ratio as suggested by

the best practice in literature [10] . The training set and the testing set use 80% and 20% of

the samples, respectively. Table 8 and Table 9 report the parameters for RF- and WnD- based

classifiers. To implement and train the classifiers we use the Scikit-learn framework [11] (ver-

sion 0.21.2). The provided DReLAB dataset allows the implementation of classifiers with high

detection rates, achieving Recall scores often superior to 0.95 (refer to the primary research

paper [6] for more information). 

• A DRL framework involves the cooperation between an agent and an environment. The agent

learns to choose the best action among the pre-defined Action Space with a trial-and-error

approach, while the environment analyzes this choice and provides a Reward to the agent

that indicates the goodness of the chosen action. In order to produce adversarial samples that

preserve their malicious functions, in defining our Action Space we consider a small subset

of the available features: Duration, InBytes, OutBytes and Total Packets . Moreover, our Action

Space includes only actions that modify the selected feature by small pre-fixed increments

of at most two units (see Table 10 ). As an example, the agent can choose to increase the

Duration by 1 or 2 s; similarly, it can add 1 or 2 packets to the Total Packets feature value

or 1 or 2 bytes to InBytes and Outbytes. We remark that we use the RF detectors as target

classifiers to evade because they achieve superior performance than the WnD detectors. 

The workflow for training a DRL agent to produce adversarial samples related to a botnet

family b proceeds as follows (we refer to Figure 4 of the related research paper [6] for an

illustration of the process). Each malicious flow of b, which we denote f b , is processed and
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Table 11 

Settings of DRL agents during training. 

Parameter Description Value 

Qmax Maximum number of modifications allowed before declaring failure 80 

Reward Reward in case of evasion 10 

Policy Type of policy for the training phase Epsilon Greedy 

Epsilon Value of Epsilon for Epsilon Greedy Exploration 0.1 

Replay buffer max size Capacity of the experience replay buffer 50,0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modified individually. It is initially passed to the state generator , which transforms f b in a

suitable form to be submitted to the agent. Then, the agent analyzes the (transformed) f b
and choses one action from the pre-defined Action Space that, once applied to the sample,

can evade detection. The application of the chosen action occurs in the state generator

that avoids inconsistencies by updating the feature values of the corresponding derived

features. For instance, an increase of InBytes causes a consequent increment of BytesPer-

Second . The modified sample is then submitted to the classifier to test whether it evades

or not detection. If the modified sample is misclassified, the process terminates and we

obtain an adversarial sample. In this case, a positive Reward ( + 10 in our implementation)

is given to the agent that modifies its internal weights to favor the action choice that has

led to evasion. Otherwise, if the sample is detected as malicious, it is further modified

until it is able to evade the classifier, or until a maximum number of attempts ( Qmax ) is

reached. 

We consider two DRL agents: Double Deep Q-Network (2DQN) [12] and Deep Sarsa

[13] ( Sarsa ). We implemented our environments on OpenAI Gym 

5 that is a toolkit for

reinforcement learning algorithms. Moreover, we used Keras-RL, 6 a Python library that

offers DRL agents algorithms, to implement the agents. All the 2DQN and Sarsa agents

share the same underlying neural network structure, which consists of three layers: the

first contains as many neurons as the number of features as input; the second layer con-

tains 16 neurons; the third layer contains one neuron for each action in the Action Space.

We train two agents to generate adversarial samples that evades the RF classifier for each

of the botnet families of the three datasets. Similarly to the botnet detectors, we obtain 5

2DQN and 5 Sarsa agents for evading the RF detectors of the CTU dataset, 1 2DQN and

1 Sarsa agents for CICIDS and 5 2DQN and 5 Sarsa agents for BOTNET. We provide the

settings for both the DRL algorithms in Table 11 . 

• After having trained the DRL agents, we can now let them generate the adversarial samples

that compose the proposed DReLAB dataset. To this purpose, we follow the same procedure

as in the previous step but, as the agents are already trained, the environment does not emit

any Reward . Let us explain the entire procedure by example. Suppose we want to obtain an

adversarial sample from a malicious flow f of the botnet Neris from the CTU dataset, that

evades the WnD detector by leveraging the 2DQN agent. 

The workflow proceeds as follows: 

i f is submitted to the state generator to obtain its transformed version which is sent to the

agent. 

ii Now, the 2DQN agent has already learned which is the best action to choose to possibly

obtain an evasion. Let us suppose that the chosen action is “Increase Duration + 2 ′′ . 
iii The agent communicates this selection to the state generator, which adds 2 to the current

Duration value of f. Then, the state generator also updates the derived PktsPerSec value to
5 https://gym.openai.com 

6 https://github.com/keras-rl/keras-rl 

https://gym.openai.com
https://github.com/keras-rl/keras-rl
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conform with the new Duration value. At this stage, the number of actions required for the

evasion of f is increased by 1 (with 0 being its initial value). 

iv The modified version of f (denoted as f’) is now a candidate for being an adversarial evasive

sample. Thus, it is submitted to the WnD classifier trained on the Neris traffic from the CTU

dataset and the classification is analyzed: 

� If the classifier still classifies the sample as malicious, then the process is restarted from

point (i.) with the newly generated f’. 

� on the other hand, if f’ is classified as benign, then the process ends. 

As shown in the related paper [6] , the generated adversarial samples are able of evading not

only the RF detector used for training the DRL agents, but also the WnD detector. In the dataset

we include only those perturbed samples that are able of evading the detection with less than

80 actions. As an additional contribution, we also provide the number of actions required for

the evasion in a dedicated feature to each of the adversarial sample of the DReLAB dataset. 
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