This is the peer reviewd version of the followng article:

Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report / Lip, Gregory Y H; Banerjee, Amitava; Boriani, Giuseppe; Chiang, Chern En; Fargo, Ramiz; Freedman, Ben; Lane, Deirdre A.; Ruff, Christian T.; Turakhia, Mintu; Werring, David; Patel, Sheena; Moores, Lisa. - In: CHEST. - ISSN 1931-3543. - 154:5(2018), pp. 1121-1201. [10.1016/j.chest.2018.07.040]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

25/04/2024 10:33

Accepted Manuscript

Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report

Gregory Y.H. Lip, MD, Amitava Banerjee, MD, Giuseppe Boriani, MD, PhD, Chern en Chiang, MD, PhD, Ramiz Fargo, MD, Ben Freedman, MD PhD, Deirdre A. Lane, PhD, Christian T. Ruff, MD, MPH, Mintu Turakhia, MD, David Werring, PhD, Sheena Patel, MPH, Lisa Moores, MD, FCCP

PII: S0012-3692(18)32244-X

DOI: 10.1016/j.chest.2018.07.040

Reference: CHEST 1908

To appear in: CHEST

- Received Date: 12 June 2018
- Revised Date: 11 July 2018

Accepted Date: 24 July 2018

Please cite this article as: Lip GYH, Banerjee A, Boriani G, Chiang Ce, Fargo R, Freedman B, Lane DA, Ruff CT, Turakhia M, Werring D, Patel S, Moores L, Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report, *CHEST* (2018), doi: 10.1016/j.chest.2018.07.040.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report

2 Gregory Y.H. Lip, MD; Amitava Banerjee, MD; Giuseppe Boriani, MD, PhD; Chern en Chiang, MD,

3 PhD; Ramiz Fargo, MD, Ben Freedman, MD PhD; Deirdre A. Lane, PhD; Christian T. Ruff, MD,

4 MPH; Mintu Turakhia, MD; David Werring, PhD; Sheena Patel, MPH; Lisa Moores, MD, FCCP

5

6 Affiliations: Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom; 7 Liverpool Centre for Cardiovascular Science, University of Liverpool, United Kingdom; and 8 Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, 9 Aalborg, Denmark (Dr Lip); Institute of Health Informatics, University College London (Dr 10 Banerjee) London, United Kingdom; Cardiology Division, Department of Biomedical, Metabolic 11 and Neural Sciences, University of Modena & Reggio Emilia, Modena University Hospital (Dr 12 Boriani) Modena, Italy; General Clinical Research Center and Division of Cardiology, Taipei 13 Veterans General Hospital and National Yang-Ming University (Dr Chiang) Taipei, Taiwan; 14 Division of Pulmonary and Critical Care, Department of Internal Medicine, Riverside University 15 Medical Center, Moreno Valley CA, United States and Division of Pulmonary, Critical Care, 16 Hyperbaric, and Sleep Medicine, Department of Internal Medicine, Loma Linda University 17 Medical Center (Dr Fargo) Loma Linda, CA; Heart Research Institute/Charles Perkins 18 Centre, University of Sydney and Dept of Cardiology Concord Hospital, University of Sydney (Dr 19 Freedman) Sydney, Australia; Institute of Cardiovascular Sciences, University of Birmingham, 20 United Kingdom and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, 21 Faculty of Health, Aalborg University (Dr Lane) Aalborg, Denmark; Cardiovascular Medicine 22 Division, Brigham and Women's Hospital, Harvard Medical School (Dr Ruff) Boston, MA, USA; 23 Department of Medicine, Stanford University School of Medicine (Dr Turakhia) Stanford, CA; 24 Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of 25 Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College 26 Hospitals NHS Foundation Trust (Dr Werring) London UK; CHEST (Ms Patel) Glenview, IL; 27 Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine (Dr 28 Moores) Bethesda, MD

29

30 Conflicts of Interest: see e-Table 1

Funding/Support: This study was funded in total by internal funds from the American College of
 Chest Physicians

33 Disclaimer: CHEST Guidelines are intended for general information only, are not medical advice,

34 and do not replace professional medical care and physician advice, which should always be

sought for any medical condition. The complete disclaimer for this guideline can be accessed at:
 http://www.chestnet.org/Guidelines-and-Resources

- 37 Correspondence to:
- 38 Prof Gregory YH Lip. <u>g.y.h.lip@bham.ac.uk; gregory.lip@liverpool.ac.uk</u>

41	Abbreviations:	
42	ACS	acute coronary syndrome
43	aPTT	activated partial thromboplastin time
44	ARISTOTLE	Apixaban for Reduction of Stroke and Other Thromboembolic Events in Atrial
45		Fibrillation
46	ATRIA	AnTicoagulation and Risk factors In Atrial fibrillation
47	AVERROES	Apixaban Versus Acetylsalicylic Acid (ASA) to Prevent Stroke in Atrial
48		Fibrillation Patients Who Have Failed or Are Unsuitable for Vitamin K
49		Antagonist Treatment
50	b.i.d	bis in die (twice daily)
51	CABG	coronary artery bypass graft
52	САР	Continued Access to PROTECT AF
53	CHA ₂ DS ₂ -VASc	congestive heart failure, hypertension, age ≥75 (doubled), diabetes, stroke
54		(doubled)-vascular disease, age 65–74 and sex category (female)
55	CHADS ₂	congestive heart failure, hypertension, age, diabetes, stroke (doubled)
56	CI	confidence interval
57	CrCl	creatinine clearance
58	DOAC	direct oral anticoagulant drugs
59	ECG	electrocardiogram
60	GRADE	Grading of Recommendations, Assessment, Development, and Evaluation
61	HAS-BLED	hypertension, abnormal renal/liver function (1 point each), stroke, bleeding
62		history or predisposition, labile INR, elderly (.65), drugs/alcohol concomitantly
63		(1 point each)
64	HF	Heart Failure
65	HFpEF	Heart Failure with Preserved Ejection Fraction
66	HFrEF	Heart Failure with Reduced Ejection Fraction
67	HR	hazard ratio
68	ICH	intracranial haemorrhage
69	INR	international normalized ratio
70	i.v.	intravenous
71	LAA	left atrial appendage
72	LAAO	left atrial appendage occlusion
73	o.d.	omni die (every day)
74	OAC	oral anticoagulant
75	NOAC	non-vitamin K antagonist oral anticoagulant drugs
76	NYHA	New York Heart Association
77	PCI	percutaneous cardiovascular intervention
78	PROTECT AF	System for Embolic PROTECTion in patients with Atrial Fibrillation
79	RE-LY	Randomized Evaluation of Long-term anticoagulant therapY with dabigatran
80		etexilate
81	ROCKET-AF	Rivaroxaban Once daily oral direct factor Xa inhibition Compared with vitamin
82		K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation
83	RRR	relative risk reduction
84	TIA	transient ischaemic attack
85	t.i.d.	ter in die (three times daily)
86	TE	thromboembolism

- 87 TEE transesophageal echocardiogram
- 88 TTR time in therapeutic range

89 Abstract

- 90 Background: The risk of stroke is heterogeneous across different groups of patients with atrial
- 91 fibrillation (AF), being dependent on the presence of various stroke risk factors. We provide
- 92 recommendations for antithrombotic treatment based on net clinical benefit for patients with AF at
- 93 varying levels of stroke risk and in a number of common clinical scenarios.
- 94 Methods: Systematic literature reviews were conducted to identify relevant articles published from
- 95 the last formal search perfomed for the Antithrombotic and Thrombolytic Therapy: American
- 96 College of Chest Physicians Evidence-Based Clinical Practice Guidelines (9th Edition). The overall
- 97 quality of the evidence was assessed using the GRADE (Grading of Recommendations, Assessment,
- 98 Development, and Evaluation) approach. Graded recommendations and ungraded consensus-based
- 99 statements were drafted, voted on, and revised until consensus was reached.
- 100
- 101 Results: For patients with AF without valvular heart disease, including those with paroxysmal AF,
- 102 who are at low risk of stroke (e.g., CHA₂DS₂VASc score of 0 in males or 1 in females), we suggest no
- antithrombotic therapy. The next step is to consider stroke prevention (ie oral anticoagulation
- therapy) for patients with 1 or more non-sex CHA_2DS_2VASc stroke risk factors. For patients with a
- single non-sex CHA₂DS₂VASc stroke risk factor, we suggest oral anticoagulation rather than no
- therapy, aspirin or combination therapy with aspirin and clopidogrel; and for those at high risk of
- stroke (eg, $CHA_2DS_2VASc \ge 2$ in males or ≥ 3 in females), we recommend oral anticoagulation rather than no therapy, aspirin, or combination therapy with aspirin and clopidogrel. Where we
- recommend or suggest in favor of oral anticoagulation, we suggest using a NOAC rather than
- adjusted-dose vitamin K antagonist therapy. With the latter, it is important to aim for good quality
- 111 anticoagulation control with a TTR >70%.
- 112 Attention to modifiable bleeding risk factors (eg. uncontrolled blood pressure, labile INRs,
- 113 concomitant use of aspirin or NSAIDs in an anticoagulated patient, alcohol excess) should be made
- at each patient contact, and HAS-BLED score used to assess the risk of bleeding where high risk
- 115 patients (\geq 3) should be reviewed and followed up more frequently.
- 116 *Conclusions:* Oral anticoagulation is the optimal choice of antithrombotic therapy for patients with
- 117 AF with ≥ 1 non-gender CHA₂DS₂VASc stroke risk factor(s).

118 SUMMARY OF RECOMMENDATIONS

- 119 Note: Shaded text refers to recommendations that remain unchanged from the previous version of 120 the guideline 121 122 1. For patients with AF, including those with paroxysmal AF, stroke risk should be assessed using 123 a risk factor based approach, rather than an categorisation into low, moderate/high risk 124 strata. We recommend use of the CHA₂DS₂VASc as a simple clinical based stroke risk score to 125 initially identify 'low stroke risk' patients that should not be offered antithrombotic therapy to 126 prevent stroke and reduce mortality (Strong recommendation, moderate quality evidence). 127 128 Remark: Low risk patients are generally those age<65 and 'lone AF' irrespective of sex (this 129 includes those with a CHA₂DS₂VASc score=0 in males, or 1 in females). 130 131 2. Subsequent to this initial step, for patients with AF, including those with paroxysmal AF, we 132 recommend stroke prevention should be offered to those AF patients with one or more non-133 sex CHA_2DS_2VASc stroke risk factors (score of ≥ 1 in a male or ≥ 2 in a female) (Strong 134 recommendation, moderate quality evidence). 135 136 Remark: Consideration of other less established clinical stroke risk factors, imaging (cardiac or 137 cerebral) or biomarkers (urine, blood or genetics) may refine risk stratification based on simple 138 clinical factors. A complex risk schema using a variety of such data that could accurately place 139 more patients in the low risk stratum not requiring anticoagulants than current simple clinically-140 based scores (personalised medicine) should be the goal of future research, but it will be very 141 difficult to find non-anticoagulated patient cohorts for prospective validation. 142 143 3. For patients with AF, we recommend bleeding risk assessment should be performed for all 144 patients with AF at every patient contact and should initially focus on potentially modifiable 145 bleeding risk factors (Strong recommendation, low quality evidence). 146 147 Remark: Modifiable risk factors may include: Uncontrolled blood pressure; Labile INRs (in a 148 patient taking VKA); Alcohol excess; Concomitant use of NSAIDs or aspirin in an anticoagulated 149 patient; bleeding tendency or predisposition (e.g. treat gastric ulcer; optimise renal or liver function etc. 150 151 4. For patients with AF, we recommend use of the HAS-BLED score to address modifiable 152 153 bleeding risk factors in all AF patients. Those potentially at high risk (HAS-BLED score ≥3) 154 warrant more frequent and regular reviews or follow-up (Strong recommendation, moderate 155 quality evidence). 156 157 *Remark*: Given that bleeding risk is highly dynamic, attention to modifiable bleeding risk factors 158 should be prioritized during every patient contact and review. 159 160 5. In VKA treated patients, we suggest the use of the HAS-BLED score for bleeding risk 161 **assessment** (Weak recommendation, low quality evidence) 162 163 *Remark*: A high HAS-BLED score (\geq 3) is rarely a reason to avoid anticoagulation. The individual modifiable components of the score, when reviewed with the patient, can serve to ameliorate 164 165 bleed risk 166
- 167

- 168 6. For patients with AF, we recommend against antiplatelet therapy alone (monotherapy or 169 aspirin in combination with clopidogrel) for stroke prevention alone, regardless of stroke risk 170 (Strong recommendation, moderate quality evidence). 171 172 Remark: Patients with AF might have other indications for antiplatelet drugs (e.g. acute coronary 173 syndrome, stents) 174 7. In patients with AF who are eligible for OAC, we recommend NOACs over VKA (strong 175 176 recommendation, moderate quality evidence). 177 178 Remark: Patient and caregiver preferences, cost, formulary considerations, anticipated 179 medication adherence or compliance with INR testing and dose adjustment should be 180 incorporated into clinical-decision making. 181 8. In patients on VKAs with consistently low time in INR therapeutic range (eg. TTR<65%), we 182 183 recommend considering interventions to improve TTR or switching to NOACs (strong 184 recommendation, moderate quality evidence) 185 186 *Remark*: Action required if TTR <65% - implement additional measures (more regular INR tests; 187 review medication adherence; address other factors known to influence INR control; 188 education/counselling) to improve INR control. 189 190 9. In patients with prior unprovoked bleeding, warfarin-associated bleeding, or at high risk of 191 bleeding, we suggest using apixaban, edoxaban, or dabigatran 110 mg (where available) as all 192 demonstrate significantly less major bleeding compared with warfarin (Weak 193 recommendation, very low quality evidence). 194 195 Remark: In patients with prior gastrointestinal bleeding apixaban or dabigatran 110mg bid may 196 be preferable as they are the only NOACs associated without an increased risk of gastrointestinal 197 bleeding compared with warfarin. 198 Remark: Dabigatran 150 mg twice daily recommended in patients at high risk of ischemic stroke 199 as only agent/dose with superior efficacy compared with warfarin. However, bleeding risk would 200 need to be assessed and patients monitored. 201 202 10. For patients with non-valvular AF, when VKAs are used, we suggest the target should be INR 203 2.0-3.0, with attention to individual TTR, ideally ≥70% (ungraded consensus-based statement). 204 Remark: Action required if TTR sub-optimal (i.e, <65-70%) - implement additional measures 205 206 (more regular INR tests; review medication adherence; address other factors known to influence 207 INR control; education/counselling) to improve INR control or consider a NOAC. 208 *Remark*: When possible, experienced specialized anticoagulation clinics should be utilized for 209 VKA and INR management. 210 211 11. For patients with AF, we suggest the SAMe-TT₂R₂score to aid decision making to help identify 212 patients likely to do well on VKA (ungraded consensus-based statement). 213 214 *Remark*: Those with score 0-2 are likely to achieve a good TTR. Those with score >2 are less 215 likely to achieve a good TTR and would require more regular INR checks, education/counselling 216 and frequent follow-up, or alternatively, NOAC should be considered as a better management 217 option if high medication adherence can be expected.
- 218

219 12. For patients with AF of greater than 48 hours or unknown duration undergoing elective 220 electrical or pharmacological cardioversion, we recommend therapeutic anticoagulation with 221 well-managed VKA (INR 2-3) or a NOAC using dabigatran, rivaroxaban, edoxaban or apixaban 222 for at least 3 weeks before cardioversion or a transesophageal echocardiography (TEE)-guided 223 approach with abbreviated anticoagulation before cardioversion rather than no 224 anticoagulation (Strong recommendation, moderate quality evidence). 225 226 Remark: With NOACs adherence and persistence should be strongly emphasized 227 228 13. For patients with AF of greater than 48 hours or unknown duration undergoing elective 229 electrical or pharmacologic cardioversion, we recommend therapeutic anticoagulation (with 230 VKA or NOAC) for at least 4 weeks after succesful cardioversion to sinus rhythm rather than no 231 anticoagulation, regardless of the baseline risk of stroke (strong recommendation, moderate 232 quality evidence) 233 234 Remark: Decisions about anticoagulation beyond 4 weeks should be made in accordance with 235 our risk-based recommendations for long-term antithrombotic therapy in recommednations 1 236 and 2, and not on the basis of successful cardioversion 237 238 14. In patients in which LAA thrombus is detected on TEE, cardioversion postponed, and OAC 239 continued for another 4-12 weeks, to allow thrombus resolution or endothelisation, we 240 suggest that a decision on whether a repeat TEE is performed should be individualized 241 (ungraded consensus-based statement). 242 243 15. For patients with AF of documented duration of 48 hours or less undergoing elective 244 cardioversion (electrical or pharmacologic), we suggest starting anticoagulation at 245 presentation (low-molecular-weight heparin or unfractionated heparin at full venous 246 thromboembolism treatment doses) and proceeding to cardioversion rather than delaying 247 cardioversion for 3 weeks of therapeutic anticoagulation or a TEE-guided approach (weak 248 recommendation, low quality evidence). 249 250 16. For patients with AF and hemodynamic instability undergoing urgent cardioversion (electrical 251 or pharmacologic), after successful cardioversion to sinus rhythm, we suggest therapeutic anticoagulation (with VKA or full adherence to NOAC therapy) for at least 4 weeks rather than 252 253 no anticoagulation, regardless of baseline stroke risk (weak recommendation, low quality 254 evidence). 255 Remark: Decisions about long-term anticoagulation after cardioversion should be made in accordance with our risk-based recommendations for long-term antithrombotic therapy in 256 recommendations 1 and 2 257 258 259 17. For patients with AF and hemodynamic instability undergoing urgent cardioversion (electrical 260 or pharmacologic), we suggest that therapeutic-dose parenteral anticoagulation be started 261 before cardioversion, if possible, but that initiation of anticoagulation must not delay any 262 emergency intervention (weak recommendation, low quality evidence). 263 264 18. For patients with AF and hemodynamic instability undergoing urgent cardioversion (electrical or pharmacologic), After successful cardioversion to sinus rhythm, we suggest therapeutic 265 266 anticoagulation for at least 4 weeks after successful cardioversion to sinus rhythm rather than 267 no anticoagulation, regardless of baseline stroke risk (weak recommendation, low quality 268 evidence). 269

270 Remark: Decisions about anticoagulation beyond 4 weeks should be made in accordance with 271 our risk-based recommendations for long-term antithrombotic therapy in recommendations 1 272 and 2. 273 274 19. For patients with atrial flutter undergoing elective or urgent pharmacologic or electrical 275 cardioversion, we suggest that the same approach to thromboprophylaxis be used as for 276 patients with atrial fibrillation undergoing cardioversion (ungraded consensus-based 277 statement). 278 279 20. In AF patients presenting with an ACS and/or undergoing PCI/stenting, we recommend 280 assessment of stroke risk using the CHA2DS2-VASc score (Strong recommendation, moderate 281 quality evidence) 282 Remark: All such patients are not 'low risk' and should be considered for concomitant OAC. 283 284 21. In AF patients presenting with an ACS and/or undergoing PCI/stenting, we suggest attention to 285 modifiable bleeding risk factors at every patient contact, and assessment of bleeding risk using 286 the HAS-BLED score (weak recommendation, low quality evidence). 287 *Remark*: Where bleeding risk is high (HAS-BLED \geq 3), there should be more regular review and 288 follow-up. 289 290 22. In AF patients requiring OAC undergoing elective PCI/stenting, where bleeding risk is low 291 (HAS-BLED 0-2) relative to risk for recurrent ACS and/or stent thrombosis, we suggest triple 292 therapy for 1-3 months, followed by dual therapy with OAC plus single antiplatelet (preferably 293 clopidogrel) until 12 months, following which OAC monotherapy can be used (weak 294 recommendation, low quality evidence). 295 296 23. In AF patients requiring OAC undergoing elective PCI/stenting, where bleeding risk is high 297 (HAS-BLED \geq 3), we suggest triple therapy for one month, followed by dual therapy with OAC 298 plus single antiplatelet (preferably clopidogrel) for 6 months, following which OAC 299 **monotherapy can be used** (weak recommendation, low quality evidence) 300 301 24. In AF patients requiring OAC undergoing elective PCI/stenting , where bleeding risk is 302 unusually high and thrombotic risk relatively low, we suggest use of OAC plus single 303 antiplatelet (preferably clopidogrel) for 6 months, following which OAC monotherapy can be 304 **used** (weak recommendation, low quality evidence) 305 306 *Remark*: Patients at unusually high bleeding risk may include patients with HAS-BLED \geq 3 and 307 recent acute bleeding event. High thrombotic risk may include those with left main stent, 308 multivessel PCI/stenting, etc. 309 310 25. In AF patients requiring OAC presenting with an ACS, undergoing PCI/stenting, where bleeding 311 risk is low (HAS-BLED 0-2) relative to risk for ACS or stent thrombosis, we suggest triple 312 therapy for 6 months, followed by dual therapy with OAC plus single antiplatelet (preferably 313 clopidogrel) until 12 months, following which OAC monotherapy can be used (weak 314 recommendation, low quality evidence) 315 316 26. In AF patients requiring OAC presenting with an ACS, undergoing PCI/stenting, where bleeding 317 risk is high (HAS-BLED \geq 3), we suggest triple therapy for 1-3 months, followed by dual therapy 318 with OAC plus single antiplatelet (preferably clopidogrel) up to 12 months, following which 319 OAC monotherapy can be used (weak recommendation, low quality evidence). 320

321 27. In AF patients requiring OAC presenting with an ACS, undergoing PCI/stenting where bleeding 322 risk is unusually high and thrombotic risk low, we suggest OAC plus single antiplatelet 323 (preferably clopidogrel) for 6-9 months, following which OAC monotherapy can be used. (weak 324 recommendation, low quality evidence). 325 326 Remark: Patients at unusually high bleeding risk may include patients with HAS-BLED ≥3 and recent acute bleeding event. High thrombotic risk may include those with left main stent, multivessel 327 328 PCI/stenting, etc. 329 330 28. In AF patients with ACS or undergoing PCI in whom OAC is recommended, we suggest using 331 VKA with TTR>65-70% (INR range 2.0-3.0), or to use a NOAC at a dose licensed for stroke 332 prevention in AF (weak recommendation, low quality evidence). 333 334 Remark: Only Dabigatran 150mg bid or (not licensed in USA) 110mg bid or Rivaroxaban 15mg qd 335 are currently supported by clinical trial evidence. A NOAC based strategy has lower bleeding risk 336 compared to a VKA-based strategy. 337 338 29. In AF patients in which aspirin is concomitantly used with OAC, we suggest a dose of 75-100mg 339 qd with concomitant use of PPI to minimize gastrointestinal bleeding (Weak recommendation, 340 low quality evidence) 341 30. In AF Patients in which a P2Y12 inhibitor is concomitantly used with OAC, we suggest the use 342 343 of clopidogrel (Weak recommendation, low quality evidence) 344 345 Remark: Newer agents (eg. Ticagrelor) can be considered where bleeding risk is low. Data on the 346 combination of ticagrelor with either dabigatran 110mg bid or 150 bid (without concomitant aspirin 347 use) are available from the RE-DUAL PCI trial. 348 31. For patients with AF and stable coronary artery disease (eg, no acute coronary syndrome 349 within the previous year) and who choose oral anticoagulation, we suggest OAC with either a NOAC or adjusted-dose VKA therapy alone (target international normalized ratio [INR] range, 350 351 2.0-3.0) rather than the combination of OAC and aspirin (Weak recommendation, low quality evidence) 352 32. In patients with AF in whom catheter ablation of AF or implantation of cardiac electronic 353 354 implantable devices is planned, we suggest performing the procedure on uninterrupted VKA in the INR therapeutic range, dabigatran or rivaroxaban (weak recommendation, low quality 355 356 evidence). 357 358 33. In patients in whom sinus rhythm has been restored, we suggest that long-term 359 360 anticoagulation should be based on the patient's CHA2DS2-VASc thromboembolic risk profile, 361 regardless of whether sinus rhythm has been restored via ablation, cardioversion (even spontaneous), or other means (Weak recommendation, low quality evidence). 362 363 364 365 34. In AF patients with acute ischaemic stroke, we suggest that very early anticoagulation (<48h) 366 using heparinoids or VKA should not be used (ungraded consensus-based statement). 367 368 *Remark*: Heparinoids should not be used as bridging therapy in the acute phase of ischaemic 369 stroke because they appear to increase the risk of symptomatic intracranial haemorrhage

370 371 372		without net benefit. The optimal timing of anticoagulation after acute ischaemic stroke is unknown.
372 373 374	35.	In AF patients with acute stroke without contraindications, we recommend that long term oral anticoagulation is indicated as secondary prevention (Strong recommendation, high quality
375		evidence).
376		<i>Remark</i> : The optimal timing of anticoagulation early after acute ischaemic stroke is unknown.
377 378		Early use of NOACs shows promise but requires testing in randomised controlled trials.
379	36.	In AF patients with acute ischaemic stroke, We suggest that oral anticoagulation should
380 381		usually be started within 2 weeks of acute ischaemic stroke, but the optimal timing within this period is not known (ungraded consensus-based statement).
382		
383		<i>Remark</i> : Although infarct size is clinically used to guide timing of anticoagulation, it is predictive
384		of a higher risk of early recurrent ischaemia, haemorrhagic transformation of the infarct, and
385		poor outcome, so might not be helpful in determining the net benefit of early treatment.
386 387		<i>Remark</i> : Anticoagulation with NOACs soon after stroke (earlier than 1 week) has not been tested
388		in randomised trials, but shows promise in observational studies.
389	37.	In patients with AF and high ischaemic stroke risk, we suggest anticoagulation with a NOAC
390		after acute spontaneous ICH (which includes subdural, subarachnoid and intracerebral
391		haemorrhages) after careful consideration of the risks and benefits (ungraded consensus-based
392		statement).
393		
394		Remark: The balance of net benefit from long term oral anticoagulation might be more
395		favourable in those with deep ICH or without neuroimaging evidence of cerebral amyloid
396		angiopathy.
397		Remark: In ICH survivors with AF, clinicians should aim to estimate the risk of recurrent ICH
398		(using ICH location and, where available, MRI biomarkers including cerebral microbleeds) and
399		the risk of ischaemic stroke
400		Remark: The optimal timing of anticoagulation after ICH is not known, but should be delayed
401		beyond the acute phase (~48 hours) and probably for at least ~4 weeks. Randomised trials of
402		NOACs and left atrial appendage occlusion are ongoing.
403		
404	38.	In ICH survivors at high risk of recurrent ICH (e.g. those with probable cerebral amyloid
405		angiopathy), we suggest left atrial appendage occlusion (ungraded consensus-based
406		statement).
407		Remark: Cerebral amyloid angiopathy should be diagnosed using validated clinico-radiological
408		criteria.
409	20	
410	39.	In patients with AF and symptomatic carotid stenosis (>50%), we suggest carotid
411		revascularisation with endarterectomy or stenting in addition to OAC as indicated (Weak
412		recommendation, moderate quality evidence).
413	40	In patients with AF and severid stanges treated with reveased prioritian, we suggest OAC
414 415	40.	In patients with AF and carotid stenosis treated with revascularisation, we suggest OAC therapy, without long-term antiplatelet therapy (ungraded consensus-based statement).
416		
417		<i>Remark</i> : There is limited evidence to guide the optimal treatment of patients with AF and carotid
418		stenosis not requiring revascularisation.
419		<i>Remark:</i> Short-term concomitant antiplatelet therapy (dual or mono) is generally used in the
420		immediate post-revascularisation period (e.g. 1-3 months)
421		

422 41. For patients that present with a clinically documented episode of AF (12-lead ECG or other 423 means, eg. external devices with validated rhythm detection), we suggest that the presence or 424 absence of symptoms must not influence the process of decision making with regard to the 425 need for anticoagulation based on risk stratification (ungraded consensus-based statement). 426 427 42. In cases of AHRE (atrial high rate episodes) detected by a CIED of at least 5 min duration, we 428 suggest that direct analysis of electrograms corresponding to AHRE is clinically indicated to 429 exclude artifacts or other causes of inappropriate detection of atrial tachyarrhythmias or AF 430 (ungraded consensus-based statement). 431 432 Remark: In patients with CIED detected AHRE a complete cardiological evaluation is indicated, 433 with 12-lead ECG, general assessment of clinical conditions and clinical risk stratification for 434 stroke using CHA₂DS₂VASc score. 435 *Remark*: There is no evidence in support or against prescription of oral anticoagulants in patients 436 at risk of stroke (intermediate to high risk according to CHA₂DS₂VASc) who present with AHREs, 437 corresponding to atrial tachyarrhythmias/AF at electrograms assessment of less than 24 hours 438 duration. 439 440 43. In patients with AF, we suggest prescription of oral anticoagulants as a result of an 441 individualized clinical assessment taking into account overall AHRE burden (in the range of 442 hours rather than minutes) and specifically, the presence of AHRE > 24 hours, individual stroke 443 risk (using CHA₂DS₂VASc), predicted risk benefit of oral anticoagulation and informed patient 444 preferences (ungraded consensus-based statement). 445 446 Remark: In patients with CIED detected AHRE continued patient follow-up is recommended, 447 preferentially combining clinical follow up with remote monitoring of the CIED or else more 448 frequent device interrogation than standard for CIED follow-up, to detect the development of 449 clinical AF (symptomatic or asymptomatic), to monitor the evolution of AHRE or AF burden and 450 specifically the transition to AHRE lasting more than 24 hours, onset or worsening of heart 451 failure, or any clinical change that might suggest a change in clinical profile or clinical conditions. 452 453 44. For patients with atrial flutter, we suggest that antithrombotic therapy decisions follow the 454 same risk-based recommendations as for AF. (ungraded consensus-based statement). 455 456 45. For women receiving OAC for prevention of stroke/TE in AF who become pregnant, we suggest 457 discontinuation of OAC with a VKA between weeks 6 and 12 and replacement by LMWH twice 458 daily (with dose adjustment according to weight and target anti-Xa level 4-6 hours post-dose 459 0.8-1.2 U/mL), especially in patients with a warfarin dose required of >5 mg/day (or 460 phenprocoumon >3 mg/day or acenocoumarol >2mg/day). OAC should then be discontinued 461 and replaced by adjusted-dose LMWH (target anti-Xa level 4-6 hours post-dose 0.8-1.2 U/mL) 462 in the 36th week of gestation (ungraded consensus-based statement). 463 464 46. For women on treatment with long-term vitamin K antagonists who are attempting pregnancy 465 and are candidates for LMWH substitution, we suggest performing frequent pregnancy tests 466 and use LMWH instead of VKA when pregnancy is achieved rather than switching to LMWH 467 while attempting pregnancy (ungraded consensus-based statement). 468 469 47. For pregnant women, we suggest avoiding the use of NOACs (ungraded consensus-based 470 statement). 471 Remark: For women on treatment with a NOAC we suggest switching to vitamin K antagonists, 472 rather than switching to LMWH while attempting pregnancy

ACCEPTED N	ANUSCRIPT
------------	------------------

473		
474	48.	For lactating women using warfarin, acenocoumarol, or UFH who wish to breastfeed, we
475		suggest continuing the use of warfarin, acenocoumarol, LMWH or UFH (ungraded consensus-
476		based statement)
477		
478	49.	For breast-feeding women, we suggest alternative anticoagulants rather than NOACs
479		(ungraded consensus-based statement).
480		
481		
482	50.	For mild CKD (Stage II, CrCl 60-89 ml/min), we suggest that oral anticoagulation clinical
483		decision making and treatment recommendations match that of patients without CKD (weak
484		recommendation, very low quality evidence).
485		
486	51.	For moderate CKD (Stage III, CrCl 30-59 ml/min), we suggest oral anticoagulation in patients
487	-	with a $CHA_2DS_2VASc \ge 2$ with label-adjusted NOACs or dose adjusted vitamin K antagonists
488		(Weak recommendation, very low quality evidence).
489		<i>Remark</i> : With VKA, good quality anticoagulation control (TTR>65-70%) is recommended.
490		
491	52.	In severe non-dialysis CKD (Stage IV CrCl 15-30), we suggest using VKAs and selected NOACs
492		(rivaroxaban 15mg QD, apixaban 2.5mg bid, edoxaban 30mg QD and (in USA only) dabigatran
493		75mg bid) with caution, based on pharmacokinetic data (ungraded consensus-based
494		statement).
495		
496	53.	In end-stage renal disease (CrCl < 15 or dialysis-dependent), we suggest that individualized
497		decision-making is appropriate (ungraded consensus-based statement).
498		
499	54.	In end-stage renal disease (CrCl < 15 or dialysis-dependent , we suggest using well managed
500		VKA with TTR>65-70% (ungraded consensus-based statement).
501		
502		Remark: NOACs should generally not be used, although in USA, apixaban 5mg bid is approved for
503		use in AF patients receiving hemodialysis
504		Remark: In patients with CKD who initiate OAC, concomitant antiplatelet therapy including low-
505		dose aspirin is likely to substantially elevate bleeding risk and should be used very judiciously.
506		
507	55.	In patients with AF at high risk of ischaemic stroke who have absolute contraindications for
508		OAC, we suggest using LAA occlusion (Weak recommendation, low quality evidence).
509		
510		Remark: When taking into account LAAO as a potential option, the risk of bleeding related to
511		antiplatelets agents that need to be prescribed in the first months has to be considered and the
512		possibility to use NOACs.
513		
514	56.	In AF patients at risk of ischaemic stroke undergoing cardiac surgery, we suggest surgical
515		exclusion of the LAA for stroke prevention, but the need for long term OAC is unchanged
516		(Weak recommendation, low quality evidence).
517		
518	57.	In AF patients taking warfarin without high risk of thromboembolism or who do not have a
519		mechanical valve, we suggest pre-operative management without bridging (Weak
520		recommendation, low quality evidence).
521		
522	58.	In AF patients on antithrombotic prophylaxis with warfarin with a high risk of
523		thromboembolism or with a mechanical valve, we suggest pre-operative management with
524		bridging (Weak recommendation, low quality evidence).

525 526 59. In AF patients on antithrombotic prophylaxis with a NOAC, we suggest pre-operative 527 management without bridging (Weak recommendation, low quality evidence).

- 529
 530 60. In AF patients who have previously refused OAC, we suggest reinforcing educational messages
 531 at each contact with the patient and revisit OAC treatment decisions (ungraded consensus532 based statement).
- 533534 *Remark*: Patient and physician treatment objectives often differ significantly and it is important
- to elicit from the patient what outcomes of OAC treatment are important to them.
- 536 *Remark*: Explain the risk of stroke and benefit/risks of treatment in terms the patient can
- understand and signpost the patient to appropriate educational resources (see e-Table 25.

538 INTRODUCTION

- 539 Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, with an increasing
- 540 prevalence and incidence with age. In adults aged >40 years, there is a 1 in 4 lifetime risk of
- 541 developing AF, with incident AF commonly related to various associated cardiovascular and non-
- 542 cardiovascular risk factors. AF without associated valvular heart disease (so-called 'non-valvular AF')
- 543 is associated with a five-fold increase in stroke risk (approximately 5%/year), but this risk is
- 544 dependent on the presence of various stoke risk factors¹. Many of the risk factors leading to
- 545 incident AF are also risk factors for ischemic stroke, and the promotion of an integrated or holistic
- approach to AF management is needed, incorporating stroke prevention, addressing symptoms and r_{47} rick factor management²
- 547 risk factor management².
- 548 Stroke prevention is the principal priority in the holistic approach to AF management¹. Even since
- the last edition of the ACCP guidelines published in 2012³, there have been substantial
- 550 developments in AF thromboproprophylaxis, whether with regard to risk assessment,
- antithrombotic drugs or non-drug approaches.
- 552 It is clear that AF should not be considered in isolation, at the stage of detection, prevention or
- treatment. For example, the majority of deaths in individuals with AF are from cardiac causes,
- 554 including HF, whereas stroke and bleeding represent a small subset of deaths, yet most
- 555 interventions focus on stroke prevention⁴. Thus, a more holistic approach is needed to take
- 556 comorbidities and cross-disease sequelae of AF, bridging primary and secondary care².
- 557 Aside from stroke prevention ('Avoid Stroke, use Anticoagulants), AF management requires patient
- 558 centered and symptom directed decisions on rate or rhythm control ('Better symptom
- 559 management') as well as 'Cardiovascular and other risk factor, and lifestyle management'². The
- 560 latter includes addressing risk factors (cardiac ischemia, heart failure, hypertension, sleep apnea,
- diabetes, etc.) and lifestyle (obesity, alcohol excess, stimulants etc.). This simple ABC approach
- 562 (Atrial fibrillation Better Care approach) would simplify an integrated approach to AF management in
- 563 a holistic manner. (Figure 1) 2
- 564
- 565

- 566 This guideline focuses on stroke prevention and begins with a brief discussion of the methods used 567 to develop these guidelines and the recommendations for antithrombotic therapy in patients with 568 AF. Next, we provide our treatment recommendations, divided into the following sections:
- 569 Stroke and bleeding risk assessment 570 Antithrombotic therapy in patients with AF in general (includes patients with permanent, • 571 persistent, or paroxysmal AF [PAF]) 572 Antithrombotic therapy in patients with AF in special situations: 573 0 Managing Bleeding 574 Antithrombotic therapy for patients with AF undergoing cardioversion 0 575 Acute coronary syndrome (ACS) and stenting 0 576 Stable coronary artery disease 0 577 Rhythm control and electrophysiological procedures 0 578 Acute ischemic stroke, ICH, ESUS, carotid disease 0 579 AHRE on devices 0 580 Chronic atrial flutter 0 581 Pregnancy 0 582 Chronic Kidney Disease Ο 583 Valvular heart disease 0
- The article ends with a discussion of practical and patient-centered issues as well as suggestions forfuture research.

586

587 METHODS

588 Expert Panel Composition

The chair of the panel (G.Y.H.L.) was appointed and subsequently reviewed and approved by CHEST's
Professional Standards Committee (PSC). Panelists were nominated by the chair based on their
expertise relative to potential guideline questions.

592 Conflicts of Interest

- 593 All panel nominees were reviewed for their potential conflicts of interest (COI) by CHEST's PSC. After
- review, nominees who were found to have no substantial COIs were approved, whereas nominees
- 595 with potential intellectual and financial COIs that were manageable were "approved with
- 596 management". Panelists approved with management were prohibited from participating in
- 597 discussions or voting on recommendations in which they had substantial COIs. A grid was created
- 598 listing panelists' COIs for each recommendation for use during voting. Of note, the chair (G.Y.H.L.)
- recused himself from any voting on recommendations. The COI grid can be found in e-Table 1.

600 Formulation of Key Questions

- Table 1 specifies the clinical questions being addressed in this article (in PICO [population,
- 602 intervention, comparator, outcomes] format) and the types of studies included.

603 Consistent with the 9th edition of the guideline, the outcomes most relevant to patients with AF

- 604 include death, nonfatal stroke, systemic embolism, nonfatal major extracranial bleeding, and the
- burden and lifestyle limitations associated with outpatient antithrombotic therapy.³ To facilitate
 decision-making, the term 'stroke' in this guideline includes both ischemic stroke and hemorrhagic
- 607 stroke, which together with systemic embolism was the principal outcome in most stroke prevention
- 608 trials. Additional considerations were all-cause and cardiovascular mortality. For bleeding
- 609 outcomes, we focused on major bleeding, which was the principal safety outcome in most stroke
- 610 prevention trials. Major bleeding included intracranial bleeding, the most severe and disabling form
- 611 of anticoagulant-related bleeding.
- 612
- 613

614 Literature Searches and Study Selection

- To inform our guideline development, we searched for relevant articles published since the last
- 616 formal literature search performed for the Antithrombotic and Thrombolytic Therapy: American
- 617 College of Chest Physicians Evidence-Based Clinical Practice Guidelines (9th Edition) which were
- 618 published in 2012³. Searches were also conducted specifically for existing guidelines and systematic
- 619 reviews. In cases which existing, good quality systematic review(s) were retrieved, the results of the
- 620 review informed our recommendations.
- 621 Specifically, for literature regarding the assessment of stroke risk in patients with AF, we searched
- 622 MEDLINE via PubMed and the Cochrane Library for articles published from October 2009, to October
- 623 2017 using the search terms "atrial fibrillation," "atrial flutter," "risk assessment," "risk factors," "risk
- 624 stratification," "stroke," and "thromboembolism."
- 625 For literature regarding prevention of stroke and thromboembolism in patients with AF, we searched
- 626 MEDLINE via PubMed and the Cochrane Library for articles published from January 1, 2007, to
- 627 October 2017 using the search terms "coumarins," "warfarin," "dicumarol," "phenprocoumon,"
- 628 "acenocoumarol," "fondaparinux," "idraparinux," "aspirin," "triflusal," "indobufen," "dabigatran,"
- 629 "ximelagatran," "rivaroxaban," "apixaban," "ticlopidine," "clopidogrel," "catheter ablation,"
- 630 "watchman," "PLAATO," "cardioversion," "atrial fibrillation," and "atrial flutter."
- 631 Titles and abstracts of the search results were reviewed independently and in parallel to identify
- 632 potentially relevant articles based on the inclusion and exclusion criteria from the PICO elements.
- 633 Discrepancies were resolved by discussion. Studies deemed eligible then underwent a second round
- of full-text screening following the same methodology used during title/abstract review. Important
- 635 data from each included study were then extracted into structured evidence tables.

636 Risk of Bias Assessment

- 637 The methodologist assessed the risk of bias in all included studies. The Cochrane Risk of Bias tool
- 638 was used to assess the risk of bias for randomized controlled trials⁵ and the Risk of Bias in Non-
- 639 randomized Studies of Interventions (ROBINS-I) tool to evaluate risk of bias for observational

studies.⁶ In cases in which existing systematic reviews were available, we used the Documentation
 and Appraisal Review Tool to assess methodological quality.⁷

642 Meta-Analysis

643 When individual studies were available or an existing meta-analysis needed to be updated, we used

- 644 the Cochrane Collaboration Review Manager, version 5.2⁸ to pool the results across individual
- studies. We used a random-effects model and the method of DerSimonian and Laird to pool the
- 646 individual estimates.⁹ Relative risk (RR) was used to report the results for dichotomous outcomes
- and mean difference (MD) for continuous outcomes with accompanying 95% confidence intervals
- 648 (CI). Statistical heterogeneity of the pooled results was assessed using the Higgins' I^2 and the Chi-
- square tests. A Higgins'l² value of ≥50% or Chi-square p<0.05 was considered to represent significant
 heterogeneity.

651 Assessing the Overall Quality of the Evidence

- 652 The overall certainty (quality) of the evidence was assessed for each critical or important outcome of
- 653 interest using the GRADE approach.¹⁰ Evidence profiles were created using the Guideline
- 654 Development Tool (GDT), which categorized the overall quality of the body of evidence into one of
- 655 four levels: high, moderate, low, or very low.

656 Drafting Recommendations

- The panel drafted and graded recommendations based on the results of the meta-analyses and
- 658 evidence profiles. Recommendations were graded according to CHEST's grading system which uses
- 659 the GRADE approach (Table 2).^{11,12} The recommendations were either "strong" or "weak" according
- to this approach. Strong recommendations use the wording "we recommend" and weak
- 661 recommendations use the wording "we suggest". The implications of the strength of
- recommendation are summarized in e-Table 2.
- 663 In instances in which there was insufficient evidence, but a clinically relevant area was felt to require
- a guiding comment, a weak suggestion was developed and "Ungraded Consensus-Based Statement"
- 665 replaced the grade.¹³
- 666 In developing our treatment recommendations, we attempted to account for patient values and
- 667 preferences regarding these outcomes, and had two patient advocates (MTH and DAL) who
- 668 participated in the panel discussion, and specifically addressed patient-centered issues.
- 669

670 Consensus Development

- 671 All drafted recommendations and suggestions were presented to the panel in an anonymous online
- voting survey to reach consensus and gather feedback. Panelists were requested to indicate their
- 673 level of agreement on each statement based on a five-point Likert scale derived from the GRADE
- 674 grid.¹⁴ Panelists with COIs related to the individual recommendations recused themselves from
- voting on those statements). Of note, the chair (G.Y.H.L.) recused himself from any voting on
- 676 recommendations. According to CHEST policy, each recommendation and statement required a 75%

- voting participation rate and at least 80% consensus to "pass". Any recommendation or suggestion
- that did not meet these criteria was revised by the panel based on the feedback, and a new survey
- 679 that incorporated those revisions was completed.

680 Peer Review Process

- 681 Reviewers from the GOC, the CHEST Board of Regents, and the CHEST journal reviewed the methods
- used and the content of the manuscript for consistency, accuracy and completeness. The manuscript
- 683 was revised according to feedback from the reviewers.
- 684

685 STROKE RISK IN ATRIAL FIBRILLATION

- The extensive data on epidemiological burden of stroke associated with AF and well as the
- pathophysiology is detailed in the Online Supplement. It is beyond the scope of this document toconsider the epidemiology of all comorbidities in AF.
- 689

In summary, healthcare systems face increasing prevalence, incidence and lifetime risk of AF, which
 is as high as 1 in 4 in contemporary studies in high-income settings¹⁵. Epidemiologic studies largely
 represent Western countries and Caucasian populations¹⁶. However, reported prevalence varies
 substantially by world region (see e-Figure 1) and with more rigorous screening methods to detect
 AF.

695

Individuals with AF have increased risk of stroke (4-5 fold increase), heart failure (2-3 fold increase)
and mortality (2-fold increase) (see web Supplement 1.1). Patients with AF also experience higher
rates of morbidity, hospital admissions, as well as early dementia. The high AF-attributable risk of
stroke, especially in the elderly, is evident since at least one in 3 to 4 individuals with an ischemic
stroke, and over 80% of those with ischemic stroke of cardioembolic subtype, also have AF¹⁷. Overall,
non-white ethnicity shows evidence of association with lower risk of incident AF.

702

Several of the risk factors for incident AF are also risk factors for stroke in AF. ¹⁸ Primary prevention
 strategies for AF have not been conclusively proven in randomized trials, opportunistic screening is
 the recommended strategy to detect AF at the population-level¹⁹. A systematic review of the

- associations of 23 cardiovascular risk factors and incident AF including 20,420,175 participants and
- 707 576,602 AF events, respectively, found hypertension, obesity, taller height and coronary heart
- 708 disease showed consistent, direct associations with incident AF¹⁸. Ethnic differences in co-
- 709 morbidities in AF patients have been reported.²⁰⁻³⁶ Hypertension is the leading comorbid risk factor
- 710 and is equally distributed in different races. Coronary heart disease (CHD) seems more common in
- 711 Caucasians and the Middle East, than in Asians. The annual risk of AF-associated stroke in Asians is
- higher than that in Caucasians^{37 28 29 38} and the risk of stroke may start to increase at a younger age
 in Asians.³⁷
- 714

715 Classification of AF

- AF is classified as paroxysmal (self-terminating within 7 days), persistent (continuous for >7 days),
- 717 long-standing persistent (continuous for >1 year), or permanent (chronic). AF becomes increasingly

- persistent and resistant to therapy over time, perhaps due to the development of atrial fibrosis, as
 well as other pathophysiological processes (e-Figure 2). AF and atrial flutter frequently co-exist, and
 share similar risk factors for arrhythmia development and stroke risk³⁹. Lone AF is a low risk patient
- group that is a diagnosis of exclusion, after ensuring no comorbidity risk factors are evident⁴⁰.
- "Tone" atrial flutter (without any recognizable underlying disease), like lone AF, is also rare only 2%
- of atrial flutter patients⁴¹. The role of anticoagulation in atrial flutter has not been assessed in clinical
- trials, but since individuals with atrial flutter often have concomitant AF or are at increased risk of
- developing AF, the risk of stroke and thromboembolism is assumed to be the same and the same risk
- 726 stratification approaches are recommended.
- 727

728 Risk factors for ischemic stroke.

729

730 Clinical risk factors for ischemic stroke in AF

731 Although AF is an independent risk factor for stroke, not all patients with AF have equal stroke risk.

- In order to correctly assess the risk of stroke in order to inform anticoagulation, risk prediction or
 stratification tools have been developed, based on the risk factors most strongly and consistently
 accessisted with stroke
- associated with stroke.
- 735
- A systematic review of stroke risk factors found that prior stroke or transient ischemic attack (15/16
 studies positive, risk ratio [RR] 2.86), hypertension (11/20 studies positive, RR 2.27), aging (9/13
 studies positive, RR 1.46 per decade increase), structural heart disease (9/13 studies positive, RR 2.0)
 and diabetes (9/14 studies positive, RR 1.62) were independent predictors of stroke. Supportive
 evidence was found for sex (8/22 studies positive, RR 1.67), vascular disease (6/17 studies positive,
 RR 2.61) and heart failure (7/18 studies positive, RR 1.85)⁴². Non-paroxysmal atrial fibrillation is
 associated with a highly significant increase in thromboembolism (multivariable adjusted hazard
- 743 ratio 1.384, 95% Cl 1.19-1.61, P < 0.001)⁴³.
- 744

In individuals with HF, AF is associated with worse prognosis than sinus rhythm^{44,45}. HF is an
 independent predictor of stroke/TE, mortality and other clinical outcomes in individuals with AF,
 compared with no HF⁴⁶. Moreover, HF is a predictor of development of AF and has been

- 748 incorporated in tools for risk prediction of incident AF⁴⁷. All-cause mortality is higher in AF patients
- 749 with HFrEF (HF with reduced ejection fraction) compared to HFpEF (HF with preserved ejection
- fraction) (RR 1.24, 95% Cl 1.12-1.36, p<0.001), although stroke risk (RR 0.85, 0.70-1.03, p=0.094) and
- heart failure hospitalization (RR 1.21, 95% Cl 0.96-1.53, p=0.115) are not significantly different⁴⁸.
- 752

753 Chronic kidney disease (CKD) is an independent predictor of risk of stroke/thromboembolism. AF 754 patients with estimated glomerular filtration rate <60 mL/min compared with those with estimated 755 glomerular filtration rate ≥60 mL/min have increased risk of stroke/thromboembolism (RR 1.62, 95% 756 Cl, 1.40-1.87; p<0.001), with a 0.41% (0.17%-0.65%) annual increase in rate for a 10 mL/min 757 decrease in renal function⁴⁹. The risk is higher in individuals requiring renal replacement therapy (HR 1.83; 95% CI, 1.57 to 2.14; p<0.001). There is also increased risk of bleeding in individuals with AF 758 and CKD, compared with those without CKD.⁵⁰ Conversely, AF is associated with increased risk of 759 chronic kidney disease (CKD) (RR 1.64, 1.41-1.91)⁵¹. The clinical relevance of renal function is not 760 only for risk prediction, but also for choice of anticoagulation and other therapies⁵²⁻⁵⁴ (See Atrial 761 762 Fibrillation and Chronic Kidney Disease section).

763 764 Over the last decade, rigorous detection strategies have shown that prevalence of AF in cryptogenic stroke is likely to be as high as 30%⁵⁵. A systematic review and meta-analysis after transient ischemic 765 766 attack (TIA) has shown a pooled AF detection rate for all methods of 4% (95% CI: 2-7%)⁵⁶. 767 768 Echocardiographic risk factors 769 The role of echocardiography in evaluation before cardioversion or ablation, and in predicting the 770 presence of left atrial (LA) appendage thrombus is dealt with in sections 'Cardioversion' and 771 'Catheter or Surgical Ablation, Electrophysiological Procedures'. There may also be a role in 772 evaluating thromboembolic risk stratification to select appropriate antithrombotic therapy. e-Table 773 4 summarizes major studies which have shown an association between transthoracic 774 echocardiographic (TTE) parameters and ischemic stroke. However, there are very limited data to 775 suggest that there would be any incremental clinical benefit in risk prediction, and moreover there is 776 no evidence that management (in terms of OAC) would be changed⁵⁷. 777 778 Nevertheless, the most consistent independent predictor of ischemic stroke on TTE is the presence 779 of moderate-severe LV systolic dysfunction. In patients undergoing transesophageal 780 echocardiography (TEE), LA appendage thrombi⁵⁸ and LA spontaneous echo contrast⁵⁹ are both 781 associated with increased thromboembolism, as well as the presence of low LA appendage velocities 782 and complex aortic plaque; however, the same limitations as for TTE parameters apply⁵⁷. 783 784 **Biomarkers** 785 e-Table 5 summarizes important studies involving currently available biomarkers ('biological 786 markers') that have shown associations with stroke and thrombosis in AF, but both study design and 787 scale of the studies limit possible conclusions. Caveats with the use of these biomarkers include the 788 inter- and intra- patient and assay variability, some have a diurnal variation and can be highly 789 influenced by associated comorbidities and drug therapies. Many biomarkers are non-specific for a 790 particular endpoint, and can be equally predictive not only of stroke but bleeding, death, 791 hospitalization, heart failure etc., as well as non-cardiac conditions e.g., glaucoma. 792 793 The importance of biomarkers probably lies in the 'very low risk' strata of clinical scores (e.g., 794 CHA₂DS₂VASc= 0-1 group) where they may influence the decision to anticoagulate, yet there are 795 limited data available in these patients. There are several other hurdles including variations in 796 availability in healthcare systems, biomarker assays, access to laboratories, biomarkers diurnally, by 797 comorbidities and by anticoagulation and other therapies. For these reasons, the clinical application 798 of biomarkers in management of AF is unlikely to be significant. 799 800 Other potential novel risk factors for ischemic stroke in AF

801 As with established risk factors, novel risk factors may improve prediction of thromboembolic risk in

AF patients, where current risk scores are suboptimal⁶⁰. These novel factors include clinical risk

factors (e.g., burden of AF), serum biomarkers (e.g., NT-proBNP), imaging (e.g., left atrial fibrosis on

804 cardiac MRI) and echocardiography (e.g., left atrial volume index and longitudinal strain). However,

these factors are currently neither proven to significantly add to risk prediction, nor likely to

806 influence the decision to anticoagulate.

808

810

809 Risk stratification for stroke and thromboembolism in AF

811 A comparison of features included in various published stroke risk stratification schemes in AF is

812 shown in e-Table 6. A summary of studies comparing the various stroke risk stratification schema is

- 813 available in e-Table 7. The risk stratification scheme commonly used in many guidelines is the
- 814 CHA_2DS_2 -VASc (congestive heart failure, hypertension, age \geq 75 years [doubled], diabetes,
- 815 stroke/transient ischemic attack/thromboembolism [doubled], vascular disease [prior myocardial
- 816 infarction (MI), peripheral arterial disease (PAD), or aortic plaque], age 65-74 years, sex category
- 817 [female]) score¹.
- 818

819 All risk schemes based on clinical risk factors have broadly similar predictive value for 'high risk'

- 820 patients who sustain stroke and TE events (all c-indexes approx. 0.60-0.65). Adding more and more
- 821 clinical variables and complexity (i.e., simple versus more complex clinical risk scores) would only
- 822 modestly increase the c-index to approximately 0.65-0.70. Many score comparisons focus on
- 823 identification of 'high risk' and do not focus on 'low risk end of the spectrum' and so are not helpful
- 824 for decision-making on whether to anticoagulate or not.
- 825

Event rates per score point varies according to study setting, ethnicity, cohort, and community vs. 826 hospitalized population etc (as might be expected)⁶¹. Also, reported events depends on use of highly 827 selected clinical trial cohort vs. 'real world' unselected, and anticoagulated vs. non-anticoagulated 828 829 patients⁶². Mortality rates from observational cohorts may also include fatal strokes as 830 postmortems are not mandated, outcomes are non-adjudicated (as in clinical trials) and cerebral 831 imaging is not performed. Analytical methodology matters and outcomes depend on thresholds for treatment, varying risk profile during the study (which this does not remain static) and statistical 832 analysis methods⁶³. Some analyses which exclude patients on anticoagulants are flawed by 833 'conditioning on the future' methodology, and follow-up can be dependent on continuation in a (US) 834

- 835 healthcare plan.
- 836

837 Ethnic differences are also evident in stroke risk related to AF. In a Taiwanese cohort, the risk of stroke was 1.78%/year in patients aged 50-64 years and a CHA₂DS₂-VASc 0.⁶⁴ The risk exceeds the 838

- threshold for OAC use for stroke prevention. A modified CHA2DS2-VASc (mCHA2DS2-VASc) score has
- 839 been proposed, assigning one point for patients aged 50 to 74 years.⁶⁵ The mCHA₂DS₂-VASc score
- 840 841 performed better than CHA₂DS₂-VASc score in predicting ischemic stroke assessed by C indexes and
- 842 net reclassification index. For patients having an mCHA₂DS₂-VASc score of 1 (males) or 2 (females)
- because of the resetting of the age threshold, use of warfarin was associated with a 30% lower risk 843
- 844 of ischemic stroke and a similar risk of ICH compared with no-treatment. Net clinical benefit analyses
- 845 also favored the use of warfarin in different weighted models. These findings suggest that the age-
- based treatment threshold for stroke prevention may need to be reset in East Asians.⁶⁵ 846
- 847
- 848 Adding biomarkers would (statistically) improve prediction but c-indexes are still approximately
- 849 0.65-0.70. Recent studies in real world cohorts do not support the clinical usefulness of biomarker-
- 850 based scores over clinical risk scores such as the CHA₂DS₂VASc score. The use of biomarkers have to
- balance the assay availability, lab variability, costs and added complexity and lower practicality for 851
- 852 everyday use. Also, many biomarker studies are based on anticoagulated highly selected clinical

- trial cohorts, with all included subjects already in the high risk group (CHA₂DS₂VASc or CHADS₂ score
 of 2 or greater). There are few/no studies on non-anticoagulated AF patients, to ascertain the true
 impact of biomarkers on (non-anticoagulation treated) stroke rates. Current studies do not inform
 whether the biomarkers will discriminate/identify low risk in lower/intermediate risk patients who
 are not anticoagulated.
- 858

Rather than focus on identifying 'high risk', the focus should be on initially identifying 'low risk'
patients. A 'low risk' categorization by the CHA₂DS₂-VASc (0 in males and 1 in females) consistently
identifies low risk patients, with event rates around 1%/year or under, notwithstanding the possible
need to re-categorize the age 65-74 criterion in Asians⁶⁵.

863

864 The majority of published studies and systematic reviews suggest that the CHA₂DS₂VASc score is generally better than CHADS₂, ATRIA and CHADS65 in identifying 'low risk' patients, although the 865 proportion of the population assigned as low risk is small. However, there are conflicting data in 866 867 different cohorts for performance of the ATRIA score (UK CPRD and Swedish cohorts vs Danish and 868 Taiwan cohorts). Differences between the ATRIA and CHA₂DS₂VASc disappear when cut-points are 869 optimized for stroke risk of the cohort. There are discrepancies between individual studies on the 870 relative performance of ATRIA and CHA₂DS₂VASc scores in identifying low risk patients, but the 871 CHA₂DS₂VASc score is easier to calculate.

872

873 Rather than using risk scores in a categorical manner - recognizing the various limitations of scores 874 to predict 'high risk' patients that sustain events - and given that for each risk strata or given risk 875 score point, we recognized there is wide variation in reported event rates based on reported study 876 clinical setting, patient population, ethnicity etc. Notwithstanding that the default should be stroke 877 prevention for all AF patients unless deemed to be 'low risk', the focus should be to use scores to 878 initially identify 'low risk' patients who do not need antithrombotic therapy, rather than focus on 879 identification of 'high risk' patients. Prior guidelines have also opted for the CHA2DS2VASc score to 880 define a low risk group.

881

The 'C' in CHA₂DS₂-VASc refers to recent decompensated heart failure, irrespective of the ejection 882 883 fraction (thus including heart failure with reduced ejection fraction (HFrEF) or preserved ejection 884 fraction (HFpEF)) or the presence of moderate-severe LV systolic impairment on cardiac imaging, whether symptomatic or asymptomatic. The 'H' refers to history of hypertension or uncontrolled 885 886 blood pressure, while 'S' refers to stroke, systemic embolism or a confirmed diagnosis of transient ischemic attack (TIA). 'V' refers to complicated vascular disease, including myocardial infarction or 887 peripheral artery disease, or if performed, the presence of complex aortic plaque on TEE. Female 888 889 sex (Sc criterion) is only relevant as a risk modifier if age>65 or additional associated risk factors are present, given that at females age <65 with no other risk factors are not at excess stroke risk⁶⁶. 890 891 Stroke risk is also dynamic, and risk should be re-assessed at every patient contact. This was seen in 892 a study where the 'delta CHA₂DS₂VASc score', representing the change in stroke risk between 893 between baseline and followup) was the best predictor for ischaemic stroke⁶⁷. 894 895 A stepwise approach to thromboprophylaxis would allow initial identification of low risk using

 CHA_2DS_2VASc (Step 1), following which stroke prevention can be offered to all others (Step 2)

irrespective of stroke point score or biomarkers used. This would approach uses stroke risk scores in
a reductionist manner to aid decision-making, and balances simplicity and practicality (and costs).

900

901 Recommendations

902

- For patients with AF, including those with paroxysmal AF, stroke risk should be assessed using a risk factor based approach, rather than an categorisation into low, moderate/high risk strata. We recommend use of the CHA2DS2VASc as a simple clinical based stroke risk score to initially identify 'low stroke risk' patients that should not be offered antithrombotic therapy to prevent stroke and reduce mortality (Strong recommendation, moderate quality evidence).
 Remark: Low risk patients are generally those age<65 and 'lone AF' irrespective of sex (this includes those with a CHA2DS2VASc score=0 in males, or 1 in females).
- 910
- 911 2. Subsequent to this initial step, for patients with AF, including those with paroxysmal AF,
 912 stroke prevention should be offered to those AF patients with one or more non-sex
 913 CHA₂DS₂VASc stroke risk factors (score of ≥1 in a male or ≥2 in a female) (Strong
 914 recommendation, moderate quality evidence).
- *Remark*: Consideration of other less established clinical stroke risk factors, imaging (cardiac or
 cerebral) or biomarkers (urine, blood or genetics) may refine risk stratification based on simple
 clinical factors. A complex risk schema using a variety of such data that could accurately place
 more patients in the low risk stratum not requiring anticoagulants than current simple clinically based scores (personalised medicine) should be the goal of future research, but it will be very
- 920 difficult to find non-anticoagulated patient cohorts for prospective validation.
- 921
- 922

923 BLEEDING RISK IN ATRIAL FIBRILLATION

924 Observational studies

The rates of major bleeding on VKA among observational cohorts are shown in e-Table 8 and 925 demonstrate highly variable rates, ranging from 1.4%/year^{68,69} to 10.4%/year.⁷⁰ Nevertheless, there 926 927 is significant heterogeneity between the study population characteristics, the inclusion of inception 928 versus 'experienced' OAC cohorts, significant disparity in the exposure period (follow-up) and 929 differences in the definitions of major bleeding employed. In addition, information on the specific 930 risks of bleeding of the individual cohorts, using a validated bleeding risk score are lacking, the 931 definitions of major bleeding were often not provided and the quality of anticoagulation, such as 932 TTR, is generally lacking. Therefore, direct comparison of the rates of major bleeding on VKA 933 between observational cohorts and with RCTs is problematic.

- 934
- 935 Clinical trials
- 936 The definitions of major bleeding are available in most clinical trials, especially in the NOACs trials
- 937 where ISTH definitions were used.⁷¹ Before the NOAC era, the rates of major bleeding due to VKA
- 938 were generally in the range of 1% to 3% per year (e-Table 9). In the 5 NOAC trials,⁷²⁻⁷⁶ the annual

- rates of major bleeding of warfarin were between 3% to 4% (Table 2). Data from NOACs trials are
 more reliable, because patients were randomized to treatment, the majority were double-blinded
 and the quality of anticoagulation (such as TTR) was generally better than observational studies. The
 risk of major bleeding on NOACs, especially the low-dose regimen (dabigatran 110 mg and edoxaban
- 943 30 mg), was generally lower than that on warfarin, except in the ROCKET AF trial.⁷³
- 944

945 Risk factors for bleeding with NOAC, VKA and antiplatelet therapy

946

947 Numerous risk factors for bleeding among AF patients receiving antithrombotic therapy have been 948 identified and incorporated into bleeding risk scores (see Section on Bleeding Risk Score). Bleeding 949 risk varies from person to person depending on their pre-existing comorbidities, current 950 antithrombotic regimen and adherence, concomitant medication, and lifestyle choices. Many of 951 these factors cannot be altered but some are modifiable or potentially modifiable (see Figure 2). In 952 order to reduce antithrombotic-treatment associated bleeding it is important to recognize that 953 bleeding risk is also dynamic and should be reassessed at every patient review. While modifiable 954 bleeding risk factors that can be changed or managed should clearly be addressed as part of a 955 holistic approach to AF patient assessment and management, non-modifiable bleeding risks are

- 956 important drivers of bleeding events when occurring synergistically with modifiable ones⁷⁷. An
- 957 approach to bleeding risk assessment soley based only on modifiable bleeding risk factors is an
- 958 inferior assessment strategy compared to use of a formal bleeding risk score⁷⁸⁻⁸⁰.
- 959

960 Blood pressure control

Good control of blood pressure is vital to reduce the risk of stroke and is essential to decrease therisk of bleeding on antithrombotic therapy; adherence to current guidelines on the management of

- 962 risk of bleeding on antithrombotic therap963 hypertension should be followed.
- 964
- 965 Anticoagulation control

Among patients receiving VKA, maintenance of an INR in the therapeutic range (2.0-3.0) is essential.
 The proportion of time spent in this range (TTR) should be at least 65% but the ultimate aim/target
 should be 100% (see Optimal INR target range section). The risk of bleeding increases when the INR
 exceeds 3.0, particularly for ICH risk when INR >3.5.⁸¹⁻⁸⁶.

970

971 INR control can potentially be improved by more frequent monitoring and review of factors
972 influencing INR control (diet-, alcohol-, and drug-interactions). There is evidence that improving
973 patient education about INR control,⁸⁷ INR management by dedicated anticoagulation clinics with
974 experienced personnel,⁸⁸⁻⁹⁰ and self-monitoring/self-management in selected patients⁹¹ can increase
975 TTR. Increasing patient's awareness of the importance of OAC medication adherence and the
976 potential bleeding risks associated with over-dose are also essential to minimize bleeding

- 977 complications.
- 978

979 Concomitant medication pre-disposing to bleeding

- 980 Non-essential use of concomitant anti-platelet drugs and NSAIDs should be avoided since these
- 981 medications increase the risk of bleeding in patients receiving OAC. Where concomitant anti-
- 982 platelet therapy is necessary (i.e. post-coronary stent implantation), the duration of combination
- 983 OAC and anti-platelet drugs should be kept to the minimum.⁹² Since anti-platelet drugs/NSAIDs are

984 widely available over-the-counter, patients need to be made aware of the bleeding risk associated 985 with their use in combination with OAC. 986 987 Alcohol intake 988 Excessive alcohol intake (chronic or binge-drinking) increases the risk of bleeding predominantly due 989 to the risk of trauma, but in chronic alcohol abuse through poor medication adherence, hepatic and 990 variceal disease. OAC should not initiated among patients consuming alcohol in excess >14U/week. 991 There is no clear definite threshold where bleeding risk is increased. Patients also need to be made 992 aware of the potential dangers associated with excessive alcohol consumption in combination with 993 OAC/antithrombotic therapy. 994 995 Lifestyle factors 996 Avoidance of work and/or leisure activities that have the potential to cause serious trauma (e.g. 997 contact sports, rock-climbing, occupations working at height or operating heavy machinery) should 998 be advised. 999 1000 Bridging periods off anticoagulation 1001 Interruption of OAC should be avoided to reduce stroke risk since the majority of cardiovascular 1002 procedures (e.g., pacemaker implantation or percutaneous coronary intervention) can be safely 1003 performed on OAC. Bridging (that is, stopping OAC and providing anticoagulation cover with 1004 heparin) should be used in patients with mechanical heart valves but does not appear to be otherwise advantageous.^{93,94}. 1005 1006 1007 Appropriate choice of OAC 1008 Choice of OAC should be made on an individual basis after stroke and bleeding risk assessment and 1009 discussion with the patient. Before a NOAC is initiated, the patient's age, body weight and renal 1010 function should be considered to allow for appropriate dose adaptation where necessary. 1011 1012 Falls risk and cognitive impairment 1013 In frail patients and those at high risk of falls an individual risk assessment needs to be undertaken 1014 prior to OAC initiation. In cases where the risk is that of mechanical falls, strategies to improve 1015 walking/reduce risk of tripping should be explored (i.e. walking aids, appropriate footwear, home 1016 review to remove trip hazards), whereas neurological assessment is warranted if falls are 1017 unexplained. The benefits of ischaemic stroke reduction generally outweigh the risk of harm from serious bleeding with OAC use; one estimate was that the patient would need to fall 295 times per 1018 year for the risk from falls to outweigh the benefits of stroke reduction⁹⁵. In patients with cognitive 1019 1020 impairment or dementia, OAC should only be withheld if there is no available caregiver who can 1021 guarantee medication adherence. 1022 1023 Reversal of biochemical anomalies 1024 Patients with anemia or reduced platelet count or function should be treated where possible to 1025 improve their Hb or platelet count. Causes of renal impairment should be investigated and where 1026 possible reversed. 1027

- Patients with liver function abnormalities were generally excluded from the randomised trials, and
 especially where there is abnormal clotting tests, such patients may be at higher risk of bleeding on
 VKA, possibly less so on NOACs; in cirrhotic patients, ischaemic stroke reduction may outweigh
 bleeding risk ^{96,97}.
- 1032

1033 Bleeding risk assessment

1034

Since 2006, six risk scores have been developed and validated for the assessment of bleeding risk in AF populations.⁹⁸⁻¹⁰³ The number of risk factors included in the bleeding risk schemas varies considerably, from three¹⁰¹ to 12¹⁰³ and the score or weighting associated with each risk factor also differs (see Table 2).

1039

Age and prior bleeding are included as risk factors in all six bleeding risk scores but different age cut-1040 offs are utilized, with three scores employing age 75 years or older^{99,100,102} to indicate greater 1041 bleeding risk. Following age and prior bleeding, the most prevalent bleeding risk factors included in 1042 the scores are anemia,⁹⁹⁻¹⁰³ renal disease,^{98-100,102} hypertension^{99,103} or uncontrolled systolic blood 1043 pressure,⁹⁸ concomitant anti-platelets,^{98,102,103} and alcohol excess,^{98,100,103} and prior stroke^{98,100} or 1044 hepatic disease.^{98,100} A variety of other risk factors including cancer,¹⁰³ labile INR,⁹⁸ genetic factors,¹⁰⁰ 1045 falls risks,¹⁰⁰ female sex,¹⁰³ diabetes mellitus,¹⁰³ and biomarkers¹⁰¹ are included only in one bleeding 1046 risk score. For a comprehensive review of bleeding risk factors in AF patients see Zulkifly et al.¹⁰⁴ 1047 1048

1049 The bleeding risk scores range in the simplicity of calculation and the cut-offs employed to indicate 1050 low, intermediate and high-risk of bleeding, and the prevalence of bleeding events reported in the

- 1051 validation cohorts (see Table 2).
- 1052

Table 2: Risk factors, risk categories and bleeding events in the validation cohorts [partly reproduced with permission from Zukifly et al¹⁰⁴]
 1054

			Risk categories		Bleeding events in validation cohort (per 100 patient years)		
Risk score	Risk factors (score for each factor)	Low	Intermediate	High	Low	Intermediate	High
ABC ¹⁰¹	Age(†); Biomarkers (†) (GDF-15 or cystatin C/CKD-EPI, cTnT-hs, & Hb); Previous bleed (†)	<1%	1-2%	>3%	0.62	1.67	4.87
ORBIT ¹⁰²	Age ≥75 (1); ↓Hb/Hct/anemia (2); Bleeding history (2); ↓ renal function (1); APT (1)	0-2	3	≥4	2.4*	4.7	8.1
ATRIA ⁹⁹	Anemia (3); Severe renal disease (3); Age ≥75 (2); Prior bleed (1); Hypertension (1)	0-3	4	5-10	0.83	2.41	5.32
HAS-BLED ⁹⁸	↑SBP (1); Severe renal/hepatic disease (1 each); Stroke (1);Bleeding (1); Labile INR (1); Age >65 (1); APT/NSAIDs (1); Alcohol excess (1)	0-1	2	≥3	1.02- 1.13	1.88	≥3.74
HEMORR ₂ HAGES ¹⁰⁰	Hepatic/renal disease (1); Ethanol abuse (1); Malignancy; Age >75 (1); ↓Plt (1); Re-bleeding risk (2); 个BP (1); Anemia (1); Genetic factors (1); 个 falls risk (1); Stroke (1)	0-1	2-3	≥4	1.9-2.5	5.3-8.4	10.4- 12.3
Shireman et al ¹⁰³	Age ≥70 (0.49); Female (0.31); Previous bleed (0.58); Recent bleed (0.62); Alcohol/drug abuse (0.71); DM (0.27); Anemia (0.86); APT (0.32)	≤1.07	>1.07/ <2.19	≥2.19	0.9% ^a	2.0% ^a	5.4%ª

1055 APT = antiplatelet therapy; BP = blood pressure; cTnT-hs = Troponin T; DM = diabetes mellitus; GDF-15 = growth differentiation factor-15; Hb = hemoglobin;

1056 Hct = hematocrit; INR = international normalised ratio; Plt = platelet count or function; SBP = systolic blood pressure

* bleeding event in original derivation cohort; ^a at 3 months; ↓ reduced/decreased; ↑ elevated/increased; † score for each variable in ABC score is based
 on a nonogram (see reference¹⁰¹)

1060 Use of bleeding risk scores

1061 As seen in Table 2 above, there are multiple bleeding risk scores that have been proposed for

1062 bleeding risk stratification, with the HEMORR₂HAGES, HAS-BLED, ATRIA, ORBIT and ABC-bleeding

1063 derived and validated in AF populations¹⁰⁴. The risk factors included vary by scores [Table 2], and

1064 their derivation from selected clinical trial cohorts or 'real world' populations¹⁰⁴. Various validation

1065 studies have been summarized in e-Table 10.

Unsurprisingly, stroke risk scores are also associated with bleeding, as stroke and bleeding risks 1066 correlate with each other. For example, higher CHADS₂ and CHA₂DS₂-VASc scores are also associated 1067 1068 with greater bleeding risk, but the HAS-BLED score outperforms the CHADS₂ and CHA₂DS₂-VASc scores for predicting serious bleeding^{105,106}, which was also evident in the systematic review by Zhu 1069 et al¹⁰⁷. Composite risk scores that include stroke and bleeding endpoints have also been proposed 1070 but have not been shown to perform incrementally better over the individual scores^{108,109}. The 1071 bleeding risk scores in AF are also predictive of bleeding in non-AF populations, for example, in 1072 patients with ACS undergoing PCI-stenting¹¹⁰. 1073

Adding more clinical variables marginally improves the predictive value (at least statistically) but the 1074 1075 c-indexes still remain approx. 0.6. The addition of biomarkers would all improve the c-indexes (to 1076 approx. 0.65) over scores based on clinical risk factors alone. Many of these risk scores have been 1077 derived from highly selected clinical trial cohorts, and biomarkers measured at baseline (or within a 1078 few months of study entry) then endpoints determined many years later. Biomarkers are also 1079 expensive, and may be subject to laboratory variability, inter-assay differences, diurnal variation and 1080 may change in individual patients depending on how risk factors and drug treatments change over time. Many biomarkers (e.g. troponin, natriuretic peptides, inflammatory markers, coagulation 1081 markers, etc.) are also predictive of stroke, bleeding, death, heart failure, hospitalization ¹¹¹ and even 1082 non-cardiovascular conditions such as (for example, as in the case of GDF-15 used in the ABC-bleed 1083 score) glaucoma progression¹¹². The performance of biomarker-based scores in real world clinical 1084 practice (outside highly selected trial cohorts) has also been disappointing^{113,114}, given that baseline 1085 1086 (or near-baseline) determination of biomarkers to predict bleeding risks after many years is 1087 bedeviled by the changing clinical risk profile of patient's risks as well as modification of risk factors.

Given that modifiable bleeding risk factors should be addressed in all patients, the appropriate and responsible way to use a clinical risk score is to identify those patients at particularly high risk, for appropriate early review and follow-up (e.g. in 4 weeks, rather than 4-6 months) – and depending on the outcome of interest, to address the associated modifiable risk factors accordingly [Figure 2]. A high bleeding risk score is not a reason to withhold OAC, as the net clinical benefit is even greater in those patients with high bleeding risk.

1094 While bleeding risk is highly dynamic and depends on many potentially modifiable bleeding risk 1095 factors¹¹⁵, simply focusing on bleeding risk assessment using modifiable bleeding risk factors alone is 1096 an inferior strategy compared to using a validated bleeding risk score which has been designed to 1097 formally assess bleeding score⁷⁸⁻⁸⁰.

1098 A comparison of the different bleeding risk scores has been addressed in 2 systematic reviews and 1099 the studies are summarized in e-Table 10. As with stroke risk scores, most bleeding risk scores based 1100 on simple clinical risk factors only have modest predictive value for identifying the high risk patients 1101 that sustain events (c-indexes approx. 0.6).

The systematic review by Caldera et al¹¹⁶ reported that the sensitivity, specificity and diagnostic odds ratio (DOR) were respectively 0.53 (0.52–0.54), 0.65 (0.65–0.65) and 2.11 (1.91–2.35) for HAS-BLED, and 0.27 (0.26–0.27), 0.89 (0.89–0.89) and 2.90 (2.77–3.04) for HEMORR₂HAGES. When comparing HAS-BLED with ATRIA, sensitivity, specificity, and DOR were respectively 0.41 (0.35–0.48), 0.78 (0.76–0.79) and 2.22 (1.08–4.55) for HAS-BLED, and 0.23 (0.17–0.29), 0.91 (0.90–0.91) and 1.98 (1.29–3.03) for ATRIA. They concluded that HAS-BLED, due to its sensitivity (compared to other scores) and ease to apply, is recommended for the assessment of AF patients' major bleeding risk.

The systematic review by Zhu et al¹⁰⁷ (11 studies) found that discrimination analysis demonstrates 1109 that HAS-BLED has no significant C-statistic differences for predicting bleeding risk in the low (risk 1110 ratio [RR]: 1.16, 95% confidence interval [CI]: 0.63-2.13, P = 0.64) risk stratification but under 1111 1112 predicts risk in the moderate (RR: 0.66, 95% CI: 0.51-0.86, P = 0.002) and high (RR: 0.88, 95% CI: 0.70-1.10, P = 0.27) risk strata (e-Table 11). Zhu et al¹⁰⁷ concluded that the HAS-BLED score 1113 performed better than the HEMORR₂HAGES and ATRIA bleeding scores, but was superior to the 1114 CHADS₂ and CHA₂DS₂-VASc stroke scores for bleeding prediction. In a real world AF cohort, there was 1115 no long term advantage of the ABC-bleeding score over the HAS-BLED score, for predicting bleeding; 1116 in contrast, HAS-BLED was better in identifying those patients at low risk of bleeding ¹¹⁴. 1117

Given that the patient pathway may include AF patients initially on no antithrombotic therapy, aspirin or anticoagulants, and the latter can include VKA or NOACs, a bleeding risk score needs to be applicable throughout the patient pathway. The HAS-BLED score has been validated in AF patients from clinical trial and non-trial cohorts, whether on no antithrombotic therapy, aspirin or anticoagulants, VKA or non-VKA anticoagulants, and is predictive of bleeding in AF and non-AF cohorts, and in different ethnic groups ^{115,117,118}. It is also the only bleeding score predictive of intracranial bleeding¹¹⁹.

The HAS-BLED score has also been shown to be similar or out-perform older bleeding scores, as well as more simple bleeding scores that include less clinical parameters. Amongst VKA-treated patients, the non-consideration of TTR would also mean that the HEMORR₂HAGES, ORBIT and ATRIA scores would all perform sub-optimally in VKA-treated patients^{120,121}. Finally, bleeding risk assessment is dynamic, and should be formally reassessed and recorded at every patient contact. Indeed, followup HAS-BLED or 'delta HAS-BLED score' was more predictive of major bleeding compared with baseline HAS-BLED or the simple determination of 'modifiable bleeding risk factors⁷⁷.

1132 **Recommendations**

1133

For patients with AF, bleeding risk assessment should be performed in all patients with AF at
 every patient contact and should initially focus on potentially modifiable bleeding risk factors
 (Strong recommendation, low quality evidence).

- 1137Remark: Modifiable risk factors may include: Uncontrolled blood pressure, Labile INRs (in a1138patient taking VKA), Alcohol excess; Concomitant use of NSAIDs or aspirin, in an anticoagulated1139patient, bleeding tendency or predisposition (e.g. treat gastric ulcer, optimise renal or liver1140function etc.).
- 1141

4. For patients with AF, we recommend use of the HAS-BLED score to address modifiable

- bleeding risk factors in all AF patients. Those potentially at high risk (HAS-BLED score ≥3)
 warrant more frequent and regular reviews or follow-up (Strong recommendation, moderate
 quality evidence).
- 1146 *Remark*: Given that bleeding risk is highly dynamic, attention to modifiable bleeding risk factors 1147 should be prioritized during every patient contact or review.
- 1148

In VKA treated patients, we recommend use of the HAS-BLED score for bleeding risk assessment (Weak recommendation, low quality evidence)

- Remark: A high HAS-BLED score (≥3) is rarely a reason to avoid anticoagulation. The individual
 modifiable components of the score, when reviewed with the patient, can serve to ameliorate
 bleed risk
- 1154

1155 ANTITHROMBOTIC THERAPY AND OTHER APPROACHES FOR STROKE

1156 **PREVENTION**

- 1158 The principal goal of OAC in AF is to reduce the risk of stroke and systemic embolism, while
- 1159 minimizing the incremental bleeding risk associated with OAC. Although these outcomes may be in
- 1160 part mechanistically related to lower risk of bleeding and ischemic stroke compared to therapies in
- the control arms, cardiovascular composite or survival outcomes presently do not reflect the primary
- 1162 rationale for therapy.
- 1163
- 1164 Randomized trials
- 1165 Vitamin K antagonists compared to placebo or control
- 1166 In a meta-analysis of 2900 subjects from six randomized trials, adjusted-dose warfarin was
- associated with a 64% relative risk reduction in stroke (95% Cl, 49%-74%) (e-Table 12). The absolute
- risk reduction was 2.7%/year (from 4.5%/year in controls) in primary prevention subjects and
- 1169 8.4%/year (from 12%/year in controls) in secondary prevention subjects.¹²²
- 1170 Aspirin and antiplatelet therapy compared to placebo or control
- 1171 In a meta-analysis of 8 trials of 4876 subjects, antiplatelet therapy compared to control or placebo
- 1172 was associated with a 22% (95% CI 6-35%) relative risk reduction in stroke (e-Table 13).¹²² The
- 1173 Stroke Prevention in AF (SPAF-I) study demonstrated decrease in risk of stroke from 6.3%/year in
- 1174 placebo subjects to 3.6%/year (95% Cl 9-63%)¹²³, but a meta-analysis of 7 trials of 3990 subjects
- 1175 found no significant benefit. SPAF-I was the only trial suggestive of a benefit for aspirin compared to
- 1176 placebo, but there was internal heterogeneity between the anticoagulation-eligible and

- 1177 anticoagulation-ineligible subgroups, and given the trial was stopped early, the effect size could have
- been exaggerated. Aspirin also showed no benefit in the elderly, or in preventing severe strokes. All
- 1179 these trials had significant heterogeneity in study design, variability in aspirin dose tested, short
- 1180 follow-up, and predated contemporary use of oral anticoagulation in AF.
- 1181
- 1182 The ACTIVE-A trial, which also predated the investigation of NOACs, compared aspirin plus
- 1183 clopidogrel versus aspirin monotherapy among patients in whom VKA was unsuitable.¹²⁴ The study
- 1184 found a decrease in risk of stroke with dual antiplatelet therapy, but the major bleeding rates with
- aspirin-clopidogrel were comparable to rates seen with warfarin (approx. 2%/year).

1186 <u>Vitamin K antagonists compared to antiplatelet therapy</u>

- 1187 Of 12 studies comparing warfarin to antiplatelet therapy, warfarin was associated with a 39%
- 1188 relative risk reduction (95% CI, 22%-52%) in strokes (e-Table 14).¹²² In ACTIVE-W, the largest of these
- 1189 studies, warfarin was superior to dual antiplatelet therapy to warfarin for stroke and a
- 1190 cardiovascular composite outcome, with similar rates of major bleeding.¹²⁵

1191 Non-VKA oral anticoagulants (NOACs) compared to vitamin K antagonists

- 1192 Several NOACs that directly inhibit thrombin (factor IIa) or activated factor X (factor Xa) have been
- approved as alternatives to VKAs for stroke prevention in AF. They differ from VKAs in that they have
- a rapid onset/offset of action, absence of an effect of dietary vitamin K intake on their activity and
- 1195 fewer drug interactions. The predictable anticoagulant effects of the NOACs enable their
- administration in fixed doses without the need for routine coagulation monitoring, thereby
- 1197 simplifying therapy.
- 1198

Individually in their respective phase 3 trials (Table 3), dabigatran, rivaroxaban, apixaban, and
edoxaban have been shown to be at least as safe and effective as warfarin for preventing stroke and
systemic embolism in patients with AF.^{73,74,76,126}

1202

A meta-analysis of the four phase 3 trials compared patients taking NOACs (higher-dose) (n=42,411) 1203 with warfarin (n=29,272) (e-Table 15).¹²⁷ NOACs significantly reduced stroke or systemic embolic 1204 events by 19% compared with warfarin (RR 0.81; 95% CI 0.73-0.91; p<0.0001). The benefit was 1205 1206 driven primarily by a 51% reduction in hemorrhagic stroke (RR 0.49; 95% Cl 0.38-0.64; p<0.0001). 1207 Ischemic stroke was similar between NOACs and warfarin. (RR 0.92; 95% CI 0.83-1.02; p=0.10). 1208 NOACs were also associated with a significant 10% reduction in all-cause mortality (RR 0.90; 95% CI 1209 0.85-0.95; p=0003). With regards to safety, NOACs were associated with a non-significant 14% 1210 reduction in major bleeding (RR 0.86; 95% Cl 0.73-1.00; p=0.06) but a substantial 52% reduction in intracranial hemorrhage (RR 0.48; 95% CI 0.39-0.59; p<0.0001), NOACs were, however, associated 1211 with a significant increase in GI bleeding (RR 1.25; 95% CI 1.01-1.55; p=0.04). The relative efficacy 1212 and safety of NOACs was consistent across all patient subgroups with the exception that the relative 1213 1214 reduction in major bleeding with NOACs was greater at centers with poor INR control as defined as a 1215 center-based time in therapeutic range <66% (RR 0.69, 95% CI 0.59-0.81; p-interaction=0.02). 1216

Lower-dose NOAC regimens (dabigatran 110 mg and edoxaban 30/15 mg) showed similar overall
 reductions in stroke or systemic embolism but a more favorable bleeding profile than warfarin but

- 1219 were associated with more ischemic strokes [the lower-dose regimen edoxaban 30/15 mg is not
- approved for the stroke prevention indication].

1222 Table 3: Phase 3 AF trials of NOAC versus warfarin – Summary of key efficacy and safety results

					Tria	al				
	RE	E-LY		ROCKE	T-AF ARISTO		OTLE		ENGAGE AF-TIMI 48	
Outcome	Dabigatran 150 mg (n=6076)	Dabigatran 110 mg (n=6015)	Warfarin (n=6022)	Rivaroxaban 20/15 mg (n=7131)	Warfarin (n=7133)	Apixaban 5/2.5 mg (n=9120)	Warfarin (n=9081)	Edoxaban 60/30 mg (n=7035)	Edoxaban 30/15 mg (n=7034)	Warfarin (n=7036)
Efficacy										
Stroke/SEE										
Event Rate (%/year)	1.11	1.54	1.71	2.1	2.4	1.27	1.60	1.57	2.04	1.80
HR (95% CI)	0.72 (0.58-0.90)	0.90 (0.74-1.10)	NA	0.88 (0.75-1.03)	NA	0.79 (0.65-0.95)	NA	0.87 (0.73-1.04)	1.13 (0.96-1.34)	NA
p-value	0.004	0.29	NA	0.12	NA	0.01	NA	0.08	0.10	NA
Ischemic Stroke										
Event Rate (%/year)	0.92	1.34	1.22	1.34	1.42	0.97	1.05	1.25	1.77	1.25
HR (95% CI)	0.76 (0.59-0.97)	1.11 (0.88-1.39)	NA	0.94 (0.75-1.17)	NA	0.92 (0.74-1.13)	NA	1.00 (0.83-1.19)	1.41 (1.19-1.67)	NA
p-value	0.03	0.35	NA	0.58	NA	0.42	NA	0.97	< 0.001	NA
Hemorrhagic Stroke										
Event Rate (%/year)	0.10	0.12	0.38	0.26	0.44	0.24	0.47	0.26	0.16	0.47
HR (95% CI)	0.26 (0.14-0.49)	0.31 (0.17-0.56)	NA	0.59 (0.37-0.93)	NA	0.51 (0.35-0.75)	NA	0.54 (0.38-0.77)	0.33 (0.22-0.50)	NA
p-value	<0.001	<0.001	NA	0.02	NA	<0.001	NA	<0.001	<0.001	NA
MI										
Event Rate (%/year)	0.81	0.82	0.64	0.91	1.12	0.53	0.61	0.70	0.89	0.75
HR (95% CI)	1.27 (0.94-1.71)	1.29 (0.96-1.75)	NA	0.81 (0.63-1.06)	NA	0.88 (0.66-1.17)	NA	0.94 (0.74-1.19)	1.19 (0.95-1.49)	NA
p-value	0.12	0.09	NA	0.12	NA	0.37	NA	0.60	0.13	NA
All-Cause Death										
Event Rate (%/year)	3.64	3.75	4.13	1.87	2.21	3.52	3.94	3.99	3.80	4.35
HR (95% CI)	0.88 (0.77-1.00)	0.91 (0.80-1.03)	NA	0.85 (0.70-1.02)	NA	0.89 (0.80-1.0)	NA	0.92 (0.83-1.01)	0.87 (0.79-0.96)	NA

p-value	0.05	0.13	NA	0.07	NA	0.047	NA	0.08	0.006	NA
Safety										
Major Bleeding										
Event Rate (%/year)	3.32	2.87	3.57	3.6	3.4	2.13	3.09	2.75	1.61	3.43
HR (95% CI)	0.93 (0.81-1.07)	0.80 (0.70-0.93)	NA	1.04 (0.90-1.20)	NA	0.69 (0.60-0.80)	NA	0.80 (0.71-0.91)	0.47 (0.41-0.55)	NA
p-value	0.31	0.003	NA	0.58	NA	<0.001	NA	< 0.001	< 0.001	NA
ICH										
Event Rate (%/year)	0.32	0.23	0.76	0.5	0.7	0.33	0.80	0.39	0.26	0.85
HR (95% CI)	0.41 (0.28- 0.60)	0.30 (0.19- 0.45)	NA	0.67 (0.47-0.93)	NA	0.42 (0.30-0.58)	NA	0.47 (0.34-0.63)	0.30 (0.21-0.43)	NA
p-value	< 0.001	< 0.001	NA	0.02	NA	< 0.001	NA	< 0.001	< 0.001	NA
GI Bleeding										
Event Rate (%/year)	1.56	1.15	1.07	2.0	1.24	0.76	0.86	1.51	0.82	1.23
HR (95% CI)	1.48 (1.18- 1.85)	1.08 (0.85- 1.38)	NA	1.66 (1.34- 2.05)	NA	0.89 (0.70-1.15)	NA	1.23 (1.02-1.50)	0.67 (0.53-0.83)	NA
p-value	0.001	0.52	NA	<0.001	NA	0.37	NA	0.03	<0.001	NA

1223 RE-LY: Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY); ROCKET AF: Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition

1224 Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation; ARISTOTLE: Apixaban for Reduction in Stroke and

1225 Other Thromboembolic Events in Atrial Fibrillation; ENGAGE AF-TIMI 48: Effective Anticoagulation with Factor Xa Next Generation in Atrial Fibrillation -

1226 Thrombolysis In Myocardial Infarction study 48.

1228 NOACs vs. Aspirin

1229 Apixaban is the only NOAC that has been compared with aspirin in AF patients. The Apixaban vs.

1230 Acetylsalicyclic Acid to Prevent Strokes (AVERROES) trial compared apixaban 5 mg twice daily with

aspirin in AF patients who were not candidates for VKA therapy.¹²⁸ The trial was stopped early for

1232 benefit as apixaban significantly reduced the risk of stroke or systemic embolism compared with

- aspirin (hazard ratio 0.45, 95% CI 0.32-0.62; p<0.001) (e-Table 16). There was no significant
- difference in major bleeding (hazard ratio 1.13, 95% Cl 0.74-1.75; p=0.57) between apixaban and
- 1235 aspirin.
- 1236

1237 Real World Observational Data

1238

1239 With the availability of large health care system administrative data and the advent of quality 1240 improvement and post-marketing anticoagulation registries, the number of observational outcome 1241 studies on OAC in AF far outnumber randomized trials. Although these data have helped to 1242 successfully identify treatment variation and gaps in care, the use of these data for comparative 1243 effectiveness and safety studies of OACs must be interpreted with prudence. Despite the use of 1244 sophisticated, high-quality methods to minimize confounding and bias and improve causal inference, 1245 even very small amounts of residual confounding by treatment selection or measurement error can 1246 attenuate or amplify the small absolute risk differences observed in the randomized trials.

1247

Similarly, definitive conclusions cannot be drawn from indirect comparisons such as network metaanalysess of NOACs to each other due to small absolute risk differences. Real-world or observational data are generally insufficient to guide selection of individual anticoagulant drugs. Therefore, observational data are best used to reaffirm that real-world effectiveness is in concordance with clinical trial efficacy, based on both quality of care and generalizability.^{129 2016}

1253

A meta-analysis of real-world observational studies of dabigatran was consistent with findings from RE-LY. Compared to VKA, risk of stroke with dabigatran versus warfarin was 1.65 vs. 2.85 per 100 patients-years (HR 0.86, 95% CI 0.74-0.99).¹³⁰ Dabigatran was also associated with a lower risk of intracranial bleeding (HR 0.45, 95% CI 0.38-0.52) and lower risk of death (HR 0.73, 95% CI 0.61-0.87). Risk of gastrointestinal bleeding was higher.

1259

One systematic review and meta-analysis provided comparative effectiveness and safety data for 1260 rivaroxaban vs. dabigatran (n=3 trials), rivaroxaban vs. warfarin (n=11 trials) or both (n=3 trials) for 1261 stroke prevention in AF¹³¹. Overall, the risk of stroke/systemic thromboembolism (TE) with 1262 1263 rivaroxaban were similar compared with dabigatran, but were significantly reduced when compared 1264 to warfarin (HR 0.75, 0.64-0.85). Major bleeding risk was significantly higher with rivaroxaban vs. 1265 dabigatran (HR 1.38, 1.27-1.49), but similar to warfarin (HR 0.99, 0.91-1.07). Rivaroxaban was 1266 associated with increased all-cause mortality and gastrointestinal bleeding (GIB), but similar risk of acute myocardial infarction (AMI) and intracranial hemorrhage (ICH) compared with dabigatran. 1267 1268 When compared with warfarin, rivaroxaban was associated with similar risk of any bleeding, 1269 mortality and AMI, but a higher risk of GIB and lower risk of ICH.

1271 Another large analysis of three Danish nationwide databases of 61,678 patients found that NOACs 1272 were at least as safe and effective as warfarin, with small but significant differences in risk of stroke, death, and bleeding across rivaroxaban, apixaban, and dabigatran.¹³² However, a new-user FDA 1273 Medicare analysis of 118,891 patients found that rivaroxaban compared to dabigatran had a 1274 1275 statistical trend towards a decreased risk of stroke (HR 0.81, 95% CI 0.65-1.01) and significantly increased risk of intracranial (HR 1.47, 95% CI 1.32-1.67) and major non-intracranial bleeding (HR 1276 1.48, 95% CI 1.32-1.67).¹³³ Absolute risk differences were small (2.0-2.1 per 1000 person-years) and 1277 1278 well within a range vulnerable to confounding. 1279 1280 Different Ethnic Groups 1281 Asian AF patients have a higher risk of intracranial hemorrhage compared with Caucasians when VKAs are used.¹³⁴ The higher risk of bleeding on VKA in Asians vs. non-Asians has also been observed 1282 in major clinical trials of NOACs,¹³⁵ even though Asians received a lower intensity of anticoagulation 1283 with VKA.136 1284 1285 In a recent meta-analysis comprising 5 NOAC trials (RE-LY, ROCKET AF, J-ROCKET AF, ARISTOTLE, and 1286 ENGAGE AF), the effects of NOACs versus warfarin in Asians vs non-Asians were compared.¹³⁷ For 1287 standard-dose NOACs (dabigatran 150 mg, rivaroxaban 20 mg, apixaban 5 mg, and edoxaban 60 mg), 1288 1289 the effect sizes of the primary efficacy endpoint (stroke and SE) and the primary safety endpoint 1290 (major bleeding) were greater in Asians versus non-Asians. The risk reduction in hemorrhagic stroke and GI bleeding was also greater in Asians vs. non-Asians. These data suggest that standard-dose 1291 1292 NOACs, when compared with warfarin, were more effective and safer in Asians than in non-Asians. The efficacy and safety of low-dose NOACs (dabigatran 110 mg, rivaroxaban 15 mg, and edoxaban 30 1293 1294 mg), when compared with warfarin, appears similar among Asians and non-Asians. 1295 There are several real-world studies from Asia comparing NOACs with warfarin^{138,139}. Despite low-1296 1297 dose NOACs, such as dabigatran 110 mg or rivaroxaban 15 mg/10 mg being more commonly used than standard-dose NOACs (dabigatran 150 mg or rivaroxaban 20 mg), the use of NOACs were 1298 1299 associated with reduced risk of ischemic stroke or systemic embolization, major bleeding, ICH, and 1300 total mortality compared with warfarin. Published data suggest that NOACs are preferentially

- 1301 1302
- 1303

1304 Other Investigational Drugs

indicated for stroke prevention in Asians.³⁷

1305

1306 Although NOACs are safer than VKAs, serious bleeding still occurs. The potential for bleeding often 1307 discourages initiation of anticoagulant therapy in patients deemed to be at high risk of bleeding and 1308 patients who experience a bleed frequently have permanent or prolonged discontinuation of their anticoagulant. Therefore, continued interest remains in developing even safer anticoagulants than 1309 1310 thrombin and factor Xa inhibitors. Current investigation has focused on the upstream targets factor XI and factor XII in the contact pathway as emerging research has elucidated their critical role in 1311 thrombosis with minimal or no role in hemostasis.¹⁴⁰⁻¹⁴² Strategies to target FXII or FXI include 1312 antisense oligonucleotides that reduce hepatic synthesis of the clotting proteins, monoclonal 1313 1314 antibodies that block activation or activity, aptamers, small molecules that block the active site or

1315 induce allosteric modulation, and polyanion antagonists that attenuate contact activation by nullifying stimulators of the pathway.⁷ 1316

1317

1318 Human data are limited. The factor XI-directed antisense oligonucleotide IONIS-416858 was 1319 compared with enoxaparin in 300 patients undergoing elective knee arthroplasty. Patients were 1320 randomized to IONIS-416858 at doses of 200 or 300 mg starting 35 days prior to surgery, or 1321 enoxaparin at a dose of 40 mg starting after the surgery. The 200 mg IONIS-416858 regimen was 1322 non-inferior and the 300 mg IONIS-416858 regimen was superior compared with enoxaparin in 1323 preventing the composite endpoint of asymptomatic deep venous thrombosis (DVT), symptomatic 1324 DVT or pulmonary embolism, or venous thromboembolism related mortality.¹⁴³ The rates of major or clinically relevant non-major bleeding were 3% in both IONIS-416858 groups and 8% in the 1325 enoxaparin group. With respect to patients with AF, potential unmet needs addressed by these 1326 1327 agents include patients at high risk for bleeding, such as those with end stage renal disease who are on hemodialysis (phase 2 study ongoing https://clinicaltrials.gov/ct2/show/NCT02553889. Another 1328 1329 area of interest is in patients with mechanical heart valves. Data from a phase II trial of dabigatran in patients with mechanical heart valves (RE-ALIGN) demonstrated inferior efficacy and more bleeding, 1330 compared to warfarin.¹⁴⁴ FXI-directed strategies may be very effective in this setting because FXI 1331 depletion abolished mechanical valve induced thrombin generation in vitro.¹⁴³ 1332

1333 Recommendations

- 6. For patients with AF, we recommend against antiplatelet therapy alone (monotherapy or 1334 1335 aspirin in combination with clopidogrel) for stroke prevention alone, regardless of stroke risk (Strong recommendation, moderate quality evidence). 1336
- 1337 Remark: Patients with AF might have other indications for antiplatelet drugs (e.g. acute coronary 1338 syndrome, stents)
- 1339

7. In patients with AF who are eligible for OAC, we recommend NOACs over VKA (strong 1340 1341 recommendation, moderate quality evidence).

- Remark: Patient and caregiver preferences, cost, formulary considerations, anticipated 1342 1343 medication adherence or compliance with INR testing and dose adjustment should be 1344 incorporated into clinical-decision making.
- 1345

1346 8. In patients on VKAs with consistently low time in INR therapeutic range (eg. TTR<65%), we 1347 recommend considering interventions to improve TTR or switching to NOACs (strong recommendation, moderate quality evidence) 1348

- Remark: Action required if TTR <65% implement additional measures (more regular INR tests; 1349 1350 review medication adherence; address other factors known to influence INR control; 1351 education/counselling) to improve INR control.
- 1352 1353

9. In patients with prior unprovoked bleeding, warfarin-associated bleeding, or at high risk of 1354 1355 bleeding, we suggest using apixaban, edoxaban, or dabigatran 110 mg (where available) as all demonstrate significantly less major bleeding compared with warfarin (Weak 1356

1357 recommendation, very low quality evidence).

- 1358 *Remark*: In patients with prior gastrointestinal bleeding apixaban or dabigatran 110mg bid may
- be preferable as they are the only NOACs not associated with an increased risk of
- 1360 gastrointestinal bleeding compared with warfarin.
- 1361 *Remark*: Dabigatran 150 mg twice daily recommended in patients at high risk of ischemic stroke
- as only agent/dose with superior efficacy compared with warfarin. However, bleeding risk would
- 1363 need to be assessed and patients monitored.
- 1364

1365 ADJUSTED-DOSE ORAL VITAMIN K ANTAGONIST THERAPY

1366 The vitamin K antagonists (VKA) are a class of oral anticoagulants; the most commonly used are the

1367 4-hydroxycoumarins, and include warfarin, phenprocoumon and acenocoumarol.¹⁴⁵ Less commonly

1368 used VKAs are phenindione and fluindione which are 1,3-indandione derivatives. Geographical

variation in VKA popularity is evident, with warfarin commonly used worldwide, but acenocoumarolbeing popular in Spain and phenprocoumon in Germany. In randomized clinical trials, most have

1371 used warfarin.

1372 Optimal INR target range in AF

1373

For stroke prevention in patients with AF receiving a VKA the optimal INR target range is 2.0 to 1374 3.0,¹⁴⁶ aiming for an INR value of 2.5 to maximize the proportion of time spent in the therapeutic INR 1375 range. Numerous observational studies of AF patients have demonstrated that the risk of 1376 thromboembolism/ischemic stroke is greater when INR is <2.0^{81,83,85,147-149} whereas INR levels >3.0 1377 1378 are associated with a greater incidence of major bleeding, especially intracranial hemorrhage when the INR rises above 3.5.⁸¹⁻⁸⁶ All the phase III NOAC trials employed an INR target of 2.0-3.0 among 1379 patients receiving warfarin;^{73,76,126,128} J-ROCKET employed a lower INR target of 1.6-2.6 for the 1380 Japanese population.¹⁵⁰ 1381

1382

1383 In some Asian countries, there is the perception that a lower target INR range e.g., 1.6-2.6 should be 1384 used, especially in the elderly. Only one small prospective randomized trial allocated 115 secondary 1385 prevention AF patients to conventional-intensity group (INR 2.2 to 3.5) or a low-intensity group (INR 1.5 to 2.1).¹⁵¹ Major hemorrhagic complications occurred in 6 patients in the conventional-1386 intensity group (6.6% per year) compared to the low-intensity group (0% per year, P=0.01). Other 1387 1388 Asian registries have suggested that low intensity (INR 1.5-2.5) was associated with less bleeding, 1389 but no information on quality of INR control was reported. There is currently no robust evidence for implementing a target INR range of 1.6-2.6, and therefore the conventional, evidence-based INR 1390 target of 2.0-3.0 should be employed globally. 1391

1392

1393 Importance of time in therapeutic INR range

1394

The proportion of time spent within the therapeutic INR range (INR 2.0 to 3.0) is intrinsically linked to the risk of adverse events. The temporal pattern of INR control is most commonly calculated using the Rosendaal method of linear interpolation between two consecutive INR values,¹⁵² known as the time in therapeutic range (TTR) or by the percentage of INRs within therapeutic range (PINRR).¹⁵³ However, a limitation of the Rosendaal method of interpolation is that INRs more than 42 days apart

- have generally not been interpolated in studies due to large uncertainties in fluctuation. Although TTR and PINRR are highly correlated^{154,155} they are not equivalent and should not be used interchangeably. TTR is a widely accepted and validated measure of anticoagulation control and predicts adverse events in patients receiving VKA¹⁵⁵⁻¹⁵⁷ and is the quality and performance measure of choice for specialized anticoagulation clinics.
- 1405

1406 Numerous studies have demonstrated that the risk of thromboembolism, major bleeding, and death 1407 is lower when the proportion of TTR is higher, at least $\geq 65\%$. ^{127,155-157} Indeed, random 'one off' INR 1408 values give little insight into the degree of anticoagulation control, and many adverse outcomes 1409 (e.g., bleeding) occur even within the therapeutic INR range of 2.0-3.0.¹⁵⁸ Thus, when VKAs are used 1410 attention should be focused on the average *individual* TTR as a measure of the quality of 1411 anticoagulation control.

1412

Clinical guidelines on the management of AF advocate an *individual* TTR of at least ≥65%^{159,160} to 1413 1414 maximize efficacy and safety and this should be the treatment target, although in clinical practice this may be more difficult to achieve.^{155-158,161} An analysis of anticoagulation control in the 1415 1416 GARFIELD-AF registry (n=9934), a global observational study, revealed that only 41.1% had TTR ≥65% 1417 and of all the INR values only 51.4% were in the therapeutic range (INR 2.0 to 3.0), with one-third 1418 being sub-therapeutic.¹⁵⁷ After adjustment, the risk of stroke/systemic embolism (HR 2.55. 95% 1.61 to 4.03), all-cause mortality (HR 2.39, 95% CI 1.87 to 3.06) and major bleeding (1.54, 95% CI 1.04 to 1419 2.26) was greater with TTR <65%, when compared to TTR \ge 65%.¹⁵⁷ 1420

1421

1422TTR varies widely by geographical region (TTR≥65% Asia 16.7%, North America 45.9%, Europe142349.4%).¹⁵⁷ An analysis of individual TTR from Swedish registries (n=40,449) revealed an overall mean1424individual TTR (iTTR) of 68.6% and significantly lower annual rates of thromboembolism (2.37% vs.14254.41%), all-cause mortality (1.29% vs. 4.35%) and major bleeding (1.61% vs. 3.81%) when iTTR was1426 $\geq 70\%$ compared to iTTR<70%, respectively.</td>

1427

1428 Recommendation

1429

1430 10. For patients with non-valvular AF, when VKAs are used, we suggest the target should be INR
 1431 2.0-3.0, with attention to individual TTR, ideally ≥70% (ungraded consensus-based statement).
 1432 *Remark*: Action required if TTR sub-optimal (<65-70%) - implement additional measures (more

- regular INR tests; review medication adherence; address other factors known to influence INR
 control; education/counselling) to improve INR control or consider a NOAC.
- 1435*Remark*: When possible, experienced specialized anticoagulation clinics should be utilized for1436VKA and INR management.
- 1437 1438

1440

1439Factors affecting INR control

Many factors affect TTR, including patient-related aspects (such as age, sex, socioeconomic status, diet, ethnicity, hospitalization, length of time on VKA, medical and psychiatric co-morbidities, nonadherence, polypharmacy, genetic factors, etc.)^{145,158,162} and healthcare system-related factors, particularly how VKA is managed (by country, setting of OAC management eg. anticoagulation clinic

vs. physician/community-based practices),^{90,163,164} distant to OAC clinic,^{163,164} self-monitoring/selfmanagement,⁹¹ frequency of INR monitoring etc.¹⁵⁸ It is also important to note that site level variation in VKA management has also been demonstrated in RCTs¹⁶⁵⁻¹⁶⁹ and for NOACs.¹⁷⁰ The value of dietary measures to improve anticoagulation control is debatable, and it is perhaps more relevant to maintain a stable dietary habit, avoiding wide changes in the intake of vitamin K¹⁷¹. Amongst patients initiating VKA, the 'Time to achieve Therapeutic Range' (TtTR) has also been related to the likelihood of achieving a subsequently good Time in Therapeutic Range (TTR)^{172,173}.

1452

The more common clinical factors influencing TTR have been used to formulate the SAMe-TT₂R₂ 1453 score^{174,175} (**Table 5**). This clinical score is based on routine clinical parameters which can be used to 1454 1455 identify patients who may be able to attain good anticoagulation control (e.g. TTR≥65%) with a VKA 1456 and those who probably will not, where a NOAC may be preferred or where other interventions (eg. 1457 more frequent INR monitoring, patient education/counselling etc.) may need to be implemented to ensure good INR control. Many of the factors included in the SAMe-TT₂R₂ score have been 1458 1459 associated with decreased adherence with NOACs and in the absence of trial data is not clear if these patients would do substantially better on a NOAC or if they would do poorly anyway. 1460

1461

1462	Table 5: The SAMe- TT_2R_2 score ^{174,175}
------	--

Acronym	Risk factors	Points	
S	Sex (female)	1	
Α	Age (<60 years)	1	
Me	Medical history (≥2 from: hypertension, diabetes mellitus, coronary artery disease/myocardial infarction, peripheral arterial disease, congestive heart failure, previous stroke, pulmonary disease, and hepatic or renal disease)	1	
Т	Treatment (interacting drugs, e.g., amiodarone)	1	
Т	Tobacco use (within 2 years)		
R	Race (non-Caucasian)	2	
	Maximum score	8	

1475 1476

1477 The SAMe-TT₂R₂ score has been assessed in 15 exclusively AF cohorts,¹⁷⁶⁻¹⁸⁷ with six^{177,179,181,182,185,188} 1478 reporting its predictive ability to forecast good or poor anticoagulation control, with c-statistics 1479 ranging from 0.56¹⁸² to 0.72.¹⁷⁴ However, these cohorts were predominantly elderly, Western 1480 (white) populations and its predictive ability in non-Western populations has relatively limited data 1481 as only three studies have assessed it, ^{176,177}, with only one reporting c-statistics (c-statistic 0.54, 95% 1482 CI 0.52 to 0.57).¹⁷⁷ In the multi-ethnic non-Caucasian Singaporean population by Bernaitis et al¹⁷⁶ 1483 the SAMe-TT₂R₂ score was able to dichotomize the patients likely to do well on VKA, compared to 1484 1485 those (score >2) more likely to achieve poor TTR. In the Loire Valley AF project, the SAMe-TT₂ R_2 1486 score was predictive of labile INR in AF patients who were VKA users, and was significantly associated with the adverse consequences of labile INR, including stroke, serious bleeding and 1487 death; the score was non-predictive in non-VKA users¹⁸⁹. The score has also been tested in some 1488 1489 VTE populations, where it similarly identifies patients likely to achieve a good TTR.^{190,191}

1490

Patients with AF who require OAC should not have to fail with a VKA before they are offered a NOAC; the most appropriate OAC based on the patient's *individual* risk profile and patient preference, should be offered from the beginning of OAC therapy. However, in some healthcare systems where the patient has to have a period on VKA and their TTR determined, before a decision to use a NOAC is approved, the SAMe-TT₂R₂ score could be used to aid decision-making¹⁷⁵.

1496

1497 **Recommendation**

1498 **11.** For patients with AF, we suggest the SAMe-TT₂R₂score to aid decision making to help identify 1499 patients likely to do well on VKA (ungraded consensus-based statement).

- *Remark*: Those with score 0-2 are likely to achieve a good TTR. Those with score >2 are less
 likely to achieve a good TTR and would require more regular INR checks, education/counselling
 and frequent follow-up, or alternatively, a NOAC should be considered as a better management
 option if high medication adherence can be expected.
- 1504
- 1505

1506 Monitoring anticoagulant therapy

1507

1508 *Point-of-care testing*

There is an increasing demand for oral anticoagulation among AF patients¹⁹² and not all patients are suitable for NOACs, therefore a large proportion requires VKA which necessitates INR monitoring. Point-of-care (POC) testing using a coagulometer (INR monitor) is more convenient and timeefficient, particularly where patient's self-monitor and/or self-manage. Home or clinic POC monitoring is an increasingly standard method of INR monitoring associated with an appropriate degree of precision and accuracy for clinical practice,¹⁹³ however routine calibration is warranted and quality control systems should adhere with the FDA Medical devices regulation guidance¹⁹⁴.

1516

1517 Patient self-monitoring and self-management

A recent Cochrane review⁹¹ evaluating the effect of self-monitoring or self-management of OAC 1518 1519 therapy compared to standard OAC monitoring on thromboembolic events, major bleeding and 1520 death revealed a significant decrease in thromboembolic events overall (RR 0.58, 95% CI 0.45 to 1521 0.75; 7594 participants in 18 studies) and with both self-monitoring (RR 0.69, 95% CI 0.49 to 0.97; 1522 4097 participants in 7 studies) and self-management (RR 0.47, 95% CI 0.31 to 0.70; 3497 participants 1523 in 11 studies), although not all patients were AF. There was no overall reduction in the risk of death 1524 (RR 0.85, 95% CI 0.71 to 1.01, 6358 participants in 11 studies), however self-management did reduce 1525 all-cause mortality (0.55, 95% Cl 0.36 to 0.84; 3058 participants in 8 studies). Neither self-monitoring 1526 nor self-management reduced the risk of major bleeding compared to standard OAC monitoring (RR 1527 0.95, 95% CI 0.80 to 1.12; 8018 participants in 20 studies). Rating of the quality of evidence was low 1528 to moderate and the findings should be interpreted accordingly.

1529

1530 The advantages of self-monitoring and self-management include convenience and freedom for the 1531 patient, patient empowerment/control over their condition and treatment, increased patient 1532 satisfaction, all of which may improve quality of life. However, this approach may not be a viable

1533 option for all patients requiring VKA therapy as it is initially expensive, requires mastery of the point-

of-care device and for those self-managing, the knowledge and ability to dose-adjust, plus the appropriate healthcare system infrastructure and patient support which may not be feasible globally. For many AF patients, a NOAC might be a more suitable alternative.

1537

1538 **PRACTICAL PATIENT MANAGEMENT ALGORITHM**

The approach to stroke prevention in patients with AF can be simplified into a simple 3-step algorithm (Figure 4). The initial step is to determine the risk of stroke. As noted in the Stroke Risk section, risk scores for stroke in patients with AF lack specificity, and are therefore not clinically useful in identifying and categorizing high-risk patients. As noted in the stroke risk section, we recommend the use of the CHA₂DS₂-VASc score given its superior sensitivity and ability to accurately and safely identify patients at low risk of stroke. Patients that are low risk (a score of 0 in males, 1 in females) do not require antithrombotic treatment.

1546

1547 All AF patients with ≥ 1 stroke risk factors are candidates for stroke prevention with oral 1548 anticoagulation. At this point it is important to assess the bleeding risk. Although the benefit of 1549 stroke prevention outweighs the risk of bleeding in almost all patients, calculation of the bleeding 1550 risk allows the practitioner to identify potentially modifiable factors that elevate the bleeding risk 1551 (uncontrolled hypertension, concomitant use of antiplatelet or nonsteroidal agents, excessive 1552 alcohol intake; poor INR control (TTR<65%) in VKA patients). In addition, patients identified as high 1553 risk for bleeding should be scheduled for more frequent follow-up and monitoring. As noted in the 1554 bleeding risk section, we make a consensus suggestion that the HAS-BLED score be used for this purpose, so those with a HAS-BLED score \geq 3 can be flagged up for this reason. 1555

1556

1557 The final decision point is to decide which oral anticoagulant to use for stroke prevention. As noted 1558 in AT therapy and other approaches to stroke prevention, we recommend one of the NOACs 1559 (dabigatran, apixaban, edoxaban, or rivaroxaban) as first line in patients with AF. These agents have 1560 not been compared head to head, and we therefore do not recommend one over the other. Local 1561 availability, cost, and patient co-morbidities might be considerations in choosing an agent (see Table 1562 6) for comparative information. The vitamin K antagonists are still widely used and are an 1563 acceptable alternative with target TTR≥70%. As outlined in the section 'Factors affecting INR 1564 control', we recommend that the SAMe- TT_2R_2 score be used to help identify patients likely to do well 1565 on VKA therapy. 1566

- 1567 1568
- 1569

1570 Table 6. A simplified schema to assist physician choice of anticoagulant (VKA or individual NOAC) according to patient characteristics.

Patient characteristic	Possible OAC	References to	References	Comments
	choice	RCT subgroup	to real world	
		data	data or	
			indirect	
			evidence	
Recurrent ischemic stroke/SE/TIA despite good anticoagulation	D150	127	130	In general, any NOAC would be
control (TTR≥70%). Consider agent with superior efficacy for		C Y		recommended, esp. where warfarin
preventing both ischemic and hemorrhagic stroke				control suboptimal (TTR<65%). Ensure
				good adherence and avoid under-dosing
Moderate-severe renal impairment CrCl 15-49 ml/min	A* D† E30 R15	127	195	All RCTs excluded patients with Cockroft-
				Gault CrCl <30ml/min (<25mls/min, for
				apixaban)
High risk of GI bleeding	A D110	127	130,196	
Major GI symptoms or dyspepsia. Also consider increased risk	ARE	197	198,199	
of bleeding				
of bleeding				
 High risk of bleeding (HAS-BLED ≥3). Consider agent with the 	A D110 E	127	130,131,196,200,201	
lowest bleeding risk	A DITO L			
Once daily dosing or preference to have lower pill burden	E R VKA	#	202,203	
		#		
Asian nations. Consider agents with reduced risk of ICU and	ADE	137	138,139,204	
 Asian patients. Consider agents with reduced risk of ICH and major blood in Asian populations. 	ADE			
major bleed in Asian populations				
 Loss likely to do well on VKA (SAMo TT P, score > 2) Avaid on v 	NOAC proformed		176,185,189	VKA with additional education, more
 Less likely to do well on VKA (SAMe-TT₂R₂ score >2). Avoid <u>any</u> 	NOAC preferred			-
potential 'trial' of VKA if possible	(A D E R)			regular follow-up and frequent INR checks

1571

1572 apixaban. BID=twice daily. CrCl=creatinine clearance. D= dabigatran. E=edoxaban. GI=gastro-intestinal. ICH= intracranial hemorrhage. INR= international normalised 1573tio. NOAC=non-vitamin K antagonist oral anticoagulant. R=rivaroxaban. SE= systemic embolism. TIA= transient ischemic attack. TTR=time in therapeutic range.

157/4KA=vitamin K antagonist. *Reduced to 2.5 mg BID with two of three criteria from age \geq 80 years, bodyweight \leq 60 kg, or serum creatinine concentration \geq 133 µmol/L. †110 157/5g BID for patients with a CrCl 30–49 mL/min (most countries, but not in the USA); in the USA only, 75 mg BID (available in the USA only) for patients with CrCl 15–29 157/6L/min (and only 150 mg BID dose available in the USA for CrCl >30 mL/min). ‡30 mg with CrCl 15–49 mL/min, P-glycoprotein inhibitors, or weight <60 kg. §110 mg BID 157/6E not available in the USA for atrial fibrillation. ¶Reduced to 15 mg if CrCl 15–49 mL/min.

1578Dose to be halved if the patient has any of the following: CrCl 15–49 mL/min, bodyweight ≤60 kg, or concomitant use of P-glycoprotein inhibitors. # not available 1579

other the second

1580

1581 MANAGING BLEEDING ON OAC

1582

1583 Bleeding on VKA

1584

1585 Management of active bleeding on a VKA depends on the severity (Figure 6). For all bleed events, the 1586 site of bleeding should be assessed, with mechanical compression where appropriate, the time-point of 1587 the last dose of VKA should be obtained, with factors affecting bleeding risk documented (other 1588 medications, kidney function, alcohol abuse, other comorbidities) and hemodynamic status assessed 1589 (blood pressure, pulse etc.). Assessment of INR, prothrombin time and activated partial thromboplastin 1590 time is essential; other laboratory tests should include renal function, hemoglobin, hematocrit and 1591 platelet count. For minor bleeding, VKA administration should be withheld until INR<2.0. Management 1592 of moderate bleeding requires prompt identification and intervention to treat the cause and may also 1593 necessitate fluid replacement and/or blood transfusion. Where bleeding is severe or life-threatening, 1594 immediate reversal of the anticoagulant effect is required and administration of IV vitamin K, fresh 1595 frozen plasma and prothrombin complex concentrates should be considered to restore coagulation. 1596 PCCs are preferred over FFP for reversal due to a higher concentration of clotting factors and less 1597 volume.

1598

1599 Bleeding on NOAC

1600

1601 Many physicians and patients have been reluctant to embrace NOACs due to their perception that they 1602 are not able to effectively manage patients who present with bleeding, particularly without a specific 1603 reversal agent or antidote.²⁰⁵ A helpful framework to consider when managing NOAC related bleeding 1604 includes: (1) prevention of bleeding, (2) general principles and supportive measures, (3) non-specific 1605 hemostatic agents, and (4) NOAC-specific reversal agents.²⁰⁶

1606

1607 Minimize the Risk of Bleeding

Selecting the right dose of the NOAC is the most important step to minimize bleeding risk. Prescribing information for all NOACS includes dose reduction criteria to avoid increased drug exposure (primarily due to impaired renal function). Concomitant administration of antiplatelet drugs and non-steroidal anti-inflammatory drugs should be avoided when possible as concomitant administration substantially increases bleeding risk. Blood pressure should be well-controlled.

1613

1614 General Supportive Measures

- 1615 Given the short half-lives of these medications, minor bleeds may only require temporary
- 1616 discontinuation of anticoagulation for several doses. More significant bleeds may require additional
- 1617 supportive measures that include: local management (mechanical/surgical); volume resuscitation; and
- 1618 consideration of red blood cell and platelet transfusion, if appropriate.²⁰⁷⁻²⁰⁹ In cases of overdose or in

patients who took their last NOAC dose within 2 to 4 hours, oral activated charcoal may attenuate
 absorption of drug.²¹⁰⁻²¹³

1621

1622 Laboratory Measurements

With respect to common coagulation tests, a prolonged activated partial thromboplastin time (aPTT) 1623 indicates an anticoagulant effect of dabigatran, and a prolonged prothromin time (PT) indicates an 1624 anticoagulant effect of the FXa inhibitors.²⁰⁸ However, the clinical utility of these common tests is limited 1625 due to the fact that a normal aPTT or PT does not exclude clinically relevant plasma levels of dabigatran 1626 1627 and FXa inhibitors, respectively. The thrombin time (TT) is the most sensitive test for dabigatran; even 1628 low levels of dabigatran will prolong the TT so a normal TT excludes clinically relevant dabigatran concentrations. The dilute thrombin time (dTT) can be used to quantify dabigatran drug levels as it has 1629 1630 good correlation across a wide range of dabigatran concentrations.²¹⁴ Chromogenic anti-FXa assays are 1631 recommended for rivaroxaban, apixaban, and edoxaban with calibration for the specific agent.²⁰⁸ However, validation of these specialized coagulation tests is required, they are not universally available, 1632 and often have delayed turn-around time which diminishes their usefulness in emergent situations. 1633 1634 Asking patients when they took their last dose of NOAC is often the most practical method for quickly

- 1635 assessing residual anticoagulant activity.
- 1636

1637 Non-Specific Hemostatic Agents

1638 Hemostatic factors that have been studied as potential non-specific NOAC reversal agents including 1639 prothrombic complex concentrates (PCC), activated PCC (aPCC), recombinant activated factor VII (rFVIIa), and fresh-frozen plasma (FFP). PCCs are the preferred non-specific hemostatic agent for NOAC 1640 1641 reversal. PCCs are plasma-derived products that contain 3 (factors II, IX, and X) or 4 (addition of factor 1642 VII) clotting factors in addition to variable amounts of heparin and the natural coagulation inhibitors protein C and protein S. Animal studies have demonstrated that PCC have variable ability to normalize 1643 anticoagulation parameters and prevent or attenuate bleeding across the NOACs.^{209,215-221} The limited 1644 1645 data in humans are restricted to healthy volunteers. In three small (12-93 patients) randomized, placebo-controlled studies, PCC reversed the anticoagulant effect of rivaroxaban and edoxaban but not 1646 dabigatran.^{210,222-224} There was a dose-dependent relationship with complete reversal with 50 U/kg and 1647 1648 partial reversal with 25 U/kg.

1649

1650 It is unclear whether normalizing coagulation parameters in healthy volunteers translates to improved

- 1651 outcomes in patients who are actively bleeding. Furthermore, the use of these agents in managing
- 1652 bleeding caused by VKA or in hemophiliac patients has been associated with an increased risk of
- 1653 thrombotic complications, especially when activated factors are used.²²⁵⁻²²⁷
- 1654

1655 Specific Reversal Agents

1656 Idarucizumab

- 1657 Idarucizumab is a humanized monoclonal antibody fragment developed as a specific reversal agent for
- 1658 dabigatran (Table 7). It binds with high affinity (350 times higher than thrombin) to free and thrombin-
- 1659 bound dabigatran²²⁸ and binding is effectively irreversible.²²⁹ The Reversal Effects of Idarucizumab on
- 1660 Active Dabigatran (RE-VERSE AD) study was a phase 3, global, prospective, cohort study investigating the

- 1661 safety and efficacy of 5g idarucizumab (administered as two rapid 2.5g intravenous boluses) in
- 1662 dabigatran-treated patients who present with uncontrolled or life-threatening bleeding (Group A) or
- 1663 non-bleeding patients who require emergent surgery or intervention (Group B).²³⁰ Idarucizumab
- 1664 resulted in immediate, complete, and sustained reversal of dabigatran. Median time to cessation of
- 1665 bleeding in Group A was between 2.5 hours after reversal and in Group B, median time to surgery after
- 1666 reversal was 1.6 hours with intraoperative hemostasis deemed "normal" by investigators in 93.4% of
- 1667 patients. Idarucizumab has worldwide approval and availability.
- 1668

1669 Andexanet Alfa

- 1670 Andexanet alfa (andexanet) is a specific reversal agent for direct (apixaban, rivaroxaban and edoxaban)
- and indirect (low molecular weight heparins and fondaparinux) FXa inhibitors that act through
- 1672 antithrombin. It is a modified human recombinant FXa decoy protein that is catalytically inactive due to
- 1673 replacement of an active-site serine with alanine and with deletion of the membrane binding domain,
- 1674 which eliminates the ability to assemble the prothrombinase complex. And examet retains the ability to
- 1675 bind to NOACs with high affinity and a 1:1 stoichiometric ratio and by sequestering FXa inhibitors within
- 1676 the vascular space, endogenous FXa activity is restored.²³¹ Due to its pharmacodynamic half-life of 1-
- 1677 hour, and exanet is administered as a bolus followed by an infusion.
- 1678

1679 The ongoing ANNEXA-4 phase 3b–4 study (<u>http://www.clinicaltrials.gov</u>, NCT02329327) is evaluating the 1680 efficacy and safety of andexanet in patients taking FXa inhibitors with acute major bleeding. Unlike RE-

- 1681 VERSE AD, this study does not include patients without bleeding but who require emergency or urgent
- 1682 procedures. A preliminary interim analysis of 67 patients demonstrated that an initial bolus and
- 1683 subsequent 2-hour infusion of andexanet substantially reduced anti-factor Xa activity with clinically
- 1684 adjudicated effective hemostasis occuring in 79% of patients.²³² Andexanet is in late stage review by
- 1685 regulatory authorities.
- 1686

1687 Ciraparantag (PER977)

1688 Ciraparantag is a small synthetic water-soluble molecule developed as a reversal agent for 1689 unfractionated heparin, low molecular weight heparins, fondaparinux, and the oral direct Xa and IIa 1690 inhibitors. It binds to targets through non-covalent hydrogen bonding and charge-charge interactions 1691 thereby preventing the anticoagulants from binding to their endogenous targets.²³³ Ciraparantag is 1692 earlier in it development program as compared with other specific reversal agents.

- 1693
- 1694

1695 Management approach to bleeding on NOACs

- 1696 The vast majority of bleeds can be managed conservatively with temporary discontinuation of NOACs
- and supportive measures. Reversal agents should be used sparingly in the cases of severe and life threatening bleeding which includes bleeding causing hemodynamic compromise, intracranial
- 1699 hemorrhage, bleeding into a critical organ or closed space, persistent bleeding despite general
- 1700 supportive measures and local hemostatic support, or risk of recurrent bleeding due to excess NOAC
- 1701 drug exposure due to delayed clearance of NOAC (e.g., acute renal failure) or overdose.

1702

- 1703 In a patient with serious bleeding, a specific reversal agent (where available) should be used instead.
- 1704 General hemostatic agents as non-specific agents are less effective in reversing coagulation
- abnormalities, have not been shown to improve outcomes, and are potentially prothrombotic.

1706

- Although coagulation testing will identify those patients with therapeutic levels of anticoagulation who
 will likely benefit from specific reversal agents, and helps physicians to monitor the response to reversal,
 it is reasonable to administer specific reversal agents immediately without waiting for a laboratory test
 confirming therapeutic levels of anticoagulation in patients who present with life-threatening bleeding
- 1711 presumed to be on a NOAC.
- 1712
- 1713

1714

Table 7: Comparison of specific NOAC reversal agents [adapted from Ruff CT, Giugliano RP, Antman EM.

- Circulation. 2016; 134(3)248-61]

	Idaracizumab	Andexanet alfa	Ciraparantag
Company	Boehringer Ingelheim	Portola	Perosphere Inc.
		Pharmaceuticals	
Chemical	Humanized	Recombinant	Synthetic water-soluble cationic small
structure	monoclonal antibody	truncated human	molecule consisting of two L-arginine
	fragment	factor Xa variant	units connected with a piperazine
		(decoy)	containing linker chain
Binding	Noncompetitive	Competitive binding	Covalent hydrogen bonding
	binding to dabigatran	to direct factor Xa	
		inhibitors or to	
		indirect factor Xa	
		inhibitor-activated	
		antithrombin	
Target affinity	~350x greater affinity	Affinity for direct	Not reported
	for dabigatran than	factor Xa inhibitors	
	factor IIa	similar to that of	
		native factor Xa	
Onset	<5 minutes	2 minutes	5-10 minutes
Half-life	Initial: 47 minutes		
	Terminal: 10.3 hours	Terminal: ~6 hours	Duration of action 24 hours
Elimination	Kidney (protein	Not reported	Not reported
	catabolism)		
Anticoagulant(s)	Dabigatran	Direct and indirect	- Dabigatran
reversed		factor Xa inhibitors*	- Argatroban
			- Low-molecular weight heparins
			- Unfractionated heparin
			- Oral and parenteral factor Xa
			inhibitors
Route and dose	5 g administered as 2	400-800 mg	100-300 mg intravenous bolus
in clinical studies	doses of 2.5 g IV over	intravenous bolus (30	
	5-10 minutes, 15	mg/min) followed by	
	minutes apart (repeat	infusion of 4-8	
	dosing can be	mg/min [#]	
	considered if		
	recurrent bleeding or		
	require second		
	emergent procedure if		
	elevated coagulation		
	parameters)		
Storage	Refrigerated	Refrigerated	Room temperature

* For the indirect factor Xa inhibitors, and exanet alfa likely to completely reverse fondaparinux which only inhibits factor Xa but not low-molecular weight heparins which also inhibit factor IIa.

[#]Lower dose to reverse apixaban, higher dose to reverse rivaroxaban

1724 PRACTICAL ISSUES WITH VKA AND NOAC

CARDIOVERSION 1725

1726

Antithrombotic therapy for patients with AF undergoing cardioversion

1727

1728 In AF of documented short duration (i.e.≤48 h), urgent cardioversion commonly occurs without prolonged 1729 pre-cardioversion anticoagulation. In the context of elective cardioversion, whether electrical or chemical, 1730 therapeutic anticoagulation either with adjusted-dose VKAs, or NOACs is currently recommended for a minimum of 3 weeks before, and for a minimum of 4 weeks after the procedure. In AF of >48 h duration or 1731 1732 unknown duration, a TEE-guided approach provides an alternative strategy to guide anticoagulation management before cardioversion. In this section, we appraise and summarize the evidence and give 1733 1734 recommendations for the use of antithrombotic therapy in patients undergoing electrical or pharmacologic cardioversion for AF (or atrial flutter). In particular, the option of NOACs in the setting of cardioversion is 1735 1736 reviewed.

1737 Cardioversion of AF of more than 48 h or unknown duration

VKA 1738

Observational data support the use of VKA in the context of elective cardioversion, whether electrical or 1739 pharmacologic. A systematic review of 18 observational studies provides moderate-quality evidence for a 1740 1741 lower risk of stroke or thromboembolism (TE) with peri-cardioversion anticoagulation (with VKA) versus no 1742 anticoagulation (0.3% vs 2.0%; relative risk, RR, 0.16, 95% Cl, 0.05-0.48), but did not report major bleeding events²³⁴. 1743

1744

1745 The recommended duration of a minimum of 3 weeks' therapeutic anticoagulation with VKA before 1746 cardioversion and a minimum 4 weeks subsequently is arbitrary and has no trial basis, being based on 1747 indirect pathophysiologic and observational data. The rationale for maintenance of a therapeutic INR in the peri-cardioversion period is from observational data, showing that thromboembolism is significantly more 1748 common at INR of 1.5-2.4 before cardioversion than INR of 2.5 (0.93% vs 0%, P 0.012)²³⁵. Retrospective 1749 observational studies suggest that, after cardioversion, the highest risk of stroke and thromboembolism is 1750 1751 in the first 72 hours. In addition, most thromboembolic complications are within 10 days of cardioversion²³⁶. However, even if sinus rhythm is restored on ECG, transoesophageal echocardiography 1752 (TEE) studies have shown that atrial mechanical dysfunction can persist for several weeks following 1753 cardioversion²³⁷. Recent Finnish registry data suggest that most post-cardioversion strokes are associated 1754 with not using anticoagulation²³⁸. Although data relating to the impact of long-term anticoagulation post-1755 1756 cardioversion are lacking, relevant Swedish observational data suggest that discontinuation of warfarin 1757 after catheter ablation is not safe in high-risk patients, especially those individuals with history of ischemic 1758 stroke²³⁹. It is also worth noting that although the risk of ischemic stroke/TE is higher with non-paroxysmal 1759 vs. paroxysmal AF (multivariable adjusted hazard ratio 1.38, 95% CI: 1.19-1.61, p<0.001), pattern of AF does 1760 not affect the decision regarding long-term OAC.

1761

1762 **NOACs**

- Evidence is available for all four currently available NOACs: dabigatran, apixaban, rivaroxaban and edoxaban. An existing systematic review from Renda et al. compared the use of NOAC versus VKA in the setting of cardioversion in six studies.²⁴⁰ Reported pooled risk ratios (RRR) were 0.82 (0.38-1.75) for stroke/systemic embolism, 0.72 (0.27-1.90) for mortality and 0.72 (0.19-2.71) for MI respectively, suggesting at least comparable efficacy of NOACs with VKA in the setting of cardioversion (e-Table 17). It should be noted that despite these reassuring data, the included trials were under-powered for safety and
- 1769

efficacy, and judged to be of poor quality.

1770

1775

The need for consensus guidance is illustrated by the current wide variation in VKA and NOAC use in the
setting of elective cardioversion ^{241,242}. Available data support use of rivaroxaban^{243 244}, dabigatran²⁴⁵,
apixaban²⁴⁶ and edoxaban²⁴⁷ in patients to be continued on these NOACs if scheduled for cardioversion.
Similar observations were found in a randomized trial of apixaban vs. warfarin (EMANATE) ²⁴⁸.

- 1776 A TEE-guided approach with abbreviated anticoagulation before cardioversion has been recommended as an alternative to the conventional approach of using a minimum of 3 weeks therapeutic pre-cardioversion 1777 anticoagulation as outlined above²⁴⁹. In the TEE--guided strategy, patients receive VKA and once 1778 1779 therapeutic, undergo a screening TEE. If the TEE identifies thrombus in either the atrial appendage or 1780 atrium, cardioversion is postponed, given the presumed high risk of thromboembolism. In the absence of 1781 thrombus, cardioversion is immediately performed. Given the need for accurate visualization of thrombus, 1782 the TEE-guided strategy requires an experienced echocardiographer. The best data for the use of VKA in the 1783 TEE-guided approach is from the Assessment of Cardioversion Using Transesophageal Echocardiography 1784 (ACUTE) RCT, which compared a TEE-guided strategy of abbreviated therapeutic anticoagulation with IV 1785 unfractionated heparin (started 24 h before cardioversion) or warfarin (INR 2.0-3.0) (started 5 days before cardioversion) to a strategy of therapeutic anticoagulation for at least 3 weeks before cardioversion²⁵⁰. 1786
- 1787

1788 Overall, the evidence is of low quality, and therefore the results are not conclusive with respect to either a 1789 benefit or harm with the TEE-guided strategy versus the conventional approach of 3 weeks of 1790 anticoagulation pre-cardioversion.

1791

For NOACs vs. warfarin in the TEE-guided approach, our review found an existing systematic review and 1792 meta-analysis.²⁵¹ An updated search of this systematic review identified one additional study. Pooled 1793 results found the relative risk ratio for stroke/TE was 0.33 (0.06-1.68) for NOACs versus warfarin (e-Figure 1794 1795 3, e-table 18). Although these data indicate safety and probable equivalence of NOACs in the TEE-guided 1796 approach versus VKA, the trials were under-powered to show efficacy, and therefore the evidence is of low 1797 quality (e-Table 18). The advantage of NOACs is that their mode of action is quicker than VKA and therefore 1798 there is no delay in waiting for a therapeutic INR. However, the need for strict adherence to the NOAC 1799 therapy must be emphasized to patients, particularly in the post-cardioversion period.

1800

1801

1802 Individuals who are very symptomatic due to AF may gain greatest benefit from the TEE-guided approach 1803 since cardioversion can be expedited by a thrombus-negative TEE. In addition, a TEE-guided approach can 1804 be used to avoid prolonged VKA before cardioversion, which is a particular consideration in patients at 1805 increased risk for bleeding. The NOACs now offer an alternative to prolonged anticoagulation before 1806 cardioversion. However, a "risk-based approach" to anticoagulation should be used, and avoiding
1807 anticoagulation with a TEE-guided strategy should only be considered in the absence of stroke risk factors
1808 and a low risk of recurrent AF.

1809

1810 For patients undergoing a TEE-guided approach, low-molecular-weight heparin at full VTE treatment doses 1811 or IV unfractionated heparin (to maintain an activated partial thromboplastin time prolongation that 1812 corresponds to plasma heparin levels of 0.3-0.7 International Units/mL anti-factor Xa activity) should be 1813 started at the time of TEE and cardioversion performed within 24 hours of the TEE if no thrombus is seen. 1814 Observational data and one RCT show that low-molecular-weight heparin has similar efficacy compared with heparin or warfarin for immediate anticoagulation before TEE²⁵²⁻²⁵⁶. In the outpatient setting, a TEE-1815 guided approach should involve initiation of VKA (INR 2.5; range, 2.0-3.0) followed by the TEE and 1816 1817 subsequent cardioversion scheduled 5 days later (if the INR is in therapeutic range at that time). The NOACs 1818 again offer an alternative in outpatient treatment before TEE-guided cardioversion, with no bridging 1819 therapy necessary.

1820

Among AF patients undergoing TEE, 10% have left atrial appendage thrombus with a 3.5-fold increased risk 1821 of stroke/TE²⁵⁷, but no specific data are available in the context of cardioversion. If atrial thrombus is seen 1822 1823 on TEE, then there is heterogeneity in current clinical practice regarding both when or whether to perform 1824 the TEE again, as well as subsequent management of anticoagulation. There is no evidence to support re-1825 imaging, although it is a reasonable strategy. Although, current practice favors not performing 1826 cardioversion if re-imaging shows thrombus due to the presumed high risk of TE, there is a lack of direct 1827 data about the safety of cardioversion in the presence of thrombus. Taken together, a risk-based approach 1828 to anticoagulation can be recommended and with respect to TEE, individualization of therapy on a case-by-1829 case basis is proposed. It should be noted that in a multicenter registry of AF patients undergoing catheter ablation, TEE-guided cardioversion did not show a benefit compared with uninterrupted NOAC therapy²⁵⁸. 1830

1831

1832 Although there is no direct evidence to guide decision-making about long-term management of 1833 anticoagulation in patients who appear to be in sinus rhythm at 4 weeks after cardioversion, but indirect 1834 evidence suggests strongly that long-term anticoagulation should be based on the risk of stroke rather than the apparent success of the cardioversion procedure. First, recurrence of AF at 1 year after cardioversion 1835 occurs in approximately one-half of patients and therefore long-term stroke risk is significant²⁵⁹⁻²⁶². Second, 1836 1837 the AFFIRM study, in which many patients stopped anticoagulation after initial (apparently) successful restoration of sinus rhythm, demonstrated similar rates of thromboembolism with a rhythm control 1838 strategy compared with a rate control strategy²⁶³. Thirdly, patients with paroxysmal AF are often 1839 1840 asymptomatic during episodes of AF recurrence, with one series suggesting that only one in every 12 paroxysms are symptomatic²⁶⁴. 1841

1842 **Recommendation**

184312. For patients with AF of greater than 48 hours or unknown duration undergoing elective electrical or1844pharmacologic cardioversion, we recommend therapeutic anticoagulation with well-managed VKA1845(INR 2-3) or a NOAC using dabigatran, rivaroxaban, edoxaban or apixaban for at least 3 weeks before

1846 cardioversion or a transesophageal echocardiography (TEE)-guided approach with abbreviated

1847	anticoagulation before cardioversion rather than no anticoagulation (Strong recommendation,
1848	moderate quality evidence).
1849	Remark: With NOACs adherence and persistence should be strongly emphasized
1850	
1851	13. For patients with AF of greater than 48 hours or unknown duration undergoing elective electrical or
1852	pharmacologic cardioversion, we recommend therapeutic anticoagulation (with VKA or NOAC) for at
1853 1854	least 4 weeks after succesful cardioversion to sinus rhythm rather than no anticoagulation, regardless
1855	of the baseline risk of stroke (strong recommendation, moderate quality evidence) <i>Remark</i> : Decisions about anticoagulation beyond 4 weeks should be made in accordance with our risk-
1856	based recommendations for long-term antithrombotic therapy in recommednations 1 and 2, and not
1857	on the basis of successful cardioversion
1858	
1859	14. In patients in which LAA thrombus is detected on TEE, cardioversion postponed, and OAC continued
1860	for another 4-12 weeks, to allow thrombus resolution or endothelisation, we suggest that a decision
1861	on whether a repeat TEE is performed should be individualized (ungraded consensus-based
1862	statement).
1863	
1864	
1865	Cardioversion of AF of 48 h duration or less:
1866	
1867	The duration of AF necessary for development of thrombus is not clear. Therefore, the threshold of AF
1868	duration below which pre-cardioversion anticoagulation can be safely avoided is not known. It is common
1869	practice to cardiovert without TEE or prolonged pre-cardioversion anticoagulation if AF is of short duration
1870	(<48 hours). The problem with this approach is the presence of left atrial thrombus on TEE in up to 14% of
1871	patients with AF of short duration in observational studies ^{265,266} . In addition, the high prevalence of
1872	asymptomatic AF makes determining the exact duration of AF difficult ²⁶⁷ . If there is uncertainty about
1873	precise time of AF onset, then such patients should be managed as if AF >48 hours.
1874	
1875	A recent Finnish observational study of 5,116 successful cardioversions in 2,481 patients with acute (<48 h)
1876	AF showed low incidence of stroke/TE during the 30 days following cardioversion, even without
1877	perioperative anticoagulation (0.7%) ²⁶⁸ . These results concur with low rates of stroke/TE in observational
1878	studies (Table 8). However, there is lower incidence of stroke/TE with cardioversions performed during
1879	anticoagulation (0.1% vs 0.7%, p=0.001), and with anticoagulation versus no anticoagulation in patients
1880	with a CHA_2DS_2VASc score of ≥ 2 (0.2% vs 1.1%, p=0.001). It should also be noted that there is a high risk of
1881	recurrence of the composite of cardioversion failure and recurrence of AF within 30 days (40%) in acute
1882	AF ²⁶⁹ . Overall, the evidence suggests that peri-cardioversion anticoagulation is beneficial and that the
1883	decision regarding peri- and post-cardioversion anticoagulation should be based on risk of stroke/TE ²⁶⁸ ,
1884	even if an individual is presenting for the first time with AF.
1885	

1886Table 8. Thromboembolic Complications in Patients With No Anticoagulation After Cardioversion of1887Acute (<48 h) Atrial Fibrillation in Previous Studies (from Airaksinen et al. 2013</td>

First Author (Ref. #) ı	n	Mean Age, yrs	Male	Success Rate	Thromboembolism
-------------------------	---	------------------	------	-----------------	-----------------

Weigner et al. ²⁷⁰	224	68	NA	95%	0.9% [±]
Michael et al. ²⁷¹	217	64	54	86%	0.5%*
Burton et al. 272	314	61	55	86%	0 <u>+</u>
Gallagher et al. ²³⁵	198	63	68	100%	0.5% [±]
Stiell et al. ²⁷³	414	65	56	92%	0 <u>+</u>
Xavier Scheuermeyer et al. ²⁷⁴	104	57	92	96%	0

1888 *All 3 thromboembolic events after spontaneous cardioversion and in elderly (>75 years) women.

- 1889 *+*Follow-up of 7 days.
- 1890 ‡Plus 1 probable thromboembolic event. NA, not available
- 1891
- 1892

1893 **Recommendations**

- 1894 **15.** For patients with AF of documented duration of 48 hours or less undergoing elective cardioversion 1895 (electrical or pharmacologic), we suggest starting anticoagulation at presentation (low-molecular-1896 weight heparin or unfractionated heparin at full venous thromboembolism treatment doses) and 1897 proceeding to cardioversion rather than delaying cardioversion for 3 weeks of therapeutic 1898 anticoagulation or a TEE-guided approach (weak recommendation, low quality evidence).
- 1899
 16. For patients with AF and hemodynamic instability undergoing urgent cardioversion (electrical or pharmacologic), after successful cardioversion to sinus rhythm, we recommend therapeutic anticoagulation (with VKA or full adherence to NOAC therapy) for at least 4 weeks rather than no anticoagulation, regardless of baseline stroke risk (weak recommendation, low quality evidence).
 1904 Remark: Decisions about long-term anticoagulation after cardioversion should be made in accordance
- with our risk-based recommendations for long-term antithrombotic therapy in recommendations 1 and
 2

1908 Patients undergoing urgent cardioversion for hemodynamically unstable AF

1909

1907

Our systematic review of anticoagulation versus no anticoagulation in patients with AF undergoing urgent found no published data regarding the optimal anticoagulation strategy to use before or during urgent cardioversion for patients with AF and hemodynamic instability. On the basis of the above evidence for anticoagulation in elective cardioversion, initiation of anticoagulation immediately before urgent cardioversion (e.g., with IV unfractionated heparin or low-molecular weight heparin) would be expected to reduce the risk of stroke/TE based on studies of elective cardioversion. Initiation of anticoagulation therapy should not delay any emergency interventions required in order to stabilize the patient.

1917 Recommendation

- 1918 **17.** For patients with AF and hemodynamic instability undergoing urgent cardioversion (electrical or 1919 pharmacologic), we suggest that therapeutic-dose parenteral anticoagulation be started before 1920 cardioversion, if possible, but that initiation of anticoagulation must not delay any emergency 1921 intervention (weak recommendation, low quality evidence).
- 192318. For patients with AF and hemodynamic instability undergoing urgent cardioversion (electrical or1924pharmacologic), after successful cardioversion to sinus rhythm, we suggest therapeutic1925anticoagulation for at least 4 weeks after successful cardioversion to sinus rhythm rather than no1926anticoagulation, regardless of baseline stroke risk (weak recommendation, low quality evidence).1927Remark: Decisions about anticoagulation beyond 4 weeks should be made in accordance with our risk-1928based recommendations for long-term antithrombotic therapy in recommendations 1 and 2.
- 1929

1922

1930 Patients Undergoing Elective or Urgent Cardioversion for Atrial Flutter

1931

There are no specific trials which have considered electrical cardioversion in the context of atrial flutter and associated anticoagulation. Despite the low risk of TE after cardioversion for atrial flutter, which has been suggested by some observational studies, even in absence of anticoagulation, other studies have shown a similar risk of TE in patients after cardioversion for atrial flutter and AF^{235,275,276}, perhaps due to co-existence of AF and atrial flutter. Adults with congenital heart disease represent a growing, important population with atrial flutter where long-term studies of outcomes with anticoagulation are required.

1938 **Recommendation**

1939 19. For patients with atrial flutter undergoing elective or urgent pharmacologic or electrical cardioversion, we suggest that the same approach to thromboprophylaxis be used as for patients with atrial fibrillation undergoing cardioversion. (ungraded consensus-based statement). 1942

1943

1944 PATIENTS WITH AF WITH CORONARY ARTERY DISEASE

1945 ACS and/or PCI

1946 AF commonly coexists with vascular disease, whether coronary, carotid or peripheral artery disease^{277,278}.

- 1947 Some AF patients with coronary disease may present with an acute coronary syndrome (ACS). Whether
- stable or acute, such patients may undergo percutaneous intervention with stent deployment. This sectiondeals with the antithrombotic therapy management of this group of patients.
- 1950

1951 There are 4 considerations when managing these patients, as follows^{277,279}:

- 1952 Stroke prevention, necessitating OAC, whether with VKA or NOAC
- Prevention of stent thrombosis, necessitating antiplatelet therapy (APT). There is evidence for using DAPT for up to 12 months in non-AF patients.
- Prevention of recurrent cardiac ischemia in an ACS patient, necessitating APT. There is some
 evidence for using DAPT for beyond 12 months in non-AF patients from the DAPT and PEGASUS

- 1957trials, to reduce non-stent related ischemic and stroke events, but at the risk of more bleeding1958events²⁸⁰.
- 1959

events²⁸⁰.
Serious bleeding risks (e.g., ICH) with the combination of OAC and one or more antiplatelet drug.

1960

Additional considerations are the duration of treatment, acute or stable setting, type of APT, stent type, OAC type, bleeding risks, etc. Bleeding risk can be assessed by various bleeding risk scores, with the focus on modifiable bleeding risk factors; however, the HAS-BLED score is predictive of bleeding in the setting of ACS and/or PCI-stenting¹¹⁰. Coronary stent technology has also evolved, with small strut sizes necessitating shorter duration of dual APT (DAPT, i.e. aspirin plus P2Y12 inhibitor such as clopidogrel). We are also in the era of NOACs, which may offer a better safety profile compared to VKA based therapy. Nonetheless the latter may be relatively safe in the presence of well managed anticoagulation control with high TTR²⁸¹.

1968

1969 AF patients undergoing percutaneous coronary intervention

1970 Various case series and cohort studies of AF patients undergoing PCI/stenting have been reported. These

1971 have been systematically reviewed as part of the 2014 and 2018 joint European consensus documents,

1972 endorsed by HRS and APHRS, which provides consensus recommendations on optimal management of such

1973 patients^{277,279}. A similar North American expert consensus document has been published²⁸².

1974

1975 In a systematic review and meta-analysis (18 studies with 20,456 patients with AF; 7,203 patients received 1976 DAPT + VKA and 13,253 patients received DAPT after PCI-S) Chaudhary et al²⁸³, showed that DAPT and VKA 1977 was associated with significantly lower risk of stroke, stent thrombosis, and all-cause mortality, but the risk 1978 of major bleeding was significantly higher in the DAPT and VKA group.

Broadly similar conclusions were drawn from the systematic review and meta-analysis (17 studies, 104,639 patients) by Zhu et al²⁸⁴ where triple therapy (DAPT+OAC) was associated with an increased risk of bleeding compared with DAPT alone, with no differences observed between triple therapy and the dual therapy for all-cause death, cardiovascular death, or thrombotic complications (i.e., acute coronary syndrome, stent thrombosis, thromboembolism/stroke, and major adverse cardiac and cerebrovascular events). In both systematic reviews, there was marked heterogeneity in study size, patient population, intervention types, stent use, etc.

1986

Bennaghmouch et al²⁸⁵ reported a meta-analysis restricted to the subgroups of patients on aspirin therapy (n=21,722) from the four RCTs comparing VKA and NOACs (N=71,681) in AF patients. NOACs were more effective (outcome stroke or systemic embolism HR: 0.78 [95% CI, 0.67-0.91] and vascular death HR 0.85 [0.76-0.93]) and as safe as VKA with respect to major bleeding (HR: 0.83 [95% CI, 0.69-1.01]). NOACs were safer with respect to the reduction of intracranial hemorrhage (HR: 0.38 [0.26-0.56]). Thus, it may be both safer and more effective to use NOACs as compared with VKA to treat patients with non-valvular AF and concomitant aspirin therapy.

1994

1995 The largest observational cohort was reported by Lamberts et al²⁸⁶, which included a total of 12,165 AF 1996 patients (60.7% male; mean age 75.6 years) hospitalized with MI and/or undergoing PCI between 2001 and 1997 2009. Relative to triple therapy (OAC plus DAPT, i.e. aspirin plus clopidogrel), no increased risk of recurrent 1998 coronary events was seen for OAC plus clopidogrel (hazard ratio [HR]: 0.69, 95% CI: 0.48 to 1.00), OAC plus

- 1999 aspirin (HR: 0.96, 95% CI: 0.77 to 1.19), or aspirin plus clopidogrel (HR: 1.17, 95% CI: 0.96 to 1.42), but 2000 aspirin plus clopidogrel was associated with a higher risk of ischemic stroke (HR: 1.50, 95% CI: 1.03 to 2.20). 2001 OAC plus aspirin and aspirin plus clopidogrel were associated with a significant increased risk of all-cause 2002 death (HR: 1.52, 95% CI: 1.17 to 1.99 and HR: 1.60, 95% CI: 1.25 to 2.05, respectively). When compared to 2003 triple therapy, bleeding risk was non-significantly lower for OAC plus clopidogrel (HR: 0.78, 95% CI: 0.55 to 2004 1.12) and significantly lower for OAC plus aspirin and aspirin plus clopidogrel. Thus, OAC and clopidogrel 2005 was equal or better for both benefit and safety outcomes compared to triple therapy. However, this 2006 analysis provides limited information on the duration of therapies, quality of INR control, stent type, 2007 underlying bleeding risk profile, etc.
- 2008

2009 Randomized trials

2010 Prospective RCTs in AF patients presenting with ACS and/or undergoing PCI/stenting are limited. The first trial was the WOEST trial²⁸⁷, which randomized 573 adults receiving oral anticoagulants (65% with AF) and 2011 2012 undergoing PCI to clopidogrel alone (double therapy) or clopidogrel plus aspirin (triple therapy). The 2013 primary endpoint of 'any bleeding' was seen in 19.4% receiving double therapy and 44.4% receiving triple 2014 therapy (HR 0.36, 95% CI 0.26-0.50, p<0.0001). Of the secondary endpoints, there was no increase in the 2015 rate of thrombotic events, but all-cause mortality was higher in the triple therapy arm. This trial was 2016 underpowered for efficacy and safety endpoints, and the primary endpoint of 'any bleeding' was driven by 2017 minor bleeds given that triple therapy was mandated for 12 months.

2018

The duration of triple therapy was also addressed by the ISAR-TRIPLE trial²⁸⁸, a RCT in 614 patients receiving 2019 2020 OAC plus aspirin, randomized to either 6-weeks of clopidogrel therapy (n=307) or 6-months of clopidogrel 2021 therapy (n=307). The primary endpoint (composite of death, myocardial infarction (MI), definite stent 2022 thrombosis, stroke, or Thrombolysis In Myocardial Infarction (TIMI) major bleeding at 9 months) occurred 2023 in 30 patients (9.8%) in the 6-week group compared with 27 patients (8.8%) in the 6-month group (HR: 2024 1.14; 95% CI: 0.68 to 1.91; p=0.63). There were no significant differences for the secondary combined 2025 ischemic endpoint of cardiac death, MI, definite stent thrombosis, and ischemic stroke (12 [4.0%] vs. 13 [4.3%]; HR: 0.93; 95% CI: 0.43 to 2.05; p=0.87) or the secondary bleeding endpoint of TIMI major bleeding 2026 2027 (16 [5.3%] vs. 12 [4.0%]; HR: 1.35; 95% CI: 0.64 to 2.84; p=0.44). Thus, 6 weeks of triple therapy was not 2028 superior to 6 months of therapy with respect to net clinical outcomes, suggesting that physicians should 2029 weigh the trade-off between ischemic and bleeding risk when choosing a shorter or longer duration of 2030 triple therapy.

2031

In the PIONEER AF-PCI trial²⁸⁹, 2,124 patients with AF undergoing PCI with stenting were randomized to 2032 2033 low-dose rivaroxaban (15 mg once daily, reduced to 10mg with moderate renal impairment) plus a P2Y12 2034 inhibitor for 12 months (group 1), very-low-dose rivaroxaban (2.5 mg twice daily) plus DAPT for 1, 6, or 12 2035 months (group 2), or standard VKA (once daily) plus DAPT for 1, 6, or 12 months (group 3). The rates of 2036 clinically significant bleeding were lower in the two groups receiving rivaroxaban than in the VKA group 2037 (16.8% in group 1, 18.0% in group 2, and 26.7% in group 3; hazard ratio for group 1 vs. group 3, 0.59; 95% Cl 2038 0.47 to 0.76; P<0.001; hazard ratio for group 2 vs. group 3, 0.63; 95% Cl, 0.50 to 0.80; P<0.001). The rates of 2039 death from cardiovascular causes, myocardial infarction, or stroke were similar in the three groups but the 2040 trial was underpowered for efficacy endpoints. There was only a minority of newer P2Y12 inhibitors used

as APT. There was an associated reduction in hospitalizations in the 2 rivaroxaban arms, compared to
 VKA²⁹⁰.

2043

In the RE-DUAL PCI trial²⁹¹, randomized 2,725 patients with AF who had undergone PCI to triple therapy 2044 2045 with warfarin plus a $P2Y_{12}$ inhibitor (clopidogrel or ticagrelor) and aspirin (for 1 to 3 months) (triple-therapy 2046 group) or dual therapy with dabigatran (110 mg or 150 mg twice daily) plus a P2Y₁₂ inhibitor (clopidogrel or 2047 ticagrelor) and no aspirin (110-mg and 150-mg dual-therapy groups). Outside the United States, elderly 2048 patients (≥80 years of age; ≥70 years of age in Japan) were randomly assigned to the 110-mg dual-therapy 2049 group or the triple-therapy group. The incidence of the primary end point (major or clinically relevant non-2050 major bleeding) was 15.4% in the 110-mg dual-therapy group compared with 26.9% in the triple-therapy 2051 group (HR 0.52; 95%CI 0.42 to 0.63; P<0.001 for non-inferiority; P<0.001 for superiority) and 20.2% in the 2052 150-mg dual-therapy group as compared with 25.7% in the corresponding triple-therapy group, which did 2053 not include elderly patients outside the United States (HR 0.72; 95%CI 0.58 to 0.88; P<0.001 for non-2054 inferiority). The incidence of the composite efficacy end point of thromboembolic events (myocardial 2055 infarction, stroke, or systemic embolism), death, or unplanned revascularization was 13.7% in the two dual-2056 therapy groups combined as compared with 13.4% in the triple-therapy group (hazard ratio, 1.04; 95% Cl, 2057 0.84 to 1.29; P=0.005 for non-inferiority). Thus, the risk of bleeding was lower among those who received 2058 dual therapy with dabigatran and a P2Y12 inhibitor than among those who received triple therapy with 2059 warfarin, a P2Y12 inhibitor, and aspirin. Dual therapy was non-inferior to triple therapy with respect to the 2060 risk of thromboembolic events. In contrast to the PIONEER-AF trial, the REDUAL PCI trial tested dabigatran doses (110mg and 150mg bid) which are licensed for stroke prevention in AF. 2061 2062

There are limited data on use of the newer P2Y12 inhibitors (ticagrelor, prasugrel) with OAC. Observational cohorts in AF patients report a higher bleeding rate where these newer APT agents are used as part of a triple therapy regime, compared to when clopidogrel is used as part of the triple therapy regime²⁹². Only a minority of patients in PIONEER AF-PCI had newer P2Y12 agents, whereas the largest experience in AF patients was in the RE-DUAL PCI trial, which allowed ticagrelor in combination with dabigatran 110mg or 150mg bid.

2069

In the GEMINI-ACS-1 trial²⁹³, 3037 patients with ACS (i.e. essentially a non-AF population) were randomly
assigned to either aspirin 100mg or rivaroxaban 2.5mg bid, and the subsequent choice of clopidogrel (44%)
or ticagrelor (in 56%) during trial conduct was non-randomized. Low-dose rivaroxaban with a P2Y12
inhibitor for the treatment of ACS patients had similar risks of clinically significant bleeding (5%) as aspirin
and a P2Y12 inhibitor [HR 1·09 [95% CI 0·80-1·50]; p=0·5840)].

2075

2076 Stable vascular disease

2077

The presence of vascular disease adds to stroke risk in patients with AF. In the Danish registries, AF patients with vascular disease (prior myocardial infarction, prior peripheral artery disease, or aortic plaque) as a single risk factor have a high stroke rate of 4.85 per 100 person-years²⁹⁴. This corresponds to CHA_2DS_2 -VASc=1 for males and a CHA_2DS_2 -VASc=2 for females, with rates of 4.53 and 5.69, respectively. Contrasting low risk CHA_2DS_2 -VASc (that is, score 0 (male) or 1 (female)) as a reference population vs. those with ≥ 1 additional stroke risk factors (i.e. CHA_2DS_2 -VASc score =1 (male) or =2 (females)), the risk attributable to

vascular disease had a crude HR of 2.7 (95%Cl 1.7-4.2). In Asian countries²⁹⁵, PAD may confer an ischemic
 stroke risk that is much higher than that seen in Western populations²⁹⁶.

2086 In AF patients with stable CAD there is no evidence that adding APT to OAC reduces stroke/SE, death, or MI. 2087 2088 However, the risk of major bleeding and ICH is substantially increased with the addition of APT to OAC. The largest cohort was reported by Lamberts et al²⁹⁷ where 8700 AF patients (mean age, 74.2 years; 38% 2089 2090 women) with stable CAD (defined as 12 months from an acute coronary event) followed-up for a mean 3.3 2091 years, found the risk of myocardial infarction/coronary death was similar for VKA plus aspirin (HR 1.12; 95% 2092 CI 0.94-1.34]) and VKA plus clopidogrel (HR 1.53; 95% CI 0.93-2.52]), relative to VKA monotherapy, 2093 However, the risk of bleeding increased >50% when aspirin (HR 1.50; 95% CI 1.23-1.82]) or clopidogrel (HR 2094 1.84; 95% CI 1.11-3.06]) was added to VKA.

In the RCTs of NOACs compared to warfarin, aspirin at <100mg daily was allowed. Ancillary analyses show no added benefit of adding aspirin on stroke or mortality rates; however, absolute bleeding rates were higher with combination therapy, but the relative efficacy and safety with NOAC vs. warfarin use was maintained irrespective of aspirin use²⁹⁸. Only the RELY trial showed data for combination of dabigatran with aspirin and/or clopidogrel, and as expected, major bleeding risks were increased with a single APT and further increased where 2 APTs were used²⁹⁹.

- 2102 Less data are evident for OAC use in AF patients with stable isolated PAD or carotid disease, in relation to 2103 OAC use. However, it is reasonable to assume that data for CAD would be generally applicable to PAD or carotid disease. One post-hoc ancillary analysis³⁰⁰ from the ROCKET-AF trial reported that the efficacy of 2104 rivaroxaban when compared with warfarin for the prevention of stroke or systemic embolism was similar in 2105 2106 patients with PAD (HR: 1.19, 95% CI: 0.63-2.22) and without PAD (HR: 0.86, 95% CI: 0.73-1.02; interaction P = 0.34). However, there was a higher risk of major bleeding or NMCR bleeding with rivaroxaban when 2107 2108 compared with warfarin in AF patients with PAD (HR: 1.40, 95% CI: 1.06-1.86) compared with those 2109 without PAD (HR: 1.03, 95% CI: 0.95-1.11; interaction P = 0.037).
- 2110 **Recommendations**
- 20. In AF patients presenting with an ACS and/or undergoing PCI/stenting, we recommend assessment of
 stroke risk using the CHA₂DS₂-VASc score (Strong recommendation, moderate quality evidence)
 Remark: All such patients are not 'low risk' and should be considered for concomitant OAC.
- 2114
 2115 21. In AF patients presenting with an ACS and/or undergoing PCI/stenting, we suggest attention to
 2116 modifiable bleeding risk factors at every patient contact, and assessment of bleeding risk using the
 - 2117 HAS-BLED score (weak recommendation, low quality evidence).
 - 2118 *Remark*: Where bleeding risk is high (HAS-BLED \geq 3), there should be more regular review and follow-up.
 - 2119

2095

2120 22. In AF patients requiring OAC undergoing elective PCI/stenting, where bleeding risk is low (HAS-BLED
 0-2) relative to risk for recurrent ACS and/or stent thrombosis, we suggest triple therapy for one
 month, followed by dual therapy with OAC plus single antiplatelet (preferably clopidogrel) until 12
 months, following which OAC monotherapy can be used (weak recommendation, low quality
 evidence).

(weak recommendation, low quality evidence).

59

28. In AF patients with ACS or undergoing PCI in whom OAC is recommended, we suggest using VKA with

TTR>65-70% (INR range 2.0-3.0), or to use a NOAC at a dose licensed for stroke prevention in AF

2163 *Remark*: Only Dabigatran 150mg bid or (not licensed in USA) 110mg bid or Rivaroxaban 15mg qd are 2164 currently supported by clinical trial evidence. A NOAC based strategy has lower bleeding risk compared to a VKA-based strategy.

2165 2166

2159

2160

2161 2162

2125 23. In AF patients requiring OAC undergoing elective PCI/stenting, where bleeding risk is high (HAS-BLED 2126 2127 \geq 3), we suggest triple therapy for one month, followed by dual therapy with OAC plus single antiplatelet (preferably clopidogrel) for 6 months, following which OAC monotherapy can be used 2128 2129 (weak recommendation, low quality evidence)

ACCEPTED MANUSCRIPT

- 2131 24. In AF patients requiring OAC undergoing elective PCI/stenting , where bleeding risk is unusually high 2132 and thrombotic risk relatively low, we suggest use of OAC plus single antiplatelet (preferably 2133 clopidogrel) for 6 months, following which OAC monotherapy can be used (weak recommendation, 2134 low quality evidence)
- *Remark*: Patients at unusually high bleeding risk may include patients with HAS-BLED \geq 3 and recent 2136 2137 acute bleeding event. High thrombotic risk may include those with left main stent, multivessel 2138 PCI/stenting, etc.
- 25. In AF patients requiring OAC presenting with an ACS, undergoing PCI/stenting, where bleeding risk is 2141 2142 low (HAS-BLED 0-2) relative to risk for ACS or stent thrombosis, we suggest triple therapy for 6 months, followed by dual therapy with OAC plus single antiplatelet (preferably clopidogrel) until 12 2143 2144 months, following which OAC monotherapy can be used (weak recommendation, low quality 2145 evidence)
- 2147 26. In AF patients requiring OAC presenting with an ACS, undergoing PCI/stenting, where bleeding risk is 2148 high (HAS-BLED \geq 3), we suggest triple therapy for 1-3 months, followed by dual therapy with OAC plus single antiplatelet (preferably clopidogrel) up to 12 months, following which OAC monotherapy 2149
- can be used (weak recommendation, low quality evidence). 2150 2151
- 2152 27. In AF patients requiring OAC presenting with an ACS, undergoing PCI/stenting where bleeding risk is 2153 unusually high and thrombotic risk low, we suggest OAC plus single antiplatelet (preferably clopidogrel) for 6-9 months may be considered, following which OAC monotherapy can be used. 2154 2155 (weak recommendation, low quality evidence).
- 2156 *Remark*: Patients at unusually high bleeding risk may include patients with HAS-BLED \geq 3 and recent 2157 acute bleeding event. High thrombotic risk may include those with left main stent, multivessel 2158 PCI/stenting, etc.

- 2139 2140

2146

2135

2130

2167 29. In AF patients in which aspirin is concomitantly used with OAC, we suggest a dose of 75-100mg qd with concomitant use of PPI to minimize gastrointestinal bleeding (Weak recommendation, low 2168 2169 quality evidence) 2170 2171 30. In AF Patients in which a P2Y12 inhibitor is concomitantly used with OAC, we suggest the use of 2172 clopidogrel (Weak recommendation, low quality evidence) 2173 Remark: Newer agents (eg. Ticagrelor) can be considered where bleeding risk is low. Data on the 2174 combination of ticagrelor with either dabigatran 110mg bid or 150 bid (without concomitant aspirin 2175 use) are available from the RE-DUAL PCI trial. 2176 31. For patients with AF and stable coronary artery disease (eg, no acute coronary syndrome within the 2177 previous year) and who choose oral anticoagulation, we suggest OAC with either a NOAC or adjusted-2178 dose VKA therapy alone (target international normalized ratio [INR] range, 2.0-3.0) rather than the 2179 combination of OAC and aspirin (Weak recommendation, low quality evidence) 2180 2181 2182 2183 CATHETER OR SURGICAL ABLATION, ELECTROPHYSIOLOGICAL PROCEDURES 2184 2185 2186 Periprocedural anticoagulation for catheter ablation and implantable devices 2187 2188 Randomized trials have shown that uninterrupted warfarin is safe and superior to warfarin interruption for implantation of cardiac implantable electronic devices.⁷ 2189 2190 2191 For catheter ablation, anticoagulation guidelines pertinent to cardioversion generally apply to periprocedural anticoagulation and are detailed in a recent professional society expert consensus 2192 statement³⁰¹. In a randomized trial of 1584 patients, uninterrupted warfarin, compared to 2193 2194 interruption with heparin bridging, has been shown to have a lower risk of periprocedural stroke and bleeding³⁰². A randomized trial of uninterrupted rivaroxaban vs. uninterrupted VKA in AF ablation 2195 demonstrated similar event rates in both arms³⁰³. A similar randomized trial of uninterrupted 2196 dabigatran found that dabigatran was associated with fewer bleeding complications than 2197 uninterrupted warfarin³⁰⁴. Although these studies were open-label, they strongly support the use of 2198 uninterrupted anticoagulation for electrophysiology procedures (Table 9). Two recent systematic 2199 reviews with meta-analyses that include these studies found consistent with results^{305,306}. 2200 2201 2202 Long-term anticoagulation after restoration of sinus rhythm Clinical observations indicate that AF and stroke are often temporally discordant, with stroke 2203 occurring during periods of sinus rhythm in the majority of patients with paroxysmal AF^{307,308}. 2204 2205

2206	After catheter ablation,	discontinuation of OAC is as	ssociated with an increa	used risk of stroke ³⁰¹ .
2207	Similarly, post-operative	AF may confer a long-term	risk of stroke. In a U.S.	claims analysis of 1.7
2208	million patients hospital	ized for surgery, perioperat	ive atrial fibrillation wa	s associated with an
2209	increased long-term risk	of ischemic stroke, especia	Ily following non-cardia	c surgery ³⁰⁹ . It is not
2210	known to what extent th	ne risk was mediated by AF	recurrence (often asym	ptomatic) or was
2211	independent of rhythm.	Thus, patients should be a	nticoagulated according	g to their thromboembolic
2212	risk profile based on CH	A ₂ DS ₂ -VASc, regardless of w	hether sinus rhythm ha	s been restored via
2213	ablation, cardioversion,	or other means.	·	
2214	Recommendations			
2215	32. In patients with AF	in whom catheter ablation	of AF or implantation of	of cardiac electronic
2216	implantable devices	s is planned, we suggest pe	rforming the procedure	e on uninterrupted VKA in
2217	the INR therapeutic	range, dabigatran or rivard	oxaban (weak recomme	endation, low quality
2218	evidence).			
2219				
2220				
2220	22. In patients in whom	ı sinus rhythm has been res	torod we suggest that	long torm
2221	•	•	. , .	•
	•	uld be based on the patien		•
2223	-	er sinus rhythm has been r		-
2224	spontaneous), or ot	her means (Weak recomme	endation, low quality e	vidence).
2225				
2226				
2227	•	udies of Periprocedural Ant	-	ter Ablation of Atrial
2228	Fibrillation and Implant	ation of Cardiac Electronic	Implantable Devices:	
2229	Trial	Population	Interventions	Results
	iiial	Population	interventions	nesuits

Trial	Population	Interventions	Results
COMPARE ³⁰²	Catheter ablation of AF N=1584	Uninterrupted warfarin vs. interrupted warfarin with low-molecular weight bridging	Significant reduction in stroke (0.25% vs 3.7%), TIA (0% vs. 1.3%), and minor bleeding with uninterrupted warfarin
VENTURE-AF ³⁰³	Catheter ablation of AF N = 248	Uninterrupted rivaroxaban vs. uninterrupted VKA	No difference in overall low incidence of major bleeding (0.4%) or thromboembolic events (0.8%)
RE-CIRCUIT ³⁰⁴ .	Catheter ablation of AF N = 704	Uninterrupted dabigatran vs. uninterrupted warfarin	Significant reduction in major bleeding events with dabigatran (1.6% vs. 6.9%)
BRUISE-CONTROL ³¹⁰	Pacemaker or defibrillator	Uninterrupted warfarin vs.	Significant reduction in pocket hematoma

	ACCEPTED) MANUSCRIPT	
	implantation N = 343	interrupted warfarin with heparin bridging	(3.5% vs. 16%)
30			

<image><image><image>

- 2231 2232 CEREBROVASCULAR DISEASE 2233 2234 AF patients presenting with an acute ischemic stroke or TIA 2235 2236 In AF-associated acute ischemic stroke, the risk of early recurrence is high: for example, the 2237 International Stroke Trial reported a 4.8% risk of recurrent stroke in those with AF within the first 2 days³¹¹, while other studies suggest a recurrence risk of between 0.4% and 1.3% per day in the first 2238 7-14 days ³¹¹⁻³¹⁵. AF-related ischemic strokes are more often disabling or fatal than other types, with 2239 longer hospital stays and higher costs³¹⁶, so preventing early recurrence is a key clinical challenge. 2240 2241 The safety and benefit of OAC in acute stroke have not been established. Early anticoagulation (i.e. 2242 in the first few days) might increase the risk of symptomatic intracranial hemorrhage, including 2243 hemorrhagic transformation of the infarct (estimated at $\sim 1\%$ per day³¹⁷), leading to clinical 2244 uncertainty about when to start anticoagulation. Recent studies reported an 8-10% risk of recurrent 2245 2246 ischemic stroke and a 2-4% risk of symptomatic intracranial hemorrhage within 90 days of AF-related ischemic stroke^{318,319}. 2247 2248 2249 Current uncertainty regarding optimal timing of anticoagulation 2250 Current guidelines do not provide clear recommendations on the timing of OAC after acute AFrelated stroke. US guidelines suggest that commencing OAC within 14 days is reasonable ³²⁰ while 2251 recent European Society of Cardiology guidelines recommend starting anticoagulation - according to 2252 infarct size – at 1, 3, 6, or 12 days³²¹ based only on expert consensus. Current UK guidelines 2253 2254 recommend delaying anticoagulation for 14 days for "disabling" stroke (Intercollegiate Stroke 2255 Working Party. National Clinical Guideline for Stroke 2016. (https://www.strokeaudit.org). 2256 2257 A recent observational study (n=1029) suggested that anticoagulation at 4-14 days after cardioembolic stroke had the best outcome, but did not have statistical power to determine benefit 2258 of earlier anticoagulation ³²². Increasing cerebral infarct size is associated with increased risk of both 2259 symptomatic hemorrhagic transformation and early recurrent ischemia ³¹⁷ 2260 2261 2262 A systematic review and meta-analysis of 7 randomized trials of unfractionated heparin (UFH), low-2263 molecular-weight heparin (LMWH) or heparinoids (n=4624) started <48 hours, vs. aspirin or placebo, 2264 found that early anticoagulation was associated with non-significantly reduced recurrent ischemic stroke, but with increased intracranial bleeding, and no reduction in death or disability (e-Table 2265 2266 19).³¹⁴ In contrast, other small studies suggested fewer ischemic strokes without an increase in 2267 intracranial bleeding, as well as reduced mortality and disability with early initiation of vitamin K antagonists (to achieve therapeutic levels by day 7)^{319,323-325}. Observational data suggest that the use 2268 of low molecular weight heparin (as a "bridging" strategy) together with oral anticoagulation is 2269 associated with a higher risk of symptomatic hemorrhage.^{318,326-328} 2270 2271 Observational studies suggest early (<14 days) anticoagulation with NOACs might be safe ³¹⁸ ^{319,322} 2272
 - ³²⁹. One study reported improved outcomes and no early ICH with NOAC started at a median of 4

days post-stroke (n=1192)^{330,331}. The Pre-TIMING observational study of 249 patients with AFassociated acute ischemic stroke treated with OAC (<5 days) reported in-hospital recurrent ischemic stroke in 4.4%, and symptomatic ICH in 3.1% ³³². There are no large trials of NOACs including patients within 7-14 days of a stroke, but one small study (Triple AXEL) randomized 195 patients with AF-related acute ischemic stroke to rivaroxaban or warfarin <5 days and found similar rates of symptomatic/asymptomatic MRI-defined recurrent ischemia (~30%) or intracranial bleeding (~30%) at 4 weeks, with reduced hospital stay for rivaroxaban³³³.

2281 Recommendations

- 34. In AF patients with acute ischaemic stroke, we suggest that very early anticoagulation (<48h)
 using heparinoids or VKA should not be used (ungraded consensus-based statement).
 Remark: Heparinoids should not be used as bridging therapy in the acute phase of ischaemic
 stroke because they appear to increase the risk of symptomatic intracranial haemorrhage
 without net benefit. The optimal timing of anticoagulation after acute ischaemic stroke is
 unknown.
- 2288

35. In AF patients with acute stroke without contraindications, we recommend that long term oral anticoagulation is indicated as secondary prevention (Strong recommendation, high quality evidence).

- *Remark*: The optimal timing of anticoagulation early after acute ischaemic stroke is unknown.
 Early use of NOACs shows promise but requires testing in randomised controlled trials.
- 2294

36. In AF patients with acute ischaemic stroke, We suggest that oral anticoagulation should
 usually be started within 2 weeks of acute ischaemic stroke, but the optimal timing within this
 period is not known (ungraded consensus-based statement).

- *Remark*: Although infarct size is clinically used to guide timing of anticoagulation, it is predictive
 of a higher risk of early recurrent ischaemia, haemorrhagic transformation of the infarct, and
 poor outcome, so might not be helpful in determining the net benefit of early treatment.
 Remark: Anticoagulation with NOACs soon after stroke (earlier than 1 week) has not been tested
 in randomised trials, but shows promise in observational studies.
- 2303

2304 AF patients with intracerebral hemorrhage (ICH)

2305

Spontaneous (non-traumatic) intracerebral hemorrhage (ICH) causes about 1 in 10 strokes, and is caused by the rupture of a cerebral artery or arteriole, most often a small vessel affected by either hypertensive arteriopathy or cerebral amyloid angiopathy. ICH is the most feared, often lethal, complication of antithrombotic (anticoagulant and antiplatelet) therapy. Recent data indicate that about 50% of people with ICH are taking an antithrombotic agent at the time of ICH.³³⁴ In a recent hospital ICH cohort study, 25% of patients had AF³³⁵

- 2312
- 2313 Risk of ischemic stroke

2314 Survivors of ICH with AF are at risk of further brain ischemia but also recurrent ICH. The use of 2315 antithrombotic therapy (antiplatelet agents and anticoagulants) following ICH thus presents a major

2316 clinical dilemma. The risk of ischemic stroke with and without antithrombotic treatment must be

weighed carefully against the possible increase in ICH risk associated with antithrombotic therapy.
 The risk of ischemic stroke in people with AF is typically estimated using instruments such as the
 CHA₂DS₂VASC score and it seems reasonable to use this score in populations of ICH survivors³³⁶.

2320

2321 Risk of recurrent ICH

The future risk of ICH is highly variable; the annual recurrence risk was between 1.8% and 7.4% in 2322 one recent systematic review of observational studies³³⁷. Computed tomography is a highly sensitive 2323 test for ICH and can classify the location as "lobar" (originating in the lobes of the brain) or "deep" 2324 (originating in the basal ganglia or brainstem).³³⁸ The risk of recurrence has been reported to be 2325 higher for lobar ICH than after deep ICH,³³⁷ a finding which is probably related to different 2326 2327 underlying small vessel diseases that cause ICH in the different locations. Although CT can define ICH 2328 location, it cannot reliably identify the underlying type of causal small vessel disease. Magnetic 2329 resonance imaging (MRI) can identify biomarkers of small vessel disease including cerebral 2330 microbleeds (CMBs), whose distribution can be used to diagnose cerebral amyloid angiopathy (CAA) with high specificity in ICH cohorts³³⁹. In a recent pooled analysis of observational studies, patients 2331 with ICH classified using CMBs as due to CAA had a ~7% annual recurrence risk, compared with ~1% 2332 for those not fulfilling criteria for CAA³⁴⁰. 2333

2334

Since oral anticoagulants increase the risk of ICH, some experts have recommended avoiding them in patients with ICH attributed to CAA. In survivors of ischemic stroke and TIA, CMBs are also associated with increased risk of ischemic stroke, although as the number of CMBs increases, the risk of future ICH increases more steeply than that of ischemic stroke.³⁴¹ In ICH survivors the number of CMBs is also associated with the risk of recurrent ICH.³⁴²

2340

2341 Balancing the risks of ischemic stroke and recurrent ICH

2342 A decision analysis which modelled warfarin for AF in an ICH survivor suggested that in lobar ICH 2343 avoiding warfarin increased quality-adjusted life (QOL) years by 1.9, compared with 0.3 for deep ICH; the authors concluded that anticoagulation for AF should not be offered to patients with lobar ICH 2344 and only to survivors of deep ICH if the risk of ischemic events was high (>7% per year)³⁴³. However, 2345 CMBs were not considered in this analysis. In contrast, recent "real-world" observational 2346 2347 studies(including some very large registry datasets) from ICH survivors with AF suggest that 2348 anticoagulation might reduce mortality and ischemic complications, without an unacceptable 2349 increase in ICH.

2350

A recent systematic review and meta-analysis of observational studies suggested that restarting 2351 2352 anticoagulation was associated with a significantly lower risk of thromboembolic complications 2353 (pooled RR 0.34; 95% CI 0.25-0.45; Q=5.12, P for heterogeneity=0.28) with no increased risk of recurrent ICH (pooled RR 1.01; 95% CI 0.58–1.77; Q=24.68, P for heterogeneity <0.001).³⁴⁴ However, 2354 none of the real world studies stratified ICH by location, nor by CMB burden or distribution. Two 2355 2356 small randomized studies of early anticoagulation after ICH were not able to confirm benefit or harm.^{345,346} There are no reliable randomized trial data to guide the timing of anticoagulation after 2357 ICH. In acute ICH, hematoma expansion is common, and is aggravated by anticoagulation. 2358 2359 Anticoagulants should therefore be reversed and avoided in acute ICH (<24-48 hours).

2360

- 2361 A survival model based on observational data indicated that the total stroke risk (both ischemic and ICH) was lowest when anticoagulation was restarted after about 10 weeks, and a delay of at least 4 2362 weeks after ICH was suggested.³⁴⁷ There are no large scale randomized controlled trials to answer 2363 2364 the question of whether long-term anticoagulation has net benefit in ICH survivors with AF. NOACs have a ~50% lower ICH risk than VKA¹²⁷, and are therefore preferred in most ICH survivors, except 2365 where warfarin is indicated (e.g. in those with metallic mechanical heart valves). Observational data 2366 2367 suggest that ICH occurring on OAC are of similar size and with similar clinical outcome in patients taking VKA or NOACs.³⁴⁸ 2368
- 2369

There are two ongoing randomized trials of antithrombotic use after ICH: APACHE-AF (http://apache-af.nl –aspirin vs. apixaban vs. no antithrombotics for the treatment of AF in patients after ICH) and RESTART (www.restarttrial.org –antiplatlets vs, no antiplatelets in patients with ICH with an indication for antiplatelets).

2374

2375 Left atrial appendage occlusion in ICH survivors

Randomized trials indicate that left atrial appendage occlusion (LAAO) has similar efficacy to oral 2376 2377 anticoagulation in patients with AF; thus, in ICH survivors with AF and high ischemic stroke risk, LAAO is a potentially attractive option to reduce ischemic stroke and systemic embolism from AF 2378 2379 without the need to expose patients to a long-term risk of oral anticoagulation.³⁴⁹ Observational data from 1025 patients suggest that LAAO might be safe and effective in patients with a contra-2380 2381 indication to long term oral anticoagulation, but only a minority of patients (15%) in this study had suffered ICH.³⁵⁰ Small studies of ICH survivors suggest that LAAO, using antiplatelet treatment as 2382 periprocedural antithrombotic treatment, is safe and effective in this population, including those 2383 with CAA ^{351,352} Randomized trials of LAAO, ideally In comparison to NOACs, are needed to 2384 definitively determine the safety and efficacy of each approach in ICH survivors. 2385

2386 **Recommendations**

37. In patients with AF and high ischaemic stroke risk, we suggest anticoagulation with a NOAC after acute spontaneous ICH (which includes subdural, subarachnoid and intracerebral haemorrhages) after careful consideration of the risks and benefits (ungraded consensus based statement).

- *Remark*: The balance of net benefit from long term oral anticoagulation might be more
 favourable in those with deep ICH or without neuroimaging evidence of cerebral amyloid
 angiopathy.
- *Remark*: In ICH survivors with AF, clinicians should aim to estimate the risk of recurrent ICH
 (using ICH location and, where available, MRI biomarkers including cerebral microbleeds) and
 the risk of ischaemic stroke
- *Remark*: The optimal timing of anticoagulation after ICH is not known, but should be delayed
 beyond the acute phase (~48 hours) and probably for at least ~4 weeks. Randomised trials of
 NOACs and left atrial appendage occlusion are ongoing.

2400

38. In ICH survivors at high risk of recurrent ICH (e.g. those with probable cerebral amyloid angiopathy), we suggest left atrial appendage occlusion (ungraded consensus-based statement).

- 2404 *Remark*: Cerebral amyloid angiopathy should be diagnosed using validated clinico-radiological2405 criteria.
- 2406

2407 AF patients with carotid disease

2408

Carotid stenosis is present in about 8% of people over the age of 60.³⁵³ A recent multicenter
 retrospective study found >50% carotid stenosis in 18.3% of patients with AF, which was associated
 with a doubling of stroke risk.³⁵⁴ Thus in patients with both carotid stenosis and AF there are
 indications for both anticoagulation and antiplatelet therapy, yet this combination, at least in the

- long term, is associated with high bleeding risk and is thus generally not recommended.
- 2414

2415 Randomized trials show superiority for carotid endarterectomy over stenting in patients with

- symptomatic stenosis (>50%) of the internal carotid artery.³⁵⁵ This could reduce the need for
- 2417 combination therapy with OAC and antiplatelet drugs in those with AF. Current practice is to treat all
- 2418 potential stroke risk factors including AF and carotid stenosis. Those who have had successful carotid
- 2419 revascularization are typically managed with OAC alone. In patients with carotid stenosis not treated
- by revascularization (including those with asymptomatic disease) as well as AF, the optimal
- 2421 management is not known and requires further randomized data; meanwhile, decisions need to be
- 2422 tailored to the individual patient.

2423 Recommendations

- 39. In patients with AF and symptomatic carotid stenosis (>50%), we suggest carotid
 revascularisation with endarterectomy or stenting in addition to OAC as indicated (Weak
- 2426 recommendation, moderate quality evidence).
- 2427
- 40. In patients with AF and carotid stenosis treated with revascularisation, we suggest OAC
 therapy, without long-term antiplatelet therapy (ungraded consensus-based statement).
- *Remark*: There is limited evidence to guide the optimal treatment of patients with AF and carotid
 stenosis not requiring revascularisation. Remark: Short-term concomitant antiplatelet therapy
 (dual or mono) is generally used in the immediate post-revascularisation period (e.g. 1-3
 months)
- 2434

2435 Patients presenting with Embolic Stroke of Undetermined Source (ESUS)

- 2436
- In North America and Europe, about 1 in 4 ischemic strokes remain of uncertain etiology (i.e. not
 attributable to definite cardiac embolism, large artery atherosclerosis, or small artery disease),
 despite adequate investigation, and are termed "cryptogenic".^{320,356}
- 2440

Because most cryptogenic strokes are embolic, a more recent concept of embolic stroke of undetermined source (ESUS) has been developed, defined as ischemic stroke detected by CT or MRI that, after a standardized and adequate diagnostic pathway including brain imaging, echocardiography, cardiac rhythm monitoring for at least 24 hours, and imaging of the intracranial and extracranial arteries supplying the affected brain area: is not lacunar (subcortical, less than 15mm diameter); where there is absence of extracranial or intracranial atherosclerosis causing ≥50%

- luminal stenosis in the arteries supplying the area of ischemia; no major-risk cardioembolic source of
 embolism (permanent or paroxysmal atrial fibrillation, sustained atrial flutter, intra-cardiac
 thrombus, prosthetic cardiac valve, atrial myxoma or other cardiac tumours, mitral stenosis, recent
 (<4 weeks) myocardial infarction, left ventricular ejection fraction less than 30%, valvular
 vegetations, or infective endocarditis); and no other specific cause of stroke identified (e.g. arteritis,
 dissection, migraine/vasospasm, drug misuse)³⁵⁷.
- Thus, ESUS is a sub-category of cryptogenic stroke, accounting for about 1 in 6 ischemic strokes.³⁵⁸ A careful and systematic diagnostic work up in patients with ESUS is needed as there might be important management differences between underlying embolic sources if detected, such as aortic arch atheroma, patent foramen ovale, and paroxysmal AF. This brief section only refers to the latter.
- 2458
- As a general principle, AF can be detected in a high proportion of ESUS patients, if we 'look harder, look longer and look with more sophisticated monitoring' (Table 10). Screening consecutive patients with ischemic stroke with routine Holter or event loop recorder monitoring will identify new AF/atrial flutter in approximately 1 in 20 patients³⁵⁹.
- 2463
- 2464 Two randomized controlled trials clearly showed that prolonged cardiac monitoring increases the 2465 detection of occult AF in patients with TIA or acute ischemic stroke presenting in sinus rhythm. In 2466 CRYSTAL AF, 441 patients randomly assigned to prolonged ambulatory cardiac monitoring with a 2467 subcutaneous implantable loop recorder or to a control group with conventional follow-up, detected more AF in the monitored group (8.9% vs. 1.4% in the control group; HR 6.4, 95% CI 1.9-21.7); ³⁶⁰ 2468 2469 while in EMBRACE, 572 patients randomly assigned to additional ambulatory monitoring with a 30-2470 day external loop recorder (intervention group) or a 24-hour Holter monitor (control group) found 2471 more AF in the intervention group (16.1% vs. 3.2% in the control group; absolute difference, 12.9% 95% CI 8.0-17.6).³⁶¹ 2472
- 2473

In a systematic review and meta-analysis, Sposato et al³⁶² described a much higher rate of AF
 detection after multi-phase sequential cardiac monitoring, at 23.7% (Table 10). Despite this, one
 recent analysis only found that 2.6% and 9.7% of stroke patients had ambulatory ECG monitoring in
 the 7 days and 12 months post-stroke leading to underdiagnosis.³⁶³

2478 2479

2482

Table 10: Phases of screening for AF in cryptogenic stroke patients, methods and incidence of AF
 diagnosed ³⁶²

4 sequential phases of screening	Cardiac monitoring methods	% (95% CI) diagnosed with
Phase 1 (emergency room)-	admission electrocardiogram (ECG)	7.7% (5.0–10.8)
Phase 2 (in hospital)	serial ECG, continuous inpatient ECG monitoring,	5.1%
	continuous inpatient cardiac telemetry, and in- hospital Holter monitoring	(3·8–6·5)
Phase 3 (first ambulatory period)	ambulatory Holter;	10.7%
		(5·6–17·2)
Phase 4 (second ambulatory	mobile cardiac outpatient telemetry, external loop	16.9%
period)	recording, and implantable loop recording	(13.0–21.2)

2483 2484

Unsurprisingly, AF is more likely to be detected in elderly patients with more prolonged monitoring, 2485 especially if there is evidence of prior embolic cortical or cerebellar infarction^{364,365}. 2486 In a retrospective analysis, newly detected atrial tachycardia (AT) or AF (NDAF; AT/AF >5 minutes on any 2487 2488 day) was identified in 30% patients with implantable cardiac rhythm devices and ≥ 1 stroke risk factors during a follow-up of 1.1 years³⁶⁶. The presence of AT/AF >6 hours on \geq 1 day increased 2489 2490 significantly with increased CHADS₂ scores. Similarly, the ASSERT-II study reported that subclinical 2491 AF lasting ≥5 minutes was present in 34.4% per year, in a prospective cohort of elderly patients with 2492 risk factors but no prior stroke³⁶⁷.

2493

2494 Of note, data from the Athens Stroke Registry show that the CHADS₂ and CHA₂DS₂-VASc scores are 2495 independently associated with the risk of ischemic stroke/TIA recurrence and death in ESUS patients, 2496 with the risk of stroke recurrence and death in patients with a CHA_2DS_2 -VASc score ≥ 2 being 2497 approximately 3-fold and 15-fold higher compared with that in patients with a score of 0, respectively³⁶⁸. If ESUS is phenotypically different from AF-associated stroke, we should see 2498 differences in stroke severity and outcomes; however, no difference in NIHSS score was evident in 2499 ESUS where AF was detected on follow-up, compared to where no AF was evident³⁶⁹. Nevertheless, 2500 it remains possible that within ESUS there is a spectrum of underlying proximal embolic sources, 2501 2502 suggested by the strong effect of age on recurrence risk and mortality³⁷⁰.

Current guidelines recommend use of antiplatelet agents including aspirin in ESUS patients³²⁰ unless AF is detected (often requiring prolonged work up, as above), when such patients would be managed with oral anticoagulation. The available data (mainly from retrospective observational studies) suggest a sizeable rate of stroke recurrence (more than 4% per year) despite the frequent use of antiplatelet agents in clinical practice.³⁵⁸ Thus, there is an important clinical need for more effective antithrombotic therapy for ESUS. Since a large proportion of ESUS are likely to be due to undetected AF, oral anticoagulation is a theoretically attractive option.

2511

2503

2512 Ongoing randomized trials comparing NOACs to aspirin in ESUS patients are in progress. Prior to data 2513 from these trials, physicians might, in the meantime, consider the use of anticoagulation in parallel 2514 with continued cardiac evaluation (e.g. prolonged rhythm monitoring) after discussion and 2515 consideration of patient preference.

2516

2517 ATRIAL HIGH-RATE EPISODES DETECTED BY CARDIAC IMPLANTED

2518 ELECTRONIC DEVICES

2519 Cardiac implanted electrical devices (CIEDs) with an atrial lead or with capability of rhythm

2520 discrimination (i.e. implantable cardiac monitors) allow continuous monitoring of the cardiac rhythm

and appropriate detection of atrial tachyarrhythmias, including AF, as atrial high-rate episodes

2522 (AHREs) as well as storing arrhythmia electrograms in the device's memory for review and specific

- 2523 diagnosis. AHREs, currently defined as episodes of at least 5 min of atrial tachyarrhythmias/AF with
- an atrial rate >180 bpm, are usually asymptomatic, discovered during routine device follow-up and

- classified in terms of duration of the single episode or time spent in atrial tachyarrhythmias during a
 day (from minutes to hours) ³⁷¹⁻³⁷⁷.
- 2527

2528 Although temporal cut-offs for detection and storage of AHRE data as short as 30-60 seconds have 2529 been used, the diagnostic accuracy is reliable when episodes ≥ 5 minutes in duration are considered, 2530 since, using this cut-off, the appropriateness in AF detection is 95%, minimizing the risk of over-2531 sensing due to detection of artefacts caused by myopotentials or other sources of electrical interference ^{378,379}. Individual patient analysis of electrograms corresponding to AHREs is clinically 2532 indicated to exclude artifacts or other causes of inappropriate detection of atrial tachyarrhythmias 2533 2534 or AF. Electrograms of AHREs correspond to intracardiac electrograms recorded from right atrial 2535 appendage or right atrium so a diagnosis of tachyarrhythmias can be easily made through analysis of tracings recorded in the device's memory ¹⁵⁹. After detection of AHREs by CIEDs, conventional 2536 2537 Holter or other ECG long-term recordings (i.e., patient operated devices) can be considered in specific cases (e.g. unavailable electrograms or unclear diagnosis at device electrograms analysis). 2538 2539

The possibility of continuous monitoring of AF through implanted devices has led to new terms, such as "AF burden", defined as the overall time spent in AF during a specified period of time ^{372,380 381 382}), and "subclinical AF", corresponding to episodes of atrial tachyarrhythmias with duration between 5 min and 24 h, detected by a CIED in patients without clinical history or clinical symptoms of AF ^{371,375,376,383,384}.

2545

2546 The prevalence of AHRE, often reported as AF burden, among patients implanted with CIEDs varies, 2547 depending on underlying heart disease, periods of observation, and above all previous history of 2548 clinically overt atrial tachyarrhythmias, including AF. In the ASSERT study, subclinical atrial 2549 tachyarrhythmias with at least 6 min duration were detected within 3 months in around 10% of patients implanted with a CIED ³⁷⁵. During a follow-up period of 2.5 years, additional subclinical atrial 2550 2551 tachyarrhythmias occurred in approximately 25% of patients, and around 16% of those who had subclinical atrial tachyarrhythmias developed symptomatic AF³⁷⁵. Considering these findings, as well 2552 as data from the literature reported in e-Table 20, there is evidence that AHREs with a duration >5-6 2553 2554 min are common in patients implanted with CIEDs. 2555

2556 In patients implanted with CIEDs for conventional indications, AHREs, with a short duration, ranging 2557 from three atrial premature complexes to 15–20 s, are currently considered of no specific clinical significance since this type of AHRE was found not to be significantly associated with episodes of 2558 longer duration, or with an increased risk of stroke or systemic thromboembolism ³⁸⁵ . For this 2559 reason most of the interest is patient with CIEDs is focused on AHRE with a duration \geq 5–6 min, a 2560 finding associated with a substantial risk of subsequently presenting clinical AF (HR 5.5–6.0), 2561 initially reported by the ancillary MOST analysis ³⁸⁶ and then by the ASSERT study ³⁷⁵, where a CIED-2562 detected AHREs >6 min were followed by clinical AF detected by a surface ECG in approximately 2563 16% of patients at 2.5 years of follow-up (e-Table 21). 2564 2565

The association between CIED-detected atrial tachyarrhythmias of variable durations and stroke or
systemic thromboembolism has been evaluated by several studies that overall collected data on
>22,000 patients, taking into account the maximum duration of AHRE episode, or the maximum daily
AF burden (that is, the maximum time spent in adjudicated AF in one day of the follow-up

period)^{375,385-393}. The studies show that AHRE burden with a duration \geq 5–6 min are significantly 2570 2571 associated with an increase in the risk of stroke or systemic thromboembolism (HR 2-9). In a reanalysis of the ASSERT study ³⁹⁴, the increase in the risk of stroke occurred only when the longest 2572 2573 duration of the various episodes of detected AHREs was >24 h. The largest dataset of patients with CIED-detected AHREs was analysed in the SOS AF project, with a pooling of three prospective studies 2574 (PANORAMA, Italian Clinical Services Project, and TRENDS) resulting in 10,016 patients ³⁹¹. During a 2575 median follow-up of 24 months, 43% of an unselected cohort of patients with implanted devices 2576 2577 experienced ≥ 1 day with ≥ 5 min of AHRE burden and a 1-h threshold of AHRE burden was associated 2578 with a hazard ratio for ischemic stroke of 2.11 (95% Cl 1.22–3.64, P = 0.008), although the absolute 2579 risk of ischemic stroke in patients with AHREs was low (0.39% annual rate in the whole cohort). Similarly, the TRENDS study ³⁸⁹ found that an AHRE burden of 5.5 h in a day, in a 30-day period, was 2580 associated with a two-fold increase in the adjusted risk of stroke (absolute risk of thromboembolism 2581 around 1.8% per year)³⁸⁹. Integration of AHRE presence, duration, or burden (\geq 5 min or \geq 24 h) into 2582 risk scores for thromboembolism may modestly improve c-statistics of both the CHADS₂ and 2583 CHA₂DS₂-VASc scores for predicting stroke ³⁹⁵. 2584

2585

2586 The clinical significance of AHRE is presumably different from that of clinically identified AF since the latter, detected using conventional surface ECG methods corresponds to a much higher AF burden as 2587 compared to patients with AHRE detected by continuous monitoring via a CIED ^{374,376}. The actual 2588 rates of stroke or systemic embolic events reported in studies evaluating CIED-detected AHREs are 2589 2590 often lower than what would be predicted by CHADS₂ and CHA₂DS₂-VASc scores and this may be 2591 related to concurrent treatment with oral anticoagulants in each study, risk of under-reporting and 2592 confounding. Also, the temporal relationship between ischemic stroke and AF is less strict than 2593 expected, since stroke may occur without the concurrent presence of atrial tachyarrhythmias or AF 2594 at the time of stroke or in the days before. These findings suggest that the relationship between AF and stroke can be complex, with AF involved but not always in a causative role (mediated by a left 2595 atrial thrombus), but also simply representing a marker of increased vascular risk^{372,376}. 2596

2597

Two randomized controlled trials are ongoing evaluating the efficacy and risk-benefit ratio of oral
 anticoagulation to no oral anticoagulation (aspirin only) in patients with CIED-detected AHRE
 (ARTESiA (NCT01938248)³⁹⁶ and NOAH – AFNET 6 (NCT02618577).³⁹⁷

2601

In the absence of the results of these on-going trials, management of patients with CIEDs-detected
AHREs requires cardiological clinical evaluation, clinical decision making and follow up (Figure 7).
Oral anticoagulants could be considered as a result of an individualized clinical assessment taking
into account overall AHRE burden (in the range of multiple hours rather than few minutes) and
specifically presence of AHRE > 24 hours, individual stroke risk (CHA₂DS₂-VASc), predicted risk benefit
of oral anticoagulation (specifically risk of major bleeding) and informed patient preferences.

2608 Recommendations

41. For patients that present with a clinically documented episode of AF (12-lead ECG or other
 means, eg. external devices with validated rhythm detection), we suggest that the presence or
 absence of symptoms must not influence the process of decision making with regard to the
 need for anticoagulation based on risk stratification (ungraded consensus-based statement).

- 42. In cases of AHRE (atrial high rate episodes) detected by a CIED of at least 5 min duration, we
 suggest that direct analysis of electrograms corresponding to AHRE is clinically indicated to
 exclude artifacts or other causes of inappropriate detection of atrial tachyarrhythmias or AF
 (ungraded consensus-based statement).
- *Remark*: In patients with CIED detected AHRE a complete cardiological evaluation is indicated,
 with 12-lead ECG, general assessment of clinical conditions and clinical risk stratification for
 stroke using CHA₂DS₂VASc score.
- *Remark*: There is no evidence in support or against prescription of oral anticoagulants in patients
 at risk of stroke (intermediate to high risk according to CHA₂DS₂VASc) who present with AHREs,
 corresponding to atrial tachyarrhythmias/AF at electrograms assessment of less than 24 hours
 duration.
- 2625

2613

- 43. In patients with AF, we suggest that prescription of oral anticoagulants could be considered as
 a result of an individualized clinical assessment taking into account overall AHRE burden (in
 the range of hours rather than minutes) and specifically, the presence of AHRE > 24 hours,
 individual stroke risk (using CHA₂DS₂VASc), predicted risk benefit of oral anticoagulation and
 informed patient preferences (ungraded consensus-based statement).
- 2631*Remark*: In patients with CIED detected AHRE continued patient follow-up is recommended,2632preferentially combining clinical follow up with remote monitoring of the CIED or else more2633frequent device interrogation than standard for CIED follow-up, to detect the development of2634clinical AF (symptomatic or asymptomatic), to monitor the evolution of AHRE or AF burden and
- specifically the transition to AHRE lasting more than 24 hours, onset or worsening of heart
 failure, or any clinical change that might suggest a change in clinical profile or clinical conditions.
- 2637

2638 **ATRIAL FLUTTER**

- 2639 The risk of thromboembolism and stroke in patients with atrial flutter has been evaluated in 2640 relatively few studies compared to AF. However, patients with atrial flutter frequently present phases of AF alternated with phases of classical flutter or regular atrial rhythm ³⁹⁸⁻⁴⁰⁰. A systematic 2641 2642 review on the thromboembolic risk associated with atrial flutter, including 52 articles, found that 2643 thromboembolic event rates after cardioversion, varied from 0% to 6% with a follow-up from 1 week to 6 years.^{235,273,275,276,401-411} Echocardiographic studies reported prevalence of intra-atrial 2644 thrombi from 0% to 38% and a prevalence of spontaneous echo contrast up to 28%. ^{398,399,409,412-421} 2645 2646 One ablation study in non-anticoagulated patients with atrial flutter reported thromboembolic events in 13.9% of cases. ⁴²² The differences in patient selection, type of study and, importantly, use 2647 2648 of oral anticoagulation explain the heterogeneity of reported data with regard to echo findings and 2649 thromboembolic complications. Observational studies demonstrated an increased risk of stroke (risk ratio 1.4, 95% CI 1.35 to 1.46) and death (HR 1.9, 95% CI 1.2 to 3.1)⁴⁰¹ compared to controls at long-2650 2651 term follow-up.
- 2652
- A report from the Danish nationwide registry on patients undergoing an atrial flutter ablation or an
 AF ablation procedure between 2000–2013, found that the rate of thromboembolic events for atrial
- 2655 flutter patients was 0.46 per 100 persons-years, not significantly different from that of patients

- presenting with AF (HR adjusted for several variables including anticoagulation = 1.22 [0.62–
 2.41]).⁴⁰¹
- 2658

2659 The role of anticoagulant therapy for patients with atrial flutter has not been evaluated in large

2660 randomized clinical trials, but because these patients often have concomitant AF or are at increased

- risk of developing AF, it is reasonable to base decisions regarding antithrombotic therapy on the
- 2662 same risk stratification schemes and scores used for AF. ⁴²³

2663 **Recommendation.**

- 266444. For patients with atrial flutter, we suggest that antithrombotic therapy decisions follow the2665same risk-based recommendations as for AF. (ungraded consensus-based statement).
- 2666

PREGNANCY

Atrial fibrillation (AF) and atrial flutter are very rare during pregnancy, unless when there is an underlying structural heart disease or hyperthyroidism. ⁴²⁴ Lone AF is uncommon in pregnancy and is associated with older age and late pregnancy. ⁴²⁵ In countries where the prevalence of rheumatic heart disease is still high or among immigrants from these areas to Western countries the prevalence of AF in pregnancy may be commonly related to rheumatic heart disease. ⁴²⁵ Peri-partum cardiomyopathy AF is common, with a prevalence that may reach 10%, and may severely impair hemodynamic status. ⁴²⁶

2675

In a registry of >250, 000 pregnancies in Southern California ⁴²⁷ AF was evident in 0.6 per 1000,
 more frequently in white women (1,1 per 1000 pregnancies), and was associated with more
 advanced age, higher BMI, hypertension, hyperlipidemia, and diabetes. Decision-making on
 antithrombotic therapy during pregnancy has been reviewed in detail in the 9th Edition of the
 Antithrombotic Therapy and Prevention Guidelines; here we provide an update with
 recommendations focused on AF.⁴²⁸

2682

2687

The use of anticoagulant therapy during pregnancy is challenging because of the potential for both
 fetal and maternal complications. Pregnancy-induced changes in hemostasis lead to a state of
 hypercoagulability, so in a women with AF at risk of stroke/thromboembolism in the non-pregnant
 state, pregnancy will increase this risk 3- to 4- fold.^{428,429}

2688 Vitamin K antagonists cross the placenta and have the potential to cause fetal wastage, bleeding in 2689 the fetus, and teratogenicity. The most common fetal anomaly developing as a consequence of fetal exposure to warfarin consists of midfacial hypoplasia and stippled epiphyses and typically occurs 2690 after in utero exposure to vitamin K antagonists during the first trimester of pregnancy ⁴²⁸. Vitamin K 2691 antagonists have also been associated with central nervous system abnormalities after exposure 2692 during any trimester, but these complications are uncommon.⁴²⁸ There is general consensus that in 2693 order to minimize the risk of warfarin embryopathy it is reasonable to avoid warfarin between 2694 2695 weeks 6 and 12 of gestation because of the high risk of fetal defects, especially if the dose of warfarin is higher than 5 mg per day. 424 2696 2697

- LMWH does not cross the placenta and there is no evidence that LMWH causes teratogenicity or
 increases fetal bleeding. Because of accelerated clearance, LMWH has a shorter half-life and lower
 peak plasma concentration during pregnancy thus potentially requiring higher doses. For this reason,
 use of LMWH (such as between weeks 6 and 12) has to be managed with dose adjustment according
 to weight and target anti-Xa level (4–6 hours post-dose 0.8–1.2 U/mL).
- 2703

2704 Unfractionated heparin (UFH) does not cross the placenta and therefore can be safely used in 2705 pregnancy. However, it carries some risk of heparin-induced thrombocytopenia and osteopenia, which may lead to symptomatic vertebral fracture in approximately 2% of women ⁴²⁸. Moreover, the 2706 2707 pharmacokinetic changes of pregnancy result in a shorter half-life and lower peak plasma 2708 concentration of heparin compounds, with the need to titrate doses in order to keep the mid-2709 interval aPTT (6 hours post dose ≥ twice control values. Since both the risk of heparin-induced 2710 thrombocytopenia and the risk of osteoporosis are lower with LMWH than with UFH, the former is 2711 preferred as subcutaneous treatment during pregnancy.

2712

Pregnant women were excluded from participating in clinical trials evaluating NOACs. Given the
rather low molecular weight of NOACs and data on placental transfer in rats, all NOACs are
expected to cross the placenta. ⁴³⁰ Hence, use of NOACs in pregnancy should be avoided. Limited
data are available on the consequences of exposure to NOACs but women inadvertently exposed to
a NOAC in early pregnancy before diagnosis of pregnancy) can be reassured, since the risk of
embryopathy seems low. In case of planned pregnancy, avoidance of NOACs should be considered
(with switching to LMWH).

2720

With regard to breast-feeding, warfarin, in view of its characteristics (polar, non-lipophilic, and
highly protein bound) can be considered safe since two reports showed that warfarin is not detected
in breast milk and does not induce an anticoagulant effect in the breast-fed infant when nursing
mothers consume the drug. ^{431,432} Acenocoumarol, which is commonly used in Europe, has similar
properties. ^{433,434} Use of UFH and LMWH in breast-feeding women appears safe. No clinical data on
the effect of NOACs on breast-feed infants are available and therefore the recommendation is against
use these medications in breast-feeding women.

2728

A flow chart on how to manage women with AF during pregnancy is shown in Figure 8

2730

2731 Recommendations

45. For women receiving OAC for prevention of stroke/TE in AF who become pregnant, we suggest discontinuation of OAC with a VKA between weeks 6 and 12 and replacement by LMWH twice daily (with dose adjustment according to weight and target anti-Xa level 4-6 hours post-dose 0.8-1.2 U/mL), especially in patients with a warfarin dose required of >5 mg/day (or phenprocoumon >3 mg/day or acenocoumarol >2mg/day). OAC should then be discontinued and replaced by adjusted-dose LMWH (target anti-Xa level 4-6 hours post-dose 0.8-1.2 U/mL) in the 36th week of gestation (ungraded consensus-based statement).

2740 2741 2742 2743 2744	46. For women on treatment with long-term vitamin K antagonists who are attempting pregnancy and are candidates for LMWH substitution, we suggest performing frequent pregnancy tests and use LMWH instead of VKA when pregnancy is achieved rather than switching to LMWH while attempting pregnancy (ungraded consensus-based statement).
2745 2746	47. For pregnant women, we suggest avoiding the use of NOACs (ungraded consensus-based statement) .
2747	<i>Remark</i> : For women on treatment with a NOAC we suggest switching to vitamin K antagonists,
2748	rather than switching to LMWH while attempting pregnancy.
2749	
2750	48. For lactating women using warfarin, acenocoumarol, or UFH who wish to breastfeed, we
2751	suggest continuing the use of warfarin, acenocoumarol, LMWH or UFH (ungraded consensus-
2752	based statement)
2753	
2754	49. For breast-feeding women, we suggest alternative anticoagulants rather than NOACs
2755	(ungraded consensus-based statement).
2756	
2757	
2758	ATRIAL FIBRILLATION AND CHRONIC KIDNEY DISEASE
2759	
2760	Chronic kidney disease (CKD) is frequently present in patients with AF and has significant
2761	implications on the trajectory of AF, risk of stroke, and bleeding risk of anticoagulation. The presence
2762	of CKD or AF bi-directionally affects the incident risk of the other. Among patients with CKD, the
2763	prevalence of AF is substantially higher than in the general population, ranging from 16-21% in non-
2764	dialysis dependent CKD and 15-40% in patients on dialysis ⁴³⁵ .
2765	
2766	Among patients with AF, CKD is present in one-third of patients at the time of AF diagnosis ^{51 436}
2767	although this may be substantially higher among cohorts of prevalent AF subjects. The impact of AF
2768	is illustrated in the systematic review by Odutayo et al ⁵¹ whereby the presence of AF increased
2769	chronic kidney disease (1.64, 1.41 to 1.91), as well as all-cause mortality (relative risk 1.46, 95% CI
2770	1.39 to 1.54), cardiovascular mortality (2.03, 1.79 to 2.30), major cardiovascular events (1.96, 1.53 to
2771	2.51), stroke (2.42, 2.17 to 2.71), ischemic stroke (2.33, 1.84 to 2.94), ischemic heart disease (1.61,
2772	1.38 to 1.87), sudden cardiac death (1.88, 1.36 to 2.60), heart failure (4.99, 3.04 to 8.22), and
2773	peripheral arterial disease (1.31, 1.19 to 1.45).
2774	
2775	AF, CKD and stroke
2776	CKD increases the baseline risk of ischemic stroke in patients with AF ⁴³⁵ . The pathophysiological
2777	mechanisms responsible for stroke and systemic embolism in these patients are multifactorial. The
2778	precise attributable risk of AF as a causal agent of cardioembolic stroke is therefore unclear,
2779	particularly where patients have substantially higher risk of atherothrombotic ischemic stroke due to
2780	hypertension, intracranial and carotid atherosclerosis, heart failure, and CAD.
2781	

- 2782 Second, CKD increases the competing risk of death from causes unrelated to AF-associated stroke 2783 and may attenuate expected benefit of stroke prevention therapy. In a recent analysis of seven risk 2784 stratification scores, all had substantially poorer discrimination in CKD patients than those without 2785 CKD (c-statistics 0.50-59 vs. 0.69-0.70, respectively), and inclusion of CKD stage did not improve 2786 calibration or discrimination⁴³⁷. One study from Taiwan showed that the CHA₂DS₂-VASc score could 2787 adequately risk stratify for ischemic stroke amongst a haemodialysis population (c-index 0.682, 2788 superior to CHADS₂)⁴³⁸.
- 2789

Third, moderate to severe CKD increases the risk of major and intracranial bleeding through a number of mechanisms, and the risk may be further increased by the use of oral anticoagulation or antiplatelet therapy. The clinical bleeding risk scores (e.g., HAS-BLED, ORBIT, ATRIA) all include CKD measures as part of their score calculation¹⁰⁴. Therefore, CKD is both a marker of risk of disease and of its therapy, and there is significant controversy as to the net clinical benefit of oral anticoagulation in severe CKD despite encouraging observational studies⁴³⁹.

2796

2804

Fourth, there are virtually no randomized trial data of oral anticoagulation in severe CKD (creatinine
clearance < 25-30 ml/min). Some observational data suggest that warfarin may be harmful in end
stage renal disease (ESRD) patients on haemodialysis, with no reduction (or an increase) in stroke
and an excess of major bleeding; however, many of these studies (largely from North America) do
not report quality of anticoagulation control, as reflected by time in therapeutic range (TTR)⁴⁴⁰⁻⁴⁴²..
In contrast, European data suggest that there is a beneficial reduction in ischemic stroke which
outweighs the increase in severe bleeding, where TTR is good >65-70%⁴⁴⁰⁻⁴⁴².

The latest systematic review and meta-analysis by Harel et al⁴⁴³ of 14 observational studies (20,398 2805 2806 participants) among hemodialysis with AF, found that the use of warfarin was not associated with 2807 ischemic stroke (14 studies; 20,398 participants; HR, 0.85; 95% CI, 0.55- 1.07), or intracranial 2808 hemorrhage (hemorrhagic stroke; 4 studies; 15,726 participants; aHR, 1.93; 95% CI, 0.93-4.00) (e-Table 23). They concluded that warfarin was not associated with a clear benefit or harm among 2809 2810 patients who have AF and receive dialysis. However, there was marked study heterogeneity 2811 including the inability to account for major confounders such as the quality of anticoagulation 2812 control (TTR). One study reported that in AF patients on peritoneal dialysis, warfarin reduced stroke 2813 and thromboembolism compared to aspirin or no antithrombotic therapy, with no excess in serious bleeds (ICH) ²⁴⁷. 2814

The lack of clinical trial data in severe CKD is a major evidence gap with the NOACs, even though some regulatory agencies such as the Food and Drug Administration have approved reduced-dosed NOACs for severe CKD and dialysis on the basis of pharmacokinetic data⁴⁴⁴. Fortunately, the pivotal NOAC randomized trials have demonstrated non-inferiority of NOACs to warfarin among patients with creatinine clearance of 30-50 ml/min (and for apixaban 25-50 ml/min)²⁴⁶.

2820

All the NOACs have some degree of renal elimination, Cmax, and half-life, with the greatest renal dependency for excretion with dabigatran (80%) and the least with renal dependency for apixaban (27%). However, there are no head-to-head NOAC trials and therefore insufficient evidence to recommend one agent over another. Given these limitations, treatment should be individualized and the dose adapted on the basis of creatine-clearance according to licensed indications [see Figure 9].

	ACCEPTED MANUSCRIPT
2826	
2827	Recommendations
2828	50. For mild CKD (Stage II, CrCl 60-89 ml/min), we suggest that oral anticoagulation clinical
2829	decision making and treatment recommendations match that of patients without CKD (weak
2830	recommendation, very low quality evidence).
2831	
2832	51. For moderate CKD (Stage III, CrCl 30-59 ml/min), we suggest oral anticoagulation in patients
2833	with a CHA2DS2-VASc ≥2 with label-adjusted NOACs or dose adjusted vitamin K antagonists
2834	(Weak recommendation, very low quality evidence).
2835	<i>Remark</i> : With VKA, good quality anticoagulation control (TTR>65-70%) is recommended.
2836	
2837	52. In severe non-dialysis CKD (Stage IV CrCl 15-30), we suggest using VKAs and selected NOACs
2838	(rivaroxaban 15mg QD, apixaban 2.5mg bid, edoxaban 30mg QD and (in USA only) dabigatran
2839	75mg bid) with caution, based on pharmacokinetic data (ungraded consensus-based
2840	statement).
2841	
2842	53. In end-stage renal disease (CrCl < 15 or dialysis-dependent), we suggest that individualized
2843	decision-making is appropriate (ungraded consensus-based statement).
2844	
2845	54. In end-stage renal disease (CrCl < 15 or dialysis-dependent , we suggest using well managed
2846	VKA with TTR>65-70% (ungraded consensus-based statement).
2847	
2848	Remark: NOACs should generally not be used, although in USA, apixaban 5mg bid is approved for
2849	use in AF patients receiving hemodialysis
2850	
2851	Remark: In patients with CKD who initiate OAC, concomitant antiplatelet therapy including low-
2852	dose aspirin is likely to substantially elevate bleeding risk and should be used very judiciously.
2853	

2854 **AF WITH ASSOCIATED VALVULAR HEART DISEASE**

A recent physician survey⁴⁴⁵ reported marked heterogeneity in the definition of valvular and non-2855 2856 valvular AF and variable management strategies, including NOACs in patients with valvular heart 2857 disease (VHD) other than prosthetic heart valves or hemodynamically significant mitral stenosis. 2858 Whilst hypertrophic cardiomyopathy is sometimes discussed in association with valvular AF, this will not be addressed in this section; specific guidelines on this condition are available⁴⁴⁶. 2859 2860 The use of the term non-valvular AF is unfortunate and misleading as patients with a wide range of 2861 2862 valvular pathology and severity were enrolled in all of the phase 3 NOAC trials. The only VHD 2863 uniformly excluded from all the NOAC trials were significant (moderate or severe) mitral stenosis

and mechanical heart valves.

2865

- 2866 A meta-analysis of the four phase 3 AF trials comparing NOAC with warfarin found that although patients with VHD at higher risk compared with those without valvular disease, the efficacy and 2867 safety of NOACs versus warfarin is consistent in regardless of the presence or absence of VHD²⁴⁰. 2868 2869
- 2870 AF patients with mechanical heart valves should only be prescribed VKAs. Data from the only phase II trial of a NOAC, dabigatran, in patients with mechanical heart valves (RE-ALIGN trial) demonstrated 2871 inferior efficacy and more bleeding⁴⁴⁷. However, patients with bioprosthetic valves were included in 2872 the ARISTOTLE trial⁴⁴⁸ (apixban) the ENGAGE AF-TIMI 48 trial⁴⁴⁹ (edoxaban) and the relative efficacy 2873 and safety of NOACs compared with warfarin was consistent in these patients, although the number 2874 2875 of patients with bioprosthetic valves was limited (<300).
- 2876
- 2877 In keeping with a recent European consensus document, with endorsement by international learned 2878 societies, we propose that the term 'valvular AF' is outdated. Given that any definition ultimately 2879 relates to the evaluated practical use of oral anticoagulation (OAC) type, we propose a functional 2880 EHRA (Evaluated Heart valves, Rheumatic or Artificial) categorization in relation to the type of oral 2881 anticoagulation (OAC) use in patients with AF [see Summary Box]. This classification would have the 2882 advantage that it may easily evolve or be updated (type 1 may become type 2 or vice versa) when there are new results. For example, transcatheter mitral valve interventions (TMVI, e.g., to include 2883 2884 both MitraClip and Mitral valve replacement) are emerging as a possible therapeutic options⁴⁵⁰, but more data are awaited especially in relation to OAC use. Also, EHRA Type I is broadly similar to the 2885 previously described MARM-AF⁴⁵¹. 2886
- 2887
- 2888
- Table 11. Summary box: Evaluated Heart valves, Rheumatic or Artificial) categorization in relation to the type of oral anticoagulation (OAC) use in patients with AF 2889
- 2890

Definition	
EHRA Type 1 VHD	 Mitral stenosis (moderate-severe, of rheumatic origin) Mechanical prosthetic valve replacement
AF patients with 'VHD needing therapy with a Vitamin K antagonist (VKA)'	• Mechanical prosthetic valve replacement
EHRA Type 2 VHD, AF patients with 'VHD needing therapy with a VKA or a NOAC', also taking into consideration CHA ₂ DS ₂ VASc score risk factor components:	 Mitral regurgitation Mitral valve repair Aortic stenosis Aortic regurgitation Tricuspid regurgitation Tricuspid stenosis Pulmonary regurgitation Pulmonic stenosis Bioprosthetic valve replacements Trans-aortic valve intervention (TAVI)

EHRA, Evaluated Heart valves, Rheumatic or Artificial; NOAC, non-vitamin K antagonist oral 2891

2892 anticoagulant; VHD, Valvular heart disease; VKA, vitamin K antagonist

2893

2894 Non-drug alternatives and perioperative considerations

2895 Occlusion of the left atrial appendage with devices or surgical techniques

Approximately 90% of the thrombi found in patients with non-valvular AF and 57% of the thrombi
 found in valvular AF are located in the LAA ⁴⁵².

2898

Left atrial appendage occlusion using specific percutaneous devices (WATCHMAN, Amplatzer Cardiac Plug, or WaveCrest device or the Lariat endocardial and epicardial ligation technique) or occlusion during a cardiac surgery procedure with either LAA amputation and closure or a stapler device have been proposed and tested for patients with AF at high risk of stroke in the presence of an high risk of bleeding or in the presence of contraindications to OACs.

2904

2905 Two randomized studies evaluated the WATCHMAN (Atritech, Inc) device versus warfarin, the PROTECT-AF and the PREVAIL AF trials ⁴⁵³⁻⁴⁵⁹. In the PROTECT AF trial the efficacy of LAA closure 2906 2907 with the device met the pre-specified criteria for non-inferiority vs. warfarin, but the rate of adverse 2908 safety events in the intervention group was 4.4% with evidence of harmful periprocedural 2909 complications (pericardial effusion and procedure-related ischemic stroke). For acute complications 2910 a "learning curve" appeared to be present, with serious pericardial effusions (requiring drainage) in 2911 7.1% of the first 3 implant patients at each site compared with 4.4% of subsequent patients ⁴⁶⁰. The 2912 serious complication rate of around 7%, has been reported also for first or second generation Amplatzer occluders ^{461,462}. A recent systematic review network meta-analysis on the use of oral 2913 anticoagulants and Watchman device showed that the use of VKA, NOAC and the Watchman device 2914 2915 significantly reduce the risk of any stroke and systemic embolism as compared to placebo/control (Watchman Device OR, 95% CI: 0.35, 0.16-0.80).⁴⁶³ Data on the use of the WATCHMAN device in 2916 patients with contraindications to anticoagulation are very limited and DAPT is needed for at least 6 2917 weeks after the procedure, potentially exposing the patient to increased risk of bleeding, ⁴⁶⁰. 2918 2919

The Lariat device is based on an epicardial snare that requires positioning using a percutaneous approach to the epicardium through a pericardial access and in combination a percutaneous endocardial approach. In inexperienced operators incomplete occlusion of the LAA after LARIAT ligation was relatively common (20% of cases) and was associated with risk of thromboembolic events ⁴⁶⁴. No randomized controlled study comparing this device with oral anticoagulation is currently available.

2926

In addition, the role of LAAO devices in AF patients has also to consider that no trials are available
 comparing these devices with NOACs. Thrombus formation on LAAO devices is also not uncommon
 (as high as 7.2%/year) and are associated with a risk of ischemic stroke during follow-up^{465,466}.

Different surgical techniques have been applied for surgical exclusion of LAA (simple suture ligation,
 over-sewing of the LAA base without excision, appendage excision or amputation, surgical stapling)
 but data on TEE during follow-up suggest incomplete occlusion in up to 60% of subjects ^{467,468}. These
 observations and the lack of a clear benefit on stroke prevention evident from a RCT indicate that in
 patients with AF these surgical techniques do not currently allow avoidance or interruption of oral

anticoagulation in patients at risk of stroke ^{469,470}.

2937 Recommendations

2938	55. In patients with AF at high risk of ischaemic stroke who have absolute contraindications for		
2939	OAC, we suggest using LAA occlusion (Weak recommendation, low quality evidence).		
2940	Remark: When taking into account LAAO as a potential option, the risk of bleeding related to		
2941	antiplatelets agents that need to be prescribed in the first months has to be considered and the		
2942	possibility to use NOACs.		
2943			
2944	56. In AF patients at risk of ischaemic stroke undergoing cardiac surgery, we suggest considering		
2945	surgical exclusion of the LAA for stroke prevention, but the need for long term OAC is		
2946	unchanged (Weak recommendation, low quality evidence).		
2947			
2948			
2949	Surgical procedures and interventions-		
2950			
2951	Patients with AF on long-term prophylaxis with oral anticoagulants may need surgical or		
2952	interventional procedures that require appropriate management. Since bleeding risk may obviously		
2953	be increased by the anticoagulant effect, interrupting anticoagulation for an intervention or a		
2954	procedure transiently exposes the patient to increased risk of thromboembolism. Appropriate		
2955	management requires balancing reducing the risk of thromboembolism and preventing excessive		
2956	procedure-related bleeding.		
2957	procedure-related bleeding.		
2958	In the NOAC RCTs surgical or other invasive procedures were required during a follow up of around 2		
2959	years in one-quarter of patients in RE-LY and one-third of patients in ROCKET AF and ARISTOTLE ⁴⁷¹⁻		
2960	473		
2961			
2962	General principles of management can be considered, to be combined with individual clinical		
2963	judgment, but they are derived from consensus of experts, since no data from RCTs are available to		
2964	guide clinical decision making.		
2965			
2966	The following steps are important for appropriate management:		
2967			
2968	- Estimation of the bleeding risk associated with a specific intervention/procedure. The risk		
2968 2969	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. 		
2968 2969 2970	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well 		
2968 2969 2970 2971	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions 		
2968 2969 2970 2971 2972	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin 		
2968 2969 2970 2971 2972 2973	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin excision can be planned and performed without interruption of oral anticoagulation. 		
2968 2969 2970 2971 2972 2973 2974	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin excision can be planned and performed without interruption of oral anticoagulation. If the bleeding risk is substantial then interruption of anticoagulation prior to the procedure 		
2968 2969 2970 2971 2972 2973 2974 2975	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin excision can be planned and performed without interruption of oral anticoagulation. If the bleeding risk is substantial then interruption of anticoagulation prior to the procedure intervention is needed to minimize the hemorrhagic risk, both in the intra-operative and 		
2968 2969 2970 2971 2972 2973 2974 2975 2976	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin excision can be planned and performed without interruption of oral anticoagulation. If the bleeding risk is substantial then interruption of anticoagulation prior to the procedure 		
2968 2969 2970 2971 2972 2973 2974 2975	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin excision can be planned and performed without interruption of oral anticoagulation. If the bleeding risk is substantial then interruption of anticoagulation prior to the procedure intervention is needed to minimize the hemorrhagic risk, both in the intra-operative and immediate post-operative phase. 		
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977	 Estimation of the bleeding risk associated with a specific intervention/procedure. The risk of bleeding can be predicted by the type of intervention and by its need, urgent or elective. e-Table 23 classifies surgical and interventional procedures according to bleeding risk as well as thromboembolic risk ⁴⁷⁴⁻⁴⁷⁶. The direct consequence of this evaluation is that interventions or procedure at very low bleeding risk, such as simple dental extractions or minor skin excision can be planned and performed without interruption of oral anticoagulation. If the bleeding risk is substantial then interruption of anticoagulation prior to the procedure intervention is needed to minimize the hemorrhagic risk, both in the intra-operative and immediate post-operative phase. 		

- **Planning of the timing of anticoagulation interruption.** The timing of interruption is strictly 2982 2983 dependent on the specific anticoagulant the patients is receiving and creatinine clearance. 2984 Important differences exist between the management of patients treated with VKA or NOACs^{476,477}. The effect of warfarin can be monitored through INR, however, no standard 2985 laboratory test exists to measure the effect of NOACs. Discontinuation of warfarin is usually 2986 2987 instituted 5 days before an elective surgical intervention, with INR checked the day before 2988 surgery, with the usual indication that surgery can be regularly planned if the INR is ≤1.4 -1.5 the day before surgery or the same day of surgery⁴⁷⁵. For NOACs the planning of interruption 2989 2990 and resumption of therapy for surgical interventions/procedures is dependent on the type 2991 of procedure/intervention, the specific agent used and renal function, estimated by Creatine 2992 Clearance (using the Cockroft-Gault equation). In case of urgent surgery reversal of anticoagulation or specific measures may be required ^{476,477}. 2993
- Evaluation of the need for bridging. Pre-operative bridging can be considered in patients receiving VKA who are particularly high risk of TE (e.g., recent stroke, mechanical heart valve)⁴⁷⁵. In these cases, LMWH at therapeutic doses is usually prescribed starting 3 days before the procedure/intervention. Post-operative bridging includes administration of a LMWH when VKA is resumed in the post-operative period, with administration of both agents until achievement of a therapeutic INR.
- 3002 The role of bridging has been tested in a randomized trial, the BRIDGE trial (Bridging 3003 Anticoagulation in Patients who Require Temporary Interruption of Warfarin Therapy for an Elective Invasive Procedure or Surgery) performed in patients on warfarin who were 3004 3005 candidate to an invasive procedure (patients with mechanical valves were excluded)⁴⁷⁸. The 3006 risk of TE after the procedure was similar in patients with and without bridging, but the risk 3007 of major bleeding was higher in those who were bridged. Thus, we suggest that preoperative 3008 bridging is not required in AF patients treated with warfarin who do not have a particularly 3009 high risk of thromboembolism and who do not have a mechanical valve. 3010
- In patients receiving NOACs, bridging is not required but bridging could be considered in the
 post-operative phase if the patient cannot take oral medications for a prolonged period.
- 3013

2981

2994

3001

3014 Recommendations

- 3015 57. In AF patients taking warfarin without high risk of thromboembolism or do not have a
 3016 mechanical valve, we suggest pre-operative management without bridging (Weak
 3017 recommendation, low quality evidence).
- 3018
- **58.** In AF patients on antithrombotic prophylaxis with warfarin with a high risk of
- 3020 thromboembolism or with a mechanical valve, we suggest pre-operative management with
- 3021 bridging (Weak recommendation, low quality evidence).
- 3022

302359. In AF patients on antithrombotic prophylaxis with a NOAC, we suggest pre-operative3024management without bridging (Weak recommendation, low quality evidence).

- 3025
- 3026
- 3027

3028 THE PATIENT

3029 Patient knowledge and understanding of the stroke risk associated with AF and the benefit of OAC to 3030 prevent stroke is crucial to patient acceptance of anticoagulants, as well as adherence, and life-long 3031 persistence (in most cases), to OAC. However, research demonstrates that AF patients generally have poor awareness and knowledge about their condition, 479-484 medications used to treat AF, 3032 3033 particularly OAC, and do not clearly comprehend the benefit/risk associated with stroke prevention regimens.^{480-483,485-491} Although there is increasing advocacy from clinical guidelines^{159,160} and expert 3034 consensus^{488,492,493} to incorporate patient preferences for treatment into the decision-making 3035 3036 process, a patient's ability to make an informed decision may be hindered by their lack of 3037 understanding about the relationship between AF and stroke and the efficacy/safety of OAC for 3038 stroke prevention, particularly at diagnosis, when these decisions are invariably addressed. 3039 Assessment of patient's knowledge (using the AF Knowledge questionnaire⁴⁹⁴ or Jessa Atrial Fibrillation Knowledge questionnaire⁴⁹⁵), as well as their values and preferences, could be 3040 undertaken to ascertain gaps to be filled; this may lead to better decision-making and improved 3041 3042 adherence and persistence.

3043 Patient education is essential to provide patients with sufficient information to enable them to make 3044 an informed decision about whether or not they wish to take OAC, and if they do, which OAC they would prefer.^{488,489,496} Education needs to be tailored to the person's desire for information and 3045 3046 their level of health literacy to promote patient understanding. Recently a prospective survey of 499 3047 AF patients (with and without previous stroke) in the US found that most (87%) desired more 3048 information about AF and how to reduce their risk of AF-related stroke.⁴⁸⁵ AF patients perceive 3049 greater satisfaction with treatment if they are engaged in treatment decisions and provided with relevant information (verbal, visual, written, electronic/on-line resources, as appropriate , chosen by 3050 the patient), which is well-communicated by their healthcare providers, 479,485,497 and updated over 3051 3052 time. Full details on shared decision-making, patient preferences and patient education/counseling 3053 are provided in the Online Supplement (e-Tables 24-26).

3054 **Recommendations**

305560. In AF patients who have previously refused OAC, we suggest reinforcing educational messages3056at each contact with the patient and revisit OAC treatment decisions (ungraded consensus-

- 3057 based statement).
- 3058 *Remark*: Patient and physician treatment objectives often differ significantly and it is important
- to elicit from the patient what outcomes of OAC treatment are important to them.
- 3060 *Remark*: Explain the risk of stroke and benefit/risks of treatment in terms the patient can
- 3061 understand and signpost the patient to appropriate educational resources
- 3062
- 3063

		ACCEPTED MANUSCRIPT
3064 3065	Refer	rences
3066		
3067	1.	Lip GYH, Freedman B, De Caterina R, Potpara TS. Stroke prevention in atrial fibrillation: Past,
3068		present and future. Comparing the guidelines and practical decision-making. <i>Thrombosis and</i>
3069		haemostasis. 2017;117(7):1230-1239.
3070	2.	Lip GYH. The ABC pathway: an integrated approach to improve AF management. <i>Nature</i>
3071		reviews. Cardiology. 2017.
3072	3.	You JJ, Singer DE, Howard PA, et al. Antithrombotic therapy for atrial fibrillation:
3073		Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest
3074		Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e531S-
3075		575S.
3076	4.	Gomez-Outes A, Lagunar-Ruiz J, Terleira-Fernandez AI, Calvo-Rojas G, Suarez-Gea ML,
3077		Vargas-Castrillon E. Causes of Death in Anticoagulated Patients With Atrial Fibrillation.
3078		Journal of the American College of Cardiology. 2016;68(23):2508-2521.
3079	5.	Higgins J, Altman D, Sterne J, (editors). Chapter 8: Assessing risk of bias in included studies.
3080		In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of
3081		Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011.
3082		Available from <u>www.cochrane-handbook.org</u> . 2011.
3083	6.	Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-
3084		randomised studies of interventions. BMJ. 2016;355.
3085	7.	Diekemper RL, Ireland BK, Merz LR. Development of the Documentation and Appraisal
3086		Review Tool for systematic reviews. World J Meta-Anal. 2015;3(3):142-150.
3087	8.	Ozcan C, Strom JB, Newell JB, Mansour MC, Ruskin JN. Incidence and predictors of atrial
3088		fibrillation and its impact on long-term survival in patients with supraventricular
3089		arrhythmias. Europace : European pacing, arrhythmias, and cardiac electrophysiology :
3090		journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular
3091		electrophysiology of the European Society of Cardiology. 2014.
3092	9.	Higgins J, Altman D, Sterne J, (editors). Chapter 9: Analysing data and undertaking meta-
3093		analyses. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of
3094 2005		Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011.
3095	10.	Available from <u>www.cochrane-handbook.org</u> . 2011. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of
3096 3097	10.	evidence. Journal of Clinical Epidemiology.64(4):401-406.
3097	11.	Diekemper RL, Patel S, Mette SA, Ornelas J, Ouellette DR, Casey KR. Making the GRADE:
3098	11.	CHEST Updates Its Methodology. <i>Chest.</i> 2016.
3100	12.	Andrews J, Guyatt G, Oxman AD, et al. GRADE guidelines: 14. Going from evidence to
3101	12.	recommendations: the significance and presentation of recommendations. <i>Journal of Clinical</i>
3102		Epidemiology.66(7):719-725.
3103	13.	Lewis SZ, Diekemper R, Ornelas J, Casey KR. Methodologies for the development of CHEST
3104		guidelines and expert panel reports. <i>Chest.</i> 2014;146(1):182-192.
3105	14.	Jaeschke R, The GRADE Working Group. Use of GRADE grid to reach decisions on clinical
3106		practice guidelines when consensus is elusive. <i>BMJ.</i> 2008;337:327-330.
3107	15.	Lip GY, Fauchier L, Freedman SB, et al. Atrial fibrillation. <i>Nat Rev Dis Primers</i> . 2016;2:16016.
3108	16.	Lip GY, Brechin CM, Lane DA. The global burden of atrial fibrillation and stroke: a systematic
3109		review of the epidemiology of atrial fibrillation in regions outside North America and Europe.
3110		Chest. 2012;142(6):1489-1498.
3111	17.	Freedman B, Potpara TS, Lip GY. Stroke prevention in atrial fibrillation. Lancet.
3112		2016;388(10046):806-817.
3113	18.	Allan V, Honarbakhsh S, Casas JP, et al. Are cardiovascular risk factors also associated with
3114		the incidence of atrial fibrillation? A systematic review and field synopsis of 23 factors in 32

3115		population-based cohorts of 20 million participants. Thrombosis and haemostasis.
3116		2017;117(5):837-850.
3117	19.	Moran PS, Teljeur C, Ryan M, Smith SM. Systematic screening for the detection of atrial
3118		fibrillation. Cochrane Db Syst Rev. 2016(6).
3119	20.	Amerena J, Chen SA, Sriratanasathavorn C, et al. Insights into management of atrial
3120		fibrillation in Asia Pacific gained from baseline data from REgistry on cardiac rhythm
3121		disORDers (RecordAF-Asia Pacific [AP]) registry. The American journal of cardiology.
3122		2012;109(3):378-382.
3123	21.	Oldgren J, Healey JS, Ezekowitz M, et al. Variations in cause and management of atrial
3124		fibrillation in a prospective registry of 15,400 emergency department patients in 46
3125		countries: the RE-LY Atrial Fibrillation Registry. Circulation. 2014;129(15):1568-1576.
3126	22.	Oh S, Goto S, Accetta G, et al. Vitamin K antagonist control in patients with atrial fibrillation
3127		in Asia compared with other regions of the world: Real-world data from the GARFIELD-AF
3128		registry. International Journal of Cardiology. 2016;223:543-547.
3129	23.	Determinants of warfarin use and international normalized ratio levels in atrial fibrillation
3130		patients in Japan Subanalysis of the J-RHYTHM Registry. Circulation journal : official journal
3131		of the Japanese Circulation Society. 2011;75(10):2357-2362.
3132	24.	Akao M, Chun YH, Wada H, et al. Current status of clinical background of patients with atrial
3133		fibrillation in a community-based survey: the Fushimi AF Registry. Journal of cardiology.
3134		2013;61(4):260-266.
3135	25.	Guo Y, Apostolakis S, Blann AD, et al. Validation of contemporary stroke and bleeding risk
3136		stratification scores in non-anticoagulated Chinese patients with atrial fibrillation.
3137		International journal of cardiology. 2013;168(2):904-909.
3138	26.	Xia S-j, Du X, Li C, et al. Uptake of evidence-based statin therapy among atrial fibrillation
3139		patients in China: A report from the CAFR (Chinese Atrial Fibrillation Registry) Study.
3140		International Journal of Cardiology. 2016;220:284-289.
3141	27.	Huisman MV, Ma CS, Diener H-C, et al. Antithrombotic therapy use in patients with atrial
3142		fibrillation before the era of non-vitamin K antagonist oral anticoagulants: the Global
3143		Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation
3144		(GLORIA-AF) Phase I cohort. Europace. 2016;18(9):1308-1318.
3145	28.	Chao TF, Liu CJ, Wang KL, et al. Using the CHA2DS2-VASc Score for Refining Stroke Risk
3146		Stratification in 'Low-Risk' Asian Patients With Atrial Fibrillation. Journal of the American
3147		College of Cardiology. 2014;64(16):1658-1665.
3148	29.	Siu CW, Lip GY, Lam KF, Tse HF. Risk of stroke and intracranial hemorrhage in 9727 Chinese
3149		with atrial fibrillation in Hong Kong. <i>Heart Rhythm.</i> 2014;11(8):1401-1408.
3150	30.	Nieuwlaat R, Capucci A, Camm AJ, et al. Atrial fibrillation management: a prospective survey
3151		in ESC Member Countries. European heart journal. 2005;26(22):2422-2434.
3152	31.	Le Heuzey JY, Breithardt G, Camm J, et al. The RecordAF study: design, baseline data, and
3153		profile of patients according to chosen treatment strategy for atrial fibrillation. The
3154		American journal of cardiology. 2010;105(5):687-693.
3155	32.	Steinberg BA, Holmes DN, Ezekowitz MD, et al. Rate versus rhythm control for management
3156		of atrial fibrillation in clinical practice: results from the Outcomes Registry for Better
3157		Informed Treatment of Atrial Fibrillation (ORBIT-AF) registry. American heart journal.
3158		2013;165(4):622-629.
3159	33.	Lip GYH, Laroche C, Dan G-A, et al. A prospective survey in European Society of Cardiology
3160		member countries of atrial fibrillation management: baseline results of EURObservational
3161		Research Programme Atrial Fibrillation (EORP-AF) Pilot General Registry. Europace :
3162		European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups
3163		on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European
3164		Society of Cardiology. 2014;16(3):308-319.

2165	24	Kirchhof D. Ammontorn D. Darius II. et al. Management of strial fibrillation in seven
3165 3166	34.	Kirchhof P, Ammentorp B, Darius H, et al. Management of atrial fibrillation in seven
3167		European countries after the publication of the 2010 ESC Guidelines on atrial fibrillation: primary results of the PREvention oF thromboemolic eventsEuropean Registry in Atrial
3168		Fibrillation (PREFER in AF). <i>Europace</i> . 2014;16(1):6-14.
3169	35.	Ha ACT, Singh N, Cox JL, et al. Oral Anticoagulation for Stroke Prevention in Canadian
3170	55.	Practice: Stroke Prevention and Rhythm Interventions in Atrial Fibrillation (SPRINT-AF)
3170		
	26	Registry*. Canadian Journal of Cardiology. 2016;32(2):204-210.
3172	36.	Zubaid M, Rashed WA, Alsheikh-Ali AA, et al. Gulf Survey of Atrial Fibrillation Events (Gulf
3173		SAFE): design and baseline characteristics of patients with atrial fibrillation in the Arab
3174	27	Middle East. <i>Circ Cardiovasc Qual Outcomes.</i> 2011;4(4):477-482.
3175	37.	Chiang C-E, Wu T-J, Ueng K-C, et al. 2016 Guidelines of the Taiwan Heart Rhythm Society and
3176		the Taiwan Society of Cardiology for the management of atrial fibrillation. <i>Journal of the</i>
3177	20	Formosan Medical Association. 2016;115(11):893-952.
3178	38.	Friberg L, Rosenqvist M, Lip GYH. Evaluation of risk stratification schemes for ischaemic
3179		stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation
3180	20	cohort study. <i>European heart journal.</i> 2012;33(12):1500-1510.
3181	39.	Mareedu RK, Abdalrahman IB, Dharmashankar KC, et al. Atrial flutter versus atrial fibrillation
3182		in a general population: differences in comorbidities associated with their respective onset.
3183		Clinical medicine & research. 2010;8(1):1-6.
3184	40.	Potpara TS, Lip GY. Lone atrial fibrillation - an overview. International journal of clinical
3185		practice. 2014;68(4):418-433.
3186	41.	Granada J, Uribe W, Chyou PH, et al. Incidence and predictors of atrial flutter in the general
3187		population. Journal of the American College of Cardiology. 2000;36(7):2242-2246.
3188	42.	Pisters R, Lane DA, Marin F, Camm AJ, Lip GY. Stroke and thromboembolism in atrial
3189		fibrillation. Circulation journal : official journal of the Japanese Circulation Society.
3190		2012;76(10):2289-2304.
3191	43.	Ganesan AN, Chew DP, Hartshorne T, et al. The impact of atrial fibrillation type on the risk of
3192		thromboembolism, mortality, and bleeding: a systematic review and meta-analysis. Eur
3193		Heart J. 2016;37(20):1591-1602.
3194	44.	Wasywich CA, Pope AJ, Somaratne J, Poppe KK, Whalley GA, Doughty RN. Atrial fibrillation
3195		and the risk of death in patients with heart failure: a literature-based meta-analysis. Internal
3196		medicine journal. 2010;40(5):347-356.
3197	45.	Melgaard L, Gorst-Rasmussen A, Lane DA, Rasmussen LH, Larsen TB, Lip GY. Assessment of
3198		the CHA2DS2-VASc Score in Predicting Ischemic Stroke, Thromboembolism, and Death in
3199		Patients With Heart Failure With and Without Atrial Fibrillation. JAMA. 2015;314(10):1030-
3200		1038.
3201	46.	Ling LH, Kistler PM, Kalman JM, Schilling RJ, Hunter RJ. Comorbidity of atrial fibrillation and
3202		heart failure. Nature reviews. Cardiology. 2016;13(3):131-147.
3203	47.	Pfister R, Bragelmann J, Michels G, Wareham NJ, Luben R, Khaw KT. Performance of the
3204		CHARGE-AF risk model for incident atrial fibrillation in the EPIC Norfolk cohort. European
3205		journal of preventive cardiology. 2015;22(7):932-939.
3206	48.	Kotecha D, Chudasama R, Lane DA, Kirchhof P, Lip GYH. Atrial fibrillation and heart failure
3207		due to reduced versus preserved ejection fraction: A systematic review and meta-analysis of
3208		death and adverse outcomes. International Journal of Cardiology. 2016;203:660-666.
3209	49.	Zeng WT, Sun XT, Tang K, et al. Risk of thromboembolic events in atrial fibrillation with
3210	_	chronic kidney disease. <i>Stroke; a journal of cerebral circulation.</i> 2015;46(1):157-163.
3211	50.	Olesen JB, Lip GY, Kamper AL, et al. Stroke and bleeding in atrial fibrillation with chronic
3212		kidney disease. The New England journal of medicine. 2012;367(7):625-635.
3213	51.	Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and risks
3214		of cardiovascular disease, renal disease, and death: systematic review and meta-analysis.
3215		BMJ (Clinical research ed.). 2016;354:i4482.

3216 52. Ando G, Capranzano P. Non-vitamin K antagonist oral anticoagulants in atrial fibrillation 3217 patients with chronic kidney disease: A systematic review and network meta-analysis. 3218 International journal of cardiology. 2017;231:162-169. 3219 Dahal K, Kunwar S, Rijal J, Schulman P, Lee J. Stroke, Major Bleeding, and Mortality 53. 3220 Outcomes in Warfarin Users With Atrial Fibrillation and Chronic Kidney Disease: A Meta-3221 Analysis of Observational Studies. Chest. 2016;149(4):951-959. 3222 54. Li M, Liu T, Luo D, Li GP. Systematic review and meta-analysis of chronic kidney disease as 3223 predictor of atrial fibrillation recurrence following catheter ablation. Cardiol J. 3224 2014;21(1):89-95. Glotzer TV, Ziegler PD. Cryptogenic stroke: Is silent atrial fibrillation the culprit? Heart 3225 55. 3226 rhythm : the official journal of the Heart Rhythm Society. 2015;12(1):234-241. 3227 Korompoki E, Del Giudice A, Hillmann S, et al. Cardiac monitoring for detection of atrial 56. 3228 fibrillation after TIA: A systematic review and meta-analysis. International journal of stroke : 3229 official journal of the International Stroke Society. 2017;12(1):33-45. 3230 57. Providencia R, Trigo J, Paiva L, Barra S. The role of echocardiography in thromboembolic risk 3231 assessment of patients with nonvalvular atrial fibrillation. Journal of the American Society of 3232 Echocardiography : official publication of the American Society of Echocardiography. 3233 2013;26(8):801-812. 3234 58. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Hart RG. Transesophageal 3235 echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial 3236 fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. Journal of the American 3237 *College of Cardiology.* 1998;31(7):1622-1626. 3238 59. Leung DY, Black IW, Cranney GB, Hopkins AP, Walsh WF. Prognostic implications of left atrial 3239 spontaneous echo contrast in nonvalvular atrial fibrillation. Journal of the American College 3240 of Cardiology. 1994;24(3):755-762. 3241 60. Calenda BW, Fuster V, Halperin JL, Granger CB. Stroke risk assessment in atrial fibrillation: 3242 risk factors and markers of atrial myopathy. Nature reviews. Cardiology. 2016;13(9):549-559. 3243 61. Quinn GR, Severdija ON, Chang Y, Singer DE. Wide Variation in Reported Rates of Stroke 3244 Across Cohorts of Patients With Atrial Fibrillation. Circulation. 2017;135(3):208-219. 3245 62. Nielsen PB, Lip GY. Adding Rigor to Stroke Rate Investigations in Patients With Atrial 3246 Fibrillation. Circulation. 2017;135(3):220-223. 3247 Nielsen PB, Larsen TB, Skjoth F, Overvad TF, Lip GY. Stroke and thromboembolic event rates 63. 3248 in atrial fibrillation according to different guideline treatment thresholds: A nationwide 3249 cohort study. Sci Rep. 2016;6:27410. 3250 64. Chao TF, Wang KL, Liu CJ, et al. Age Threshold for Increased Stroke Risk Among Patients With 3251 Atrial Fibrillation: A Nationwide Cohort Study From Taiwan. Journal of the American College 3252 of Cardiology. 2015;66(12):1339-1347. 3253 Chao TF, Lip GY, Liu CJ, et al. Validation of a Modified CHA2DS2-VASc Score for Stroke Risk 65. 3254 Stratification in Asian Patients With Atrial Fibrillation: A Nationwide Cohort Study. Stroke; a 3255 journal of cerebral circulation. 2016;47(10):2462-2469. 3256 Nielsen PB, Skjoth F, Overvad TF, Larsen TB, Lip GYH. Female Sex Is a Risk Modifier Rather 66. 3257 Than a Risk Factor for Stroke in Atrial Fibrillation: Should We Use a CHA2DS2-VA Score 3258 Rather Than CHA2DS2-VASc? Circulation. 2018;137(8):832-840. Chao TF, Lip GYH, Liu CJ, et al. Relationship of Aging and Incident Comorbidities to Stroke 3259 67. 3260 Risk in Patients With Atrial Fibrillation. Journal of the American College of Cardiology. 3261 2018;71(2):122-132. 3262 Bousser MG, Bouthier J, Buller HR, et al. Comparison of idraparinux with vitamin K 68. 3263 antagonists for prevention of thromboembolism in patients with atrial fibrillation: a 3264 randomised, open-label, non-inferiority trial. Lancet. 2008;371(9609):315-321.

3265	69.	Fang MC, Go AS, Chang Y, et al. A New Risk Scheme to Predict Warfarin-Associated
3266		Hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study.
3267		Journal of the American College of Cardiology. 2011;58(4):395-401.
3268	70.	Deitelzweig SB, Pinsky B, Buysman E, et al. Bleeding as an Outcome Among Patients With
3269		Nonvalvular Atrial Fibrillation in a Large Managed Care Population. Clinical Therapeutics.
3270		2013;35(10):1536-1545.e1531.
3271	71.	Schulman S, Kearon C. Definition of major bleeding in clinical investigations of
3272		antihemostatic medicinal products in non-surgical patients. J Thromb Haemost.
3273		2005;3(4):692-694.
3274	72.	Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus Warfarin in Patients with Atrial
3275		Fibrillation. New Engl J Med. 2009;361(12):1139-1151.
3276	73.	Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial
3277		fibrillation. The New England journal of medicine. 2011;365(10):883-891.
3278	74.	Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with
3279		atrial fibrillation. The New England journal of medicine. 2011;365(11):981-992.
3280	75.	Hori M, Matsumoto M, Tanahashi N, et al. Rivaroxaban vs. warfarin in Japanese patients
3281		with atrial fibrillation - the J-ROCKET AF study. Circulation journal : official journal of the
3282		Japanese Circulation Society. 2012;76(9):2104-2111.
3283	76.	Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial
3284		fibrillation. The New England journal of medicine. 2013;369(22):2093-2104.
3285	77.	Chao TF, Lip GYH, Lin YJ, et al. Incident Risk Factors and Major Bleeding in Patients with
3286		Atrial Fibrillation Treated with Oral Anticoagulants: A Comparison of Baseline, Follow-up and
3287		Delta HAS-BLED Scores with an Approach Focused on Modifiable Bleeding Risk Factors.
3288		Thrombosis and haemostasis. 2018.
3289	78.	Chao TF, Lip GYH, Lin YJ, et al. Major bleeding and intracranial hemorrhage risk prediction in
3290		patients with atrial fibrillation: Attention to modifiable bleeding risk factors or use of a
3291		bleeding risk stratification score? A nationwide cohort study. Int J Cardiol. 2018;254:157-
3292		161.
3293	79.	Guo Y, Zhu H, Chen Y, Lip GYH. Comparing Bleeding Risk Assessment Focused on Modifiable
3294		Risk Factors Only Versus Validated Bleeding Risk Scores in Atrial Fibrillation. Am J Med.
3295		2018;131(2):185-192.
3296	80.	Esteve-Pastor MA, Rivera-Caravaca JM, Shantsila A, Roldan V, Lip GYH, Marin F. Assessing
3297		Bleeding Risk in Atrial Fibrillation Patients: Comparing a Bleeding Risk Score Based Only on
3298		Modifiable Bleeding Risk Factors against the HAS-BLED Score. The AMADEUS Trial.
3299	01	Thrombosis and haemostasis. 2017;117(12):2261-2266.
3300	81.	Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant
3301		therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of
3302		Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e44S-
3303	07	885.
3304 3305	82.	Fang MC, Chang Y, Hylek EM, et al. Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation. <i>Annals of</i>
3305		internal medicine. 2004;141(10):745-752.
3307	83.	Hylek EM, Skates SJ, Sheehan MA, Singer DE. An analysis of the lowest effective intensity of
3308	65.	prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. <i>The New</i>
3309		England journal of medicine. 1996;335(8):540-546.
3310	84.	Singer DE, Fang MC, Go AS. The international normalized ratio range of 2.0 to 3.0 remains
3311	04.	appropriate for atrial fibrillation. Archives of internal medicine. 2009;169(21):2032; author
3312		reply 2033.
3313	85.	Walker AM, Bennett D. Epidemiology and outcomes in patients with atrial fibrillation in the
3314	55.	United States. Heart rhythm : the official journal of the Heart Rhythm Society.
3315		2008;5(10):1365-1372.

2240	06	Mith DNA Delete T Hudel, CNA et al. Effect of constants on interconnectal boundary incidences
3316 3317	86.	Witt DM, Delate T, Hylek EM, et al. Effect of warfarin on intracranial hemorrhage incidence
3318	87.	and fatal outcomes. <i>Thrombosis research.</i> 2013;132(6):770-775. Clarkesmith DE, Pattison HM, Lip GY, Lane DA. Educational intervention improves
3319	07.	anticoagulation control in atrial fibrillation patients: the TREAT randomised trial. <i>PloS one.</i>
3320		2013;8(9):e74037.
3320 3321	88.	Levi M, de Peuter OR, Kamphuisen PW. Management strategies for optimal control of
3321	00.	
3323		anticoagulation in patients with atrial fibrillation. <i>Seminars in thrombosis and hemostasis.</i>
3323 3324	89.	2009;35(6):560-567. Matchar DB, Jacobson A, Dolor R, et al. Effect of home testing of international normalized
3325	69.	· · · · · · · · · · · · · · · · · · ·
	00	ratio on clinical events. <i>The New England journal of medicine</i> . 2010;363(17):1608-1620.
3326	90.	van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ. Effect of study setting on
3327 3328		anticoagulation control: a systematic review and metaregression. <i>Chest.</i> 2006;129(5):1155-1166.
	01	
3329	91.	Heneghan CJ, Garcia-Alamino JM, Spencer EA, et al. Self-monitoring and self-management of
3330	02	oral anticoagulation. <i>The Cochrane database of systematic reviews.</i> 2016;7:Cd003839.
3331	92.	Lip GY, Windecker S, Huber K, et al. Management of antithrombotic therapy in atrial
3332		fibrillation patients presenting with acute coronary syndrome and/or undergoing
3333		percutaneous coronary or valve interventions: a joint consensus document of the European
3334 2225		Society of Cardiology Working Group on Thrombosis, European Heart Rhythm Association
3335		(EHRA), European Association of Percutaneous Cardiovascular Interventions (EAPCI) and
3336		European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society
3337	02	(HRS) and Asia-Pacific Heart Rhythm Society (APHRS). <i>Eur Heart J.</i> 2014;35(45):3155-3179.
3338	93.	Douketis JD, Hasselblad V, Ortel TL. Bridging Anticoagulation in Patients with Atrial
3339	04	Fibrillation. <i>The New England journal of medicine</i> . 2016;374(1):93-94.
3340	94.	Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in
3341	05	Patients with Atrial Fibrillation. <i>The New England journal of medicine</i> . 2015;373(9):823-833.
3342	95.	Man-Son-Hing M, Nichol G, Lau A, Laupacis A. Choosing antithrombotic therapy for elderly
3343 3344		patients with atrial fibrillation who are at risk for falls. <i>Archives of internal medicine</i> .
3345	96.	1999;159(7):677-685.
3345 3346	90.	Pastori D, Lip GYH, Farcomeni A, et al. Incidence of bleeding in patients with atrial fibrillation and advanced liver fibrosis on treatment with vitamin K or non-vitamin K antagonist oral
3340 3347		anticoagulants. International journal of cardiology. 2018;264:58-63.
	07	
3348	97.	Kuo L, Chao TF, Liu CJ, et al. Liver Cirrhosis in Patients With Atrial Fibrillation: Would Oral Anticoagulation Have a Net Clinical Benefit for Stroke Prevention? <i>Journal of the American</i>
3349		
3350	98.	Heart Association. 2017;6(6). Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score
3351 3352	90.	(HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro
3353		Heart Survey. <i>Chest.</i> 2010;138(5):1093-1100.
3354	99.	
3355	99.	Fang MC, Go AS, Chang Y, et al. A new risk scheme to predict warfarin-associated hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. <i>Journal</i>
3356		of the American College of Cardiology. 2011;58(4):395-401.
	100	
3357 3358	100.	Gage BF, Yan Y, Milligan PE, et al. Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF). <i>American heart journal.</i>
3359 3360	101.	2006;151(3):713-719. Hijazi Z, Oldgren J, Lindback J, et al. The novel biomarker-based ABC (age, biomarkers,
3360 3361	101.	clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and
3361		validation study. Lancet. 2016;387(10035):2302-2311.
3362 3363	102.	O'Brien EC, Simon DN, Thomas LE, et al. The ORBIT bleeding score: a simple bedside score to
3364	102.	assess bleeding risk in atrial fibrillation. <i>European heart journal.</i> 2015;36(46):3258-3264.
5504		assess siccume nor in actial institiation. La opean neart journal. 2013,30(40).3236-3204.

3365 3366 3367	103.	Shireman TI, Mahnken JD, Howard PA, Kresowik TF, Hou Q, Ellerbeck EF. Development of a contemporary bleeding risk model for elderly warfarin recipients. <i>Chest.</i> 2006;130(5):1390-1396.
3368	104.	Zulkifly HH, Lip G, Lane D. Bleeding Risk Scores in Atrial Fibrillation and Venous
3369	104.	Thromboembolism. The American journal of cardiology. 2017.
3370	105.	Apostolakis S, Lane DA, Buller H, Lip GY. Comparison of the CHADS2, CHA2DS2-VASc and
3370 3371	105.	HAS-BLED scores for the prediction of clinically relevant bleeding in anticoagulated patients
3372		with atrial fibrillation: the AMADEUS trial. <i>Thrombosis and haemostasis</i> . 2013;110(5):1074-
3373	100	1079.
3374	106.	Roldan V, Marin F, Manzano-Fernandez S, et al. The HAS-BLED score has better prediction
3375		accuracy for major bleeding than CHADS2 or CHA2DS2-VASc scores in anticoagulated
3376		patients with atrial fibrillation. <i>Journal of the American College of Cardiology</i> .
3377	407	2013;62(23):2199-2204.
3378	107.	Zhu W, He W, Guo L, Wang X, Hong K. The HAS-BLED Score for Predicting Major Bleeding
3379		Risk in Anticoagulated Patients With Atrial Fibrillation: A Systematic Review and Meta-
3380		analysis. Clinical cardiology. 2015;38(9):555-561.
3381	108.	Lip GY, Lane DA, Buller H, Apostolakis S. Development of a novel composite stroke and
3382		bleeding risk score in patients with atrial fibrillation: the AMADEUS Study. Chest.
3383		2013;144(6):1839-1847.
3384	109.	Banerjee A, Fauchier L, Bernard-Brunet A, Clementy N, Lip GY. Composite risk scores and
3385		composite endpoints in the risk prediction of outcomes in anticoagulated patients with atrial
3386		fibrillation. The Loire Valley Atrial Fibrillation Project. Thrombosis and haemostasis.
3387		2014;111(3):549-556.
3388	110.	Smith JG, Wieloch M, Koul S, et al. Triple antithrombotic therapy following an acute coronary
3389		syndrome: prevalence, outcomes and prognostic utility of the HAS-BLED score.
3390		EuroIntervention. 2012;8(6):672-678.
3391	111.	Thomas MR, Lip GY. Novel Risk Markers and Risk Assessments for Cardiovascular Disease.
3392		Circ Res. 2017;120(1):133-149.
3393	112.	Ban N, Siegfried CJ, Lin JB, et al. GDF15 is elevated in mice following retinal ganglion cell
3394		death and in glaucoma patients. JCI Insight. 2017;2(9).
3395	113.	Rivera-Caravaca JM, Roldan V, Esteve-Pastor MA, et al. Long-Term Stroke Risk Prediction in
3396		Patients With Atrial Fibrillation: Comparison of the ABC-Stroke and CHA2DS2-VASc Scores. J
3397		Am Heart Assoc. 2017;6(7).
3398	114.	Esteve-Pastor MA, Rivera-Caravaca JM, Roldan V, et al. Long-Term Bleeding Risk Prediction
3399		in 'real world' patients With Atrial Fibrillation: Comparison of the HAS-BLED and ABC-
3400		Bleeding risk scores Thrombosis and haemostasis. 2017:Epub(August).
3401	115.	Lip GY, Lane DA. Bleeding risk assessment in atrial fibrillation: observations on the use and
3402		misuse of bleeding risk scores. J Thromb Haemost. 2016;14(9):1711-1714.
3403	116.	Caldeira D, Costa J, Fernandes RM, Pinto FJ, Ferreira JJ. Performance of the HAS-BLED high
3404		bleeding-risk category, compared to ATRIA and HEMORR2HAGES in patients with atrial
3405		fibrillation: a systematic review and meta-analysis. <i>Journal of interventional cardiac</i>
3406		electrophysiology : an international journal of arrhythmias and pacing. 2014.
3407	117.	Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJGM, Lip GYH. A Novel User-Friendly
3408	11/.	Score (HAS-BLED) To Assess 1-Year Risk of Major Bleeding in Patients With Atrial Fibrillation.
3409		Chest. 2010;138(5):1093-1100.
3409 3410	118.	Apostolakis S, Lane DA, Guo Y, Buller H, Lip GY. Performance of the HEMORR 2 HAGES,
	110.	
3411 3412		ATRIA, and HAS-BLED bleeding risk-prediction scores in nonwarfarin anticoagulated atrial fibrillation patients. <i>Journal of the American College of Cardiology</i> . 2013;61(3):386-387.
	110	
3413	119.	Apostolakis S, Lane DA, Guo Y, Buller H, Lip GY. Performance of the HEMORR(2)HAGES,
3414		ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation
3415		undergoing anticoagulation: the AMADEUS (evaluating the use of SR34006 compared to

3416 3417		warfarin or acenocoumarol in patients with atrial fibrillation) study. <i>Journal of the American</i> College of Cardiology. 2012;60(9):861-867.
3418	120.	Senoo K, Proietti M, Lane DA, Lip GY. Evaluation of the HAS-BLED, ATRIA, and ORBIT Bleeding
3419	120.	Risk Scores in Patients with Atrial Fibrillation Taking Warfarin. <i>Am J Med.</i> 2016;129(6):600-
3420		607.
3421	121.	Proietti M, Senoo K, Lane DA, Lip GY. Major Bleeding in Patients with Non-Valvular Atrial
3422	121.	Fibrillation: Impact of Time in Therapeutic Range on Contemporary Bleeding Risk Scores. <i>Sci</i>
3423		Rep. 2016;6:24376.
3424	122.	Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in
3425	122.	patients who have nonvalvular atrial fibrillation. Annals of internal medicine.
3426		2007;146(12):857-867.
3427	123.	Stroke Prevention in Atrial Fibrillation Study. Final results. <i>Circulation</i> . 1991;84(2):527-539.
3428	124.	Investigators A, Connolly SJ, Pogue J, et al. Effect of clopidogrel added to aspirin in patients
3429		with atrial fibrillation. <i>The New England journal of medicine</i> . 2009;360(20):2066-2078.
3430	125.	Investigators AWGotA, Connolly S, Pogue J, et al. Clopidogrel plus aspirin versus oral
3431		anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan
3432		for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. <i>Lancet</i> .
3433		2006;367(9526):1903-1912.
3434	126.	Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial
3435		fibrillation. The New England journal of medicine. 2009;361(12):1139-1151.
3436	127.	Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral
3437		anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of
3438		randomised trials. <i>Lancet.</i> 2014;383(9921):955-962.
3439	128.	Connolly SJ, Eikelboom J, Joyner C, et al. Apixaban in patients with atrial fibrillation. The New
3440		England journal of medicine. 2011;364(9):806-817.
3441	129.	Freedman B, Lip GY. "Unreal world" or "real world" data in oral anticoagulant treatment of
3442		atrial fibrillation. Thrombosis and haemostasis. 2016;116(4):587-589.
3443	130.	Carmo J, Moscoso Costa F, Ferreira J, Mendes M. Dabigatran in real-world atrial fibrillation.
3444		Meta-analysis of observational comparison studies with vitamin K antagonists. Thrombosis
3445		and haemostasis. 2016;116(4):754-763.
3446	131.	Bai Y, Deng H, Shantsila A, Lip GY. Rivaroxaban Versus Dabigatran or Warfarin in Real-World
3447		Studies of Stroke Prevention in Atrial Fibrillation: Systematic Review and Meta-Analysis.
3448		Stroke; a journal of cerebral circulation. 2017.
3449	132.	Larsen TB, Skjoth F, Nielsen PB, Kjaeldgaard JN, Lip GY. Comparative effectiveness and safety
3450		of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial
3451		fibrillation: propensity weighted nationwide cohort study. BMJ. 2016;353:i3189.
3452	133.	Graham DJ, Reichman ME, Wernecke M, et al. Stroke, Bleeding, and Mortality Risks in Elderly
3453		Medicare Beneficiaries Treated With Dabigatran or Rivaroxaban for Nonvalvular Atrial
3454		Fibrillation. JAMA internal medicine. 2016;176(11):1662-1671.
3455	134.	Shen AY, Yao JF, Brar SS, Jorgensen MB, Chen W. Racial/ethnic differences in the risk of
3456		intracranial hemorrhage among patients with atrial fibrillation. Journal of the American
3457		College of Cardiology. 2007;50(4):309-315.
3458	135.	Chiang CE, Wang KL, Lip GY. Stroke prevention in atrial fibrillation: an Asian perspective.
3459		Thrombosis and haemostasis. 2014;111(5):789-797.
3460	136.	Lip GY, Wang KL, Chiang CE. Non-vitamin K antagonist oral anticoagulants (NOACs) for stroke
3461		prevention in Asian patients with atrial fibrillation: time for a reappraisal. <i>International</i>
3462		journal of cardiology. 2015;180:246-254.
3463	137.	Wang KL, Lip GY, Lin SJ, Chiang CE. Non-Vitamin K Antagonist Oral Anticoagulants for Stroke
3464		Prevention in Asian Patients With Nonvalvular Atrial Fibrillation: Meta-Analysis. <i>Stroke; a</i>
3465		journal of cerebral circulation. 2015;46(9):2555-2561.

3466	138.	Chan YH, Yen KC, See LC, et al. Cardiovascular, Bleeding, and Mortality Risks of Dabigatran in
3467	150.	Asians With Nonvalvular Atrial Fibrillation. <i>Stroke; a journal of cerebral circulation.</i>
3468		2016;47(2):441-449.
3469	139.	Chan YH, Kuo CT, Yeh YH, et al. Thromboembolic, Bleeding, and Mortality Risks of
3470		Rivaroxaban and Dabigatran in Asians With Nonvalvular Atrial Fibrillation. Journal of the
3471		American College of Cardiology. 2016;68(13):1389-1401.
3472	140.	Fredenburgh JC, Gross PL, Weitz JI. Emerging anticoagulant strategies. <i>Blood.</i>
3473		2017;129(2):147-154.
3474	141.	van Montfoort ML, Meijers JC. Recent insights into the role of the contact pathway in
3475		thrombo-inflammatory disorders. Hematology. American Society of Hematology. Education
3476		Program. 2014;2014(1):60-65.
3477	142.	Gailani D. Future prospects for contact factors as therapeutic targets. Hematology. American
3478		Society of Hematology. Education Program. 2014;2014(1):52-59.
3479	143.	Buller HR, Bethune C, Bhanot S, et al. Factor XI antisense oligonucleotide for prevention of
3480		venous thrombosis. The New England journal of medicine. 2015;372(3):232-240.
3481	144.	Van de Werf F, Brueckmann M, Connolly SJ, et al. A comparison of dabigatran etexilate with
3482		warfarin in patients with mechanical heart valves: THE Randomized, phase II study to
3483		evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart
3484		valve replacement (RE-ALIGN). American heart journal. 2012;163(6):931-937 e931.
3485	145.	De Caterina R, Husted S, Wallentin L, et al. Vitamin K antagonists in heart disease: current
3486		status and perspectives (Section III). Position paper of the ESC Working Group on
3487		ThrombosisTask Force on Anticoagulants in Heart Disease. <i>Thrombosis and haemostasis.</i>
3488	140	2013;110(6):1087-1107.
3489 3490	146.	Holbrook A, Schulman S, Witt DM, et al. Evidence-based management of anticoagulant
3490 3491		therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2
3491		Suppl):e152S-184S.
3492 3493	147.	Hylek EM, Go AS, Chang Y, et al. Effect of intensity of oral anticoagulation on stroke severity
3494	147.	and mortality in atrial fibrillation. <i>The New England journal of medicine</i> . 2003;349(11):1019-
3495		1026.
3496	148.	Hylek EM, Singer DE. Risk factors for intracranial hemorrhage in outpatients taking warfarin.
3497	-	Annals of internal medicine. 1994;120(11):897-902.
3498	149.	Oake N, Jennings A, Forster AJ, Fergusson D, Doucette S, van Walraven C. Anticoagulation
3499		intensity and outcomes among patients prescribed oral anticoagulant therapy: a systematic
3500		review and meta-analysis. CMAJ : Canadian Medical Association journal = journal de
3501		l'Association medicale canadienne. 2008;179(3):235-244.
3502	150.	Hori M, Matsumoto M, Tanahashi N, et al. Safety and efficacy of adjusted dose of
3503		rivaroxaban in Japanese patients with non-valvular atrial fibrillation: subanalysis of J-ROCKET
3504		AF for patients with moderate renal impairment. Circulation journal : official journal of the
3505		Japanese Circulation Society. 2013;77(3):632-638.
3506	151.	Yamaguchi T. Optimal intensity of warfarin therapy for secondary prevention of stroke in
3507		patients with nonvalvular atrial fibrillation : a multicenter, prospective, randomized trial.
3508		Japanese Nonvalvular Atrial Fibrillation-Embolism Secondary Prevention Cooperative Study
3509		Group. Stroke; a journal of cerebral circulation. 2000;31(4):817-821.
3510	152.	Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E. A method to determine the optimal
3511	452	intensity of oral anticoagulant therapy. <i>Thrombosis and haemostasis</i> . 1993;69(3):236-239.
3512	153.	Kaatz S. Determinants and measures of quality in oral anticoagulation therapy. <i>Journal of</i>
3513	1 - 4	thrombosis and thrombolysis. 2008;25(1):61-66.
3514 2515	154.	Fitzmaurice DA, Accetta G, Haas S, et al. Comparison of international normalized ratio audit
3515		parameters in patients enrolled in GARFIELD-AF and treated with vitamin K antagonists.
3516		British journal of haematology. 2016;174(4):610-623.

3517	155.	Wan Y, Heneghan C, Perera R, et al. Anticoagulation control and prediction of adverse events
3518	2001	in patients with atrial fibrillation: a systematic review. <i>Circ Cardiovasc Qual Outcomes.</i>
3519		2008;1(2):84-91.
3520	156.	Bjorck F, Renlund H, Lip GY, Wester P, Svensson PJ, Sjalander A. Outcomes in a Warfarin-
3521		Treated Population With Atrial Fibrillation. JAMA Cardiol. 2016;1(2):172-180.
3522	157.	Haas S, Ten Cate H, Accetta G, et al. Quality of Vitamin K Antagonist Control and 1-Year
3523		Outcomes in Patients with Atrial Fibrillation: A Global Perspective from the GARFIELD-AF
3524		Registry. PloS one. 2016;11(10):e0164076.
3525	158.	Hylek EM. Vitamin K antagonists and time in the therapeutic range: implications, challenges,
3526		and strategies for improvement. Journal of thrombosis and thrombolysis. 2013;35(3):333-
3527		335.
3528	159.	Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial
3529		fibrillation developed in collaboration with EACTS. <i>Eur Heart J.</i> 2016;37(38):2893-2962.
3530	160.	National Clinical Guideline C. National Institute for Health and Clinical Excellence: Guidance.
3531		Atrial Fibrillation: The Management of Atrial Fibrillation. London: National Institute for
3532		Health and Care Excellence (UK)
2522	Convri	ght (c) National Clinical Cuideline Centre, 2014 ; 2014
3533 3534	161.	ght (c) National Clinical Guideline Centre, 2014.; 2014.
	101.	Massaro A, Giugliano RP, Norrving B, Oto A, Veltkamp R. Overcoming global challenges in stroke prophylaxis in atrial fibrillation: The role of non-vitamin K antagonist oral
3535 3536		
3530 3537		anticoagulants. International journal of stroke : official journal of the International Stroke Society. 2016;11(9):950-967.
3538	162.	Rao SR, Reisman JI, Kressin NR, et al. Explaining racial disparities in anticoagulation control:
3539	102.	results from a study of patients at the Veterans Administration. American journal of medical
3540		quality : the official journal of the American College of Medical Quality. 2015;30(3):214-222.
3540 3541	163.	Rose AJ, Berlowitz DR, Miller DR, et al. INR targets and site-level anticoagulation control:
3542	105.	results from the Veterans AffaiRs Study to Improve Anticoagulation (VARIA). <i>Journal of</i>
3543		thrombosis and haemostasis : JTH. 2012;10(4):590-595.
3544	164.	Rose AJ, Hylek EM, Berlowitz DR, Ash AS, Reisman JI, Ozonoff A. Prompt repeat testing after
3545	10.11	out-of-range INR values: a quality indicator for anticoagulation care. <i>Circulation.</i>
3546		Cardiovascular quality and outcomes. 2011;4(3):276-282.
3547	165.	Piccini JP, Hellkamp AS, Lokhnygina Y, et al. Relationship between time in therapeutic range
3548		and comparative treatment effect of rivaroxaban and warfarin: results from the ROCKET AF
3549		trial. Journal of the American Heart Association. 2014;3(2):e000521.
3550	166.	Shimada YJ, Yamashita T, Koretsune Y, et al. Effects of Regional Differences in Asia on
3551		Efficacy and Safety of Edoxaban Compared With WarfarinInsights From the ENGAGE AF-
3552		TIMI 48 Trial. Circulation journal : official journal of the Japanese Circulation Society.
3553		2015;79(12):2560-2567.
3554	167.	Van Spall HG, Wallentin L, Yusuf S, et al. Variation in warfarin dose adjustment practice is
3555		responsible for differences in the quality of anticoagulation control between centers and
3556		countries: an analysis of patients receiving warfarin in the randomized evaluation of long-
3557		term anticoagulation therapy (RE-LY) trial. Circulation. 2012;126(19):2309-2316.
3558	168.	Wallentin L, Lopes RD, Hanna M, et al. Efficacy and safety of apixaban compared with
3559		warfarin at different levels of predicted international normalized ratio control for stroke
3560		prevention in atrial fibrillation. Circulation. 2013;127(22):2166-2176.
3561	169.	Wallentin L, Yusuf S, Ezekowitz MD, et al. Efficacy and safety of dabigatran compared with
3562		warfarin at different levels of international normalised ratio control for stroke prevention in
3563		atrial fibrillation: an analysis of the RE-LY trial. Lancet. 2010;376(9745):975-983.
3564	170.	Shore S, Ho PM, Lambert-Kerzner A, et al. Site-level variation in and practices associated
3565		with dabigatran adherence. JAMA : the journal of the American Medical Association.
3566		2015;313(14):1443-1450.

3567	171.	Violi F, Lip GY, Pignatelli P, Pastori D. Interaction Between Dietary Vitamin K Intake and
3568		Anticoagulation by Vitamin K Antagonists: Is It Really True?: A Systematic Review. Medicine.
3569		2016;95(10):e2895.
3570	172.	Pastori D, Pignatelli P, Cribari F, et al. Time to therapeutic range (TtTR), anticoagulation
3571		control, and cardiovascular events in vitamin K antagonists-naive patients with atrial
3572		fibrillation. American heart journal. 2018;200:32-36.
3573	173.	Lip GYH, Al-Saady N, Jin J, et al. Anticoagulation Control in Warfarin-Treated Patients
3574		Undergoing Cardioversion of Atrial Fibrillation (from the Edoxaban Versus Enoxaparin-
3575		Warfarin in Patients Undergoing Cardioversion of Atrial Fibrillation Trial). The American
3576		journal of cardiology. 2017;120(5):792-796.
3577	174.	Apostolakis S, Sullivan RM, Olshansky B, Lip GY. Factors affecting quality of anticoagulation
3578		control among patients with atrial fibrillation on warfarin: the SAMe-TT(2)R(2) score. <i>Chest.</i>
3579		2013;144(5):1555-1563.
3580	175.	Zulkifly H, Lip GYH, Lane DA. Use of the SAMe-TT ₂ R ₂ score to
3581		predict anticoagulation control in atrial fibrillation and venous thromboembolism patients
3582		treated with vitamin K antagonists: A review. <i>Heart rhythm : the official journal of the Heart</i>
3583		Rhythm Society.
3584	176.	Bernaitis N, Ching CK, Chen L, et al. The Sex, Age, Medical History, Treatment, Tobacco Use,
3585	170.	Race Risk (SAMe TT2R2) Score Predicts Warfarin Control in a Singaporean Population.
3586		Journal of stroke and cerebrovascular diseases : the official journal of National Stroke
3587		Association. 2017;26(1):64-69.
3588	177.	Chan PH, Hai JJ, Chan EW, et al. Use of the SAMe-TT2R2 Score to Predict Good
3589	1//.	Anticoagulation Control with Warfarin in Chinese Patients with Atrial Fibrillation:
3590		Relationship to Ischemic Stroke Incidence. <i>PloS one</i> . 2016;11(3):e0150674.
	170	
3591	178.	Demelo-Rodriguez P, Postigo-Esteban A, Garcia-Fernandez-Bravo I, et al. Evaluation of the
3592		SAMe-TT2R2 score to predict the quality of anticoagulation control in a cohort of patients
3593		with venous thromboembolism treated with vitamin K antagonists. <i>Thrombosis research</i> .
3594	170	2016;147:58-60.
3595	179.	Gallego P, Roldan V, Marin F, et al. SAMe-TT2R2 score, time in therapeutic range, and
3596		outcomes in anticoagulated patients with atrial fibrillation. <i>Am J Med.</i> 2014;127(11):1083-
3597		1088.
3598	180.	Gorzelak-Pabis P, Zyzak S, Krewko L, Broncel M. Assessment of the mean time in the
3599		therapeutic INR range and the SAME-TT2R2 score in patients with atrial fibrillation and
3600		cognitive impairment. <i>Polskie Archiwum Medycyny Wewnetrznej</i> . 2016;126(7-8):494-501.
3601	181.	Lip GY, Haguenoer K, Saint-Etienne C, Fauchier L. Relationship of the SAMe-TT(2)R(2) score
3602		to poor-quality anticoagulation, stroke, clinically relevant bleeding, and mortality in patients
3603		with atrial fibrillation. Chest. 2014;146(3):719-726.
3604	182.	Lobos-Bejarano JM, Barrios V, Polo-Garcia J, et al. Evaluation of SAMe-TT2R2 score and other
3605		clinical factors influencing the quality of anticoagulation therapy in non-valvular atrial
3606		fibrillation: a nationwide study in Spain. Current medical research and opinion.
3607		2016;32(7):1201-1207.
3608	183.	Poli D, Antonucci E, Testa S, Lip GY. A prospective validation of the SAME-TT2R 2 score: how
3609		to identify atrial fibrillation patients who will have good anticoagulation control on warfarin.
3610		Internal and emergency medicine. 2014;9(4):443-447.
3611	184.	Roldan V, Cancio S, Galvez J, et al. The SAMe-TT2R2 Score Predicts Poor Anticoagulation
3612		Control in AF Patients: A Prospective 'Real-world' Inception Cohort Study. Am J Med.
3613		2015;128(11):1237-1243.
3614	185.	Ruiz-Ortiz M, Bertomeu V, Cequier A, Marin F, Anguita M. Validation of the SAMe-TT2R2
3615		score in a nationwide population of nonvalvular atrial fibrillation patients on vitamin K
3616		antagonists. Thrombosis and haemostasis. 2015;114(4):695-701.

3617	186.	Skov J, Bladbjerg EM, Bor MV, Gram J. SAMeTT(2)R(2) does not predict time in therapeutic
3618		range of the international normalized ratio in patients attending a high-quality
3619		anticoagulation clinic. Chest. 2014;145(1):187-188.
3620	187.	Szymanski FM, Lip GY, Filipiak KJ, Platek AE, Karpinski G. Usefulness of the SAME-TT2R2
3621		score to predict anticoagulation control on VKA in patients with atrial fibrillation and
3622		obstructive sleep apnea. International journal of cardiology. 2016;204:200-205.
3623	188.	Abumuaileq RR, Abu-Assi E, Raposeiras-Roubin S, et al. Evaluation of SAMe-TT2R2 risk score
3624		for predicting the quality of anticoagulation control in a real-world cohort of patients with
3625		non-valvular atrial fibrillation on vitamin-K antagonists. <i>Europace</i> . 2015;17(5):711-717.
3626	189.	Lip GY, Haguenoer K, Saint-Etienne C, Fauchier L. Relationship of the SAMe-TT2R2 Score to
3627		Poor-Quality Anticoagulation, Stroke, Clinically Relevant Bleeding, and Mortality in Patients
3628		With Atrial Fibrillation. Chest. 2014;146(3):719-726.
3629	190.	Kataruka A, Kong X, Haymart B, et al. SAMe-TT2R2 predicts quality of anticoagulation in
3630		patients with acute venous thromboembolism: The MAQI2 experience. Vascular medicine
3631		(London, England). 2017;22(3):197-203.
3632	191.	Palareti G, Antonucci E, Lip GY, et al. The SAME-TT2R2 score predicts the quality of
3633		anticoagulation control in patients with acute VTE. A real-life inception cohort study.
3634		Thrombosis and haemostasis. 2016;115(6):1101-1108.
3635	192.	Barnes GD, Lucas E, Alexander GC, Goldberger ZD. National Trends in Ambulatory Oral
3636		Anticoagulant Use. The American journal of medicine. 2015;128(12):1300-1305.e1302.
3637	193.	Christensen TD, Larsen TB. Precision and accuracy of point-of-care testing coagulometers
3638		used for self-testing and self-management of oral anticoagulation therapy. J Thromb
3639		Haemost. 2012;10(2):251-260.
3640	194.	FDA. Food and Drug Administration. Point of Care PT/INR Devices for Monitoring Warfarin
3641		Therapy.https://www.fda.gov/downloads/MedicalDevices/NewsEvents/WorkshopsConferen
3642		ces/UCM491546.pdf [Accessed 12 March 2017].
3642 3643	195.	<u>ces/UCM491546.pdf</u> [Accessed 12 March 2017]. Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in
	195.	
3643 3644 3645	195.	Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830.
3643 3644 3645 3646	195. 196.	Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral
3643 3644 3645		Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830.
3643 3644 3645 3646		Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral
3643 3644 3645 3646 3647		 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017.
3643 3644 3645 3646 3647 3648		Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a post-marketing surveillance study. <i>Clinical research in cardiology : official journal of the German</i>
3643 3644 3645 3646 3647 3648 3649	196.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017.
3643 3644 3645 3646 3647 3648 3649 3650	196.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among
3643 3644 3645 3646 3647 3648 3649 3650 3651	196.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the</i>
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652	196.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official practice journal of the American Gastroenterological Association.</i>
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653	196. 197.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245.
3643 3644 3645 3646 3647 3648 3649 3650 3651 3651 3652 3653 3654	196. 197.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655	196. 197. 198.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med.</i> 2016;4:2050312116662414.
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3655	196. 197. 198.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal</i>. 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society</i>. 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association</i>. 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med</i>. 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice
3643 3644 3645 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657	196. 197. 198. 199.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med.</i> 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one.</i> 2014;9(8):e101245.
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3655 3656 3657 3658	196. 197. 198. 199.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med.</i> 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one.</i> 2014;9(8):e101245. Li X, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin
3643 3644 3645 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659	196. 197. 198. 199.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med.</i> 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one.</i> 2014;9(8):e101245. Li X, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients in "real-world" clinical practice. A propensity-
3643 3644 3645 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660	196. 197. 198. 199. 200.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med.</i> 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one.</i> 2014;9(8):e101245. Li X, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients in "real-world" clinical practice. A propensity-matched analysis of 76,940 patients. <i>Thrombosis and haemostasis.</i> 2017.
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661	196. 197. 198. 199. 200.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal</i>. 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society</i>. 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association</i>. 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med</i>. 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one</i>. 2014;9(8):e101245. Li X, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients in "real-world" clinical practice. A propensity-matched analysis of 76,940 patients. <i>Thrombosis and haemostasis</i>. 2017. Bai Y, Shi XB, Ma CS, Lip GYH. Meta-Analysis of Effectiveness and Safety of Oral
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664	196. 197. 198. 199. 200.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal</i>. 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a postmarketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society</i>. 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association</i>. 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med</i>. 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one</i>. 2014;9(8):e101245. Li X, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients. <i>Thrombosis and haemostasis</i>. 2017. Bai Y, Shi XB, Ma CS, Lip GYH. Meta-Analysis of Effectiveness and Safety of Oral Anticoagulants in Atrial Fibrillation With Focus on Apixaban. <i>The American journal of cardiology</i>. 2017. Vrijens B, Heidbuchel H. Non-vitamin K antagonist oral anticoagulants: considerations on
3643 3644 3645 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663	196. 197. 198. 199. 200. 201.	 Hohnloser SH, Hijazi Z, Thomas L, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. <i>European heart journal.</i> 2012;33(22):2821-2830. Hohnloser SH, Basic E, Nabauer M. Comparative risk of major bleeding with new oral anticoagulants (NOACs) and phenprocoumon in patients with atrial fibrillation: a post-marketing surveillance study. <i>Clinical research in cardiology : official journal of the German Cardiac Society.</i> 2017. Bytzer P, Connolly SJ, Yang S, et al. Analysis of upper gastrointestinal adverse events among patients given dabigatran in the RE-LY trial. <i>Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.</i> 2013;11(3):246-252.e241-245. Chan PH, Hai JJ, Huang D, et al. Burden of upper gastrointestinal symptoms in patients prescribed dabigatran for stroke prevention. <i>SAGE Open Med.</i> 2016;4:2050312116662414. Ho MH, Ho CW, Cheung E, et al. Continuation of dabigatran therapy in "real-world" practice in Hong Kong. <i>PloS one.</i> 2014;9(8):e101245. Li X, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients. <i>Thrombosis and haemostasis.</i> 2017. Bai Y, Shi XB, Ma CS, Lip GYH. Meta-Analysis of Effectiveness and Safety of Oral Anticoagulants in Atrial Fibrillation With Focus on Apixaban. <i>The American journal of cardiology.</i> 2017.

3667 3668	203.	Wang KL, Chiu CC, Su-Yin Tan D, et al. Once- or twice-daily non-vitamin K antagonist oral anticoagulants in Asian patients with atrial fibrillation: A meta-analysis of randomized
3669		controlled trials. J Formos Med Assoc. 2017.
3670	204.	Chan PH, Huang D, Hai JJ, et al. Stroke prevention using dabigatran in elderly Chinese
3671	204.	patients with atrial fibrillation. <i>Heart Rhythm.</i> 2016;13(2):366-373.
3672	205.	Lane DA, Aguinaga L, Blomstrom-Lundqvist C, et al. Cardiac tachyarrhythmias and patient
3673	205.	values and preferences for their management: the European Heart Rhythm Association
3674		(EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart
3675		Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacion Cardiaca y
3676		Electrofisiologia (SOLEACE). Europace : European pacing, arrhythmias, and cardiac
3677		electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and
3678		cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(12):1747-
3679		1769.
3680	206.	Ruff CT, Giugliano RP, Antman EM. Management of Bleeding With Non-Vitamin K Antagonist
3681	200.	Oral Anticoagulants in the Era of Specific Reversal Agents. <i>Circulation</i> . 2016;134(3):248-261.
3682	207.	Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association
3683	207.	Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-
3684		valvular atrial fibrillation. Europace : European pacing, arrhythmias, and cardiac
3685		electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and
3686		cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467-
3687		1507.
3688	208.	Kovacs RJ, Flaker GC, Saxonhouse SJ, et al. Practical management of anticoagulation in
3689	200.	patients with atrial fibrillation. <i>Journal of the American College of Cardiology.</i>
3690		2015;65(13):1340-1360.
3691	209.	Weitz JI, Pollack CV, Jr. Practical management of bleeding in patients receiving non-vitamin K
3692		antagonist oral anticoagulants. Thrombosis and haemostasis. 2015;114(6):1113-1126.
3693	210.	Aronis KN, Hylek EM. Who, when, and how to reverse non-vitamin K oral anticoagulants.
3694		Journal of thrombosis and thrombolysis. 2015.
3695	211.	Wang X, Mondal S, Wang J, et al. Effect of activated charcoal on apixaban pharmacokinetics
3696		in healthy subjects. American journal of cardiovascular drugs : drugs, devices, and other
3697		interventions. 2014;14(2):147-154.
3698	212.	Woo JS, Kapadia N, Phanco SE, Lynch CA. Positive outcome after intentional overdose of
3699		dabigatran. Journal of medical toxicology : official journal of the American College of Medical
3700		<i>Toxicology.</i> 2013;9(2):192-195.
3701	213.	Sajkov D, Gallus A. Accidental Rivaroxaban Overdose in a Patient with Pulmonary Embolism:
3702		Some Lessons for Managing New Oral Anticoagulants. Clinical medicine insights. Case
3703		reports. 2015;8:57-59.
3704	214.	van Ryn J, Stangier J, Haertter S, et al. Dabigatran etexilatea novel, reversible, oral direct
3705		thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant
3706		activity. Thrombosis and haemostasis. 2010;103(6):1116-1127.
3707	215.	Pragst I, Zeitler SH, Doerr B, et al. Reversal of dabigatran anticoagulation by prothrombin
3708		complex concentrate (Beriplex P/N) in a rabbit model. Journal of thrombosis and
3709		haemostasis : JTH. 2012;10(9):1841-1848.
3710	216.	Godier A, Miclot A, Le Bonniec B, et al. Evaluation of prothrombin complex concentrate and
3711		recombinant activated factor VII to reverse rivaroxaban in a rabbit model. Anesthesiology.
3712	• ·	2012;116(1):94-102.
3713	217.	Lambourne MD, Eltringham-Smith LJ, Gataiance S, Arnold DM, Crowther MA, Sheffield WP.
3714		Prothrombin complex concentrates reduce blood loss in murine coagulopathy induced by
3715		warfarin, but not in that induced by dabigatran etexilate. <i>Journal of thrombosis and</i>
3716		haemostasis : JTH. 2012;10(9):1830-1840.

3717	218.	Perzborn E, Gruber A, Tinel H, et al. Reversal of rivaroxaban anticoagulation by haemostatic
3718	210.	agents in rats and primates. <i>Thrombosis and haemostasis</i> . 2013;110(1):162-172.
3719	219.	Martin AC, Le Bonniec B, Fischer AM, et al. Evaluation of recombinant activated factor VII,
3720	219.	prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a
3721		rabbit model of bleeding and thrombosis. International journal of cardiology.
3722		2013;168(4):4228-4233.
3723	220.	Zhou W, Zorn M, Nawroth P, et al. Hemostatic therapy in experimental intracerebral
3724		hemorrhage associated with rivaroxaban. Stroke; a journal of cerebral circulation.
3725		2013;44(3):771-778.
3726	221.	Honickel M, Treutler S, van Ryn J, Tillmann S, Rossaint R, Grottke O. Reversal of dabigatran
3727		anticoagulation ex vivo: Porcine study comparing prothrombin complex concentrates and
3728		idarucizumab. Thrombosis and haemostasis. 2015;113(4):728-740.
3729	222.	Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of
3730		rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-
3731		controlled, crossover study in healthy subjects. <i>Circulation</i> . 2011;124(14):1573-1579.
3732	223.	Levi M, Moore KT, Castillejos CF, et al. Comparison of three-factor and four-factor
3733		prothrombin complex concentrates regarding reversal of the anticoagulant effects of
3734		rivaroxaban in healthy volunteers. Journal of thrombosis and haemostasis : JTH.
3735		2014;12(9):1428-1436.
3736	224.	Zahir H, Brown KS, Vandell AG, et al. Edoxaban effects on bleeding following punch biopsy
3737		and reversal by a 4-factor prothrombin complex concentrate. <i>Circulation</i> . 2015;131(1):82-90.
3738	225.	Baudo F, Collins P, Huth-Kuhne A, et al. Management of bleeding in acquired hemophilia A:
3739		results from the European Acquired Haemophilia (EACH2) Registry. Blood. 2012;120(1):39-
3740		46.
3741	226.	Dentali F, Marchesi C, Giorgi Pierfranceschi M, et al. Safety of prothrombin complex
3742		concentrates for rapid anticoagulation reversal of vitamin K antagonists. A meta-analysis.
3743		Thrombosis and haemostasis. 2011;106(3):429-438.
3744	227.	Ehrlich HJ, Henzl MJ, Gomperts ED. Safety of factor VIII inhibitor bypass activity (FEIBA): 10-
3745		year compilation of thrombotic adverse events. <i>Haemophilia : the official journal of the</i>
3746	220	World Federation of Hemophilia. 2002;8(2):83-90.
3747	228.	Schiele F, van Ryn J, Canada K, et al. A specific antidote for dabigatran: functional and
3748	220	structural characterization. <i>Blood.</i> 2013;121(18):3554-3562.
3749	229.	Eikelboom JW, Quinlan DJ, van Ryn J, Weitz JI. Idarucizumab: The Antidote for Reversal of
3750 3751	230.	Dabigatran. <i>Circulation</i> . 2015;132(25):2412-2422. Pollack CV, Jr., Reilly PA, van Ryn J, et al. Idarucizumab for Dabigatran Reversal - Full Cohort
3751	250.	Analysis. The New England journal of medicine. 2017;377(5):431-441.
3753	231.	Lu G, DeGuzman FR, Hollenbach SJ, et al. A specific antidote for reversal of anticoagulation
3754	251.	by direct and indirect inhibitors of coagulation factor Xa. <i>Nature medicine</i> . 2013;19(4):446-
3755		451.
3756	232.	Connolly SJ, Milling TJ, Jr., Eikelboom JW, et al. Andexanet Alfa for Acute Major Bleeding
3757	202.	Associated with Factor Xa Inhibitors. The New England journal of medicine.
3758		2016;375(12):1131-1141.
3759	233.	Laulicht B, Bakhru S, Jiang X. Antidote for new oral anticoagulants: mechanism of action and
3760		binding specificity of PER977. J Thromb Haemost. 2013;11:75.
3761	234.	Moreyra E, Finkelhor RS, Cebul RD. Limitations of transesophageal echocardiography in the
3762		risk assessment of patients before nonanticoagulated cardioversion from atrial fibrillation
3763		and flutter: an analysis of pooled trials. American heart journal. 1995;129(1):71-75.
3764	235.	Gallagher MM, Hennessy BJ, Edvardsson N, et al. Embolic complications of direct current
3765		cardioversion of atrial arrhythmias: association with low intensity of anticoagulation at the
3766		time of cardioversion. Journal of the American College of Cardiology. 2002;40(5):926-933.

3767 3768 3769	236.	Berger M, Schweitzer P. Timing of thromboembolic events after electrical cardioversion of atrial fibrillation or flutter: a retrospective analysis. <i>The American journal of cardiology</i> . 1998;82(12):1545-1547, a1548.
	227	
3770	237.	Manning WJ, Leeman DE, Gotch PJ, Come PC. Pulsed Doppler evaluation of atrial mechanical
3771		function after electrical cardioversion of atrial fibrillation. <i>Journal of the American College of</i>
3772		Cardiology. 1989;13(3):617-623.
3773	238.	Palomaki A, Mustonen P, Hartikainen JE, et al. Strokes after cardioversion of atrial
3774		fibrillationThe FibStroke study. International journal of cardiology. 2016;203:269-273.
3775	239.	Sjalander S, Holmqvist F, Smith JG, et al. Assessment of Use vs Discontinuation of Oral
3776		Anticoagulation After Pulmonary Vein Isolation in Patients With Atrial Fibrillation. JAMA
3777		Cardiol. 2016.
3778	240.	Renda G, Ricci F, Giugliano RP, De Caterina R. Non-Vitamin K Antagonist Oral Anticoagulants
3779		in Patients With Atrial Fibrillation and Valvular Heart Disease. Journal of the American
3780		College of Cardiology. 2017;69(11):1363-1371.
3781	241.	Larsen TB, Potpara T, Dagres N, et al. Preference for oral anticoagulation therapy for patients
3782		with atrial fibrillation in Europe in different clinical situations: results of the European Heart
3783		Rhythm Association Survey. Europace : European pacing, arrhythmias, and cardiac
3784		electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and
3785		cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(5):819-824.
3786	242.	Maan A, Heist EK, Ruskin JN, Mansour M. Practical issues in the management of novel oral
3787		anticoagulants-cardioversion and ablation. <i>Journal of thoracic disease</i> . 2015;7(2):115-131.
3788	243.	Cappato R, Ezekowitz MD, Klein AL, et al. Rivaroxaban vs. vitamin K antagonists for
3789		cardioversion in atrial fibrillation. <i>European heart journal</i> . 2014;35(47):3346-3355.
3790	244.	Xarelto. Summary of Product Characteristics 2015;
3791	277.	http://www.ema.europa.eu/docs/en_GB/document_library/EPAR
3792		Product Information/human/000944/WC500057108.pdf Accessed 5 December 2016.
3793	245.	Pradaxa. Summary of Product Characteristics. 2015;
3794	243.	http://www.ema.europa.eu/docs/en_GB/document_library/EPAR
3795	246	<u>Product Information/human/000829/WC500041059.pdf</u> Accessed 5/12/16, 2016.
3796	246.	Nielsen PB, Lane DA, Rasmussen LH, Lip GY, Larsen TB. Renal function and non-vitamin K oral
3797		anticoagulants in comparison with warfarin on safety and efficacy outcomes in atrial
3798		fibrillation patients: a systemic review and meta-regression analysis. <i>Clinical research in</i>
3799		cardiology : official journal of the German Cardiac Society. 2015;104(5):418-429.
3800	247.	Chan PH, Huang D, Yip PS, et al. Ischaemic stroke in patients with atrial fibrillation with
3801		chronic kidney disease undergoing peritoneal dialysis. Europace : European pacing,
3802		arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac
3803		pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of
3804		Cardiology. 2016;18(5):665-671.
3805	248.	Ezekowitz MD, Pollack CV, Sanders P, et al. Apixaban compared with parenteral heparin
3806		and/or vitamin K antagonist in patients with nonvalvular atrial fibrillation undergoing
3807		cardioversion: Rationale and design of the EMANATE trial. American heart journal.
3808		2016;179:59-68.
3809	249.	Manning WJ, Silverman DI, Gordon SP, Krumholz HM, Douglas PS. Cardioversion from atrial
3810		fibrillation without prolonged anticoagulation with use of transesophageal echocardiography
3811		to exclude the presence of atrial thrombi. The New England journal of medicine.
3812		1993;328(11):750-755.
3813	250.	Klein AL, Grimm RA, Murray RD, et al. Use of transesophageal echocardiography to guide
3814		cardioversion in patients with atrial fibrillation. <i>The New England journal of medicine.</i>
3815		2001;344(19):1411-1420.
3816	251.	Caldeira D, Costa J, Ferreira JJ, Lip GY, Pinto FJ. Non-vitamin K antagonist oral anticoagulants
3817		in the cardioversion of patients with atrial fibrillation: systematic review and meta-analysis.

3818		Clinical research in cardiology : official journal of the German Cardiac Society.
3819		2015;104(7):582-590.
3820	252.	Hoppensteadt D, Fareed J, Klein AL, et al. Comparison of anticoagulant and anti-
3821		inflammatory responses using enoxaparin versus unfractionated heparin for
3822		transesophageal echocardiography-guided cardioversion of atrial fibrillation. The American
3823		journal of cardiology. 2008;102(7):842-846.
3824	253.	Klein AL, Jasper SE, Katz WE, et al. The use of enoxaparin compared with unfractionated
3825		heparin for short-term antithrombotic therapy in atrial fibrillation patients undergoing
3826		transoesophageal echocardiography-guided cardioversion: assessment of Cardioversion
3827		Using Transoesophageal Echocardiography (ACUTE) II randomized multicentre study. Eur
3828		Heart J. 2006;27(23):2858-2865.
3829	254.	de Luca I, Sorino M, De Luca L, Colonna P, Del Salvatore B, Corliano L. Pre- and post-
3830		cardioversion transesophageal echocardiography for brief anticoagulation therapy with
3831		enoxaparin in atrial fibrillation patients: a prospective study with a 1-year follow-up.
3832		International journal of cardiology. 2005;102(3):447-454.
3833	255.	Wu LA, Chandrasekaran K, Friedman PA, et al. Safety of expedited anticoagulation in
3834		patients undergoing transesophageal echocardiographic-guided cardioversion. <i>The American</i>
3835	250	<i>journal of medicine.</i> 2006;119(2):142-146.
3836	256.	Stellbrink C, Nixdorff U, Hofmann T, et al. Safety and efficacy of enoxaparin compared with
3837		unfractionated heparin and oral anticoagulants for prevention of thromboembolic
3838		complications in cardioversion of nonvalvular atrial fibrillation: the Anticoagulation in
3839	257	Cardioversion using Enoxaparin (ACE) trial. <i>Circulation</i> . 2004;109(8):997-1003.
3840	257.	Di Minno MN, Ambrosino P, Dello Russo A, Casella M, Tremoli E, Tondo C. Prevalence of left
3841 3842		atrial thrombus in patients with non-valvular atrial fibrillation. A systematic review and meta-analysis of the literature. <i>Thrombosis and haemostasis</i> . 2016;115(3):663-677.
3843	258.	Di Biase L, Briceno DF, Trivedi C, et al. Is transesophageal echocardiogram mandatory in
3843 3844	230.	patients undergoing ablation of atrial fibrillation with uninterrupted novel oral
3845		anticoagulants? Results from a prospective multicenter registry. <i>Heart Rhythm</i> .
3845 3846		2016;13(6):1197-1202.
3847	259.	Antonielli E, Pizzuti A, Palinkas A, et al. Clinical value of left atrial appendage flow for
3848	255.	prediction of long-term sinus rhythm maintenance in patients with nonvalvular atrial
3849		fibrillation. Journal of the American College of Cardiology. 2002;39(9):1443-1449.
3850	260.	Berry C, Stewart S, Payne EM, McArthur JD, McMurray JJ. Electrical cardioversion for atrial
3851	200.	fibrillation: outcomes in "real-life" clinical practice. <i>International journal of cardiology.</i>
3852		2001;81(1):29-35.
3853	261.	Arnar DO, Danielsen R. Factors predicting maintenance of sinus rhythm after direct current
3854	-	cardioversion of atrial fibrillation and flutter: a reanalysis with recently acquired data.
3855		Cardiology. 1996;87(3):181-188.
3856	262.	Paraskevaidis IA, Dodouras T, Tsiapras D, Kremastinos DT. Prediction of successful
3857		cardioversion and maintenance of sinus rhythm in patients with lone atrial fibrillation. Chest.
3858		2005;127(2):488-494.
3859	263.	Sherman DG, Kim SG, Boop BS, et al. Occurrence and characteristics of stroke events in the
3860		Atrial Fibrillation Follow-up Investigation of Sinus Rhythm Management (AFFIRM) study.
3861		Archives of internal medicine. 2005;165(10):1185-1191.
3862	264.	Page RL, Wilkinson WE, Clair WK, McCarthy EA, Pritchett EL. Asymptomatic arrhythmias in
3863		patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular
3864		tachycardia. Circulation. 1994;89(1):224-227.
3865	265.	Stoddard MF, Dawkins PR, Prince CR, Ammash NM. Left atrial appendage thrombus is not
3866		uncommon in patients with acute atrial fibrillation and a recent embolic event: a
3867		transesophageal echocardiographic study. Journal of the American College of Cardiology.
3868		1995;25(2):452-459.

3869	266.	Kleemann T, Becker T, Strauss M, Schneider S, Seidl K. Prevalence of left atrial thrombus and
3870		dense spontaneous echo contrast in patients with short-term atrial fibrillation < 48 hours
3871		undergoing cardioversion: value of transesophageal echocardiography to guide
3872		cardioversion. Journal of the American Society of Echocardiography : official publication of
3873		the American Society of Echocardiography. 2009;22(12):1403-1408.
3874	267.	Flaker GC, Belew K, Beckman K, et al. Asymptomatic atrial fibrillation: demographic features
3875		and prognostic information from the Atrial Fibrillation Follow-up Investigation of Rhythm
3876		Management (AFFIRM) study. American heart journal. 2005;149(4):657-663.
3877	268.	Airaksinen KE, Gronberg T, Nuotio I, et al. Thromboembolic complications after
3878		cardioversion of acute atrial fibrillation: the FinCV (Finnish CardioVersion) study. Journal of
3879		the American College of Cardiology. 2013;62(13):1187-1192.
3880	269.	Jaakkola S, Lip GY, Biancari F, et al. Predicting Unsuccessful Electrical Cardioversion for Acute
3881		Atrial Fibrillation (from the AF-CVS Score). The American journal of cardiology. 2016.
3882	270.	Weigner MJ, Caulfield TA, Danias PG, Silverman DI, Manning WJ. Risk for clinical
3883		thromboembolism associated with conversion to sinus rhythm in patients with atrial
3884		fibrillation lasting less than 48 hours. Annals of internal medicine. 1997;126(8):615-620.
3885	271.	Michael JA, Stiell IG, Agarwal S, Mandavia DP. Cardioversion of paroxysmal atrial fibrillation
3886		in the emergency department. Annals of emergency medicine. 1999;33(4):379-387.
3887	272.	Burton JH, Vinson DR, Drummond K, Strout TD, Thode HC, McInturff JJ. Electrical
3888		cardioversion of emergency department patients with atrial fibrillation. Annals of emergency
3889		medicine. 2004;44(1):20-30.
3890	273.	Stiell IG, Clement CM, Perry JJ, et al. Association of the Ottawa Aggressive Protocol with
3891		rapid discharge of emergency department patients with recent-onset atrial fibrillation or
3892		flutter. <i>Cjem.</i> 2010;12(3):181-191.
3893	274.	Xavier Scheuermeyer F, Grafstein E, Stenstrom R, Innes G, Poureslami I, Sighary M. Thirty-
3894		day outcomes of emergency department patients undergoing electrical cardioversion for
3895		atrial fibrillation or flutter. Academic emergency medicine : official journal of the Society for
3896		Academic Emergency Medicine. 2010;17(4):408-415.
3897	275.	Arnold AZ, Mick MJ, Mazurek RP, Loop FD, Trohman RG. Role of prophylactic anticoagulation
3898		for direct current cardioversion in patients with atrial fibrillation or atrial flutter. Journal of
3899		the American College of Cardiology. 1992;19(4):851-855.
3900	276.	Chalasani P, Cambre S, Silverman ME. Direct-current cardioversion for the conversion of
3901		atrial flutter. The American journal of cardiology. 1996;77(8):658-660.
3902	277.	Task Force M, Lip GY, Windecker S, et al. Management of antithrombotic therapy in atrial
3903		fibrillation patients presenting with acute coronary syndrome and/or undergoing
3904		percutaneous coronary or valve interventions: a joint consensus document of the European
3905		Society of Cardiology Working Group on Thrombosis, European Heart Rhythm Association
3906		(EHRA), European Association of Percutaneous Cardiovascular Interventions (EAPCI) and
3907		European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society
3908		(HRS) and Asia-Pacific Heart Rhythm Society (APHRS). European heart journal.
3909		2014;35(45):3155-3179.
3910	278.	Basili S, Loffredo L, Pastori D, et al. Carotid plaque detection improves the predictive value of
3911		CHA2DS2-VASc score in patients with non-valvular atrial fibrillation: The ARAPACIS Study.
3912		International journal of cardiology. 2017;231:143-149.
3913	279.	Lip G, Collet JP, Haude M, et al. 2018 Joint European consensus document on the
3914		management of antithrombotic therapy in atrial fibrillation patients presenting with acute
3915		coronary syndrome and/or undergoing percutaneous cardiovascular interventions: A joint
3916		consensus document of the European Heart Rhythm Association (EHRA), European Society
3917		of Cardiology Working Group on Thrombosis, European Association of Percutaneous
3918		Cardiovascular Interventions (EAPCI) and European Association of Acute Cardiac Care (ACCA)
3919		endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS),

3920		Latin America Heart Rhythm Society (LAHRS) and Cardiac Arrhythmia Society of Southern
3921		Africa (CASSA) Europace : European pacing, arrhythmias, and cardiac electrophysiology :
3922		journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular
3923		electrophysiology of the European Society of Cardiology. 2018:In Press (August).
3924	280.	Bonaca MP, Goto S, Bhatt DL, et al. Prevention of Stroke with Ticagrelor in Patients with
	200.	
3925		Prior Myocardial Infarction: Insights from PEGASUS-TIMI 54 (Prevention of Cardiovascular
3926		Events in Patients With Prior Heart Attack Using Ticagrelor Compared to Placebo on a
3927		Background of Aspirin-Thrombolysis in Myocardial Infarction 54). (1524-4539 (Electronic)).
3928	281.	Proietti M, Airaksinen KEJ, Rubboli A, et al. Time in therapeutic range and major adverse
3929		outcomes in atrial fibrillation patients undergoing percutaneous coronary intervention: The
3930		Atrial Fibrillation Undergoing Coronary Artery Stenting (AFCAS) registry. American heart
3931		journal. 2017;190:86-93.
3932	282.	Angiolillo DJ, Goodman SG, Bhatt DL, et al. Antithrombotic Therapy in Patients With Atrial
3933		Fibrillation Undergoing Percutaneous Coronary Intervention: A North American Perspective-
3934		2016 Update. <i>Circ Cardiovasc Interv.</i> 2016;9(11).
	202	
3935	283.	Chaudhary N, Bundhun PK, Yan H. Comparing the clinical outcomes in patients with atrial
3936		fibrillation receiving dual antiplatelet therapy and patients receiving an addition of an
3937		anticoagulant after coronary stent implantation: A systematic review and meta-analysis of
3938		observational studies. Medicine (Baltimore). 2016;95(50):e5581.
3939	284.	Zhu W, Guo L, Liu F, et al. Efficacy and safety of triple versus dual antithrombotic therapy in
3940		atrial fibrillation and ischemic heart disease: a systematic review and meta-analysis.
3941		Oncotarget. 2017;8(46):81154-81166.
3942	285.	Bennaghmouch N, de Veer A, Bode K, et al. The Efficacy and Safety of the Use of Non-
3943		Vitamin-K Antagonist Oral Anticoagulants in Patients with Non-Valvular Atrial Fibrillation and
3944		Concomitant Aspirin Therapy: A Meta-Analysis of Randomized Trials. <i>Circulation</i> . 2017.
3945	286.	Lamberts M, Gislason GH, Olesen JB, et al. Oral anticoagulation and antiplatelets in atrial
3946	200.	fibrillation patients after myocardial infarction and coronary intervention. <i>Journal of the</i>
3947	207	American College of Cardiology. 2013;62(11):981-989.
3948	287.	Dewilde WJ, Oirbans T, Verheugt FW, et al. Use of clopidogrel with or without aspirin in
3949		patients taking oral anticoagulant therapy and undergoing percutaneous coronary
3950		intervention: an open-label, randomised, controlled trial. Lancet. 2013;381(9872):1107-
3951		1115.
3952	288.	Fiedler KA, Maeng M, Mehilli J, et al. Duration of Triple Therapy in Patients Requiring Oral
3953		Anticoagulation After Drug-Eluting Stent Implantation: The ISAR-TRIPLE Trial. Journal of the
3954		American College of Cardiology. 2015;65(16):1619-1629.
3955	289.	Gibson CM, Mehran R, Bode C, et al. Prevention of Bleeding in Patients with Atrial
3956		Fibrillation Undergoing PCI. The New England journal of medicine. 2016;375(25):2423-2434.
3957	290.	Gibson CM, Pinto DS, Chi G, et al. Recurrent Hospitalization Among Patients With Atrial
3958	250.	Fibrillation Undergoing Intracoronary Stenting Treated With 2 Treatment Strategies of
3959		Rivaroxaban or a Dose-Adjusted Oral Vitamin K Antagonist Treatment Strategy. <i>Circulation.</i>
3960		2017;135(4):323-333.
3961	291.	Cannon CP, Bhatt DL, Oldgren J, et al. Dual Antithrombotic Therapy with Dabigatran after PCI
3962		in Atrial Fibrillation. The New England journal of medicine. 2017.
3963	292.	Sarafoff N, Martischnig A, Wealer J, et al. Triple therapy with aspirin, prasugrel, and vitamin
3964		K antagonists in patients with drug-eluting stent implantation and an indication for oral
3965		anticoagulation. Journal of the American College of Cardiology. 2013;61(20):2060-2066.
3966	293.	Ohman EM, Roe MT, Steg PG, et al. Clinically significant bleeding with low-dose rivaroxaban
3967		versus aspirin, in addition to P2Y12 inhibition, in acute coronary syndromes (GEMINI-ACS-1):
3968		a double-blind, multicentre, randomised trial. <i>Lancet.</i> 2017.
		,

3969 3970	294.	Nielsen PB, Skjoth F, Rasmussen LH, Larsen TB, Lip GY. Using the CHA2DS2-VASc Score for Stroke Prevention in Atrial Fibrillation: A Focus on Vascular Disease, Women, and Simple
3971		Practical Application. Can J Cardiol. 2015;31(6):820 e829-810.
3972	295.	Lin LY, Lee CH, Yu CC, et al. Risk factors and incidence of ischemic stroke in Taiwanese with
3973	295.	nonvalvular atrial fibrillation a nation wide database analysis. Atherosclerosis.
3973 3974		
	200	2011;217(1):292-295.
3975	296.	Friberg L, Rosenqvist M, Lip GY. Evaluation of risk stratification schemes for ischaemic stroke
3976		and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort
3977	207	study. <i>Eur Heart J.</i> 2012;33(12):1500-1510.
3978	297.	Lamberts M, Gislason GH, Lip GY, et al. Antiplatelet therapy for stable coronary artery
3979		disease in atrial fibrillation patients taking an oral anticoagulant: a nationwide cohort study.
3980	• • •	<i>Circulation.</i> 2014;129(15):1577-1585.
3981	298.	Kumar S, Danik SB, Altman RK, et al. Non-Vitamin K Antagonist Oral Anticoagulants and
3982		Antiplatelet Therapy for Stroke Prevention in Patients With Atrial Fibrillation: A Meta-
3983		Analysis of Randomized Controlled Trials. Cardiol Rev. 2016;24(5):218-223.
3984	299.	Dans AL, Connolly SJ, Wallentin L, et al. Concomitant use of antiplatelet therapy with
3985		dabigatran or warfarin in the Randomized Evaluation of Long-Term Anticoagulation Therapy
3986		(RE-LY) trial. <i>Circulation</i> . 2013;127(5):634-640.
3987	300.	Jones WS, Hellkamp AS, Halperin J, et al. Efficacy and safety of rivaroxaban compared with
3988		warfarin in patients with peripheral artery disease and non-valvular atrial fibrillation: insights
3989		from ROCKET AF. <i>Eur Heart J.</i> 2014;35(4):242-249.
3990	301.	Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert
3991		consensus statement on catheter and surgical ablation of atrial fibrillation. Europace :
3992		European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups
3993		on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European
3994		Society of Cardiology. 2017.
3995	302.	Di Biase L, Burkhardt JD, Santangeli P, et al. Periprocedural stroke and bleeding
3996		complications in patients undergoing catheter ablation of atrial fibrillation with different
3997		anticoagulation management: results from the Role of Coumadin in Preventing
3998		Thromboembolism in Atrial Fibrillation (AF) Patients Undergoing Catheter Ablation
3999		(COMPARE) randomized trial. Circulation. 2014;129(25):2638-2644.
4000	303.	Cappato R, Marchlinski FE, Hohnloser SH, et al. Uninterrupted rivaroxaban vs. uninterrupted
4001		vitamin K antagonists for catheter ablation in non-valvular atrial fibrillation. European heart
4002		journal. 2015;36(28):1805-1811.
4003	304.	Calkins H, Willems S, Gerstenfeld EP, et al. Uninterrupted Dabigatran versus Warfarin for
4004		Ablation in Atrial Fibrillation. <i>The New England journal of medicine</i> . 2017;376(17):1627-1636.
4005	305.	Cardoso R, Knijnik L, Bhonsale A, et al. An updated meta-analysis of novel oral anticoagulants
4006		versus vitamin K antagonists for uninterrupted anticoagulation in atrial fibrillation catheter
4007		ablation. Heart rhythm : the official journal of the Heart Rhythm Society. 2017.
4008	306.	Nairooz R, Ayoub K, Sardar P, et al. Uninterrupted New Oral Anticoagulants Compared With
4009		Uninterrupted Vitamin K Antagonists in Ablation of Atrial Fibrillation: A Meta-analysis. Can J
4010		Cardiol. 2016;32(6):814-823.
4011	307.	Daoud EG, Glotzer TV, Wyse DG, et al. Temporal relationship of atrial tachyarrhythmias,
4012		cerebrovascular events, and systemic emboli based on stored device data: a subgroup
4013		analysis of TRENDS. Heart rhythm : the official journal of the Heart Rhythm Society.
4014		2011;8(9):1416-1423.
4015	308.	Brambatti M, Connolly SJ, Gold MR, et al. Temporal relationship between subclinical atrial
4016		fibrillation and embolic events. Circulation. 2014;129(21):2094-2099.
4017	309.	Gialdini G, Nearing K, Bhave PD, et al. Perioperative atrial fibrillation and the long-term risk
4018		of ischemic stroke. JAMA. 2014;312(6):616-622.

4019 4020 4021	310.	Essebag V, Healey JS, Ayala-Paredes F, et al. Strategy of continued vs interrupted novel oral anticoagulant at time of device surgery in patients with moderate to high risk of arterial thromboembolic events: The BRUISE CONTROL-2 trial. <i>American heart journal</i> .
4022		2016;173:102-107.
4023	311.	Saxena R, Lewis S, Berge E, Sandercock PA, Koudstaal PJ. Risk of early death and recurrent
4024		stroke and effect of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation
4025		in the International Stroke Trial. <i>Stroke; a journal of cerebral circulation</i> . 2001;32(10):2333-
4026		2337.
4027	312.	Hart RG, Coull BM, Hart D. Early recurrent embolism associated with nonvalvular atrial
4028		fibrillation: a retrospective study. Stroke; a journal of cerebral circulation. 1983;14(5):688-
4029		693.
4030	313.	Berge E, Abdelnoor M, Nakstad PH, Sandset PM. Low molecular-weight heparin versus
4031		aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double-blind
4032		randomised study. HAEST Study Group. Heparin in Acute Embolic Stroke Trial. Lancet.
4033		2000;355(9211):1205-1210.
4034	314.	Paciaroni M, Agnelli G, Micheli S, Caso V. Efficacy and safety of anticoagulant treatment in
4035		acute cardioembolic stroke: a meta-analysis of randomized controlled trials. Stroke; a journal
4036		of cerebral circulation. 2007;38(2):423-430.
4037	315.	CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute
4038		ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet.
4039		1997;349(9066):1641-1649.
4040	316.	Lin HJ, Wolf PA, Kelly-Hayes M, et al. Stroke severity in atrial fibrillation. The Framingham
4041		Study. Stroke; a journal of cerebral circulation. 1996;27(10):1760-1764.
4042	317.	Paciaroni M, Agnelli G, Corea F, et al. Early hemorrhagic transformation of brain infarction:
4043		rate, predictive factors, and influence on clinical outcome: results of a prospective
4044		multicenter study. Stroke; a journal of cerebral circulation. 2008;39(8):2249-2256.
4045	318.	Paciaroni M, Agnelli G, Falocci N, et al. Early Recurrence and Cerebral Bleeding in Patients
4046		With Acute Ischemic Stroke and Atrial Fibrillation: Effect of Anticoagulation and Its Timing:
4047		The RAF Study. <i>Stroke; a journal of cerebral circulation.</i> 2015;46(8):2175-2182.
4048	319.	Abdul-Rahim AH, Fulton RL, Frank B, et al. Association of improved outcome in acute
4049		ischaemic stroke patients with atrial fibrillation who receive early antithrombotic therapy:
4050		analysis from VISTA. <i>Eur J Neurol.</i> 2015;22(7):1048-1055.
4051	320.	Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients
4052		with stroke and transient ischemic attack: a guideline for healthcare professionals from the
4053		American Heart Association/American Stroke Association. Stroke; a journal of cerebral
4054	224	<i>circulation.</i> 2014;45(7):2160-2236.
4055	321.	Kirchhof P, Benussi S, Kotecha D, et al. [2016 ESC Guidelines for the management of atrial
4056	222	fibrillation developed in collaboration with EACTS]. <i>Kardiol Pol.</i> 2016;74(12):1359-1469.
4057	322.	Paciaroni M, Agnelli G, Ageno W, Caso V. Timing of anticoagulation therapy in patients with
4058		acute ischaemic stroke and atrial fibrillation. <i>Thrombosis and haemostasis</i> . 2016;116(3):410-
4059	272	416. Dalm F. Kraus M. Safer A. Wolf I. Becher H. Crau AI. Management of eral anticeographic
4060	323.	Palm F, Kraus M, Safer A, Wolf J, Becher H, Grau AJ. Management of oral anticoagulation
4061		after cardioembolic stroke and stroke survival data from a population based stroke registry
4062 4063	274	(LuSSt). <i>BMC neurology</i> . 2014;14:199.
4063	324.	Chamorro A, Vila N, Ascaso C, Blanc R. Heparin in acute stroke with atrial fibrillation: clinical relevance of very early treatment. <i>Archives of neurology</i> . 1999;56(9):1098-1102.
	325.	Hahn C, Hill MD. Early Anti-Coagulation after Ischemic Stroke due to Atrial Fibrillation is Safe
4065 4066	525.	and Prevents Recurrent Stroke. The Canadian journal of neurological sciences. Le journal
4066		canadien des sciences neurologiques. 2015;42(2):92-95.
4067	326.	Hallevi H, Albright KC, Martin-Schild S, et al. Anticoagulation after cardioembolic stroke: to
4069	520.	bridge or not to bridge? Archives of neurology. 2008;65(9):1169-1173.

4070	327.	Kim TH, Kim JY, Mun HS, et al. Heparin bridging in warfarin anticoagulation therapy initiation
4071		could increase bleeding in non-valvular atrial fibrillation patients: a multicenter propensity-
4072		matched analysis. Journal of thrombosis and haemostasis : JTH. 2015;13(2):182-190.
4073	328.	Audebert HJ, Schenk B, Tietz V, Schenkel J, Heuschmann PU. Initiation of oral anticoagulation
4074		after acute ischaemic stroke or transient ischaemic attack: timing and complications of
4075		overlapping heparin or conventional treatment. Cerebrovascular diseases (Basel,
4076		Switzerland). 2008;26(2):171-177.
4077	329.	Seiffge DJ, Traenka C, Polymeris A, et al. Early start of DOAC after ischemic stroke: Risk of
4078		intracranial hemorrhage and recurrent events. Neurology. 2016;87(18):1856-1862.
4079	330.	Toyoda K, Arihiro S, Todo K, et al. Trends in oral anticoagulant choice for acute stroke
4080		patients with nonvalvular atrial fibrillation in Japan: the SAMURAI-NVAF study. International
4081		journal of stroke : official journal of the International Stroke Society. 2015;10(6):836-842.
4082	331.	Arihiro S, Todo K, Koga M, et al. Three-month risk-benefit profile of anticoagulation after
4083		stroke with atrial fibrillation: The SAMURAI-Nonvalvular Atrial Fibrillation (NVAF) study.
4084		International journal of stroke : official journal of the International Stroke Society.
4085		2016;11(5):565-574.
4086	332.	Terent A, Asberg S, Oldgren J, Hijazi Z, Norrving B. [Not Available]. <i>Lakartidningen.</i> 2016;113.
4087	333.	Hong KS, Choi YJ, Kwon SU, Triple AI. Rationale and design of Triple AXEL: trial for early
4088		anticoagulation in acute ischemic stroke patients with nonvalvular atrial fibrillation.
4089		International journal of stroke : official journal of the International Stroke Society.
4090		2015;10(1):128-133.
4091	334.	Lovelock CE, Molyneux AJ, Rothwell PM, Oxford Vascular S. Change in incidence and
4092		aetiology of intracerebral haemorrhage in Oxfordshire, UK, between 1981 and 2006: a
4093		population-based study. <i>Lancet Neurol.</i> 2007;6(6):487-493.
4094	335.	Horstmann S, Rizos T, Jenetzky E, Gumbinger C, Hacke W, Veltkamp R. Prevalence of atrial
4095		fibrillation in intracerebral hemorrhage. <i>Eur J Neurol.</i> 2014;21(4):570-576.
4096	336.	Chao TF, Liu CJ, Liao JN, et al. Use of Oral Anticoagulants for Stroke Prevention in Patients
4097		With Atrial Fibrillation Who Have a History of Intracranial Hemorrhage. <i>Circulation</i> .
4098		2016;133(16):1540-1547.
4099	337.	Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral
4100		haemorrhage: systematic review and meta-analysis. Journal of neurology, neurosurgery, and
4101		psychiatry. 2014;85(6):660-667.
4102	338.	Charidimou A, Schmitt A, Wilson D, et al. The Cerebral Haemorrhage Anatomical RaTing
4103		inStrument (CHARTS): Development and assessment of reliability. J Neurol Sci.
4104		2017;372:178-183.
4105	339.	Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid
4106		angiopathy: validation of the Boston criteria. <i>Neurology</i> . 2001;56(4):537-539.
4107	340.	Charidimou A, Imaizumi T, Moulin S, et al. Brain hemorrhage recurrence, small vessel
4108		disease type, and cerebral microbleeds: A meta-analysis. <i>Neurology</i> . 2017;89(8):820-829.
4109	341.	Wilson D, Charidimou A, Ambler G, et al. Recurrent stroke risk and cerebral microbleed
4110		burden in ischemic stroke and TIA: A meta-analysis. <i>Neurology</i> . 2016;87(14):1501-1510.
4111	342.	Wilson D, Werring DJ. Antithrombotic therapy in patients with cerebral microbleeds. <i>Curr</i>
4112	0.1	Opin Neurol. 2017;30(1):38-47.
4113	343.	Eckman MH, Rosand J, Knudsen KA, Singer DE, Greenberg SM. Can patients be
4114	5.5.	anticoagulated after intracerebral hemorrhage? A decision analysis. <i>Stroke; a journal of</i>
4115		cerebral circulation. 2003;34(7):1710-1716.
4116	344.	Murthy SB, Gupta A, Merkler AE, et al. Restarting Anticoagulant Therapy After Intracranial
4117	5	Hemorrhage: A Systematic Review and Meta-Analysis. <i>Stroke; a journal of cerebral</i>
4118		circulation. 2017;48(6):1594-1600.
4119	345.	Orken DN, Kenangil G, Ozkurt H, et al. Prevention of deep venous thrombosis and pulmonary
4120	0.01	embolism in patients with acute intracerebral hemorrhage. <i>Neurologist.</i> 2009;15(6):329-331.
.120		

4121	346.	Dickmann U, Voth E, Schicha H, Henze T, Prange H, Emrich D. Heparin therapy, deep-vein
4122		thrombosis and pulmonary embolism after intracerebral hemorrhage. Klin Wochenschr.
4123		1988;66(23):1182-1183.
4124	347.	Majeed A, Kim YK, Roberts RS, Holmstrom M, Schulman S. Optimal timing of resumption of
4125		warfarin after intracranial hemorrhage. Stroke; a journal of cerebral circulation.
4126		2010;41(12):2860-2866.
4127	348.	Wilson D, Seiffge DJ, Traenka C, et al. Outcome of intracerebral hemorrhage associated with
4128		different oral anticoagulants. <i>Neurology</i> . 2017;88(18):1693-1700.
4129	349.	Lewalter T, Kanagaratnam P, Schmidt B, et al. Ischaemic stroke prevention in patients with
4130		atrial fibrillation and high bleeding risk: opportunities and challenges for percutaneous left
4131		atrial appendage occlusion. <i>Europace</i> . 2014;16(5):626-630.
4132	350.	Boersma LV, Ince H, Kische S, et al. Efficacy and Safety of Left Atrial Appendage Closure with
4133		WATCHMAN in Patients with or without Contraindication to Oral Anticoagulation: 1-year
4134	254	follow-up outcome data of the EWOLUTION trial. <i>Heart Rhythm</i> . 2017.
4135	351.	Renou P, Thambo JB, Iriart X, et al. Left Atrial Appendage Closure in Patients with Atrial
4136		Fibrillation and Previous Intracerebral Hemorrhage. <i>Journal of stroke and cerebrovascular</i>
4137	252	diseases : the official journal of National Stroke Association. 2017;26(3):545-551.
4138	352.	Horstmann S, Zugck C, Krumsdorf U, et al. Left atrial appendage occlusion in atrial fibrillation
4139	252	after intracranial hemorrhage. <i>Neurology</i> . 2014;82(2):135-138.
4140	353.	Mineva PP, Manchev IC, Hadjiev DI. Prevalence and outcome of asymptomatic carotid
4141	254	stenosis: a population-based ultrasonographic study. <i>Eur J Neurol.</i> 2002;9(4):383-388.
4142	354.	Lehtola H, Airaksinen KEJ, Hartikainen P, et al. Stroke recurrence in patients with atrial
4143 4144		fibrillation: concomitant carotid artery stenosis doubles the risk. <i>European journal of</i>
4144 4145		neurology : the official journal of the European Federation of Neurological Societies. 2017;24(5):719-725.
4145 4146	355.	Bonati LH, Dobson J, Featherstone RL, et al. Long-term outcomes after stenting versus
4140	555.	endarterectomy for treatment of symptomatic carotid stenosis: the International Carotid
4148		Stenting Study (ICSS) randomised trial. <i>Lancet.</i> 2015;385(9967):529-538.
4149	356.	Saver JL. Cryptogenic Stroke. <i>The New England journal of medicine</i> . 2016;375(11):e26.
4150	357.	Hart RG, Diener HC, Coutts SB, et al. Embolic strokes of undetermined source: the case for a
4151	557.	new clinical construct. <i>Lancet Neurol.</i> 2014;13(4):429-438.
4152	358.	Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic Stroke of Undetermined
4153	5561	Source: A Systematic Review and Clinical Update. <i>Stroke; a journal of cerebral circulation</i> .
4154		2017;48(4):867-872.
4155	359.	Liao J, Khalid Z, Scallan C, Morillo C, O'Donnell M. Noninvasive cardiac monitoring for
4156		detecting paroxysmal atrial fibrillation or flutter after acute ischemic stroke: a systematic
4157		review. <i>Stroke; a journal of cerebral circulation.</i> 2007;38(11):2935-2940.
4158	360.	Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation.
4159		The New England journal of medicine. 2014;370(26):2478-2486.
4160	361.	Gladstone DJ, Spring M, Dorian P, et al. Atrial fibrillation in patients with cryptogenic stroke.
4161		The New England journal of medicine. 2014;370(26):2467-2477.
4162	362.	Sposato LA, Cipriano LE, Saposnik G, Ruiz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial
4163		fibrillation after stroke and transient ischaemic attack: a systematic review and meta-
4164		analysis. Lancet Neurol. 2015;14(4):377-387.
4165	363.	Lip GY, Hunter TD, Quiroz ME, Ziegler PD, Turakhia MP. Atrial Fibrillation Diagnosis Timing,
4166		Ambulatory ECG Monitoring Utilization, and Risk of Recurrent Stroke. Circulation.
4167		Cardiovascular quality and outcomes. 2017;10(1).
4168	364.	Afzal MR, Gunda S, Waheed S, et al. Role of Outpatient Cardiac Rhythm Monitoring in
4169		Cryptogenic Stroke: A Systematic Review and Meta-Analysis. Pacing and clinical
4170		electrophysiology : PACE. 2015;38(10):1236-1245.

4171	265	Fourille CC, Incole F, Iore I, et al. Duadiators of finding acquit strict fibrillation often
4171 4172	365.	Favilla CG, Ingala E, Jara J, et al. Predictors of finding occult atrial fibrillation after cryptogenic stroke. <i>Stroke; a journal of cerebral circulation</i> . 2015;46(5):1210-1215.
4172	366.	Ziegler PD, Glotzer TV, Daoud EG, et al. Detection of previously undiagnosed atrial fibrillation
4173	500.	in patients with stroke risk factors and usefulness of continuous monitoring in primary
4174		stroke prevention. The American journal of cardiology. 2012;110(9):1309-1314.
4175	367.	Healey JS, Alings M, Ha AC, et al. Subclinical Atrial Fibrillation in Older Patients. <i>Circulation</i> .
4170	507.	2017.
4177	368.	Ntaios G, Lip GY, Makaritsis K, et al. CHADS(2), CHA(2)S(2)DS(2)-VASc, and long-term stroke
4178	506.	outcome in patients without atrial fibrillation. <i>Neurology</i> . 2013;80(11):1009-1017.
4179	369.	Ntaios G, Papavasileiou V, Lip GY, et al. Embolic Stroke of Undetermined Source and
4180	509.	Detection of Atrial Fibrillation on Follow-Up: How Much Causality Is There? <i>Journal of stroke</i>
4181		and cerebrovascular diseases : the official journal of National Stroke Association. 2016.
4182	370.	Ntaios G, Lip GYH, Vemmos K, et al. Age- and sex-specific analysis of patients with embolic
4183	570.	stroke of undetermined source. <i>Neurology</i> . 2017;89(6):532-539.
4184	371.	Gorenek B, Bax J, Boriani G, et al. Device-detected subclinical atrial tachyarrhythmias:
4185	571.	definition, implications and management-an European Heart Rhythm Association (EHRA)
4180		consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm
4187		Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología
4188		(SOLEACE). Europace. 2017;19(9):1556-1578.
4190	372.	Boriani G, Pettorelli D. Atrial fibrillation burden and atrial fibrillation type: Clinical
4191	572.	significance and impact on the risk of stroke and decision making for long-term
4191		anticoagulation. Vascular pharmacology. 2016;83:26-35.
4192	373.	Mairesse GH, Moran P, Van Gelder IC, et al. Screening for atrial fibrillation: a European Heart
4194	575.	Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society
4194		(HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de
4196		Estimulación Cardíaca y Electrofisiología (SOLAECE). <i>Europace</i> . 2017;19(10):1589-1623.
4197	374.	Freedman B, Camm J, Calkins H, et al. Screening for Atrial Fibrillation: A Report of the AF-
4198	574.	SCREEN International Collaboration. <i>Circulation</i> . 2017;135(19):1851-1867.
4199	375.	Healey JS, Connolly SJ, Gold MR, et al. Subclinical atrial fibrillation and the risk of stroke. <i>The</i>
4200	575.	New England journal of medicine. 2012;366(2):120-129.
4201	376.	Freedman B, Boriani G, Glotzer TV, Healey JS, Kirchhof P, Potpara TS. Management of atrial
4202	5701	high-rate episodes detected by cardiac implanted electronic devices. <i>Nature reviews.</i>
4203		Cardiology. 2017.
4204	377.	Boriani G, Valzania C, Biffi M, Diemberger I, Ziacchi M, Martignani C. Asymptomatic lone
4205	0	atrial fibrillation - how can we detect the arrhythmia? <i>Current pharmaceutical design</i> .
4206		2015;21(5):659-666.
4207	378.	Pollak WM, Simmons JD, Interian A, et al. Clinical utility of intraatrial pacemaker stored
4208		electrograms to diagnose atrial fibrillation and flutter. Pacing and clinical electrophysiology :
4209		PACE. 2001;24(4 Pt 1):424-429.
4210	379.	Purerfellner H, Gillis AM, Holbrook R, Hettrick DA. Accuracy of atrial tachyarrhythmia
4211		detection in implantable devices with arrhythmia therapies. Pacing and clinical
4212		electrophysiology : PACE. 2004;27(7):983-992.
4213	380.	Boriani G, Diemberger I, Ziacchi M, et al. AF burden is important - fact or fiction?
4214		International journal of clinical practice. 2014;68(4):444-452.
4215	381.	Boriani G, Padeletti L. Management of atrial fibrillation in bradyarrhythmias. <i>Nature reviews.</i>
4216		Cardiology. 2015;12(6):337-349.
4217	382.	Zimetbaum P, Waks JW, Ellis ER, Glotzer TV, Passman RS. Role of atrial fibrillation burden in
4218		assessing thromboembolic risk. Circulation. Arrhythmia and electrophysiology.
4219		2014;7(6):1223-1229.
4220	383.	Freedman B, Camm J, Calkins H, et al. Screening for Atrial Fibrillation: A Report of the AF-
4221		SCREEN International Collaboration. Circulation. 2017;135(19):1851-1867.

4222	384.	Gorenek B, Bax J, Boriani G, et al. Device-detected subclinical atrial tachyarrhythmias:
4223		definition, implications and management-an European Heart Rhythm Association (EHRA)
4224		consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm
4225		Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología
4226		(SOLEACE). <i>Europace</i> . 2017;19(9):1556-1578.
4227	385.	Swiryn S, Orlov MV, Benditt DG, et al. Clinical Implications of Brief Device-Detected Atrial
4228		Tachyarrhythmias in a Cardiac Rhythm Management Device Population: Results from the
4229		Registry of Atrial Tachycardia and Atrial Fibrillation Episodes. Circulation. 2016;134(16):1130-
4230		1140.
4231	386.	Glotzer TV, Hellkamp AS, Zimmerman J, et al. Atrial high rate episodes detected by
4232		pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary
4233		Study of the MOde Selection Trial (MOST). Circulation. 2003;107(12):1614-1619.
4234	387.	Capucci A, Santini M, Padeletti L, et al. Monitored atrial fibrillation duration predicts arterial
4235		embolic events in patients suffering from bradycardia and atrial fibrillation implanted with
4236		antitachycardia pacemakers. Journal of the American College of Cardiology.
4237		2005;46(10):1913-1920.
4238	388.	Botto GL, Padeletti L, Santini M, et al. Presence and duration of atrial fibrillation detected by
4239		continuous monitoring: crucial implications for the risk of thromboembolic events. J
4240		Cardiovasc Electrophysiol. 2009;20(3):241-248.
4241	389.	Glotzer TV, Daoud EG, Wyse DG, et al. The relationship between daily atrial tachyarrhythmia
4242		burden from implantable device diagnostics and stroke risk: the TRENDS study. Circulation.
4243		Arrhythmia and electrophysiology. 2009;2(5):474-480.
4244	390.	Shanmugam N, Boerdlein A, Proff J, et al. Detection of atrial high-rate events by continuous
4245		home monitoring: clinical significance in the heart failure-cardiac resynchronization therapy
4246		population. <i>Europace.</i> 2012;14(2):230-237.
4247	391.	Boriani G, Glotzer TV, Santini M, et al. Device-detected atrial fibrillation and risk for stroke:
4248		an analysis of >10,000 patients from the SOS AF project (Stroke preventiOn Strategies based
4249		on Atrial Fibrillation information from implanted devices). <i>Eur Heart J.</i> 2014;35(8):508-516.
4250	392.	Gonzalez M, Keating RJ, Markowitz SM, et al. Newly detected atrial high rate episodes
4251		predict long-term mortality outcomes in patients with permanent pacemakers. Heart rhythm
4252		: the official journal of the Heart Rhythm Society. 2014;11(12):2214-2221.
4253	393.	Witt CT, Kronborg MB, Nohr EA, Mortensen PT, Gerdes C, Nielsen JC. Early detection of atrial
4254		high rate episodes predicts atrial fibrillation and thromboembolic events in patients with
4255		cardiac resynchronization therapy. <i>Heart Rhythm</i> . 2015;12(12):2368-2375.
4256	394.	Van Gelder IC, Healey JS, Crijns HJ, et al. Duration of device-detected subclinical atrial
4257		fibrillation and occurrence of stroke in ASSERT. European heart journal. 2017.
4258	395.	Boriani G, Botto GL, Padeletti L, et al. Improving stroke risk stratification using the CHADS2
4259		and CHA2DS2-VASc risk scores in patients with paroxysmal atrial fibrillation by continuous
4260		arrhythmia burden monitoring. Stroke; a journal of cerebral circulation. 2011;42(6):1768-
4261		1770.
4262	396.	Lopes RD. Rationale and design of the Apixaban for the Reduction of Thrombo-Embolism in
4263		Patients With Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial. American heart
4264		<i>journal.</i> 2017;in press.
4265	397.	Kirchhof P, Blank, B., Calvert, M., Camm, A. J., Chlouverakis, G., Diener, H. C., Goette, A,
4266		Huening, A., Lip, G Y H., Simantirakis, E. and Vardas, P. Probing oral anticoagulation in
4267		patients with atrial high rate episodes. Rationale and design of the Non vitamin K antagonist
4268		Oral anticoagulants in patients with Atrial High rate episodes (NOAH - AFNET 6) trial.
4269		American heart journal. 2017;in press.
4270	398.	Seidl K, Hauer B, Schwick NG, Zellner D, Zahn R, Senges J. Risk of thromboembolic events in
4271		patients with atrial flutter. The American journal of cardiology. 1998;82(5):580-583.

4272	399.	Corrado G, Sgalambro A, Mantero A, et al. Thromboembolic risk in atrial flutter. The FLASIEC
4273		(FLutter Atriale Societa Italiana di Ecografia Cardiovascolare) multicentre study. European
4274		heart journal. 2001;22(12):1042-1051.
4275	400.	Padeletti L, Pürerfellner H, Mont L, et al. New-generation atrial antitachycardia pacing
4276		(Reactive ATP) is associated with reduced risk of persistent or permanent atrial fibrillation in
4277		patients with bradycardia: Results from the MINERVA randomized multicenter international
4278		trial. <i>Heart Rhythm.</i> 2015;12(8):1717-1725.
4279	401.	Vadmann H, Nielsen PB, Hjortshøj SP, et al. Atrial flutter and thromboembolic risk: a
4280		systematic review. Heart. 2015;101(18):1446-1455.
4281	402.	MORRIS JJ, KONG Y, NORTH WC, MCINTOSH HD. EXPERIENCE WITH "CARDIOVERSION" OF
4282		ATRIAL FIBRILLATION AND FLUTTER. The American journal of cardiology. 1964;14:94-100.
4283	403.	Jensen JB, Humphries JO, Kouwenhoven WB, Jude JR. Electroshock for atrial flutter and atrial
4284		fibrillation. Follow-up studies on 50 patients. JAMA : the journal of the American Medical
4285		Association. 1965;194(11):1181-1184.
4286	404.	Wikland B, Edhag O, Eliasch H. Atrial fibrillation and flutter treated with synchronized DC
4287		shock. A study on immediate and long-term results. Acta medica Scandinavica.
4288		1967;182(5):665-671.
4289	405.	Bjerkelund C, Orning OM. An evaluation of DC shock treatment of atrial arrhythmias. Acta
4290		medica Scandinavica. 1968;184(6):481-491.
4291	406.	Lanzarotti CJ, Olshansky B. Thromboembolism in chronic atrial flutter: is the risk
4292		underestimated? Journal of the American College of Cardiology. 1997;30(6):1506-1511.
4293	407.	Crijns HJ, Van Gelder IC, Tieleman RG, et al. Long-term outcome of electrical cardioversion in
4294		patients with chronic atrial flutter. Heart. 1997;77(1):56-61.
4295	408.	Bertaglia E, D'Este D, Franceschi M, Pascotto P. Cardioversion of persistent atrial flutter in
4296		non-anticoagulated patients at low risk for thromboembolism. Italian heart journal : official
4297		journal of the Italian Federation of Cardiology. 2000;1(5):349-353.
4298	409.	Elhendy A, Gentile F, Khandheria BK, et al. Thromboembolic complications after electrical
4299		cardioversion in patients with atrial flutter. Am J Med. 2001;111(6):433-438.
4300	410.	Scheuermeyer FX, Grafstein E, Heilbron B, Innes G. Emergency department management and
4301		1-year outcomes of patients with atrial flutter. Annals of emergency medicine.
4302		2011;57(6):564-571.e562.
4303	411.	Yadlapati A, Groh C, Passman R. Safety of short-term use of dabigatran or rivaroxaban for
4304		direct-current cardioversion in patients with atrial fibrillation and atrial flutter. The American
4305		journal of cardiology. 2014;113(8):1362-1363.
4306	412.	Santiago D, Warshofsky M, Li Mandri G, et al. Left atrial appendage function and thrombus
4307		formation in atrial fibrillation-flutter: a transesophageal echocardiographic study. Journal of
4308		the American College of Cardiology. 1994;24(1):159-164.
4309	413.	Feltes TF, Friedman RA. Transesophageal echocardiographic detection of atrial thrombi in
4310		patients with nonfibrillation atrial tachyarrhythmias and congenital heart disease. Journal of
4311		the American College of Cardiology. 1994;24(5):1365-1370.
4312	414.	Bikkina M, Alpert MA, Mulekar M, Shakoor A, Massey CV, Covin FA. Prevalence of intraatrial
4313		thrombus in patients with atrial flutter. The American journal of cardiology. 1995;76(3):186-
4314		189.
4315	415.	Grimm RA, Leung DY, Black IW, Stewart WJ, Thomas JD, Klein AL. Left atrial appendage
4316		"stunning" after spontaneous conversion of atrial fibrillation demonstrated by
4317		transesophageal Doppler echocardiography. American heart journal. 1995;130(1):174-176.
4318	416.	Irani WN, Grayburn PA, Afridi I. Prevalence of thrombus, spontaneous echo contrast, and
4319		atrial stunning in patients undergoing cardioversion of atrial flutter. A prospective study
4320		using transesophageal echocardiography. Circulation. 1997;95(4):962-966.

4321	417.	Weiss R, Marcovitz P, Knight BP, et al. Acute changes in spontaneous echo contrast and atrial
4322		function after cardioversion of persistent atrial flutter. The American journal of cardiology.
4323		1998;82(9):1052-1055.
4324	418.	Schmidt H, von der Recke G, Illien S, et al. Prevalence of left atrial chamber and appendage
4325		thrombi in patients with atrial flutter and its clinical significance. Journal of the American
4326		College of Cardiology. 2001;38(3):778-784.
4327	419.	Gronefeld GC, Wegener F, Israel CW, Teupe C, Hohnloser SH. Thromboembolic risk of
4328		patients referred for radiofrequency catheter ablation of typical atrial flutter without prior
4329		appropriate anticoagulation therapy. Pacing and clinical electrophysiology : PACE. 2003;26(1
4330		Pt 2):323-327.
4331	420.	Parikh MG, Aziz Z, Krishnan K, Madias C, Trohman RG. Usefulness of transesophageal
4332		echocardiography to confirm clinical utility of CHA2DS2-VASc and CHADS2 scores in atrial
4333		flutter. The American journal of cardiology. 2012;109(4):550-555.
4334	421.	Alyeshmerni D, Pirmohamed A, Barac A, et al. Transesophageal echocardiographic screening
4335		before atrial flutter ablation: is it necessary for patient safety? Journal of the American
4336		Society of Echocardiography : official publication of the American Society of
4337		Echocardiography. 2013;26(9):1099-1105.
4338	422.	Wood KA, Eisenberg SJ, Kalman JM, et al. Risk of thromboembolism in chronic atrial flutter.
4339		The American journal of cardiology. 1997;79(8):1043-1047.
4340	423.	You JJ, Singer DE, Howard PA, et al. Antithrombotic therapy for atrial fibrillation:
4341	123.	Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest
4342		Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e531S-
4343		e575S.
4344	424.	Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC Guidelines on the
4344	424.	management of cardiovascular diseases during pregnancy: the Task Force on the
4345		Management of Cardiovascular Diseases during Pregnancy of the European Society of
4340 4347		
	425.	Cardiology (ESC). Eur Heart J. 2011;32(24):3147-3197.
4348	425.	Katsi V, Georgiopoulos G, Marketou M, et al. Atrial fibrillation in pregnancy: a growing
4349 4350	126	challenge. Current medical research and opinion. 2017;33(8):1497-1504.
4350	426.	Ntusi NB, Badri M, Gumedze F, Sliwa K, Mayosi BM. Pregnancy-Associated Heart Failure: A
4351		Comparison of Clinical Presentation and Outcome between Hypertensive Heart Failure of
4352	407	Pregnancy and Idiopathic Peripartum Cardiomyopathy. <i>PloS one</i> . 2015;10(8):e0133466.
4353	427.	Lee MS, Chen W, Zhang Z, et al. Atrial Fibrillation and Atrial Flutter in Pregnant Women-A
4354		Population-Based Study. J Am Heart Assoc. 2016;5(4):e003182.
4355	428.	Bates SM, Greer IA, Middeldorp S, Veenstra DL, Prabulos AM, Vandvik PO. VTE,
4356		thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and
4357		Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based
4358		Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e691S-e736S.
4359	429.	Goland S, Elkayam U. Anticoagulation in pregnancy. <i>Cardiol Clin.</i> 2012;30(3):395-405.
4360	430.	Conti E, Zezza L, Ralli E, et al. Pulmonary embolism in pregnancy. Journal of thrombosis and
4361		thrombolysis. 2014;37(3):251-270.
4362	431.	Orme ML, Lewis PJ, de Swiet M, et al. May mothers given warfarin breast-feed their infants?
4363		Br Med J. 1977;1(6076):1564-1565.
4364	432.	McKenna R, Cole ER, Vasan U. Is warfarin sodium contraindicated in the lactating mother? J
4365		Pediatr. 1983;103(2):325-327.
4366	433.	Houwert-de Jong M, Gerards LJ, Tetteroo-Tempelman CA, de Wolff FA. May mothers taking
4367		acenocoumarol breast feed their infants? Eur J Clin Pharmacol. 1981;21(1):61-64.
4368	434.	Fondevila CG, Meschengieser S, Blanco A, Peñalva L, Lazzari MA. Effect of acenocoumarine
4369		on the breast-fed infant. Thrombosis research. 1989;56(1):29-36.
4370	435.	Boriani G, Savelieva I, Dan GA, et al. Chronic kidney disease in patients with cardiac rhythm
4371		disturbances or implantable electrical devices: clinical significance and implications for

		· · · · · · · · · · · · · · · · · · ·
4372		decision making-a position paper of the European Heart Rhythm Association endorsed by
4373		the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Europace.
4374		2015;17(8):1169-1196.
4375	436.	Yang F, Hellyer JA, Than C, et al. Warfarin utilisation and anticoagulation control in patients
4376		with atrial fibrillation and chronic kidney disease. Heart (British Cardiac Society).
4377		2017;103(11):818-826.
4378	437.	McAlister FA, Wiebe N, Jun M, et al. Are Existing Risk Scores for Nonvalvular Atrial
4379		Fibrillation Useful for Prediction or Risk Adjustment in Patients With Chronic Kidney Disease?
4380		Can J Cardiol. 2017;33(2):243-252.
4381	438.	Chao TF, Liu CJ, Wang KL, et al. Incidence and prediction of ischemic stroke among atrial
4382		fibrillation patients with end-stage renal disease requiring dialysis. Heart Rhythm.
4383		2014;11(10):1752-1759.
4384	439.	Carrero JJ, Evans M, Szummer K, et al. Warfarin, kidney dysfunction, and outcomes following
4385		acute myocardial infarction in patients with atrial fibrillation. <i>Jama</i> . 2014;311(9):919-928.
4386	440.	Friberg L, Benson L, Lip GY. Balancing stroke and bleeding risks in patients with atrial
4387		fibrillation and renal failure: the Swedish Atrial Fibrillation Cohort study. Eur Heart J.
4388		2015;36(5):297-306.
4389	441.	Bonde AN, Lip GY, Kamper AL, et al. Net Clinical Benefit of Antithrombotic Therapy in
4390		Patients With Atrial Fibrillation and Chronic Kidney Disease: A Nationwide Observational
4391		Cohort Study. Journal of the American College of Cardiology. 2014;64(23):2471-2482.
4392	442.	Bonde AN, Lip GY, Kamper AL, et al. Effect of Reduced Renal Function on Time in Therapeutic
4393		Range Among Anticoagulated Atrial Fibrillation Patients. Journal of the American College of
4394		Cardiology. 2017;69(6):752-753.
4395	443.	Harel Z, Chertow GM, Shah PS, et al. Warfarin and the Risk of Stroke and Bleeding in Patients
4396		With Atrial Fibrillation Receiving Dialysis: A Systematic Review and Meta-analysis. Can J
4397		Cardiol. 2017;33(6):737-746.
4398	444.	Lau YC, Proietti M, Guiducci E, Blann AD, Lip GY. Atrial Fibrillation and Thromboembolism in
4399		Patients With Chronic Kidney Disease. Journal of the American College of Cardiology.
4400		2016;68(13):1452-1464.
4401	445.	Molteni M, Polo Friz H, Primitz L, Marano G, Boracchi P, Cimminiello C. The definition of
4402		valvular and non-valvular atrial fibrillation: results of a physicians' survey. Europace :
4403		European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups
4404		on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European
4405		Society of Cardiology. 2014.
4406	446.	Authors/Task Force m, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and
4407		management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and
4408		Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC).
4409		Eur Heart J. 2014;35(39):2733-2779.
4410	447.	Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus Warfarin in Patients
4411		with Mechanical Heart Valves. New England Journal of Medicine. 2013;369(13):1206-1214.
4412	448.	Pokorney SD, Rao MP, Wojdyla DM, et al. Abstract 17277: Apixaban Use in Patients With
4413		Atrial Fibrillation With Bioprosthetic Valves: Insights From ARISTOTLE. Circulation.
4414		2015;132(Suppl 3):A17277-A17277.
4415	449.	Carnicelli AP, De Caterina R, Halperin JL, et al. Edoxaban for the Prevention of
4416		Thromboembolism in Patients with AtrialFibrillation and Bioprosthetic Valves. Circulation.
4417		2017.
4418	450.	Petronio AS, Capranzano P, Barbato E, et al. Current status of transcatheter mitral valve
4419		therapy in Europe: results from an EAPCI survey (Part II). EuroIntervention : journal of
4420		EuroPCR in collaboration with the Working Group on Interventional Cardiology of the
4421		European Society of Cardiology. 2017;12(16):1934-1939.

4422	451.	De Caterina R, John Camm A. Non-vitamin K antagonist oral anticoagulants in atrial
4423		fibrillation accompanying mitral stenosis: the concept for a trial. Europace : European
4424		pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on
4425		cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society
4426		of Cardiology. 2016;18(1):6-11.
4427	452.	Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients
4428		with atrial fibrillation. The Annals of thoracic surgery. 1996;61(2):755-759.
4429	453.	Reddy VY, Sievert H, Halperin J, et al. Percutaneous left atrial appendage closure vs warfarin
4430		for atrial fibrillation: a randomized clinical trial. JAMA. 2014;312(19):1988-1998.
4431	454.	Reddy VY, Doshi SK, Sievert H, et al. Percutaneous left atrial appendage closure for stroke
4432		prophylaxis in patients with atrial fibrillation: 2.3-Year Follow-up of the PROTECT AF
4433		(Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial
4434		Fibrillation) Trial. Circulation. 2013;127(6):720-729.
4435	455.	Reddy VY, Holmes D, Doshi SK, Neuzil P, Kar S. Safety of percutaneous left atrial appendage
4436		closure: results from the Watchman Left Atrial Appendage System for Embolic Protection in
4437		Patients with AF (PROTECT AF) clinical trial and the Continued Access Registry. Circulation.
4438		2011;123(4):417-424.
4439	456.	Main ML, Fan D, Reddy VY, et al. Assessment of Device-Related Thrombus and Associated
4440		Clinical Outcomes With the WATCHMAN Left Atrial Appendage Closure Device for Embolic
4441		Protection in Patients With Atrial Fibrillation (from the PROTECT-AF Trial). The American
4442		journal of cardiology. 2016;117(7):1127-1134.
4443	457.	Holmes DR, Doshi SK, Kar S, et al. Left Atrial Appendage Closure as an Alternative to Warfarin
4444		for Stroke Prevention in Atrial Fibrillation: A Patient-Level Meta-Analysis. <i>Journal of the</i>
4445		American College of Cardiology. 2015;65(24):2614-2623.
4446	458.	Holmes DR, Kar S, Price MJ, et al. Prospective randomized evaluation of the Watchman Left
4447	1001	Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin
4448		therapy: the PREVAIL trial. <i>Journal of the American College of Cardiology</i> . 2014;64(1):1-12.
4449	459.	Holmes DR, Reddy VY, Turi ZG, et al. Percutaneous closure of the left atrial appendage
4450	155.	versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a
4451		randomised non-inferiority trial. <i>Lancet.</i> 2009;374(9689):534-542.
4452	460.	Masoudi FA, Calkins H, Kavinsky CJ, et al. 2015 ACC/HRS/SCAI left atrial appendage occlusion
4453	100.	device societal overview. <i>Heart Rhythm.</i> 2015;12(10):e122-136.
4454	461.	Park JW, Bethencourt A, Sievert H, et al. Left atrial appendage closure with Amplatzer
4455	401.	cardiac plug in atrial fibrillation: initial European experience. <i>Catheter Cardiovasc Interv.</i>
4456		2011;77(5):700-706.
4457	462.	Gloekler S, Shakir S, Doblies J, et al. Early results of first versus second generation Amplatzer
4458	402.	occluders for left atrial appendage closure in patients with atrial fibrillation. <i>Clinical research</i>
4459		in cardiology : official journal of the German Cardiac Society. 2015;104(8):656-665.
4460	463.	Tereshchenko LG, Henrikson CA, Cigarroa J, Steinberg JS. Comparative Effectiveness of
4460 4461	405.	Interventions for Stroke Prevention in Atrial Fibrillation: A Network Meta-Analysis. <i>Journal of</i>
4461		the American Heart Association. 2016;5(5).
4402 4463	161	
	464.	Gianni C, Di Biase L, Trivedi C, et al. Clinical Implications of Leaks Following Left Atrial
4464	465	Appendage Ligation With the LARIAT Device. <i>JACC Cardiovasc Interv.</i> 2016;9(10):1051-1057.
4465	465.	Fauchier L, Cinaud A, Brigadeau F, et al. Device-Related Thrombosis After Percutaneous Left
4466		Atrial Appendage Occlusion for Atrial Fibrillation. <i>Journal of the American College of</i>
4467	166	Cardiology. 2018;71(14):1528-1536.
4468	466.	Dukkipati SR, Kar S, Holmes DR, Jr., et al. Device-Related Thrombus After Left Atrial
4469	407	Appendage Closure: Incidence, Predictors, and Outcomes. <i>Circulation</i> . 2018.
4470	467.	Aryana A, Singh SK, Singh SM, et al. Association between incomplete surgical ligation of left
4471		atrial appendage and stroke and systemic embolization. <i>Heart rhythm : the official journal of</i>
4472		the Heart Rhythm Society. 2015;12(7):1431-1437.

 4474 atrial appendage closure: assessment by transesophageal echocardiography. <i>Journal of the</i> 4475 American College of Cardiology. 2008;52(11):924-92. 4469. Healey JS, Crystal E, Lamy A, et al. Left Atrial Appendage Occlusion Study (LAAOS): results of 4477 aradomized controlled pilot study of left atrial appendage Occlusion Study (ILAAOS): rosults of 4478 bypass surgery in patients at risk for stroke. American heart <i>journal</i> 2005;150(2):288-293. 4479 470. Whitlock RP, Vincent J, Blackall MH, et al. Left Atrial Appendage Occlusion Study II (LAAOS II). <i>The Canadian journal of cardiology</i>. 2003;29(1):1443-1447. 4481 471. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in nonvalvular atrial 4483 472. Patel MR, Mahffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial 4484 475. Granger CB, Alexander JH, McChurzy JJ, et al. Apkaban versus warfarin in nonvalvular atrial 4485 473. Granger CB, Alexander JH, McChurzy JJ, et al. Apkaban versus warfarin in nonvalvular atrial 4486 tarial fibrillation. <i>The New England journal of medicine</i>. 2011;365(11):833-891. 4487 474. Boriani G, Biffi M, Diemberger I, Cervi E, Martignani C. Peri-operative management of 4488 patients taking antithrombotic therapy: need for an integrated proactive approach. 4489 475. Doukeis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of 4491 antithrombotic therapy: An et al. Opdated European Heart Rhythm Association 4492 Practical Guide on the use of non-vitami Kantagonist anticoagulants in patients with non- 4493 vular atrial fibrillation. <i>Europeac : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and</i> 4494 electrophysiology : journal of the working groups on cardiac pacing, arrhythmias	4473	468.	Kanderian AS, Gillinov AM, Pettersson GB, Blackstone E, Klein AL. Success of surgical left
 469. Healey JS, Crystal E, Lamy A, et al. Left Atrial Appendage Occlusion Study (LANOS): results of a randomized controlled pilot study of left atrial appendage occlusion during coronary bypass surgery in patients at risk for stroke. <i>American heart journal.</i> 2005;150(2):288-293. 4779. Whitlock RP, Vincent J, Blackall MH, et al. Left Atrial Appendage Occlusion Study II (LAAOS III). <i>The Comodina journal of cardiology.</i> 2013;29(11):1443-1447. 471. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. <i>The New England journal of medicine.</i> 2009;361(12):1139-1151. 4748. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalufar atrial fibrillation. <i>The New England journal of medicine.</i> 2011;365(10):883-891. 473. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>N Engl J Med.</i> 2011;365(11):981-992. 474. Boriani G, Biffi M, Diemberger J, Cervi E, Martignani C. Peri-operative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e3265-e350S. 475. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace: European Society of Cardiology</i>. 2015;17(10):1467- 1507. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated Europay. Antarcine Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e3265-e350S. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American Journal of medicine</i>. 2015;373(9):823-833. 478. Dauketis JD, Syropoulos AC, Kaatz S, et al. Penipeerative Bridging Anticoagulation in Pati			
 a randomized controlled pilot study of left atrial appendage occlusion during cromary bypass surgery in patients at risk for stroke. <i>American heart journal</i>. 2005;150(2):288-293. Whitlock RP, Vincent J, Backall MH, et al. Left Atrial Appendage Occlusion Study II (LAAOS III). <i>The Canadian journal of cardiology</i>. 2013;29(11):1443-1447. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. <i>The New England journal of medicine</i>. 2009;361(12):1139-1151. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvolugar atrial fibrillation. <i>The New England journal of medicine</i>. 2009;361(12):1139-81. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>The New England journal of medicine</i>. 2011;365(1):983-891. Boriani G, Biff M, Diemberger J, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;65(3):236-239. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e326S-e350S. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace: European pacing. arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology</i>. 2015;171(10):1467- 1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl)):S1-529. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Briding Antic			
 bypass surgery in patients at risk for stroke. American heart journal. 2005;150(2):288-293. Whitlock RP, Vincent J, Blackall MH, et al. Left Atrial Appendage Occlusion Study II (LAAOS II). The Conodina journal of cardiology. 2013;29(11):143-1447. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. The New England journal of medicine. 2009;361(12):1139-1151. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. The New England journal of medicine. 2001;361(12):1139-1151. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981-992. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981-992. Boriani G, Biffi MD, Diemberger J, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy and Prevention of Thrombosis, Sht ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2021;141(2 Suppl):e3265-e3505. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-viali fibrillation. Europace : European pacing, arrhythmias, and cardiac ellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467-1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American Journal of medicine. 2016;129(S Suppl):51-329. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. And anticabes to atrial fibrillation and patient understanding, perception, and attitudes to atrial fibrillation and patient understanding, perception, and attitu		469.	
 Whitlock RP, Vincent J, Blackall MH, et al. Left Atrial Appendage Occlusion Study II (LAAOS III). <i>The Canadian journal of cardiology.</i> 2013;29(11):1443-1447. Connolly SJ, Ezekovitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. <i>The New England journal of medicine.</i> 2009;361(12):1139-1151. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nontivular atrial fibrillation. <i>The New England journal of medicine.</i> 2011;365(10):883-891. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>N Engl J Med.</i> 2011;365(11):981-992. Boriani G, Biff M, Diemberger J, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International Journal of clinical practice.</i> 2011;56(3):236-239. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosi, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e3256-e3505. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvaliar atrial fibrillation. <i>European Society of Cardiology.</i> 2015;17(10):1467-1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American Journal of medicine.</i> 2010;129(5) Suppl):S1-29. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2004;5:15. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation Project. <i>International Jourga</i>			
 H). The Canadian journal of cardiology. 2013;29(11):1443-1447. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. The New England journal of medicine. 2009;361(12):1139-1151. 472. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. The New England journal of medicine. 2011;365(10):883-891. 473. Granger CB, Alexander JH, McMurrey JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981-992. 474. Boriani G, Biffi M, Diemberger I, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. International journal of clinical practice. 2011;56(3):236-239. 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;14(12 Suppl):e326-e350S. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace - European Society of Cardiology. 2015;17(10):1467-1507. 470. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American Journal of medicine. 2015;127(15):51-52. 479. Aliot E, Bertihardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and patients. 479. Aliot E, Bertihardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation for advicus represention of trainal fibrillation and anticoagulation tray: the West Birmingham Atria			
 4481 471. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. <i>The New England Journal of medicine</i>. 2009;361(12):1139-1151. 4483 472. Patel MR, Mahaffe KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. <i>The New England Journal of medicine</i>. 2011;365(10):883-891. 473. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>The JI Med</i>. 2011;365(11):881-992. 474. Boriani G, Biffi M, Diemberger I, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;5(5):236-239. 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e3265-e350s. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. <i>Europace : European pocing, orrhythmias, and cardiac cellular electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467-1507.</i> 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-S29. 478. Douketis JD, Syropoulos AC, Kaatz S, et al. Perioperative Bridging Anticogulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;173(3):373(9):823-833. 479. Aliot E, Brethardt G, Brugada J, et al. An international survey of		470.	
 fibrillation. <i>The New England journal of medicine</i>. 2009;361(12):1139-1151. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonalvular atrial fibrillation. <i>The New England journal of medicine</i>. 2011;365(10):883-891. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>N Engl J Med</i>. 2011;365(11):981-992. Boriani G, Biffi M, Diemberger J, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;365(3):236-239. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e3265-e350S. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europeac : European pacing, arrhythmias, and cardiac</i> <i>electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and</i> <i>consensus Document. The American journal of medicine</i>. 2015;127(10):1467- 1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2015;127(39):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardioxascular disease morbidity and mortality. <i>Europace</i>			
 4483 472. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. <i>The New England Journal of medicine</i>. 2011;355(10):883-891. 473. Granger CB, Alexander JH, McMurry JJ, et al. Alpixaban versus warfarin in patients with atrial fibrillation. <i>N Engl J Med</i>. 2011;365(11):981-992. 474. Boriani G, Biff M, Diemberger J, Cervi F, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;55(3):236-239. 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e3265-e350. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology</i>. 2015;17(10):1467-1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-S29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Artial Fibrillation. <i>The New England Journal of Indicine</i>. 2015;127(10):216):626-633. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and anticoagulation in Patients with Artial Fibrillation. <i>The New England Journal of Medicine</i>. 2015;373(9):823-833. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' per		471.	
 4484 fibrillation. <i>The New England journal of medicine</i>. 2011;365(10):883-891. 473. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>N Engl J Med</i>. 2011;365(11):981-992. 474. Boriani G, Biffi M, Diemberger I, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;65(3):236-239. 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 8th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e3265-e3505. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467-1507.</i> 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5):51a-29. 478. Douketis JD, Spyropoulos XC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 479. Allot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europeca</i> 2005;153(3):236-263. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warf			
 4485 473. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. <i>N Engl J Med.</i> 2011;365(11):981-992. 474. Boriani G, Biffi M, Diemberger J, Cevi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice.</i> 2011;56(3):236-239. 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e3265-e3305. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.</i> 2015;17(10):1467- 1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine.</i> 2016;129(S Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2015;373(8):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace.</i> 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice.</i> 2004;51:5. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and percep		472.	
 atrial fibrillation. <i>N Engl J Med.</i> 2011;365(11):981-992. Boriani G, Biff M, Diemberger J, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice.</i> 2011;65(3):236-239. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e3265-e3505. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europeae: European pacing, arrhythmias, and cardiac</i> <i>electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.</i> 2015;17(10):1467- 1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine.</i> 2016;129(5 Suppl):S1-s29. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2015;373(9):823-833. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace.</i> 2010;12(5):626-633. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfari: qualitative study in family practice. <i>BMC family practice.</i> 2004;5:15. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulat		470	
 4487 474. Boriani G, Biffi M, Diemberger I, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;65(3):236-239. 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest</i>. 2012;141(2 Suppl):e3255-e3505. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europeae : European pacing, arrhythmias, and cardiac cellular electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467- 1507.</i> 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant th		473.	
 patients taking antithrombotic therapy: need for an integrated proactive approach. <i>International journal of clinical practice</i>. 2011;65(3):236-239. Jouketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e3265-e3505. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac</i> <i>electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and</i> <i>cardiac cellular electrophysiology of the European Society of Cardiology.</i> 2015;17(10):1467- 1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine.</i> 2016;129(5 Suppl):S1-s29. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2015;373(9):823-833. Afot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace.</i> 2010;12(5):626-633. Banta GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice.</i> 2004;5:15. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology.</i> 2005;		474	
 International journal of clinical practice. 2011;65(3):236-239. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e326S-e350S. 4494 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467- 1507.</i> 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 4504 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patient's perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):254-358. 		4/4.	
 4490 475. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. <i>Chest.</i> 2012;141(2 Suppl):e3265-e3505. 4494 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac</i> <i>electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and</i> <i>cardiac cellular electrophysiology of the European Society of Cardiology.</i> 2015;17(10):1467- 1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine.</i> 2016;129(5 Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2015;373(9):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace.</i> 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice.</i> 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology.</i> 2006;110(3):354-358. 482. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethn			
 antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e3265-e3505. 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. Europace: European pacing. arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467- 1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American journal of medicine. 2016;129(5 Suppl):S1-S29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. The New England journal of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. Europace. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. BMC family practice. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. European journal of internal medicine. 2007;18(3):202-208. 483. Lip GY, Kaamth S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions o		475	
 American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e326S-e350S. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace : European pacing, arrhythmias, and cardiac celcurophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467-1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American journal of medicine. 2016;129(5 Suppl):S1-s29. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. The New England journal of medicine. 2015;373(9):823-833. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. Europace. 2010;12(5):626-633. Bontas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. BMC family practice. 2004;5:15. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 2006;110(3):354-358. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. European journal of internal medicine. 2007;18(3):202-208. 483. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibril		475.	
 2012;141(2 Suppl):e326S-e350S. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac</i> <i>electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and</i> <i>cardiac cellular electrophysiology of the European Society of Cardiology.</i> 2015;17(10):1467- 1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine.</i> 2016;129(5 Suppl):S1-s29. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2015;373(9):823-833. Afot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace.</i> 2010;12(5):626-633. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice.</i> 2004;5:15. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology.</i> 2006;110(3):354-358. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine.</i> 2007;18(3):202-208. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial F			
 4494 476. Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non- valvular atrial fibrillation. <i>Europace : European pacing, arrhythmias, and cardiac</i> <i>electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and</i> <i>cardiac cellular electrophysiology of the European Society of Cardiology.</i> 2015;17(10):1467- 1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine.</i> 2016;129(5 Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine.</i> 2015;373(9):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace.</i> 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice.</i> 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology.</i> 2006;110(3):324-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine.</i> 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial			
 Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467-1507. 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American journal of medicine. 2016;129(5 Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. The New England journal of medicine. 2015;373(9):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. Europace. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. BMC family practice. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 2006;110(3):354-358. 482. Lip GY, Kamelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. European journal of internal medicine. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. Stroke; a journal of cerebral circulation. 2002;33(1):238-242. 484. McCabe PJ,		176	
 valvular atrial fibrillation. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467- 1507. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American journal of medicine. 2016;129(5 Suppl):S1-s29. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. The New England journal of medicine. 2015;373(9):823-833. Af79. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. Europace. 2010;12(5):626-633. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. BMC family practice. 2004;5:15. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 2006;110(3):354-358. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. European journal of internal medicine. 2007;18(3):202-208. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. Stroke; a journal of cerebral circulation. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibri		470.	
4497electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467- 1507.44991507.4500477.Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. The American journal of medicine. 2016;129(5 Suppl):S1-s29.4501478.4502478.503478.504Patients with Atrial Fibrillation. The New England journal of medicine. 2015;373(9):823-833.4504479.4105understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. Europace. 2010;12(5):626-633.4505Bantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. BMC family practice. 2004;5:15.4509481.481.Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 2006;110(3):354-358.4513482.Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. Stroke; a journal of creebral circulation. 2002;31(1):238-242.4519483.Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial <br< td=""><td></td><td></td><td></td></br<>			
 4498 cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(10):1467- 4500 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-s29. 4502 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 4504 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of creebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker S			
 1507. 4500 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-s29. 4502 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 4504 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 			
 4500 477. Ruff CT, Ansell JE, Becker RC, et al. North American Thrombosis Forum, AF Action Initiative Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-s29. 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 			
 4501 Consensus Document. <i>The American journal of medicine</i>. 2016;129(5 Suppl):S1-s29. 4502 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 4504 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 4507 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 4509 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		477	
 4502 478. Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 4504 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 4507 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 4509 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		.,,,	
 Patients with Atrial Fibrillation. <i>The New England journal of medicine</i>. 2015;373(9):823-833. 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		478.	
 4504 479. Aliot E, Breithardt G, Brugada J, et al. An international survey of physician and patient understanding, perception, and attitudes to atrial fibrillation and its contribution to cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		-	
 4505 understanding, perception, and attitudes to atrial fibrillation and its contribution to 4506 cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 4507 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 4509 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. 4511 The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 4523 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		479.	
 4506 cardiovascular disease morbidity and mortality. <i>Europace</i>. 2010;12(5):626-633. 4507 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 4509 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 4513 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 			
 480. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur RE. Patients' perspectives on taking warfarin: qualitative study in family practice. <i>BMC family practice</i>. 2004;5:15. 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. <i>International journal of cardiology</i>. 2006;110(3):354-358. 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4506		
 4508 warfarin: qualitative study in family practice. BMC family practice. 2004;5:15. 4509 481. Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial fibrillation and anticoagulant therapy: effects of an educational intervention programme. 4511 The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 4512 2006;110(3):354-358. 4513 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. European journal of internal medicine. 4515 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. Stroke; a journal of cerebral circulation. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. Heart & lung : the journal of critical care. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		480.	
 fibrillation and anticoagulant therapy: effects of an educational intervention programme. The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 2006;110(3):354-358. 4513 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. European journal of internal medicine. 2007;18(3):202-208. 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. Stroke; a journal of cerebral circulation. 2002;33(1):238-242. 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. Heart & lung : the journal of critical care. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4508		
 4511 The West Birmingham Atrial Fibrillation Project. International journal of cardiology. 4512 2006;110(3):354-358. 4513 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial 4514 fibrillation: A pan-European patient survey. European journal of internal medicine. 4515 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient 4517 perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial 4518 Fibrillation Project. Stroke; a journal of cerebral circulation. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of 4520 patients with recently detected atrial fibrillation. Heart & lung : the journal of critical care. 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4509	481.	Lane DA, Ponsford J, Shelley A, Sirpal A, Lip GY. Patient knowledge and perceptions of atrial
 4512 2006;110(3):354-358. 4513 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 4515 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4510		fibrillation and anticoagulant therapy: effects of an educational intervention programme.
 4513 482. Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4511		The West Birmingham Atrial Fibrillation Project. International journal of cardiology.
 4514 fibrillation: A pan-European patient survey. <i>European journal of internal medicine</i>. 4515 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient 4517 perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial 4518 Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of 4520 patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4512		2006;110(3):354-358.
 4515 2007;18(3):202-208. 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient 4517 perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial 4518 Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of 4520 patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4513	482.	Lip GY, Agnelli G, Thach AA, Knight E, Rost D, Tangelder MJ. Oral anticoagulation in atrial
 4516 483. Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient 4517 perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial 4518 Fibrillation Project. <i>Stroke; a journal of cerebral circulation.</i> 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of 4520 patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care.</i> 4521 2008;37(2):79-90. 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4514		
 4517 perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial 4518 Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of 4520 patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4515		2007;18(3):202-208.
 4518 Fibrillation Project. <i>Stroke; a journal of cerebral circulation</i>. 2002;33(1):238-242. 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care</i>. 4520 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4516	483.	Lip GY, Kamath S, Jafri M, Mohammed A, Bareford D. Ethnic differences in patient
 4519 484. McCabe PJ, Schad S, Hampton A, Holland DE. Knowledge and self-management behaviors of patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care.</i> 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 	4517		perceptions of atrial fibrillation and anticoagulation therapy: the West Birmingham Atrial
 4520 patients with recently detected atrial fibrillation. <i>Heart & lung : the journal of critical care.</i> 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 			
 4521 2008;37(2):79-90. 4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation 		484.	
4522 485. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation			
4523 and Stroke: Gaps in Knowledge and Perspective, Opportunities for Improvement. <i>Journal of</i>		485.	
	4523		and Stroke: Gaps in Knowledge and Perspective, Opportunities for Improvement. Journal of

4524		stroke and cerebrovascular diseases : the official journal of National Stroke Association.
4525		2015;24(8):1691-1700.
4526	486.	Fuller R, Dudley N, Blacktop J. Risk communication and older people-understanding of
4527		probability and risk information by medical inpatients aged 75 years and older. Age and
4528		ageing. 2001;30(6):473-476.
4529	487.	Fuller R, Dudley N, Blacktop J. Avoidance hierarchies and preferences for anticoagulation
4530		semi-qualitative analysis of older patients' views about stroke prevention and the use of
4531		warfarin. Age and ageing. 2004;33(6):608-611.
4532	488.	Lane DA, Aguinaga L, Blomstrom-Lundqvist C, et al. Cardiac tachyarrhythmias and patient
4533		values and preferences for their management: the European Heart Rhythm Association
4534		(EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart
4535		Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacion Cardiaca y
4536		Electrofisiologia (SOLEACE). Europace. 2015;17(12):1747-1769.
4537	489.	Lane DA, Barker RV, Lip GY. Best practice for atrial fibrillation patient education. Curr Pharm
4538		Des. 2015;21(5):533-543.
4539	490.	McCabe PJ. What patients want and need to know about atrial fibrillation. Journal of
4540		multidisciplinary healthcare. 2011;4:413-419.
4541	491.	Pandya EY, Bajorek B. Factors Affecting Patients' Perception On, and Adherence To,
4542		Anticoagulant Therapy: Anticipating the Role of Direct Oral Anticoagulants. The patient.
4543		2017;10(2):163-185.
4544	492.	Kirchhof P. The future of atrial fibrillation management: integrated care and stratified
4545		therapy. Lancet. 2017.
4546	493.	Lip GYH. The ABC pathway: an integrated approach to improve AF management. Nature
4547		reviews. Cardiology. 2017;14(11):627-628.
4548	494.	Hendriks JM, Crijns HJ, Tieleman RG, Vrijhoef HJ. The atrial fibrillation knowledge scale:
4549		development, validation and results. International journal of cardiology. 2013;168(2):1422-
4550		1428.
4551	495.	Desteghe L, Engelhard L, Raymaekers Z, et al. Knowledge gaps in patients with atrial
4552		fibrillation revealed by a new validated knowledge questionnaire. Int J Cardiol.
4553		2016;223:906-914.
4554	496.	Heidbuchel H, Berti D, Campos M, et al. Implementation of non-vitamin K antagonist oral
4555		anticoagulants in daily practice: the need for comprehensive education for professionals and
4556		patients. Thrombosis journal. 2015;13:22.
4557	497.	Bakhai A, Sandberg A, Mittendorf T, et al. Patient perspective on the management of atrial
4558		fibrillation in five European countries. BMC cardiovascular disorders. 2013;13:108.
4559		

4560 Table 1. PICO Questions

4561

	Section	Question	Patients	Intervention	Control	Outcomes	Methodology
	Burden of stroke in atrial fibrillation (AF)						
1.2	 Established clinical risk factors for ischemic stroke in AF (including AF burden) Echocardiographic risk factors for ischemic stroke in AF Potential novel risk factors for ischemic stroke in AF 	What are the risk factors for ischemic stroke and TE?	Patients with AF - established clinical risk factors - risk factors on echocardiography - novel risk factors Patients with chronic atrial flutter	N/A	N/A	Ischemic stroke Systemic thromboembolism (TE) Mortality	Cohort studies Non-warfarin arms of RCTs
1.3	Risk stratification for ischemic stroke and TE	What risk stratification schemes most accurately predict ischemic stroke and TE, and mortality?	Patients with AF	N/A	N/A	c-statistic NRI. IDI, DCA Absolute rates of ischemic stroke and TE	Cohort studies Clinical prediction rules
	Antithrombotic therapy						
2.1	Patients with non-valvular AF	What are the benefits and risks of different stroke prevention strategies?	Patients with non- rheumatic AF - low risk - intermediate risk - high risk (including prior stroke)	Vitamin K antagonist (VKA)	No VKA	- Death - All stroke - Ischemic stroke - Systemic embolism - Intracranial hemorrhage	SR RCTs

				8	(subdural, subarachnoid, and intracerebral) - Major extracranial hemorrhage - MI - Vascular death	
2.1	Patients with non-rheumatic AF (cont'd)	As above	Antiplatelet drug (aspirin or other)	No antiplatelet drug	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs
		As above	VKA	Antiplatelet drug (aspirin or other)	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs

		As above	Adjusted dose VKA	Fixed minidose or low-intensity VKA ± aspirin	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	
		As above	Clopidogrel + aspirin	Aspirin	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs
	A CONTRACTOR	As above	NOACs	VKA	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and 	SR RCTs Cohort studies

			~	intracerebral) - Major extracranial hemorrhage - MI - Vascular death	
	As above	NOAC	Aspirin	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
	As above	Device therapy WATCHMAN, PLAATO)	VKA	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death -cardiac tamponade 	SR RCTs Cohort studies
			VKA	- Death	SR

				therapies - removal or ligation of left atrial appendage - surgical or catheter ablation - maze procedure	8	 Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death procedural / surgical complications 	Cohort studies
2.2	Patients with valvular AF	What are the benefits and risks of different stroke prevention strategies?	Patients with AF and rheumatic heart disease (i.e., mitral stenosis)	Vitamin K antagonist (VKA)	No VKA	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
2.3	Patients with prosthetic valves	What are the benefits and risks of different stroke prevention strategies?	Patients with AF and prosthetic valves	Vitamin K antagonist (VKA)	No VKA	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) 	SR RCTs Cohort studies

						- Major extracranial hemorrhage - MI - Vascular death	
4	Antithrombotic therapy for AF (or atrial flutter) patients undergoing cardioversion						
3.1	Urgent cardioversion	What are the benefits and risks of antithrombotic therapy for AF patients undergoing urgent cardioversion?	Patients with AF undergoing urgent cardioversion	Anticoagulation	No anticoagulation	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
3.2	Elective cardioversion	What are the benefits and risks of antithrombotic therapy for AF patients undergoing elective cardioversion?	Patients with AF undergoing elective cardioversion	Anticoagulation	No anticoagulation	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies

3.3	Transesophageal echocardiography (TEE)-guided cardioversion	What are the benefits and risks of antithrombotic therapy when using TEE-guided cardioversion?	Patients with AF undergoing TEE-guided cardioversion	TEE-guided cardioversion	Conventional anticoagulation	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
5	Practical issues in the use of adjusted-dose VKA therapy						
5.1	Optimal target INR	What target INR provides the optimal balance between stroke prevention and bleeding in AF?	Patients with AF	INR 2-3	Other	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
			Patients with AF and valvular heart disease/ prosthetic valves	INR 2-3	Other	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and 	SR RCTs Cohort studies

5.1	Time within therapeutic range (TTR)	What is the association between TTR and outcomes in AF?	Patients with AF	Good TTR	Poor TTR	intracerebral) - Major extracranial hemorrhage - MI - Vascular death - Death - All stroke - Ischemic stroke - Systemic embolism - Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) - Major extracranial hemorrhage - MI - Vascular death	SR RCTs Cohort studies
5.1	Monitoring of VKA therapy	What is the most effective way to monitor VKA therapy?	Patients with AF on VKA therapy	Point of care testing, patient self monitoring	Usual care	 Vascular death Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
5.2	NOACs	Y.					
	Special situations						
5.3a	Patients with AF with stable	What are the	Patients with coronary	OAC + aspirin	OAC	- Death	

	coronary artery disease or peripheral arterial disease	benefits and risks of adding aspirin therapy to VKA therapy?	artery disease or peripheral arterial disease	S	8	 All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
5.3b	Patients with AF presenting with acute coronary syndrome?	As above	Patients with ACS	OAC + aspirin + clopidogrel	Aspirin + clopidogrel	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
5.3c	Patients with AF undergoing percutaneous coronary intervention with stenting	As above	Patients undergoing PCI + stenting	OAC + aspirin + clopidogrel	Aspirin + clopidogrel	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage 	SR RCTs Cohort studies

						- MI - Vascular death	
5.4	Patients with AF being treated in a rhythm control strategy	What are the benefits and risks of OAC therapy in patients treated with a rhythm control strategy?	Patients being treated with a rhythm control strategy (e.g. maze procedure, catheter ablation, electrophysiology procedure, pharmacological)	VKA, NOAC	No OAC	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
5.5	Perioperative management of OACs (including devices) Atrial High Rate Episodes on devices or monitors	How should VKA therapy be managed for AF patients undergoing surgery/invasive procedure?	Patients with AF on OAC therapy	"Bridging" therapy with LMWH or IV heparin	No bridging therapy	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	Cohort studies
5.6	Patients with AF presenting with an acute stroke AF patients with an ICH	What is the optimal timing for initiation of anticoagulation?	Patients with acute stroke	Anticoagulation immediately	Anticoagulation delayed	 Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and 	SR RCTs Cohort studies

5.7a	Patients with AF who are pregnant	What are the benefits and risks of VKA therapy in pregnancy?	Patients with AF who are pregnant	VKA	Νο ΥΚΑ	intracerebral) - Major extracranial hemorrhage - MI - Vascular death - Death - All stroke - Ischemic stroke - Systemic embolism - Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) - Major extracranial hemorrhage - MI	SR RCTs Cohort studies
5.7b	Patients with chronic atrial flutter	What are the benefits and risks of different stroke prevention strategies?	Patients with atrial flutter	As in 2.1	As in 2.1	 Vascular death Death All stroke Ischemic stroke Systemic embolism Intracranial hemorrhage (subdural, subarachnoid, and intracerebral) Major extracranial hemorrhage MI Vascular death 	SR RCTs Cohort studies
6	Bleeding						
6.1	Risk factors for bleeding on OAC therapy	What are the risk factors for bleeding while on VKA	Patients with AF on VKA therapy	N/A	N/A	-Fatal hemorrhage -Intracranial hemorrhage	Epidemiologic studies

		therapy?			2	(subdural, subarachnoid, intracerebral) -Major extracranial hemorrhage -Minor bleeding	Cohort studies RCTs
6.2	Bleeding risk assessment	What risk stratification schemes most accurately predict the risk of bleeding?	Patients with AF on OAC therapy	N/A	N/A	c-statistic NRU, IDI, DCA Absolute rates of bleeding outcomes (as listed above)	Clinical prediction rules
,		What are the values and preferences of patients with AF regarding VKA therapy, risk of stroke, and risk of bleeding?	Patients with AF	N/A	N/A	Patient preferences Factors which affect patient preferences Quality of life	RCTs Observational studies

GradeofRecommendation	Benefit vs Risk and Burdens	Methodologic Strength of Supporting Evidence	Implications
Strong recommendation, High-quality evidence	Benefits clearly outweigh risk and burdens, or vice versa	We are very confident that the true effect lies close to that of the estimate of the effect.	Recommendation can apply to most patients in most circumstances. Further research is very unlikely to change our confidence in the estimate of effect.
Strong recommendation, Moderate-quality evidence	Benefits clearly outweigh risk and burdens, or vice versa	We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different	Recommendation can apply to most patients in most circumstances. Higher quality research may well have an important impact on our confidence in the estimate of effect and may change the estimate.
Strong recommendation, Low-quality evidence	Benefits clearly outweigh risk and burdens, or vice versa	Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.	Recommendation can apply to most patients in many circumstances. Higher quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate.
Strong recommendation, very low quality evidence	Benefits clearly outweigh risk and burdens, or vice versa	We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect	Recommendation can apply to most patients in many circumstances. Higher quality research is likely to have an important impact on our confidence in the estimate of effect and may well

			change the estimate.
Strong recommendation, very low quality evidence	Benefits clearly outweigh risk and burdens, or vice versa	We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect	Recommendation can apply to most patients in many circumstances. Higher quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate.
Weak (conditional) recommendation, High-quality evidence	Benefits closely balanced with risks and burden	We are very confident that the true effect lies close to that of the estimate of the effect.	The best action may differ depending on circumstances or patients' or societal values. Further research is very unlikely to change our confidence in the estimate of effect.
Weak (conditional) recommendation, Moderate-quality evidence	Benefits closely balanced with risks and burden	We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different	Best action may differ depending on circumstances or patients' or societal values. Higher quality research may well have an important impact on our confidence in the estimate of effect and may change the estimate.
Weak (conditional) recommendation, Low-quality evidence	Uncertainty in the estimates of benefits, risks, and burden; benefits, risk and burden may be closely balanced	Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.	Other alternatives may be equally reasonable. Higher quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate.
Weak (conditional) recommendation, very-low quality evidence	Uncertainty in the estimates of benefits, risks, and burden; benefits, risk and burden may be closely balanced	We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect	Other alternatives may be equally reasonable. Higher quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate.
	U	Ingraded Consensus-based Suggestions	
Ungraded Consensus- Based Statement	Uncertainty due to lack of evidence but expert opinion that benefits outweigh risk and burdens or vice versa	Insufficient evidence for a graded recommendation	Future research may well have an important impact on our confidence in the estimate of effect and may change the estimate.

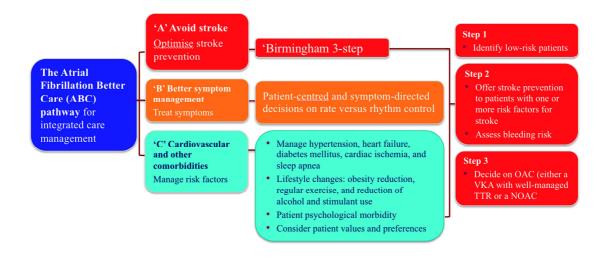
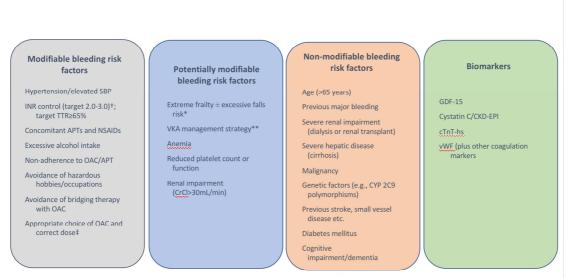
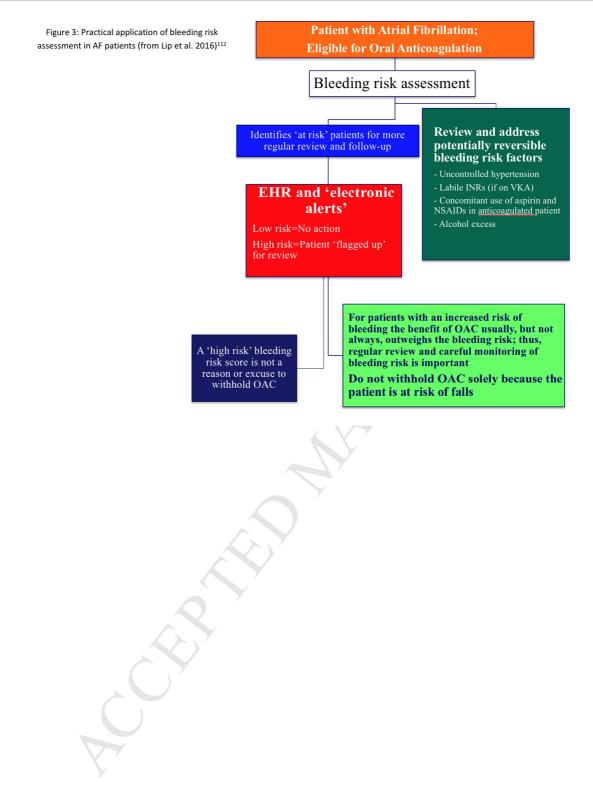



Figure 1 The Atrial fibrillation Better Care (ABC) Pathway of Integrated Care Management (from Lip et al 2017)².


Figure 2: Risk factors for bleeding with oral anticoagulation (NOAC and VKA) and antiplatelet therapy

APT = anti-platelets; CrCl = creatinine clearance; CTnT-hs = high sensitivity Troponin T; GDF-15 = growth differentiation factor-15; INR = international normalized ratio; NSAIDs = non-steroidal anti-inflammatory drugs; OAC = oral anticoagulation; SBP = systolic blood pressure; TTR = time in the therapeutic range; VWF = von Willebrand Factor

tfor patients receiving VKA treatment; ‡dose adaptation based on patient's age, body weight and serum creatinine; *walking aids; appropriate footwear; home review to remove trip hazards; neurological assessment where appropriate); ** increased INR monitoring, dedicated OAC clinics, self-monitoring/self-management, educational/behavioural interventions

CER RAN

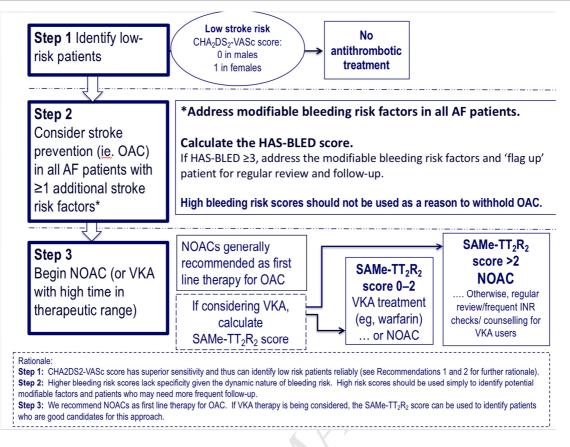
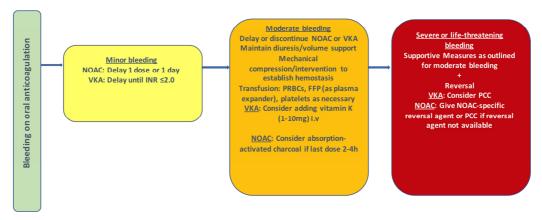



Figure 5: Management of patients with active bleeding on oral anticoagulation (NOAC and VKA)

FFP, fresh frozen plasma; h, hours; i.v., intravenous; NOAC, non-vitamin K antagonist oral anticoagulant; PCC, prothrombin complex concentrate; PRBC, packed red blood cells; VKA, vitamin K antagonist

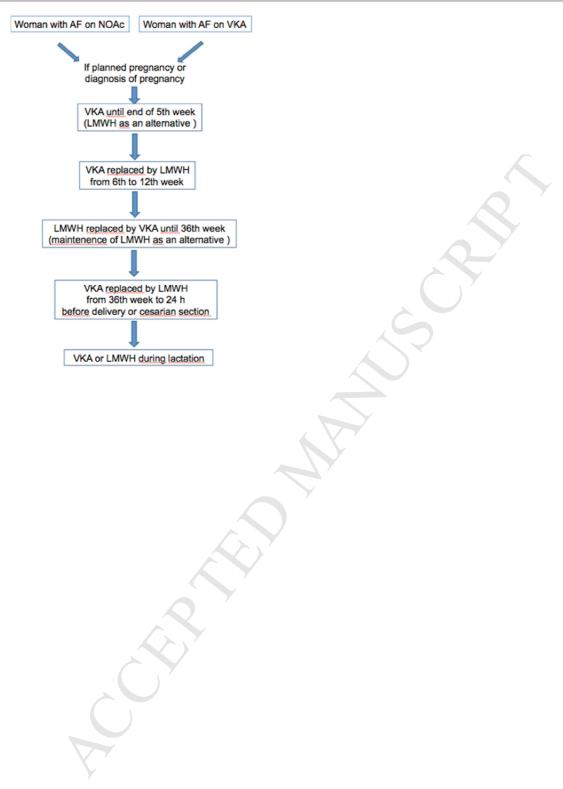
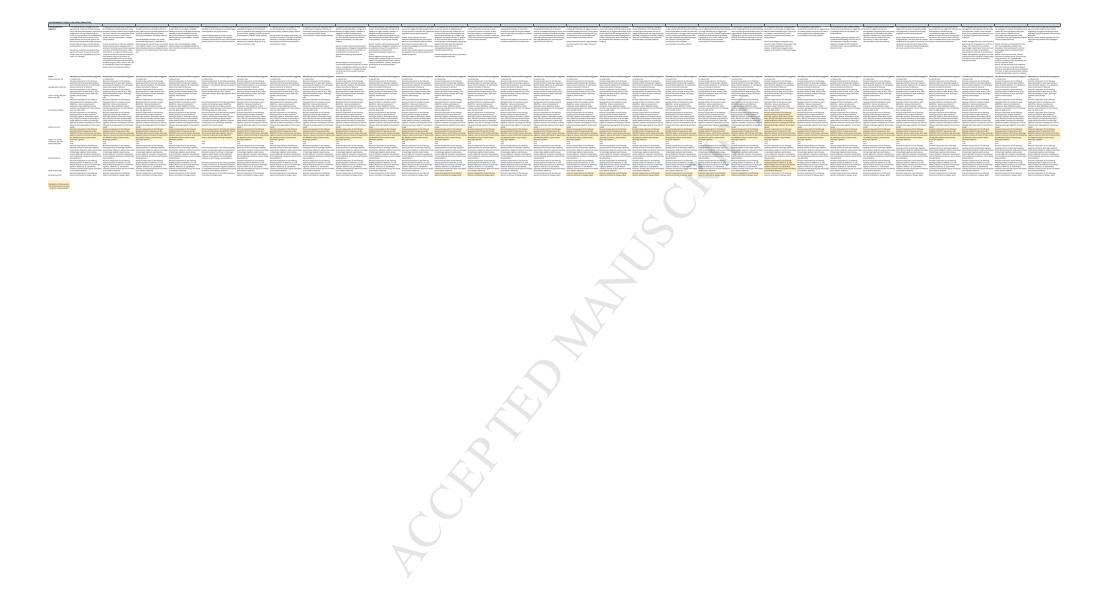



Figure 6. Management of oral antiplatelet therapy in patients with (A) balanced thrombotic bleeding risk, (B) low thrombotic–high bleeding risk, and (C) high thrombotic–low bleeding risk (adapted from Angiolillo et al. 2016)²⁸²

FLOW CHART for patient management in ca	se of CIED detected AHRE
Detection of AHRE	Patient with a CIED, no previous AF and detection of AHRE (\geq 5-6 min and >180 bpm)
Clinical evaluation of device data and evaluation of patient cardiac status and profile	Analysis of device electrograms (AF/atrial tachyarrhythmias confirmed? Artifacts excluded?)
	Clinical cardiological evaluation + 12-lead ECG
	Consideration for ECG recordings (Holter, patient operated devices) in specific cases (e.g. unavailable electrograms or unclear diagnosis at device electrograms analysis)
	Clinical risk stratification for stroke (CHA ₂ DS ₂ VASc score?
Clinical decision making and follow up	If diagnosis of AF or atrial flutter and intermediate (CHA ₂ DS ₂ VASc score =1 in males and =2 in females) or high risk (CHA ₂ DS ₂ VASc score ≥2 in males and ≥3 in females): -Monitoring of AHRE evolution (remote monitoring is advised) -Clinical follow up for evaluating if AHRE > 24 hours and/or clinical AF develops, as well as changes in patient status/clinical profile (e.g. heart failure) -Individual considerations for prescription of OAC considering overall AHRE burden and AHRE > 24 hours, individual CHA ₂ DS ₂ VASc, predicted risk benefit of OAC (specifically risk of major bleeding) and patient preferences

Drug	CrCl ≥50 mL/min	CrCl 30-49 mL/min	CrCl 15-29 mL/min	CrCl <15 mL/min or ESRD on RRT
VKA	If TTR ≥70%	If TTR ≥70%	If TTR ≥70%	If TTR ≥70%
Dabigatran	150mg bid §	150 mg bid	≭ (Outside US)	×
	(or 110mg bid)	(or non-US, 110mg bid) §	75mg bid in US §	
Rivaroxaban	20 mg qd	15mg qd	15 mg qd	×
Apixaban	5mg bid*	5mg bid*	2.5mg bid	≭ (Outside US)
Edoxaban	60 mg q#	30mg qd	30mg qd	5mg bid in US only* ≭
		specially in NOAC users		agulau vielt factore


Figure 8. Suggested algorithm for the decision-making process in prescribing oral anticoagulant therapy in patients with various degrees of renal function impairment (from Lau et al 2016).⁴³⁶

comorbidities.

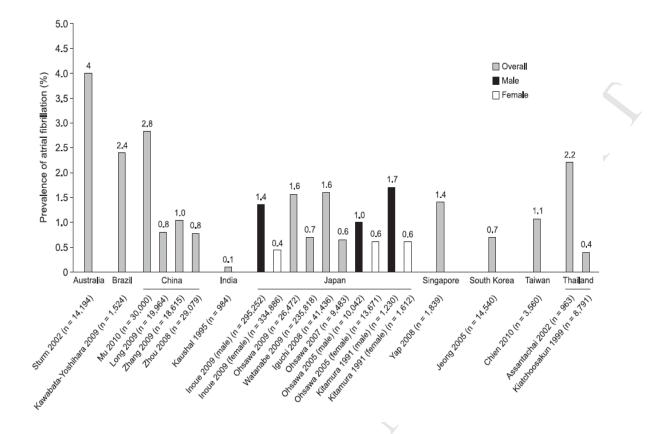
. Reassess and address bleeding risk factors.

*Use 2.5 mg BID if 2 of 3 of the following criteria are present: age >80 years old, weight <60 kg, serum creatinine >133 mmol/l. §The 110-mg dose is not available in the United States. Unless the patient is elderly or has high bleeding risk or is taking p-glycoprotein inhibitors, where dabigatran, 110 mg BID is preferred, except in the United States, where the 110-mg dose is not available. #In the United States only, caution is advised where CrCl is >95 ml/min.

re th

In contract with and an end of the section A section of a section of the section of th			Automatical and a state of the	Instrument Address of the second	
			ED MA	59	
		Ŕ			
	R.				

e-Table 2. Implications of Strength of Recommendations for different users of guidelines
--


	Strong Recommendation	Conditional (weak) Recommendation The majority of individuals in this situation would want the suggested course of action, but some would not.					
For patients	Most individuals in this situation would want the recommended course of action and only a small proportion would not.						
For clinicians	Most individuals should receive the recommended course of action. Adherence to this recommendation according to the guideline could be used as a quality criterion or performance indicator. Formal decision aids are not likely to be needed to help individuals make decisions consistent with their values and preferences.	Recognize that different choices will be appropriate for different patients, and that you must help each patient arrive at a management decision consistent with her or his values and preferences. Decision aids may well be useful helping individuals making decisions consistent with their values and preferences. Clinicians should expect to spend more time with patients when working towards a decision.					
For policy makers	The recommendation can be adapted as policy in most situations including for the use as performance indicators.	Policy making will require substantial debates and involvement of many stakeholders. Policies are also more likely to vary between regions. Performance indicators would have to focus on the fact that adequate deliberation about the management options has taken place.					

e-Appendix 1. Burden of Stroke in Atrial Fibrillation

Epidemiology and contemporary burden of ischemic stroke in AF

Atrial fibrillation (AF) is the commonest arrhythmia worldwide¹. Health systems face increasing prevalence, incidence and lifetime risk of AF, which is as high as 1 in 4 in contemporary studies in high-income settings². Age is an important risk factor for both AF and stroke and increasing age and demographic change are projected to drive future increases in AF and stroke³. Epidemiologic studies largely represent Western countries and Caucasian populations⁴. However, reported prevalence varies substantially by world region: India (0.1%)⁵, Europe⁶ and North America (1–2%)⁷ and Australia (4%)⁸, with pooled age- and sex-adjusted prevalence estimated as 2.8% (95% CI: 2.3–3.4%)⁹. Figure 1 illustrates the prevalence of AF in reported studies outside North America and Europe⁴. Recent data from rural India using the approved single-lead electrocardiography device, Alivecor, for 2 minutes on 5 consecutive days found a higher prevalence of AF (~5%) than prior studies¹⁰. As well as regional variation, reported prevalence is therefore higher with more rigorous screening methods to detect AF, and the low prevalence reported in certain world regions may well be an underestimate of true AF burden.

SCHEST[®] Online Supplement

e-Figure 1. Prevalence of atrial fibrillation reported in community-based studies from countries outside North America and Europe. The overall prevalence is presented where available; otherwise, the prevalence in men and women is presented separately. (from Lip et al 2012)⁴

Individuals with AF have increased risk of serious complications, including stroke (4-5 fold increase)¹¹, heart failure (2-3 fold increase)¹² and mortality (2-fold increase)^{12,13}. The Global Burden of Disease Study has shown that burden of disease in terms of age-adjusted disability-adjusted life years has increased by 19% between 1990 and 2010¹. Patients with AF also experience higher rates of morbidity, hospital admissions, as well as 'premature' dementia^{2,14}. Recent data from population-based studies and stroke registries demonstrate a high AF-attributable risk of stroke, especially in the elderly. At least one in 3 to 4 individuals with an ischemic stroke and over 80% of those with ischemic stroke of cardioembolic subtype, also has AF¹⁵.

Mechanism of development of AF

A systematic review of the associations of 23 cardiovascular risk factors and incident AF was recently conducted, including both consented and electronic health record cohorts of 20,420,175 participants and 576,602 AF events respectively. It showed significant heterogeneity in AF definition, quality of reporting, and adjustment for other risk factors¹⁶. Hypertension, obesity, taller height and coronary heart disease showed consistent, direct associations with incident AF. Higher cholesterol (0.76 [0.59-0.98] to 0.94 [0.90-0.97]) and higher diastolic blood pressure (0.87 [0.78-0.96] to 0.92 [0.85-0.99]) showed some evidence of being associated with lower risk of incident AF. Evidence for the widely-held clinical opinion that alcohol use is associated with incident AF in the primary preventative setting was minimal. Several of the risk factors for incident AF are also risk factors for stroke in AF¹⁶.

Ethnic differences

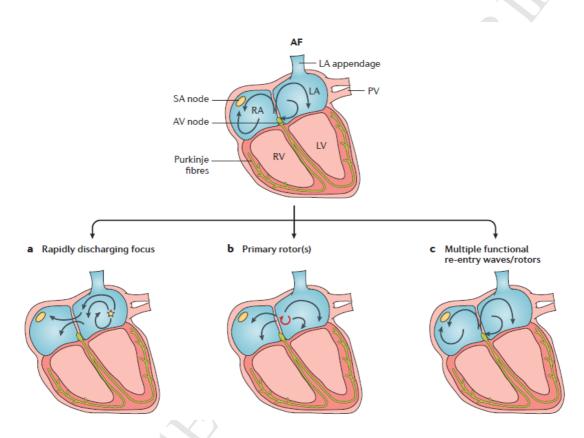
Overall, non-white ethnicity shows evidence of association with lower risk of incident AF in a recent systematic review of electronic health record studies of AF. For African American, Asian, Chinese, Hispanic and Non-Hispanic Black (compared to White) ethnicities, significant inverse associations (from 0.35 [NR–NR] to 0.84 [0.82–0.85]). Only 1 country (USA) reported estimates for the association of ethnicity and incidence of AF¹⁷. There is likely to be considerable variation in prevalence, incidence and outcome by ethnicity and geographic region, but the number of studies to-date is limited. For example, incidence and long-term mortality following hospitalised AF is higher in Aboriginal versus non-Aboriginal individuals in Australia¹⁸. Variations which have been observed need to be validated. For example, the low reported prevalence rates of AF in India may represent under-diagnosis rather than true low rates¹⁰.

The racial differences in co-morbidities in AF patients have been reported recently.^{19,20} The mean age, sex, and prevalence of several stroke-related cardiovascular co-morbidities among different races in major surveys and cohorts are shown in e-Table 3.²¹⁻³⁷ The mean ages were 60 to mid-70, except in the Middle East (mean age 57 years). Males were generally predominant. Hypertension (52-85.2%) leads other risk factors and is equally distributed in different races. The prevalence rates of heart failure (18.9-47.5%) and diabetes (16-36.8%) show no major differences among races. With one exception in China,²⁶ coronary heart disease (CHD) seems more common in Caucasians and Middle East (16.0-36.4%) than in Asians (7.4-25.4%). Only 1 of the remaining 9 Asian cohorts has a prevalence rate of CHD more than 20%, while 7 of the 10 cohorts in Caucasians and the Middle East have CHD prevalence rate above 20%. A higher prevalence rate of previous history of stroke/transient ischemic attack (TIA) was found in Asians (10.2-23.1%) than in Caucasians and Middle East (9-19%). Eight out of the 10 Asian cohorts have a history of stroke/TIA above 15%, but only 1 of the 10 cohorts of Caucasians and the Middle East has a prevalence rate over 15%.

The annual risk of AF-associated stroke in Asians is higher than that in Caucasians.²⁰ In the recent AF cohorts from Taiwan²⁹, Hong Kong,³⁰ and Sweden³⁸, the annual stroke risk in antithrombotic-naïve patients who had a CHA₂DS₂-VASc score 0 was 1.1%, 2.4% and 0.2%, respectively. The similar trends were shown for CHA₂DS₂-VASc 1 (1.7%, 6.6%, and 0.6% respectively), CHA₂DS₂-VASc 2 (3.2%, 7.8%, and 2.2% respectively), CHA₂DS₂-VASc 3 (4.2%, 9.6%, and 3.2% respectively), and CHA₂DS₂-VASc 4 (5.8%, 11.6%, and 4.8% respectively). It has been suggested that the risk of stroke starts to increases at a younger age in Asians.²⁰ In a Taiwanese cohort, the risk of stroke was 1.78%/year in patients who had an age of 50-64 years and a CHA₂DS₂-VASc 0.³⁹ The risk exceeds the threshold for OAC use for stroke prevention. A modified CHA₂DS₂-VASc (mCHA₂DS₂-VASc) score has been proposed assigning one point for patients aged 50 to 74 years.⁴⁰ The mCHA₂DS₂-VASc score performed better than CHA₂DS₂-VASc score in predicting ischemic stroke assessed by C indexes and net reclassification index. For patients having an mCHA₂DS₂-VASc score of 1 (males) or 2 (females) because of the resetting of the age threshold, use of warfarin was associated with a 30% lower risk of ischemic stroke and a similar risk of ICH compared with non-treatment. Net clinical benefit analyses also favored the use of warfarin in different weighted models. These findings suggest that the age threshold may need to be reset in East Asians.⁴⁰

Section CHEST[®] Online Supplement

e-Table 3. Co-morbidities of AF in different races in major surveys and cohorts


	Asians	Asians									Caucasia	Caucasians									
Survey/ cohorts	RECORD AF AP ²¹	RELY AF Southeast Asia ²²	GARFIELD East and Southeast Asia ²³	J-Rhythm ²⁴	Fushimi ²⁵	China ²⁶	CAFR 27	GLORIA 1 Chinese 28	Taiwan ²⁹	НК ³⁰	Euro Heart Survey 31	RECORD AF ³²	ORBIT AF ³³	RELY AF West Europe 22	EORP AF ³⁴	PREFER 35	GARFIELD, other region excluding East and South East Asia ²³	GLORIA I Europe ²⁸	SPRINT 36	East GULF SAFE ³⁷	
Age (mean)	64	69.5	67.1	69.7	74.2	75	65.8	69	72.0	76.9	66	66	75	69.4	68.8	71.5	71.3	71	75.7	57	
Female(%)	40	44.6	39.8	31.1	40.7	27.1	40.4	42.8	46.0	52.1	43	43	42	38.8	40.4	39.9	44.5	50.5	44.7	48	
CHD(%)	19	10.9	7.4	11.6	15.0	59.4	7.8	25.4	15.3	18.2	32	18	32	18.2	36.4	23.4	16.0	20.3	25.1	28	
Diabetes(%)	18	29.2	23.5	22.1	23.2	36.8	24.5	19.5	26.9	22.0	18	16	29	17.1	20.6	22.4	23.7	27.1	29.7	30	
HF(%)	25	26.3	26.6	34.4	27.9	21.2	18.9	24.7	38.7	22.8	33	26	32	21.2	47.5	21.3	20.8	22.3	18.8	27	
HT(%)	58	64.1	73.1	71.1	60.6	72.5	66.1	70.1	62.9	54.7	63	68	83	59.9	70.9	72.0	82.0	85.2	73.6	52	
Stroke/ TIA(%)	13	22.1	15.3	17.3	21.8	20.2	17.0	10.2	20.5	23.1	9	10	16	12	10.5	8.4	13.7	10.7	15.0	13	

Online supplements are not copyedited prior to posting and the author(s) take full responsibility for the accuracy of all data.

CHEST Online Supplement

Pathophysiology – a brief overview

AF is characterised by rapid, uncoordinated atrial activity, caused by: (a) a rapidly discharging atrial focus, (b) a primary re-entrant rotor, or (c) multiple functional re-entry circuits⁴ (figure w3). The initiation and perpetuation of AF needs both "triggers" for its onset and a "vulnerable substrate" for its maintenance. "Triggers" of focal spontaneous firing typically arise from the pulmonary veins⁴¹, but can also emanate from other foci⁴². The 'vulnerable substrate' maintains the arrhythmia, dependent on cardiac and non-cardiac risk factors, including genetic predisposition, cardiac remodelling due to underlying heart disease, autonomic imbalance and thyroid dysfunction.

e-Figure 2. Mechanisms that can maintain atrial fibrillation (from Lip et al 2016⁴). *AF, atrial fibrillation; AV, atrioventricular; LA, left atrium; LV, left ventricle; PV, pulmonary vein; RA, right atrium; RV, right ventricle; SA, sinoatrial.*

Although the micro-pathophysiology has been relatively well-established, the epidemiology of how risk factors individually or in combination, create the "vulnerable substrate", is relatively unknown. Until the interplay of these risk factors is better understood, primary prevention strategies for AF are likely to be restricted, despite development of risk prediction tools for AF. Although currently primary prevention strategies for AF have not been conclusively proven in randomized trials, opportunistic screening is the recommended strategy to detect AF at population-level⁴³.

Echocardiographic risk factors for ischemic stroke in AF

Underlying heart disease, whether as a result of hypertension, coronary artery disease or heart failure, is important in the aetiology and prognosis of AF. Therefore, it is not surprising that echocardiographic characteristics have been associated with risk of ischemic stroke in AF. There

SCHEST Online Supplement

may also be a role in evaluating thromboembolic risk stratification to select appropriate antithrombotic therapy. e-Table 4 summarizes major studies which have shown association between transthoracic echocardiographic (TTE) parameters and ischemic stroke.

In summary, there are small-scale studies to suggest a role for various measures (LA and LV size, volume and strain) on TTE. However, there are very limited data to suggest that there would be any incremental benefit in risk prediction, and moreover there is no evidence that management (in terms of OAC) would be changed⁴⁴. In the recent ENGAGE AF-TIMI trial, larger LV size and higher filling pressures (measured by E/e' ratio) were significantly associated with increased risk for death, but neither left atrial nor LV measures were associated with thromboembolic risk⁴⁵. In patients undergoing transesophageal echocardiography (TEE), LA appendage thrombi⁴⁶ and LA spontaneous echo contrast⁴⁷ are both associated with increased thromboembolism, but the same limitations as for TTE parameters apply⁴⁴. In terms of risk stratification, the role of echocardiography is currently restricted to the inclusion of heart failure (left ventricular systolic dysfunction) in the CHA₂DS₂-VASc score⁴⁸.

e-Table 4. Key evidence concerning transthoracic echocardiographic parameters and prediction of stroke and thromboembolism in patients with non-valvar AF. Adapted from Providencia et al 2013⁴⁴

Study	Study design and setting	Main findings
The Stroke Prevention in Atrial Fibrillation Investigators (1992) ⁴⁹	Cohort n=568 Non-rheumatic AF Mean follow-up, 1.3 years	14 transthoracic echocardiographic variables were assessed for predicting ischemic stroke or systemic embolism. Only LA size (measured on M-mode echocardiography) and depressed LVEF were independent predictors of thromboembolism on multivariate analysis and improved risk stratification when combined with three clinical risk factors: history of hypertension, recent congestive heart failure and previous thromboembolism
Osranek <i>et al.</i> (2005) ⁵	Cohort n=45 Lone AF Mean follow-up, 27 years	Individuals with indexed LA volume \geq 32 mL/m ² had worse event-free survival (HR, 4.46; <i>P</i> = 0.005) Cerebral infarction occurred in 7 patients, all with indexed LA volumes \geq 32 mL/m ²
Lee <i>et al.</i> (2008) ⁵¹	Cross-sectional n=330 Persistent AF and preserved LVEF	E/E' ratio was independently associated with ischemic stroke on multivariate analysis
Shin <i>et al.</i> (2010) ⁵²	Cohort n=148 AF and heart failure with preserved LVEF Median follow-up, 27 months	S' and E', particularly when combined, were independent predictors of a composite of cardiovascular death, recurrent heart failure, and ischemic stroke
Azemi <i>et al.</i> (2012) ⁵³	Case-control n=57 in each group Nonvalvular AF CHADS ₂ score \leq 1 before index event	Patients with stroke presented reduced peak negative and peak positive LA strain values, when compared with controls
Su et al. (2013) ⁵⁴	Cohort 196 patients with persistent AF Mean follow-up, 21 months	Global left ventricular longitudinal systolic strain (GLS) was independently associated with adverse CV events including stroke in multivariate models.

LVEF, Left ventricular ejection fraction.

SCHEST Online Supplement

Biomarkers

The role of biomarkers in stroke/thromboembolism in AF has been extensively investigated. e-Table 5 summarizes important studies involving biomarkers. Although several biomarkers of prothrombotic state and of endothelial dysfunction have shown associations with stroke and thrombosis, both study design and scale of the studies limit possible conclusions. Caveats with the use of biomarkers include inter- and intra- patient and assay variability, some have a diurnal variation and can be highly influenced by associated comorbidities and drug therapies. Many biomarkers are non-specific for a particular endpoint, and can be equally predictive not only of stroke but bleeding, death, hospitalization, heart failure etc., as well as noncardiac conditions e.g., glaucoma.

The importance of biomarkers probably lies in the CHA₂DS₂VASc=0-2 group (currently without anticoagulation) where they may influence the decision to anticoagulate, yet there is a paucity of data available in these patients. There are several other hurdles including variations in availability in healthcare systems, biomarker assays, access to laboratories, biomarker diurnally, by comorbidities and by anticoagulation and other therapies. For these reasons, the clinical application of biomarkers in management of AF is unlikely to be significant.

The disease burden-oriented school of thought states, "Research resources should not be allocated disproportionately to emerging novel risk factors that may account for up to only 20% of all strokes at the expense of researching the determinants of the relatively few established causal factors that account for up to 80% of all strokes." ⁵⁵ Any biomarker, whether blood, urine or imaging (cardiac, cerebral or otherwise) will always improve on risk prediction based on clinical factors, but this needs to be balanced against the practical usefulness, cost and daily applicability for everyday clinical practice.

normation.			
Study, Year	Participants	Biomarker	Investigation
Heppell et al. ⁵⁶ 1997	109 (19 with left atrial thrombosis)	BTG, vWF	Association with presence of left atrial thrombosis (BTG: p=0.002; vWF: p=0.04; LAA velocity: p=0.001)
<i>Mondillo et al.⁵⁷ 2000</i>	45 chronic AF, 35 control	vWF, thrombomodulin	Higher levels in chronic AF; association with a prothrombotic state and endothelial dysfunction, coagulation factors and left atrial dimension. (Plasma fibrinogen: p<0. 005; platelet factor 4: p<0.001; thromboglobulin: p<0.001; D-dimer: p<0.03, tPA: p<0.006, plasminogen activator inhibitor: p<0.04; vWF: p<0.0001 and soluble thrombomodulin: p<0.03)
Conway et al. ⁵⁸ 2003	994 AF patients taking aspirin	vWF, P-selectin	Rise in vWF was predictive of stroke and vascular events. After adjustment for covariates, vWf was an independent predictor of vascular events (RR 1.2 [95% CI, 1.0-1.4] per 20 IU/dL increase in vWf; p=0.02), but not stroke.
Conway et al. ⁵⁹ 2004	106 AF; 41 control	IL-6, CRP, TF	Higher levels in AF patients; TF associated with stroke risk (p = 0.003)
<i>Heeringa et al.⁶⁰ 2006</i>	162 AF, 324 control	P-selectin	Association with cardiac mortality in AF (RR 1.27; 1.08-1.50, per 5-unit increase)
Nozawa et al. ⁶¹ 2006	509	D-dimer	<i>Thromboembolic risk in patients without the clinical risk factors was quite low (0.7%/year) when D-dimer was < 150</i>

e-Table 5. Biomarkers in prediction of various thromboembolic events in patients with atrial fibrillation.

CHEST Online Supplement

Study, Year	Participants	Biomarker	Investigation
			ng/ml, but not low (3.8%/year) when D- dimer was >or==150 ng/ml. Association with thromboembolic events even in AF patients on anticoagulation.
<i>Ferro et al.⁶² 2007</i>	285	CD-40 ligand	Predictor of vascular events (stroke and myocardial infarct): HR 4.63, 1.91–11.1; p=0.001
<i>Lip et al.⁶³ 2007</i>	880	hsCRP	<i>Correlation with stroke risk factors and prognosis (mortality: 0.001, cardiovascular events: p=0.05)</i>
Kurl et al. ⁶⁴ 2009	958 men	NT-proBNP, NT- proANP	Predictor for stroke (RR 1.35; 95% CI 1.01- 1.84, $p=0.049$) and AF in The multivariable adjusted risk was for any stroke and 1.30- fold (95% CI 0.90 to 1.91, $p = 0.0150$) for ischemic stroke for each log-transformed SD (0.240 pmol/l) increment in NT-proBNP.
<i>Pinto et al.⁶⁵ 2009</i>	373	TNF-a, IL-6, vWF	Predictor for new-onset stroke in persistent AF
Yuce et al. ⁶⁶ 2010	205 chronic AF	MPV	MPV is not related with left atrial thrombus in patients with chronic AF
Sadanaga et al. ⁶⁷ 2011	261	BNP	Association with thromboembolic events in patients with AF during oral anticoagulant therapy
<i>Hijazi et al.⁶⁸ 2012</i>	6 189	NT-proBNP, Troponin I	Association with risk for stroke and mortality

AF = atrial fibrillation; BTG = β -thromboglobulin; CHF = chronic heart failure; CRP = C-reactive protein; HF = heart failure; hsCRP = highly sensitive C-reactive protein; IL = interleukin; LAA = left atrial appendage; MMP = metallopeptidase; MPV = mean platelet volume; NT-proANP = N-terminal prohormone of ANP; NT-proBNP = N-terminal prohormone of BNP; OAC = oral anticoagulants; RR = relative risk; SPAF III = Stroke Prevention in Atrial Fibrillation III; TF = tissue factor; TNF = tumor necrosis factor; von Willebrand factor(vWF). (From Szymanski et al 2015⁶⁹)

Study	Age (yrs)	HTN	DM	Prior Stroke or TIA	Female Sex	Heart Failure	Coronary Artery Disease	Systolic BP	Abnormal LV Function	Other
Atrial Fibrillation Investigators (1994) ⁷⁰	<u>></u> 65	+	+	+						
Stroke Prevention in Atrial Fibrillation Investigators (1995) ⁷¹	>75*	+		++	++*	++		>160	++	
European Atrial Fibrillation Trial Investigators (1995)** ⁷²				+		S		>160		
Atrial Fibrillation Investigators (1998) ⁷³	>65	+	+	+					+	
Stroke Prevention in Atrial Fibrillation Investigators (1998) ⁷³	>75#	+	+	++	++#			>160		
CHADS ₂ (2001) ⁷⁴	<u>></u> 75	+	+	++		+				
American College of Chest Physicians (2001) ⁷⁵	<u>></u> 65 >75	++	+	++	\rightarrow	++	+		++	
Framingham Heart Study (2003) ⁷⁶	+		+	+	+			+		
van Walraven et al. (2003)77		+	+	+			+	+		
American College of Chest Physicians (2004) ⁷⁸	<u>></u> 65 >75	++	++	++		++			++	
Birmingham/NICÉ (UK)(2006) ⁷⁹	<u>></u> 65	+	+	++		++	+		++	
ACC/AHA/ESC Guidelines (2006) ^{^80}	<u>></u> 75	+	+	++	^	+	^		+	
American College of Chest Physicians (2008) ⁸¹	<u>></u> 75	+	+	++		+				
CHA ₂ DS ₂ -VASc 2010 ⁸²	>65	+	+	++	+	+	8	+	+	
American College of Chest Physicians (2012) ⁸³	<u>></u> 75 (±65- 74)	+	+	++	±	+	±Vascular disease			
ESC 2012 ⁸⁴	>65	+	+	++	+	+	∞	+	+	Stepwise, to initially identify low risk

e-Table 6. Comparison of features included in risk stratification schemes

R ₂ CHADS ₂ (2013) ⁸⁵	≥75	+	+	++		+				Renal dysfunction Ie. CrCl<60
QStroke (2013) ⁸⁶	Range 25-84	+	+		Separate models for M and F	Ś	CHD	+	CHF	Ethnicity; Deprivation score; Smoking; TC:HDL; BMI; FH; RA; CKD; Valvular HD
ATRIA (2013) ⁸⁷	Range <65 to ≥85	+	+	Separate models for 1° and 2° prevention	+	÷				Proteinuria; eGFR<45ml/mi n
NICE2014 ⁸⁸	>65	+	+	++	+	+	∞	+	+	Stepwise, to initially identify low risk
AHA/ACC/HRS 2014 ⁸⁷	>65	+	+	++	+	+	œ	+	+	Categorised, based on CHA ₂ DS ₂ -VASc
CHADS65 (2014 CCS algorithm) ⁸⁹	≥65	+	+	+		+				
ABC-Stroke (2016) ⁹⁰	44-90			¢,						Biomarkers (NT-ProBNP, hs Troponin)
ESC 2016 ⁹¹	>65	+	+	/++	+	+	∞	+	+	Categorised, based on CHA ₂ DS ₂ -VASc risk factors (not score)

e-Table 7. Comparison of Stroke Risk Schema – additional information

Author/Study	Cohort	Schemes compared	Events	Findings	Comments
ABC-stroke Hijazi et al 2016 ⁹⁰	Trial cohorts (ARISTOTLE and STABILITY)	ABC-Stroke, CHA2DS2-VASc	Stroke/SE	The ABC-stroke score yielded higher c-indices than CHA_2DS_2 -VASc in both the derivation cohort (0.68(95%CI 0.65, 0.71) vs. 0.62 (0.60, 0.65), P< 0.001) and external validation cohort (0.66 (0.58, 0.74) vs. 0.58 (0.49, 0.60), P < 0.001).	Developed and internally validated in 14 701 anticoagulated trial patients with biomarkers levels determined at baseline, median follow- up of 1.9 years. External validation in 1400 AF patients (mixed OAC/non-OAC), median follow-up 3.4 years. NB all patients in the derivation cohort had elevated risk to get into the ARISTOTLE trial, and similar elevated risk scores in the STABILITY CAD trial
Aakre ⁹²		0 Cabarraa	Taskausia	Useh viele The Churke Descention in Abrid Fibrillation	A divert companies of Q viely achieves reveale
Аакте	longitudinal community- based cohort study from Olmsted County	8 Schemes compared ((AF investigators, SPAF, NICE guidelines, ACC/AHA/ESC guideline, ACCP Guideline	Ischemic stroke/SE	High risk: The Stroke Prevention in Atrial Fibrillation (SPAF; hazard ratio, 2.75; <i>c</i> =0.659), CHADS ₂ -revised (hazard ratio, 3.48; <i>c</i> =0.654), and CHADS ₂ -classical (hazard ratio, 2.90; <i>c</i> =0.653) risk schemes were most accurate in risk stratification. Low-risk cohort within the CHA ₂ DS ₂ -VASc scheme had the lowest event rate among all low-risk cohorts (0.11 per 100 person-years), but only 5% of the population were classified as low risk,	A direct comparison of 9 risk schemes reveals no profound differences in risk stratification accuracy for high-risk patients. Accurate prediction of low-risk patients is perhaps more valuable in determining those unlikely to benefit from OAC therapy. CHA ₂ DS ₂ -VASc performed best, but only small proportion were classified as low risk
Abraham ⁹³	longitudinal cohort of	CHADS2	Ischemic	CHA2DS2-VASc had a higher c statistic than CHADS2:	Both CHADS2, and CHA2DS2-VASc are
	5981 women with AF not on warfarin at baseline (mean age 65.9 years) enrolled in the Women's Health Initiative and followed for a median of 11.8 years.	CHA2DS2-VASc	stroke/TIA	0.67 (95% CI, 0.65-0.69) versus 0.65 (95% CI, 0.62- 0.67), P <.01. For CHADS ₂ scores <2, stroke risk almost doubled with every additional CHA ₂ DS ₂ -VASc point. Possible that some women were started later on warfarin. As all cohort were women, CHA ₂ DS ₂ -VASc =1 was solely female sex	predictive of stroke risk in postmenopausal women with AF. CHA ₂ DS ₂ -VASc further risk-stratifies patients with a CHADS ₂ score <2.
Abu-Assi ⁹⁴	186 patients with non- valvular AF and off anticoagulant therapy	4 risk schemes: The Framingham, the 8th ACCP, the ACC/AHA/ESC 2006, and the CHA2DS2- VASc.	Ischemic stroke/SE	c-statistic ranged from 0.59 [for CHA ₂ DS ₂ -VASc] to 0.73 [for Framingham]. CHA ₂ DS ₂ -VASc categorized the fewest patients into low and intermediate-risk categories, whereas the Framingham schema assigned the highest patients into low-risk strata. No TE events in the low and intermediate-risk categories using CHA ₂ DS ₂ -VASc , whereas the most schemes assigned patients into intermediate-risk category had an event rate ranging from 2.5 (ACC/AHA/ESC and 8th ACCP schemes) to 6% (Framingham). The negative predictive value of TE events was of 100% for the no high-risk patients using CHA ₂ DS ₂ -VASc .	Small study, with few events, and only 6 patients with CHA ₂ DS ₂ -VASc score of 0 or 1. Therefore caveat on conclusion that CHA ₂ DS ₂ - VASc risk stratification schema may be better in discriminating between patients at a low and intermediate risk of TE complications.

Abumuaileq ⁹⁵	non-anticoagulated cohort of 154 patients; 911 patients formed the cohort of patients on VKA	CHA ₂ DS ₂ - VASc , R2CHADS2 and ATRIA (used the conventional ATRIA cut-off of 0-5, and did not explore lower cut points)	Ischemic stroke/SE	During 11 ± 2.7 months. CHA ₂ DS ₂ -VASc showed significant association with TE: hazard ratio (HR) = 1.58 [95%CI 1.01–2.46), but R ₂ CHADS ₂ and ATRIA did not (HR = 1.23 (95 % CI 0.86–1.77) and 1.20 (95 % CI 0.93–1.56), respectively. In the anticoagulated cohort, after 10 ± 3 months of follow up, the three scores showed similar association with TE risk: HR = 1.49 (95 % CI 1.13–1.97), 1.41 (95 % CI 1.13–1.77) and 1.37 (95 % CI 1.12–1.66) for CHA ₂ DS ₂ -VASc , R ₂ CHADS ₂ and ATRIA, respectively.	Small study with only 9 TE events in total and only 23 patients in CHA ₂ DS ₂ -VASc low risk group. CHA ₂ DS ₂ -VASc better association with TE events than R ₂ CHADS ₂ and ATRIA scores in the non-anticoagulated cohort. CHA ₂ DS ₂ -VASc and R ₂ CHADS ₂ can identify patients at truly low risk regardless of the anticoagulation status.
Chao ²⁹	186,570 AF patients without antithrombotic therapy Taiwan Health Insurance database	CHA2DS2VASc, ATRIA (used the conventional ATRIA cut-off of 0-5, and did not fully explore lower cut points. There was a pointwise gradation of risk from ATRIA score 0 to 5)	Ischemic stroke	 High risk: CHA2DS2-VASc score performed better than ATRIA score in predicting ischemic stroke as assessed by c-indexes (0.698 vs. 0.627, respectively; p < 0.0001). CHA2DS2-VASc score improved the net reclassification index by 11.7% compared with ATRIA score (p < 0.0001). Low risk: Among 73,242 patients categorized as low-risk on the basis of an ATRIA score of 0 to 5, the CHA2DS2-VASc scores ranged from 0 to 7, and annual stroke rates ranged from 1.06% to 13.33% at 1-year follow-up. c-index of CHA2DS2-VASc score (0.629) was significantly higher than that of the ATRIA score (0.593) in this "low-risk" category (p < 0.0001). 	Patients categorized as low-risk by use of the ATRIA score were not necessarily low-risk, and the annual stroke rates can be as high as 2.95% at 1-year follow-up. ATRIA score may perform better if a lower cut point is chosen CHA2DS2-VASc score of 0 had a truly low risk of ischemic stroke, with an annual rate of approximately 1%
Chao ⁹⁶	186,570 AF patients without antithrombotic therapy Taiwan Health Insurance database	CHA2DS2VASc, CHADS2	Ischemic stroke	CHA2DS2VASc, score performed better than CHADS2 score in predicting ischemic stroke assessed by c- indexes (0.698 vs 0.659, P o.0001). Among 25,286 patients with a CHADS2 score of 0, the CHA2DS2VASc, score ranged from 0 to 3, and the annual stroke rate ranged from 1.15% to 4.47%.	Very large study with high numbers of events. CHADS2 score of 0 were not necessarily "low risk," and the annual stroke rate can be as high as 4.47% when further stratified by CHA2DS2VASc. CHA2DS2VASc score of 0 had a truly low risk of ischemic stroke, with an annual rate around 1.15%.

Che <i>n</i> ⁹⁷	Systematic review and meta-analysis of the predictive abilities of CHADS2 and CHA2DS2VASc	CHA2DS2VASc, CHADS2		Unsuitable to perform a direct meta-analysis because of high heterogeneity. When analyzed as a continuous variable, the C-statistic ranged from 0.60 to 0.80 (median 0.683) for CHADS2 and 0.64–0.79 (median 0.673) for CHA2DS2VASc (no significant difference). The average ratio of endpoint events in the low-risk group of CHA2DS2VASc was less than CHADS2 (0.41% vs. 0.94%, $P < 0.05$). The average proportion of the moderate-risk group of CHA2DS2VASc was lower than CHADS2 (11.12% vs. 30.75%, $P < 0.05$).	The C-statistic suggests a similar clinical utility of the CHADS2 and CHA2DS2VASc scores in predicting stroke and thromboem- bolism, but CHA2DS2VASc has the important advantage of identifying extremely low-risk patients with AF, as well as classi- fying a lower proportion of patients as moderate risk.
Coppens ⁹⁸	Trial cohort from AVERROES and ACTIVE all treated with aspirin and some with concomitant clopidogrel	CHA2DS2VASc, CHADS2		Of 4670 patients with a baseline CHADS2 score of 1, 26% had a CHA2DS2VASc score of 1 and 74% had a score of ≥ 2 . After 11414 patient-years of follow-up, the annual incidence of SSE was 0.9% (95% CI: 0.6–1.3) and 2.1% (95% CI: 1.8–2.5) for patients with a CHA2DS2VASc score of 1 and ≥ 2 , respectively. The c-statistic of the CHA2DS2VASc score was 0.587 (95% CI: 0.550–0.624). Age 65 to <75 years was the strongest of the three new risk factors in the CHA2DS2VASc score	The CHA2DS2VASc score reclassifies 26% of patients with a CHADS2 score of 1 to a low annual risk of SSE of 1% and age 65-74 is the major contributor.
Guo et al ²⁶	1034 AF patients (27.1% female, median age 75; 85.6% non- anticoagulated) with mean follow-up of 1.9 years. PLA General Hospital electronic medical database 2007-2010	CHA2DS2VASc, CHADS2	Stroke/TE	In patients with a CHADS2 or CHA2DS2-VASc score=1, the rate of stroke/TE was 2.9% and 0.9% respectively. In patients at "high risk" (scores≥2), this rate was 4.6% and 4.5%, respectively. The c-statistics for predicting stroke/TE with CHADS2 and CHA2DS2-VASc were 0.58 (p = 0.109) and 0.72 (p <0.001), respectively. Compared to CHADS2, the use of CHA2DS2-VASc would result in a Net Reclassification Improvement (NRI) of 16.6% (p=0.009) and an Integrated Discrimination Improvement (IDI) of 1.1% (p = 0.002). Cumulative survival of the patients with a CHA2DS2- VASc score ≥ 2 was decreased com- pared to those with a CHA2DS2-VASc score 0-1 (p < 0.001), but the CHADS2 was not predictive of mortality.	Vascular disease was a strong independent predictor of stroke/TE in Chinese patients with AF, and CHA2DS2-VASc. superior to CHADS2 at low scores.

Hippisley-Cox ⁸⁶	1 897 168 eligible patients from 451 general practices in England and Wales contributing to the national QResearch database. Excluded patients with prior stroke or TIA, and those on anticoagulant	QStroke CHA2DS2VASc, CHADS2	Stroke or TIA	AF patients at baseline: C statistic in men was 0.71 (0.69-0.73) for QStroke, 0.67 (0.65, 0.69) for CHA2DS2VASc, and 0.63 for CHADS2(0.61-0.66) C statistics in women was 0.65 (0.62-0.67) for QStroke, 0.62 (0.59, 0.65) for CHA2DS2VASc, and 0.61 for CHADS2(0.59-0.64)	4% of patients were low risk on CHA2DS2VASc but high risk on Qstroke and had a 10 year observed stroke rate of 7.6%, compared to 2.6% for those low risk on both scores and 21.2% for those at high risk on both scores. A high risk on CHA2DS2VASc but low on Qstroke (4% of patients) had a10 year stroke rate of 2.8%. These results pertain only to patients without a prior stroke or TIA
Kornej ⁸⁵	N=2069; 66% men; 60±10 years; 62% paroxysmal AF Referred for ablation	CHADS2, CHA2DS2- VASc, and R2CHADS2	Stroke, transient ischemic attack, or systemic embolism	C-indexes: CHADS2 0.72(0.70-0.739); CHA2DS2-VASc 0.736(0.716-0.755) and R2CHADS2 0.736 (0.716-0.755) CHA2DS2-VASc score further differentiated TE risk in patients with CHADS2 and R2CHADS2 0 to 1 (0.13% if CHA2DS2- VASc was 0-1 and 0.71% if CHA2DS2-VASc was >2) and had the best predictive value in patients with AF recurrences (c-index 0.894, P =0.022 versus CHADS2, P =0.031 versus R2CHADS2).	CHA2DS2-VASc score differentiated TE risk in the low-risk strata based on CHADS2 and R2CHADS2 scores in a post-ablation cohort, with half of the TE events occurring in the 30 days post ablation
Lip ⁹⁹	207,543 incident hospital discharge patients with AF from 1999 to 2012 Danish registry linked data	CHA2DS2VASc, ATRIA	Ischemic stroke/TE	Patients categorized as low risk using the ATRIA score, the 1-year stroke/thromboembolic event rate ranged from 1.13 to 36.94 per 100 person-years, when subdivided by CHA2DS2VASc scores. In patients with an ATRIA score 0 to 5 (i.e. low risk), C statistics at 1 year follow-up in the Cox regression model were significantly improved from 0.626 (95% CI, 0.612- 0.640) to 0.665 (95% CI, 0.651-0.679) when the CHA2DS2VASc score was used for categorizing stroke risk instead of the ATRIA score ($P <.001$). Low-risk category (i.e., CHA2DS2VASc score 0 for men or a score 1 for women) would identify a truly low-risk cohort, with annual event rates at 1- year of 1.13 per 100 person-years.	Patients categorized as low risk using an ATRIA score 0 to 5 are not necessarily low risk, with 1-year event rates as high as 36.94 per 100 person-years. However, no exploration on risk at ATRIA scores between 0- 5, and whether a lower ATRIA cut point would perform differently CHA2DS2VASc score best at identifying the "truly low risk" subjects with AF compared to ATRIA 0-5 low risk definition
Lip ¹⁰⁰	22,582 non- anticoagulated hospital discharged patients age < 65 years with a CHADS2 score of 0 who were stratified according to the CHA2DS2-VASc score, except female sex, which would be an indication for OAC according to the ESC guidelines.	CHA2DS2VASc, CHADS65	Ischemic stroke/TE/ TIA	Overall rate of the combined end point of ischemic stroke/systemic embolism/transient ischemic attack was 4.32 per 100 person-years (95% CI 3.26-5.74) at 1 year, among the patients who would have had an indication for OAC therapy according to 2012 ESC guidelines (based on CHA2DS2VASc score) and "OAC not recommended" according to CCS algorithm. Subgroup of patients with previous vascular disease and CHADS2 score of 0 (i.e., recommended only aspirin treatment according to the CCS algorithm) had an event rate of 4.84 (95% CI, 3.53-6.62) per 100 person-years	Based on the 2014 CCS algorithm, the "OAC not recommended" subgroup can have a high 1-year stroke rate overall, showing that such patients are not "low risk." Use of CHA2DS2-VASc offers refinement of stroke risk stratification in such patients.

	Danish Registry linked data			at 1-year follow-up. Sensitivity analysis yielded similar result with events restricted to stroke/systemic embolism	
Nielsen et al ¹⁰¹	Supplemental information to Can J Cardiol 2015 31; 24-28 responding to Cairns et al editorial on the original Lip et al article	CHA2DS2VASc, CHADS65		Contrasting low risk CHA2DS2-VASc (that is, score 0 (male) or 1 (female)) as a reference population vs those with \geq 1 additional non-sex stroke risk factors (i.e. CHA2DS2- VASc score =1 (male) or =2 (females)) to express the hazard attributable to vascular disease resulted in a crude HR of 2.7 (95%CI 1.7-4.2). 'Vascular disease' Event rates per 100 person- years: MI 2.5 (1.4-4.3); PAD 3.0 (1.3-6.7); Both 15.0 (4.8-46.4)	Any stroke RF other than sex (including vascular disease) in CHA2DS2-VASc provides a high enough risk of adverse events to warrant a recommendation for anticoagulation
Nielsen ¹⁰²	198697 hospital discharged AF patients, of which 15% truly low risk Danish registry linked data (NB Lip and Nielsen papers from the same cohorts)	CHA2DS2- VASc, but compares guideline approaches and addresses the varying event rates reported for different guideline cut- offs and different analysis approaches	Ischemic stroke, and composite of ischemic stroke and systemic embolism	Rate of composite endpoint using censoring of observation at time of OAC commencement was 0.54/100 person-years for truly low risk (CHA2DS2- VASc 0 males, 1 females), 1.53 for CHA2DS2-VASc =1 in males, 2.33 for CHA2DS2-VASc =2, and 5.49 for CHA2DS2-VASc >2. The analysis using conditioning on the future revealed an event rate of only 1.17/100 patient-years for CHA2DS2-VASc =1 (males)	Stroke and TE event rates vary according to method of analysis. Some evidence that formal approach, and conditioning on the future (exclusion of patients who commence OAC) will underestimate the event rate, and this is most important for CHA2DS2-VASc =1 (males)
Okumura ¹⁰³	6,387 patients taking warfarin and the other 997 not taking warfarin were prospectively examined for 2 years. J-Rhythm registry	CHADS2; modified CHA2DS2- VASc (mCHA2DS2- VASc) using coronary disease only	Thrombo- embolism (combined ischemic stroke, TIA and systemic embolism)	mCHA2DS2-VASc score 0, 1, and ≥2, thromboembolism occurred in 2/141 (0.7%/year), 4/233 (0.9%/year), and 24/623 (1.9%/year), respectively, in the non-warfarin group, and in 1/346 (0.1%/year, P=0.19 vs. non- warfarin), 4/912 (0.2%/year, P=0.05), and 92/5,129 (0.9%/year, P=0.0005), respectively, in the warfarin group.When female sex was excluded from the score, thromboembolism occurred in 2/180 patients (0.6%/year), 5/245 (1.0%/year), and 23/572 (1.6%/year), respectively, in the non-warfarin group, and in 1/422 (0.1%/year, P=0.20 vs. non-warfarin), 5/1,096 (0.2%/year, P=0.02), and 91/4,869 (0.9%/year, P=0.0005), respectively, in the warfarin group.	Small numbers and no information on OAC use at follow-up in the non-warfarin group. In Japanese NVAF patients, the <i>m</i> CHA2DS2- VASc score is useful for identifying patients at truly low risk. Concluded that 'Female sex may be excluded as a risk from the score.' But numbers are too small to substantiate that conclusion.

Palm ¹⁰⁴	Ludwigshafen Stroke Study (LuSSt), prospective ongoing population-based stroke register, 187 patients with a first-ever ischemic stroke (FEIS) owing to AF in 2006 and 2007.	CHA2DS2VASc, CHADS2	First ischemic stroke	Retrospective pre- stroke risk stratification according to CHADS2 score indicated low/intermediate risk in 34 patients (18%) and high risk (CHADS2 \geq 2) in 153 patients (82%). Application of CHA2DS2-VASc score reduced number of patients at low/intermediate risk (CHA2DS2-VASc score 0–1) to five patients (2.7%).	Small, retrospective study of people with ischemic stroke. CHA2DS2-VASc score appears to be a more valuable risk stratification tool than CHADS2 score.
Philippart ¹⁰⁵	Loire Valley AF project: Among 8053 patients seen in Cardiology Dept with non-valvular AF (ESC guidelines definition), patients were categorized into Group 1 (no valve disease, n=6851; 85%) and Group 2 (valve disease with neither rheumatic mitral stenosis nor valve prothesis, n = 1202; 15%).	CHA2DS2VASc in 'non- valvular' and (non- rheumatic or prosthetic 'valvular' AF	Stroke/TE	For Group 1, the rate of events was 0.87%/year when CHA2DS2VASc score was 0–1, rising to 9.67%/year when score was \geq 6. For patients in Group 2, similar finding were evident with a rate of stroke/TE events increasing from 0.90%/year with a CHA2- DS2VASc score 0–1 to 11.07%/year when CHA2DS2VASc score was \geq 6. Main purpose of the study was to compare stroke/TE rates, and prediction of these by CHA2DS2VASc in patients with AF with and with "valvular" AF other than rheumatic mitral or prosthetic	CHA2DS2VASc performs similar in both groups If low risk (score 0-1), event rates low, approx. 0.9%/year, but 56-60% were on OAC, so rate is underestimated.

Potpara. ¹⁰⁶	Cohort of 345 "lone" AF patients with a 12-year follow-up.	CHA(2)DS(2)- VASc, CHADS(2), and van Walraven risk stratification schemes	Ischemic stroke (absence of) i.e. Prediction of LOW RISK	In the multivariable analysis, only the CHA(2)DS(2)-VASc score of 0 was significantly related to the absence of stroke (odds ratio 5.1, 95% CI: 1.5-16.8, P=0.008). Only the CHA(2)DS(2)-VASc score had a significant prediction ability for absence of ischemic stroke (c-statistic 0.72 [0.61-0.84], P=0.031).	Small study of lone AF with 12 year follow- up CHA(2)DS(2)-VASc score reliably identified the "lone" AF patients who were at "truly low risk" for TE
Ruff ¹⁰⁷	Biomarker sub-study of ENGAGE-AF, using cardiac troponin I, N-terminal pro-B-type natriuretic peptide, and d-dimer in 4880 patients with all 3 biomarkers available	CHA(2)DS(2)- VASc ± biomarkers	Stroke or systemic embolism	When added to the CHA2DS2-VASc score, the biomarker score significantly enhanced prognostic accuracy by improving the C statistic from 0.586 (95% CI, 0.565-0.607) to 0.708 (95% CI, 0.688-0.728) (P < .001) and reclassification with a net reclassification improvement of 59.4% (P < .001).	All patients were anticoagulated, and all patients were CHADS2 =2 or greater, so cannot comment on discrimination of low risk patients without anticoagulant

Singer ¹⁰⁸	Derivation ATRIA cohort consisted of 10 927 patients with non-valvular AF contributing 32 609 person-years off warfarin and 685 thromboembolic events (TEs). The external validation ATRIA- CVRN cohort included 25 306 AF patients contributing 26 263 person-years off warfarin and 496 TEs.	ATRIA, CHA(2)DS(2)- VASc, CHADS(2),	Ischemic stroke/TE	c-index in the ATRIA cohort was 0.73 (95% CI, 0.71 to 0.75), increasing to 0.76 (95% CI, 0.74 to 0.79) when only severe events were considered. The C-index was greater and net reclassification improvement positive comparing the ATRIA score with CHA(2)DS(2)-VASc, or CHADS(2) The NRI improvement was primarily seen for predicting severe strokes. No analysis was done to determine the relative performance of scores to detect a truly low risk group who should not be treated rather than a low intermediate and high risk group	Follow-up was censored at the date of the outcome event, death or health plan disenrollment. Analysis based on all person-time off warfarin. Results comparing risk scores were very similar when restricted the analysis to the 4342 patients who did not take warfarin at any point during follow-up (but 'conditioning on the future').
Siu ³⁰	9727 hospitalized AF patients, follow-up for 3.19 years	CHA(2)DS(2)- VASc, CHADS(2),	Ischemic stroke	c-statistics revealed that CHA(2)DS(2)-VASc scores (0.525, 95% CI 0.509–0.541, P = .017) was better than CHADS(2) scores (0.506, 95% CI 0.490–0.522, P = .584) in predicting ischemic stroke. Net clinical benefit favors warfarin over aspirin and no therapy for stroke prevention in a broad range of Chinese AF patients.	CHA(2)DS(2)-VASc and HAS-BLED scores appear to be the appropriate risk stratification tools for stroke risk and ICH, respectively, for Chinese. C-Statistics relatively low for prediction of ischemic stroke compared to other cohorts. Annual risk of stroke relatively higher in low risk groups (CHA(2)DS(2)-VASc score =0 or 1) in Chinese than that in Europeans
Tomita ¹⁰⁹	997 AF patients in JRHYTHM registry with no warfarin at baseline Same cohort as Okamura without the cohort taking warfarin as comparison	mCHA2DS2- VASc and mCHA2DS2-VA scores (i.e. excluding female sex) Modified as based on coronary artery disease (no information on PAD)	Thrombo- embolic events including symptomatic cerebral infarction, transient ischemic attack (TIA), and systemic embolism	No sex difference was found in patient groups stratified by CHA2DS2-VASc and CHA2DS2-VA scores. Significant c-statistic difference (0.029, Z=2.3, P=0.02) and NRI (0.11, 95% CI 0.01–0.20, P=0.02), with the CHA2DS2-VA score being superior to the CHA2DS2-VASc score. In patients with CHA2DS2-VASc scores 0 and 1 (n=374), there were significant c-statistic difference (0.053, Z=6.6, P<0.0001) and NRI (0.11, 95% CI 0.07–0.14, P<0.0001), again supporting superiority of CHA2DS2-VA to CHA2DS2- VASc score.	Small numbers and no information on OAC use at follow-up in the non-warfarin group (may explain low absolute event rates even at high scores). Very few females in study and only 90 with CHA2DS2-VASc =1 or 2. NB CHA2DS2-VASc score of 1 in a woman is excluded in ESC guidelines

Van den Ham. ¹¹⁰	60,594 patients with AF CPRD UK cohort (primary care based but incident AF could be hospital discharge) in incident AF, censored at warfarin prescription or outcome event)	CHADS2, CHA2DS2- VASc and ATRIA	Ischemic stroke	C statistics for the full point scores were 0.70 (95% confidence interval [CI]: 0.69 to 0.71) for the ATRIA risk score, 0.68 (95% CI: 0.67 to 0.69) for CHADS2, and 0.68 (95% CI: 0.67 to 0.69) for CHA2DS2-VASc risk score. The net reclassification improvement was 0.23 (95% CI: 0.22 to 0.25) for ATRIA compared with CHA2DS2-VASc. Median follow-up was only 0.74 years over a 15-year study period; though mean follow-up was 2.8 years, indicating distribution of follow-up is skewed. Using ATRIA, 40% were categorized as low-risk (that is, ATRIA score of \leq 5, with annualized stroke rates of 0.40% to 1.99%),	ATRIA score performed better than either CHADS2, CHA2DS2-VASc for predicting events. ATRIA identified 40% as low-risk patients vs CHA2DS2-VASc score, which identified only 6.6% as low risk, and assigned these patients to higher-risk categories.
Aspberg ¹¹¹	152 153 AF patients not receiving warfarin in Swedish AF cohort – hospitalized or visiting hospital OPD. future analysis	CHADS2, CHA2DS2- VASc and ATRIA	Ischemic stroke	ATRIA had a good C of 0.708 (0.704–0.713), significantly better than CHADS2 0.690 (0.685–0.695) or CHA2DS2- VASc 0.694 (0.690–0.700). Net reclassification improvement favored ATRIA 0.16 (0.14–0.17) vs. CHADS2 and 0.21 (0.20–0.23) vs. CHA2DS2-VASc (with a reclassification down for the comparison with CHA2DS2-VASc, and a reclassification up for the comparison with CHADS2.	Analyses restricted to patients who did not use any anticoagulant therapy during the follow-up period – thus 'conditioning on the future'. When categorical cut-points were optimized to the stroke rate of the population, the differences between scores in NRI and C statistic disappeared
Xiong ¹¹²	Systematic review and meta-analysis, East Asian patients. Included 6 cohort studies with 31,539 patients	CHA(2)DS(2)- VASc, CHADS(2),	Predomin- antly ischemic stroke, 2 with thrombo- embolism	Meta-analysis revealed that when compared with the CHA2DS2-VASc score, there was a 1.71-fold elevated risk of stroke when patients were stratified as 'low risk' using a CHADS2 score = 0, or a 1.40-fold increase with a CHADS2 score = 1.	CHA2DS2-VASc score is superior to the CHADS2 score in identifying 'low risk' East Asian AF patients.
Zhu ¹¹³	Systematic review and meta-analysis Included 12 cohort studies with 205,939 patients	CHA2DS2- VASc, CHADS2,	Stroke, Thrombo- embolism	CHA2DS2-VASc scores ≥ 2 have a greater risk of stroke (risk ratio [RR]=5.15; 95% confidence interval [CI], 3.85– 6.88; P <0.00001) and thromboembolism (RR=5.96; 95% CI, 5.50–6.45; P <0.00001) (Pdiff=0.34) than do patients with CHA2DS2- VASc scores <2, independent of anticoagulation therapy (RR=5.76; 95% CI, 5.23–6.35; P <0.00001 in anticoagulated patients; and RR=6.12; 95% CI, 5.40– 6.93; P <0.00001 in patients not taking anticoagulants; P =0.45). In the comparison of the rates of endpoint events among low-risk patients (1.67% vs 0.75%; P <0.001), the findings imply that some CHADS(2) low- risk patients might still benefit from anticoagulation	Superior diagnostic performance of CHA2DS2-VASc over CHADS2 for identifying genuinely low-risk patients with AF.

Kim ¹¹⁴	5855 oral anticoagulant naive NVAF patients enrolled from Korea National Health Insurance Service-Sample Cohort	CHA2DS2- VASc, CHADS2 and ATRIA	Ischaemic stroke	CHA ₂ DS ₂ -VASc had the best sensitivity (98.8% versus 85.7% in CHADS ₂ and 74.8% in ATRIA) and negative predictive value (98.8% versus 95.3% for CHADS ₂ and 93.7% for ATRIA) for the prediction of stroke incidence and was best for the prediction of the absence of ischemic stroke during 5 years of follow-up (odds ratio, 16.4 [95% confidence interval, 8.8-30.8]).	CHA ₂ DS ₂ -VASc score shows good performance in defining truly low-risk Asian patients with atrial fibrillation for stroke compared with CHADS ₂ and ATRIA
Rivera- Caravaca ¹¹⁵	1125 NVAF patients	Compared long-term predictive performances of the ABC- stroke and CHA2DS2- VASc	Ischaemic stroke	 114 ischemic strokes (1.55% per year) at 6.5 years. ABC-stroke c-index at 3.5 years (0.663) was higher than CHA2DS2-VASc (0.600, P=0.046), but nonsignificantly different at 6.5 years. For ABC-stroke, net reclassification improvement was nonsignificantly different at 3.5 years, and a negative reclassification at 6.5 years, vs CHA2DS2-VASc. Decision curve analyses did not show marked improvement in clinical usefulness of the ABC-stroke score over the CHA2DS2-VASc score. 	ABC-stroke score did not offer better 'real world' predictive performance compared with the CHA2DS2-VASc score over long term

on Curve Jvement in clinical use... The CHA2DS2-VASc score.

e-Table 8. Major bleeding rates with VKAs in observational studies

Study	Patients on VKA, n	Age, years	Mean follow-up	Major bleeding, per year
URO HEART SURVEY	2115	66.8	1 y	1.5%
2010) ¹¹⁶				
TRIA (2011) ¹¹⁷	9186	71	3.5 y	1.4%
lesen et al. (2011) ¹¹⁸	37425	70.6	10 y	4.62%
Gallego et al. (2012) ¹¹⁹	965	76	861 d	3.6%
onze et al. (2012) ¹²⁰	515	71.2	1 y	6.8%
riberg et al. (2012) ³⁸	48599	76.2	1.5 y	1.9%
urgess et al. (2013) ¹²¹	321	69.2	2.5 y	3.8%
ORBIT-AF (2013) ¹²²	4804	76	6 m	1.8%
Seet et al. (2013) ¹²³	100	79.3	19 m	9.79%
Guo et al. (2013) ²⁶	149	63	1.9 y	2.7%
Deitelzweig et al. (2013) ¹²⁴	48260	67.3	802 d	10.4%
IAQI2 (2014) ¹²⁵	2600	70.1	1 y	4.5%
Vang et al. (2016) ¹²⁶	15418	65	4.6 m	5.5%

e-Table 9. Major bleeding rates on oral anticoagulants in randomized clinical trials

Trial	Patients on anticoagulants, n	Age, year	Mean follow-up	Major bleeding, per year
BAATAF (1990) ¹²⁷	212 (VKA)	68.5	2.2 y	2 patients in 2.2 y (VKA)
CAFA (1991) ¹²⁸	187 (VKA)	68	15.2 m	2.5% (VKA)
SPAF I (1991) ¹²⁹	1330 (VKA)	67	1.3 y	1.5% (VKA)
SPINAF (1992) ¹³⁰	260 (VKA)	67	1.8 y	1.3% (VKA)
EAFT (1993) ¹³¹	1007, 225(VKA)	77	2.3 y	2.8% (VKA)
SPAF ÌI (1994) ¹³²	1100 (VKA)	64 (age≤75)	2.3 y	1.7% (age≤75) (VKA)
	()	80 (age>75)		4.2% (age>75) (VKÁ)
SPAF III, (1996) ¹³³	523 (VKA)	71	1.1 y	2.1% (VKA)
AFASAK2, (1998) ¹³⁴	170 (VKA)	73.2	<u></u>	2.4% (VKA)
Pengo et al. (1998) ¹³⁵	153 (VKA)	73.6	14.5 m	2.6% (VKA)
Hellemons et al. $(1999)^{136}$	131 (VKA)	70	2.7 y	0.5% (VKA)
Yamaguchi et al. $(2000)^{137}$	55 (VKA)	65.7	658 d	6.6% (VKA)
SPORTIFF III (2003) ¹³⁸	1703 (VKA)	70.1 (VKA)	17.4 m	1.8% (VKA)
	1704 (Ximelagatran)	70.3 (Ximelagatran)		1.3% (Ximelagatran)
NASPEAF, (2004) ¹³⁹	496 (VKA)	69.6 (Intermediate)	965 d (Intermediate)	1.8% (Intermediate) (VKA)
		66.6 (High intensity)	1075 d (High intensity)	2.13% (High intensity) (VKA)
SPORTIFF V (2005) ¹⁴⁰	1962 (VKA)	71.6 (VKA)	20 m	3.1% (VKA)*
(2000)	1960 (Ximelagatran)	71.6 (Ximelagatran)		2.4% (Ximelagatran)*
ACTIVE W (2006) ¹⁴¹	3371 (VKA)	70.2	1.28 y	2.21% (VKA)
Chinese ATAFS (2006) ¹⁴²	704 (VKA)	63.3	19 m	1.5% (VKA)
AMADEUS (2008) ¹⁴³	2293	70.2	10.7 m	1.4%
RE-LY (2009) ¹⁴⁴	6022 (VKA)	71.6 (VKA)	2 y	3.36% (VKA)
	6076 (D, 110 mg)	71.5 (D, 110 mg)	- /	2.71% (D, 110 mg)
	6015 (D, 150 mg)	71.4 (D, 150 mg)		3.11% (D, 150 mg)
ROCKET AF (2011) ¹⁴⁵	7133 (VKA)	73 (VKA)	2 y	3.4% (VKA)
	7131 (R, 20 mg)	73 (R, 20 mg)	- /	3.6% (R, 20 mg)
ARISTOTLE (2011) ¹⁴⁶	9120 (VKA)	70 (VKA)	1.8 y	3.09% (VKA)
	9081 (A, 5 mg)	70 (A, 5 mg)	1.0 y	2.13% (A, 5 mg)
J-ROCKET (2012) ¹⁴⁷	639 (VKA)	71.2 (VKA)		3.59% (VKA)
	639 (R, 15 mg)	71 (R, 15 mg)		3.00 (R, 15 mg)
ENGAGE AF (2013) ¹⁴⁸	7036 (VKA)	72 (VKA)	907 d	3.43% (VKA)
LINGAGE AI (2013)	7035 (E, 30 mg)		507 a	1.61% (E, 30 mg)
		72 (E, 30 mg)		
and the sector of the base of the	6015 (E, 60 mg)	72 (E, 60 mg)		2.75% (E, 60 mg)

*= major extra-cerebral bleeding

A=apixaban; D=dabigatran; d=day; E=edoxaban; m=month; R=rivaroxaban; VKA= vitamin-K antagonist; y=year

Schest Online Supplement

e-Table 10. Studies comparing bleeding risk schemas

Study	Cohort	Schemes compared	Events	Findings	Comments
Barnes et al ¹⁴⁹	2,600 patients in 7 anticoagulation clinics, 2009-2013. Only warfarin used. Warfarin initiators followed with retrospective scores. First major bleed only included	CHADS ₂ , CHA ₂ DS ₂ -VASc, HEMORR ₂ HAGES, HAS-BLED, ATRIA	116 major bleeds (ISTH definition)	NB mean follow up only 1.0 years. AUC under ROC compared with C statistic and NRI. Used low mod and high cutoffs from scores. C stat similar for 3 bleeding risk scores (0.66.to 0.69), and all bleeding scores performed better than CHADS ₂ or CHA ₂ DS ₂ -VASc (C stat 0.53 to 0.56). For NRI, HAS_BLED better than ATRIA or HEMORRHAGES, and ATRIA better than HEMORR ₂ HAGES, while all 3 better than CHADS ₂ or CHA ₂ DS ₂ -VASc	NRI differences for HAS-BLED vs other bleeding risk scores only significant for low vs mod/high. Diff of NRI in bleeding risk scores not significant for low/mod vs High risk. All bleeding risk scores had only moderate prediction i.e. C statistic is only 0.66-0.69
Caldeira et al ¹⁵⁰	Systematic review of HEMORR ₂ HAGES, HAS-BLED, ATRIA scores	HEMORR ₂ HAGES, HAS-BLED, ATRIA. Compared high risk category only	Major bleeds in studies reviewed from search	6 studies found 5 studies compared HEMORR ₂ HAGES and HAS-BLED, 4 studies compared HAS-BLED vs ATRIA. HAS-BLED had significantly higher sensitivity (but therefore also lower specificity for major bleeding. Conclusion was a preference for HAS-BLED because of higher sensitivity coupled with ease of use	Systematic review
Christersson et al ¹⁵¹	Aristotle trial in 14,878 out of 18,201 pts randomized to warfarin or apixaban. Follow-up in trial	HAS-BLED alone vs adding D- Dimer	647 Major bleeds (2.6%), and 1276 with clinically relevant non-major bleeds (5.1%) (admission to hospital but without drop in Hb of 2g or 2 unit transfusion)	C statistic was 0.61 and 0.618 in the no-VKA and on VKA groups respectively and adding D-Dimer increased the C statistic to 0.641, and 0.635 resp. NRI was 23 to 28%	Modest increase in C statistic only. D-Dimer predictive in its own right with similar C-statistic

Suzuki et al ¹⁵²	231 patients starting warfarin. Prospective study	HAS-BLED exploring various cut points of renal function (3 groups) in Japanese population (eGFR) using Japanese MDRD formula	44 ISTH major bleeds	Moderate kidney disease (eGFR 30-59) also associated with increased major hemorrhage. C statistic including moderate renal disease in HAS- BLED increased from 0.64 to 0.67 (p, NS) but NRI improved significantly	Small trial, so hard to draw solid conclusions, but perhaps even moderate renal disease will be important and therefore may need to include in the HAS-BLED definition
O'Brien et al. ¹⁵³	ORBIT AF registry, 7411 pts taking OAC. Median 2 year follow- up. External validation in 14,264 pts in ROCKET- AF study warfarin and Rivaroxaban pts (not all elements of all scores available)	ORBIT score (full score, and 5 factor score) vs HAS-BLED and ATRIA bleeding scores	581 (7.8%) ISTH major bleeding events in ORBIT registry	See table 4 for topline results. C indices of 0.69 and 0.67 for the full and 5 factor ORBIT score in ORBIT registry, compared to 0.64 and 0.66 for HAS-BLED and ATRIA resp. In ROCKET-AF, Full and 5 factor ORBIT model C stat 0.63 and 0.62 respectively, vs 0.59 and 0.60 for HAS-BLED and ATRIA respectively. Model calibration better for ORBIT score in ROCKET-AF, followed by HAS-BLED then ATRIA	All scores showed only moderate predictive ability and discrimination
Zhu et al. ¹⁵⁴	Systematic review and meta-analysis of HAS- BLED score vs other scores, in 11 studies identified	HAS_BLED vs CHADS2, CHADSVASc, HEMORR2HAGES and ATRIA	Variable events in the 11 studies	C statistic not significantly different between HAS- BLED and other 2 bleeding risk scores (0.65 vs 0.63 and 0.63 synthesized result), but better than CHADS2 and CHADSVASc. HAS-BLED superior to all other scores for NRI (NB not in all studies). Calibration analysis shows HAS-BLEC over predicts in the low and under-predicts in the mod and high risk categories.	All scores perform better than the stroke risk scores, and HAS-BLED has a marginal advantage over HEMORR2HAGES and ATRIA
Esteve-Pastor et al.	FANTSIIA registry, 571 pts undergoing cardioversion, 1276 pts with persistent AF. Most VKA, some NOAC	ORBIT vs HAS- BLED	21 ISTH major bleeds in the 571 cardioversion pts, and 46 in the persistent AF population	C statistic in cardioversion group 0.77 vs 0.82 HAS- BLED vs ORBIT (ns), and in persistent AF group 0.63 vs 0.70 (ns)	Relatively small number of major bleeding events in both arms of the study, so not much weight can be put on the study. Prediction only modest for both scores

Hijazi et al. ABC- Bleeding score. ¹⁵⁶	ARISTOTLE study 14,537 pts apixaban vs warfarin) for development and RELY study (8468 pts on warfarin or Dabigatran) for validation.	ABC-bleeding score (Age; Biomarker GDF- 15, CTnT hs, Hb; Clinical history of bleeding) vs HAS-BLED and ORBIT bleeding risk scores	ISTH major bleeds: 662 in ARISTOTLE, and 463 in RELY.	ABC score discriminated in all risk groups of HAS- BLED and ORBIT in both derivation and validation cohorts. C statistic significantly higher 0.68 for ABC bleeding vs 0.61 and 0.68 HAS-BLED and ORBIT in ARISTOTLE, and also in RELY 0.71, vs 0.62 and 0.68 for HAS-BLED and ORBIT resp. Similar results when hematocrit, CTnIhs and Cystatin C or Creatinine clearance substituted.	Simplicity and bedside use favor the simpler scores, though substitution of more readily available biomarkers would be an option. Even with Biomarkers, performance still only moderate
Nielsen et al. ¹⁵⁷	Danish national registry 210,299 pats with AF	Recalibration of HAS-BLED using an extra point for hemorrhagic stroke (S in HAS-BLED)	ISTH major bleeding 4.3/100 patient/years	No significant difference for C statistic for the 2 scores, and modest for both (0.613 original and 0.616 for the additional point HAS-BLED). NRI was 10% and relative IDI 23.6%	Minor gain by adding an extra point for ICH to the one point for stroke. It is reasonably intuitive that someone with a prior ICH is really at high danger of a major bleed
Proietti et al. ¹⁵⁸	SPORTIF III and V trials. 3,551/3,665 pts assigned to warfarin. Only 20% VKA naïve at baseline	HAS-BLED vs HEMORR2HAGES , ATRIA, and ORBIT scores plus additional analysis for latter 3 scores plus a term for TTR	127 adjudicated major bleeds. 1.6 years median F/U. 162 investigator level major bleeds	Rather complex analysis quoting similar AUC, without C statistics quoted. Analyzed both adjudicated and investigator level major bleeds (latter not usually included in other studies), then added TTR to the 3 scores that do not contain it, again against both endpoints. These scores improved prediction, indicating TTR is likely to be an important issue that is not included in scores other than HAS-BLED	All scores showed only moderate prediction, but HAS-BLED performed best in 1 respect of having no investigator level major bleeds ion the low risk stratum. While low TTR may be useful to assess risk, it has no role in the VKA naïve patient. Relatively low risk of major bleeds in this stud
Senoo et al. ¹⁵⁹	2293 patients receiving VKA in AMADEUS trial (idraparinux vs VKA in AF).	HAS-BLED vs ATRIA and ORBIT	39 Major bleeds and 251 clinically relevant bleeds (these are not usually counted in prior analyses of scores)	No difference in AUC between 3 scores in major bleeds. Some difference in clinically relevant bleeds, with HAS-BLED having greater AUC. Modest improvement for ATRIA and ORBIT by adding TTR	All scores showed modest at best prediction of bleeding. While low TTR may be useful to assess risk, and is only included in HAS-BLED, it has no role in the VKA naïve patient. Low risk group as patients with major bleeds excluded from study

Steinberg et al. ¹⁶⁰	9715 patients in ORBIT registry. Probably some overlap with the O'Brien study above	HAS-BLED, ATRIA, and physician assessment	Major bleeds (not defined), and no numbers given, just incidence rate /100 patient/years in each stratum	C statistic 0.63 ATRIA and 0.60 HAS-BLED not significantly different. Both better than physician assessment (C Stat 0.55), which did not add anything to the bleeding risk scores	Physician assessment overall poor and worse that scores
Wang et al ¹⁶¹	USA United Health OAC initiator (VKA and Dabigatran. 21,934 patients included	CHADS2, CHADSVASc, and HAS-BLED	Approx. 1000 major bleed (4.6%). Used ISTH, TIMI or GUSTO major bleed definition	C statistic of 0.60 for major bleeding. No difference according to major bleed definition. Calibration of rates of major bleeding using model data from RELY trial showed great underestimation of major bleeding, especially for warfarin initiators in high risk HAS-BLED category	Trial data based models (RCT) giving rates of major bleeding taken from bleeding risk models underestimate the true rate of major bleeds in real world practice for that risk stratum, esp. in warfarin initiators
Poli et al. ¹⁶²	4,579 patients in a prospective registry (START) of NVAF	HAS-BED (omit the L for labile INR) as all are inception patients, vs CHADS2 and CHADSVASc	115 ISTH major bleeds (1.6 per 100 pt. years	C statistic 0.58 and 0.61 for HAS-BED and HAS- BLED. Similar to CHADS2 and CHADSVASc (0.58, 0.56 respectively)	Cannot understand how a HAS-BLED score was calculated in the study, as all were initiators (77% VKA), and why it should be different to HAS- BED, unless they used TTR after registry commenced in the 77% on VKA. Low bleeding risk cohort overall in this registry
Esteve-Pastor et al ¹⁶³	1120 "real-world" anticoagulated NVAF patients with long- term follow-up.	HAS-BLED vs ABC-bleeding score	After 6.5 years of follow-up, 207 (2.84 %/year major bleeding events, of which 65 (0.89 %/year) were intracranial haemorrhage (ICH) and 85 (1.17 %/year) gastrointestinal bleeding (GIB).	c-index of HAS-BLED was significantly higher than ABC-Bleeding for major bleeding (0.583 vs 0.518; p=0.025), GIB (0.596 vs 0.519; p=0.017) and for the composite of ICH-GIB (0.593 vs 0.527; p=0.030). NRI showed negative reclassification for major bleeding and for the composite of ICH-GIB with the ABC-Bleeding score. Using DCAs, the use of HAS-BLED score gave an approximate net benefit of 4 % over the ABC- Bleeding score.	HAS-BLED performed significantly better than the ABC-Bleeding score in predicting major bleeding, GIB and the composite of GIB and ICH

Guo et al ¹⁶⁴	Hospital based cohort	HEMORR2HAGES , HAS-BLED, ATRIA, and ORBIT, vs 'European score' based on modifiable bleeding risk factors		European score c-index for major bleeding 0.63, 95% CI 0.56-0.69) and intracranial hemorrhage (0.72, 0.65-0.79) HAS-BLED score was superior to European score (Delong test, all P < .05), net reclassification improvement values of 13.0%-34.5% (all P < .05), and integrated discrimination improvement values of 0.7%-1.4% (all P < .05). European score performed worst compared to HEMORR2HAGES, HAS-BLED, ATRIA, and ORBIT	Relying on bleeding risk assessment using modifiable bleeding risk factors alone is an inferior strategy
Esteve-Pastor et al ¹⁶⁵	AMADEUS trial cohort	HAS-BLED vs modifiable bleeding risk factors based on ESC guidelines	597 (13.0%) experienced any clinically relevant bleeding event and 113 (2.5%) major bleeding	Only the HAS-BLED score was significantly associated with the risk of any clinically relevant bleeding (hazard ratio 1.38; 95%CI 1.10–1.72; p = 0.005). The HAS-BLED score performed best in predicting any clinically relevant bleeding (c-indexes for HAS- BLED, 0.545 vs. `modifiable bleeding risk factors score', 0.530; c-index difference 0.015, z- score = 2.063, p = 0.04).	While modifiable bleeding risk factors should be addressed in all AF patients, the use of a formal bleeding risk score (HAS-BLED) has better predictive value for bleeding risks
Chao et al ¹⁶⁶	Nationwide cohort study of 40,450 NVAF patients who received warfarin	HAS-BLED, HEMORR ₂ HAGES, ATRIA, ORBIT, Modifiable bleeding risk (MBR) approach (based on ESC guidelines)	581 (3.91%) patients sustained ICH and 6889 (17.03%) patients sustained major bleeding events	When HAS-BLED was compared to other bleeding scores, c-indexes were significantly higher compared to MBR factors (p<0.001) and ORBIT (p=0.05) scores for major bleeding. C-indexes for the MBR factors score significantly lower vs. all other scores (De long test, all p<0.001).	All contemporary bleeding risk scores had modest predictive value for predicting major bleeding but the best predictive value and NRI was found for the HAS-BLED score. Simply depending on modifiable bleeding risk factors had suboptimal predictive value for the prediction of major bleeding

Schest Online Supplement

e-Table 11. GRADE Evidence Profile on Bleeding Risk Scores

Question: Bleeding Risk tools for patients with Atrial Fibrillation

Bibliography: W. Zhu et al. The HAS-BLED Score for predicting major bleeding risk in anticoagulated patients with atrial fibrillation: A systematic review and meta-analysis. Clin Cardiol. 2015. 38:55-561

			Quality a	ssessment					
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Impact	Quality	Importance
HAS-BLEI)								
7	observational studies	not serious	not serious	not serious	not serious	none	C-statistic range: 0.60-0.69 (median, 0.66); pooled c-statistic: 0.65 (0.61-0.69)	⊕⊕ LOW	CRITICAL
HEMORR	HAGES								
5	observational studies	not serious	not serious	not serious	not serious	none	C-statistic range: 0.60-0.67 (median, 0.63); pooled c-statistic: 0.63 (0.61-0.66)	⊕⊕ LOW	CRITICAL
ATRIA									
3	observational studies	not serious	not serious	not serious	not serious	none	C-statistic range: 0.59–0.69 (median, 0.61); pooled c-statistic: 0.63 (0.56-0.72)	⊕⊕ LOW	CRITICAL
CHADS2			I	L		17			L
3	observational studies	not serious	not serious	not serious	not serious	none	C-statistic range: 0.51–0.59 (median, 0.53); pooled c-statistic: 0.55 (0.49-0.61)	⊕⊕ LOW	CRITICAL
CHA2DS2	-VASc			L		1			L
3	observational studies	not serious	not serious	not serious	not serious	none	C-statistic range: 0.53-0.58 (median, 0.56); pooled c-statistic: 0.56 (0.53-0.59)	⊕⊕ LOW	CRITICAL

CI: Confidence interval

Schest Online Supplement

e-Table 12. GRADE Evidence Profile of VKA compared to Placebo or control

Question: VKA compared to Placebo or control

Bibliography: Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Annals of internal medicine. 2007;146(12):857-867.

	Quality assessment					№ of patients		Effect				
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	VKA	Placebo	Relative (95% Cl)	Absolute (95% CI)	Quality	Importance
						All S	troke					
6	randomised trials	serious ^a	not serious	not serious	not serious	none	54/1450 (3.7%)	133/1450 (9.2%)	RR 0.36 (0.26 to 0.51)	56 fewer per 1,000 (from 42 fewer to 66 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL

C

a. One study did not report appropriate randomization methods; Partial blinding reported in 3 trials

e-Table 13. GRADE Evidence Profile of Aspirin compared to placebo or control

Question: Aspriin compared to placebo or control

Bibliography: Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Annals of internal medicine. 2007;146(12):857-867.

			Quality as	sessment			Nº of p	atients	Effec	t		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Aspirin + Antiplatelets	Control	Relative (95% Cl)	Absolute (95% CI)	Quality	Importance
						All S	troke					
8	randomised trials	serious ^a	not serious	not serious	not serious	none	245/2602 (9.4%)	296/2594 (11.4%)	RR 0.78 (0.94 to 0.65)	25 fewer per 1,000 (from 7 fewer to 40 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL

a. Unclear randomization and blinding methods in several studies

e-Table 14. GRADE Evidence Profile of VKA compared to antiplatelet therapy

Question: VKA compared to Antiplatelet therapy

Bibliography: Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Annals of internal medicine. 2007;146(12):857-867.

			Quality as	ssessment			Nº of ∣	patients	Effe	ect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	VKA	АР	Relative (95% CI)	Absolute (95% Cl)	Quality	Importance
						All S	itroke					
12	randomised trials	serious ^a	not serious	not serious	not serious	none	205/6558 (3.1%)	341/6575 (5.2%)	RR 0.61 (0.78 to 0.48)	20 fewer per 1,000 (from 11 fewer to 27 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL
					C A							

e-Table 15. GRADE Evidence Profile of VKA compared to NOAC (not stratified by specific agent)

Question: VKA compared to Antiplatelet therapy

Bibliography: Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955-962.

			Quality as	sessment			№ of p	oatients	Effe	ct		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	VKA	NOAC	Relative (95% Cl)	Absolute (95% CI)	Quality	Importance
						Stroke or	SE events					
4	randomised trials	serious ^a	not serious	not serious	not serious	none	1107/29229 (3.8%)	911/29312 (3.1%)	RR 0.81 (0.73 to 0.91)	6 fewer per 1,000 (from 3 fewer to 8 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL
	L		L			Major E	Bleeding					
4	randomised trials	serious ^a	serious ^b	not serious	serious °	none	1802/29211 (6.2%)	1541/29287 (5.3%)	RR 0.86 (0.73 to 1.00)	7 fewer per 1,000 (from 0 fewer to 14 fewer)	⊕○○○ VERY LOW	CRITICAL
I-squared v		ealment and blinding cating substantial h	g of participants and eterogeneity	i personnel	C							

e-Table 16. GRADE Evidence Profile of NOAC vs. Aspirin

Bibliography: Connolly SJ, et al. Apixaban in patients with atrial fibrillation. The New England journal of medicine. 2011;364(9):806-817.

			Quality as	sessment			№ of p	oatients	Effec	t		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	NOAC	Aspirin	Relative (95% CI)	Absolute (95% CI)	Quality	Importance
						Strok	e or SE					
1	randomised trials	not serious	not serious	not serious	not serious	none	51/2802 (1.8%)	113/2791 (4.0%)	HR 0.45 (0.32 to 0.62)	22 fewer per 1,000 (from 15 fewer to 27 fewer)	⊕⊕⊕⊕ HIGH	CRITICAL
						Major E	Bleeding					
1	randomised trials	not serious	not serious	not serious	not serious	none	44/2802 (1.6%)	39/2791 (1.4%)	HR 1.13 (0.74 to 1.75)	2 more per 1,000 (from 4 fewer to 10 more)	⊕⊕⊕⊕ HIGH	CRITICAL

Online supplements are not copyedited prior to posting and the author(s) take full responsibility for the accuracy of all data.

CERT

e-Table 17. GRADE Evidence Profile of NOAC vs. VKA for electric cardioversion

Question: NOAC compared to VKA for Patients with Atrial Fibrillation undergoing elective-cardioversion **Bibliography**: Cappato 2014, Flaker 2014, Goette 2016, Nagarakanti 2011, Piccini 2013, Plitt 2016

			Quality ass	essment			Nº	ofpatients	Effe	ct	Quality	Increased
Nº of studie	Study desig	Risk of	Inconsistency	Indirectness	Imprecision	Other consideration	NOAC	VKA	Relative (95% CI)	Absolute (95% CI)	– Quality	Importance
						St	roke/SE					
6	randomised trials	serious ^a	not serious	not serious	serious ^b	none	16/4136 (0.4%)	12/2928 (0.4%)	RR 0.82 (0.38 to 1.75)	1 fewer per 1,000 (from 3 fewer to 3 more)	⊕⊕⊖⊖ Low	CRITICAL
				М	ortality - all o	cause (follow up: ra	nge 30 to 60; a	ssessed with	: all cause)			
4	randomised trials	serious ^a	not serious	not serious	serious ^b	none	9/2679 (0.3%)	10/2132 (0.5%)	RR 0.72 (0.27 to 1.90)	1 fewer per 1,000 (from 3 fewer to 4 more)	⊕⊕⊖⊖ Low	CRITICAL
							МІ					
3	randomised trials	serious ^a	not serious	not serious	serious ^b	none	4/2428 (0.2%)	5/2018 (0.2%)	RR 0.72 (0.19 to 2.71)	1 fewer per 1,000 (from 2 fewer to 4 more)	⊕⊕⊖⊖ Low	CRITICAL

CI: Confidence interval; RR: Riskratio

a. Issues with allocation concealment and blinding of participants and personnel; studies underpowered to detect a difference

b. Low number of events; Fairly wide confidence intervals around estimate of effect

e-Figure 3. NOACs versus warfarin in the TEE-guided approach to cardioversion

-			-	-				
	NOA	C	VK/	4		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Cappato 2014 (X-VeRT)	0	410	2	218	29.4%	0.11 [0.01, 2.21]		
Flaker 2014 (ARISTOTLE)	0	86	0	85		Not estimable		
Goette 2016 (ENSURE-AF)	1	589	1	594	35.2%	1.01 [0.06, 16.09]	+	C Y
Nagarakanti 2011 (RE-LY)	1	327	1	87	35.4%	0.27 [0.02, 4.21]		
Total (95% CI)		1412		984	100.0%	0.33 [0.06, 1.68]	-	2
Total events	2		4					
Heterogeneity: Tau ² = 0.00	; Chi ² = 1		= 2 (P =	0.55);	$ ^2 = 0\%$			±
Test for overall effect: $Z = 1$	1.34 (P =	0.18)					0.005 0.1 1 10 20 Favours NOACs Favours VKAs	00

e-Table 18. GRADE Evidence Profile of NOAC vs. VKA for TEE-guided cardioversion

Question: NOACs compared to VKA for AF patients undergoing TEE-guided CV Setting:

Bibliography: Cappato 2014, Flaker 2014, Goette 2016, Nagarakanti 2011

			Quality ass	essment			N₂ of p	atients	Effect			
N₂ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	NOACs	VKA	Relative (95% CI)	Absolute (95% CI)	Quality	Importance
Stroke/S	E											
4	randomised trials	serious ^a	not serious	not serious	serious ^b	none	2/1412 (0.1%)	4/984 (0.4%)	RR 0.33 (0.06 to 1.68)	3 fewer per 1,000 (from 3 more to 4 fewer)		CRITICAL

CI: Confidence interval; RR: Risk ratio

a. Issues with allocation concealment and blinding of participants and personnel; studies not powered enough to detect a difference b. Small number of events; Fairly wide confidence intervals around estimate of effect

e-Table 19. GRADE Evidence Profile of Heparinoids compared to Aspirin/placebo for patients with acute ischemic stroke or TIA

Question: Heparinoids compared to Aspirin/placebo for patients with acute ischemic stroke or TIA Bibliography: Paciarno 2007

			Certainty as	sessment			Nº of p	oatients		Effect	Cartaintu	luce a state a se
Nº of studies	Study design	Ris of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Heparinoids	Aspirin/placebo	Relative (95% Cl)	Absolute (95% CI)	- Certainty	Importance
						Recurrent is	schemic stroke					
5	randomised trials	serious ^a	not serious	not serious	serious ^b	none		S	OR 0.68 (0.44 to 1.06)	1 fewer per 1,000 (from 0 fewer to 1 fewer)	⊕⊕⊖⊖ Low	CRITICAL
						D	eath					
6	randomised trials	serious ^a	not serious	not serious	not serious	none	1729/2351 (73.5%)	/ / / · · ·	OR 1.01 (0.82 to 1.24)	2 more per 1,000 (from 39 more to 40 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL

CI: Confidence interval; OR: Odds ratio

Explanations

CERTER a. issues with allocation concealment and blinding of participants and personnel b. wide 95% CI that crosses no effect

e-Table 20. Relationship between CIED-detected AHREs > 5-6 min and thromboembolic events/stroke

Trial	No. of patients	Duration of follow- up	AHRE or AF burden threshold	Atrial rate cut-off (bpm)	Risk of clinical AF	Clinical AF during follow-up	Risk of thromboembolic event	Thromboembolic event rate (below vs above AF burden threshold; %)
Ancillary MOST (2003) ¹⁶⁷	312	27 months (median)	>5 min in a day	>220	HR 5.93, 95% CI 2.88-12.2, P = 0.0001	25% in patients with AHREs	HR 6.7, 95% CI 1.4–33.2, <i>P</i> = 0.020 for stroke or SEE	3.2 overall (1.3 vs 5.0)
Italian AT500 Registry (2005) ¹⁶⁸	725	22 months (median)	> 24 h	>174	NA	NA	HR 3.1, 95% CI 1.1–10.5, $P = 0.044$ for stroke or SEE	1.2 annual rate
Botto <i>et al.</i> $(2009)^{169}$	568	1 year (mean)	CHADS₂ and AF burden (≥5 min in a day or >24 h)	>174	NA	NA	NA	2.5 overall (5.0 vs 0.8, $P = 0.03$ comparing high vs low risk on the basis of CHADS ₂ and AF burden
TRENDS (2009) ¹⁷⁰	2,486	1.4 years (mean)	≥5.5 h in a day occurring in a 30-day window	>175	NA	NA	HR 2.2, 95% CI 0.96–5.05, $P = 0.06$ for stroke, TIA, or SEE, by comparing AF burden \geq 5.5 h vs zero burden	1.2 annual rate overall (1.1 for z burden or AF burden <5.5 h vs 2 for AF burden \geq 5.5 h)
Home Monitor CRT (2012) ¹⁷¹	560	370 days (median)	≥3.8 h in a day	>180	NA	NA	HR 9.4, 95% CI 1.8–47.0, $P = 0.006$ for stroke or SEE, by comparing daily AF burden ≥3.8 h vs zero burden	2.0 overall
ASSERT (2012) ¹⁷²	2,580	2.5 years (mean)	>6 min in a day	>190	HR 5.56, 95% CI 3.78-8.17, P <0.001	15.7% in patients with AHREs	HR 2.49, 95% CI 1.28–4.85, $P = 0.007$ for ischemic stroke or systemic embolism	1.69 vs 0.69 annual rate in patie with vs without device-detected tachyarrhythmias
SOS (2014) ¹⁷³	10,016	2 years (median)	≥5 min and ≥1 h	>175	NA	NA	HR 1.76, 95% CI 1.02–3.02, $P = 0.041$ for ischemic stroke with AF burden ≥ 5 min vs <5 min. HR 2.11, 95% CI 1.22–3.64, $P = 0.008$ for ischemic stroke with AF burden ≥ 1 h vs <1 h	0.39 annual rate in the whole co

AF, atrial fibrillation; AHRE, atrial high-rate episode; ICD, implantable cardioverter-defibrillator; NA, not available; SEE, stroke or systemic embolism; TIA, transient ischemic attack.

e-Table 21. Time relationships between device-detected atrial tachyarrhythmias and ischemic stroke, transient ischemic attacks or systemic embolism in patients with CIEDs under continuous monitoring of the atrial rhythm

	N. of TE events (Ischemic Stroke /TIA/SE)	Minimum device detected AF/AT duration/burden	Device detected AF/AT at any time before TE event	Device detected AF/AT in the 30 days before TE event	Device detected AF/AT at the time of TE event	Device detected AF/AT only after TE event
Daoud et al., 2011	40 Ischemic Stroke/TIA/SE	≥ 20 sec	50%	28%	15%	15%.
Boriani et al., 2012	33 Ischemic Stroke/TIA/SE	≥5 min	64%	33%	15%	NA
Shanmugam et al., 2012 ¹⁷¹	11 Ischemic Stroke/TIA/SE	Around 6-10 s	64%	NA	27%	NA
Brambatti et al., 2014 ¹⁷⁶	51 Ischemic Stroke/SE	>6 min	35%	8%	2%	16%
Martin et al., 2015	69 Ischemic Stroke/SE	Around 6-10 s	13%	6%	NA	7%

AF: atrial fibrillation; AT: atrial tachyarrhythmias; CIED: cardiac implantable electronic device; SE: systemic embolism; TE: thromboembolic; TIA: transient ischemic attack; NA: not available

Schest Online Supplement

e-Table 22. GRADE Evidence Profile of Warfarin compared to no treatment/placebo for CKD

Question: Warfarin compared to No anticoagulation/placebo for CKD Ribliography Harel 2017

ibliogra	phy: Harel 2017	•								
			Certainty	/ assessment				Effect		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Relative (95% CI)	Absolute (95% Cl)	Certainty	Importance
	•	•	•	•		Ischemic Stroke				-
14	observational studies	not serious	serious ^a	not serious	not serious ^a	none	HR 0.85 (0.62 to 1.15)	1 fewer per 1,000 (from 1 fewer to 1 fewer)	⊕OOO VERY LOW	CRITICAL
					Intr	acranial Hemorrhage		•		
4	observational studies	not serious	not serious	not serious	serious ^b	none	HR 1.93 (0.93 to 4.00)	2 fewer per 1,000 (from 1 fewer to 4 fewer)	⊕⊖⊖⊖ VERY LOW	CRITICAL
Explanation I. I-square I. wide 95	ed value of 69%	represents seri	ous heterogeneity	,		L.				

Schest Online Supplement

e-Table 23. Factors to be considered in estimating the bleeding and thromboembolic risk associated with a surgical procedure or intervention in a patient on oral anticoagulants for AF or previous venous thromboembolism. Modified from Boriani G et al. ¹⁷⁸

Hemorrhagic risk related to surgical or interventional procedures

Low hemorrhagic risk (2-day risk of major bleeding between 0 and 2%)

Cataract and other ophthalmic surgery , with the exception of vitro-retinal surgery Simple dental extractions

Skin excision Carpal tunnel repair Central venous catheter removal Non-coronary angiography Pacemaker and cardiac defibrillator implant Bronchoscopy with biopsy Cutaneous and lymph node biopsies (for bladder, prostate, thyroid, breast masses) Abdominal hysterectomy Hemorrhoidal surgery Abdominal hernia repair Hydrocele repair Knee or hip replacement and shoulder, hand or foot surgery and arthroscopy Cholecystectomy Gastrointestinal endoscopy or biopsy, enteroscopy, biliary or pancreatic stent without sphincterotomy

High hemorrhagic risk (2-day risk of major bleeding between 2 and 4%)

Heart valve replacement Coronary artery bypass Surgery for aortic diseases

Vascular and general surgery Neurosurgery

Surgery for urologic, thoracic, abdominal or breast cancer Transurethral prostate resection

Bilateral knee replacement

Laminectomy Kidney biopsy Polypectomy, variceal treatment, biliary sphincterectomy, pneumatic dilatation Placement of a percutaneous endoscopic gastrostomy (PEG) Endoscopically guided fine-needle aspiration Multiple tooth extractions Any major operation with a procedure duration > 45 minutes Thromboembolic risk related to oral anticoagulation interruption

Low thromboembolic risk (annual risk of arterial thromboembolism < 5% or 1-month risk of venous thromboembolism < 2%) Nonvalvular atrial fibrillation with CHADS₂ score 0 or 1

Single previous remote venous thromboembolism (> 12 months) with no other risk factors

Intermediate thromboembolic risk (annual risk of arterial thromboembolism between 5 and 10% or 1-month risk of venous thromboembolism between 2 and 10%)

Previous venous thromboembolism within 3 and 12 months

Valvular prosthesis in aortic position without risk factors Nonvalvular atrial fibrillation with CHADS₂ score 2 or 3 Recurrent stroke or transient ischemic attack without risk factors for cardiac embolism

High thromboembolic risk (annual risk of arterial thromboembolism >10% or 1-month risk of venous thromboembolism >10%) Recent venous thromboembolism (<3 months) Recent stroke or transient ischemic attack, (< 3 months) Previous thromboembolic event with known hypercoagulability due to genetic factors (Protein S or C deficiency, anti-thrombin deficiency, homozygous factor V Leiden mutation, antiphospholipid syndrome) or paraneoplastic thromboembolism or recurrent idiopathic thromboembolism Non valvular atrial fibrillation with CHADS₂ score ≥ 4 Atrial fibrillation with rheumatic heart disease, mechanical valvular prosthesis or previous stroke

Any valvular prosthesis in mitral position or older valvular prosthesis (caged-ball; tilting-disc) in aortic position Prosthetic heart valve with other risk factors (prior thromboembolism, severe left ventricular dysfunction) or recently placed (<3 months) or associated with hypercoagulable state

Intra-cardiac thrombus detected by echocardiography or other imaging techniques

Section Supplement

e-Table 24. Decision-making and management of a patient under treatment with a NOAC in the phases before and after a procedure/intervention. MANUSCRIPT

Interruption i	CrCl	e procedure/interventio Minor procedure/	Procedure/	Procedure/ intervention at
		intervention without an important risk of bleeding and with possible adequate local haemostasis	intervention at low risk of bleeding	high risk of bleeding
Apixaban,	CrCl > 30 mL/min	Plan to perform the procedure/intervention at trough level (i.e. 12 h after last intake)	Give last dose 2 days before procedure/intervention (i.e., skip 2 doses on the day before the procedure/intervention and skip the dose the day of the procedure/ intervention)	Give last dose 3 days before procedure/intervention (i.e., skip 4 doses on the 2 days before the procedure/intervention and skip the dose the day of the procedure/ intervention)
	CrCl 15-30 mL/min	Plan to perform the procedure/intervention at trough level (i.e. 12 h after last intake) or at 24 hours from last intake	Give last dose 2 days before procedure/intervention (i.e., skip 2 doses on the day before the procedure/intervention and skip the dose the day of the procedure/ intervention)	Give last dose 3 days before procedure/intervention (i.e., skip 4 doses on the 2 days before the procedure/intervention and skip the dose the day of the procedure/ intervention)
Edoxaban, Rivaroxaban	CrCl > 30 mL/min	Plan to perform the procedure/intervention at trough level (i.e. 24 h after last intake)	Give last dose 2 days before procedure/intervention (i.e., skip 1 dose on the day before the procedure/intervention and skip the dose the day of the procedure/ intervention)	Give last dose 3 days before procedure/intervention (i.e., skip 2 doses on the 2 days before the procedure/intervention and skip the dose the day of the procedure/ intervention)
	CrCl 15-30 mL/min	Plan to perform the procedure/intervention at trough level (i.e. 24 h after last intake) or at 36 hours from last intake	Give last dose 2 days before procedure/intervention (i.e., skip 1 dose on the day before the procedure/intervention and skip the dose the day of the procedure/ intervention)	Give last dose 3 days before procedure/intervention (i.e., skip 2 doses on the 2 days before the procedure/intervention and skip the dose the day of the procedure/ intervention)
Dabigatran	CrCl > 50 mL/min	Plan to perform the procedure/intervention at trough level (i.e. 12 h after last intake)	Give last dose 2 days before procedure/intervention (i.e., skip 2 doses on the day before the procedure/intervention and skip the dose the day of the procedure/ intervention)	Give last dose 3 days before procedure/intervention (i.e., skip 4 doses on the 2 days before the procedure/intervention and skip the dose the day of the procedure/ intervention)
	CrCl 30–50 mL/min	Plan to perform the procedure/intervention at trough level (i.e. 12 h after last intake) or at 24 hours from last intake	Give last dose 3 days before procedure/intervention (i.e., skip 4 doses on the 2 days before the procedure and skip the dose the day of the procedure/ intervention)	Give last dose 5 days before procedure/intervention (i.e., skip 8 doses on the 4 days before the procedure and skip the dose the day of the procedure/ intervention)
Resumption a	fter the p	rocedure/intervention		
Apixaban, Dabigatran, Edoxaban, Rivaroxaban		The drug can be resumed without skipping expected doses	The drug can be resumed 24 hours after the procedure/ intervention	The drug can be resumed 48- 72 hours after the procedure/ intervention

For all the DOACs usually there is no need for bridging with LMWH/UFH

Section Supplement

Section 19 The Patient Shared decision-making

More recently there have been calls for a more co-ordinated approach to the management of AF, 'integrated AF care'.¹⁷⁹⁻¹⁸³ Physicians are encouraged to adopt a shared-decision making approach¹⁸⁴⁻¹⁸⁶ to empower the patient to contribute to treatment decisions and participate in the management of their AF.

It is imperative to elicit from each patient what outcomes of treatment are important for them rather than assume that all patients have the same treatment goals,¹⁸⁴ and to be aware that patients and physicians treatment objectives often differ significantly. Research has overwhelmingly demonstrated that patients with AF wish to avoid a stroke and are often willing to accept major bleeding to achieve this,¹⁸⁷⁻¹⁹⁰ as many patients view a major disabling stroke as a consequence worse than death.¹⁸⁹ Bleeds, although feared, are considered by many patients to be preferable to a stroke. In contrast, some physicians are more concerned with reducing the risk of death¹⁸⁷ and decreasing the chance of bleeding rather than the prevention of stroke.^{188,191} Physicians should note that in addition to reducing the risk of stroke, OAC also significantly reduces the risk of death.¹⁹² However, it is important to note that preferences for avoidance of stroke do not always translate into actions/decisions to take OAC; in a study of elderly AF patients, 12% would not take OAC even if was 100% effective for stroke prevention.¹⁸⁹ External factors, such as negative media coverage (TV adverts, particularly in the US) can create fear among patients on OAC about severe or fatal bleeding, which may translate into patients stopping OAC or failing to initiate.

Patient preferences for OAC

Since the introduction of NOACs, 7 studies¹⁹³⁻¹⁹⁹ have investigated which factor patients perceive as the important attribute when choosing OAC. In 4 studies¹⁹⁵⁻¹⁹⁸ patients rated stroke prevention as the most important characteristic for OAC, while in others, the lack of interactions with food/drugs,¹⁹³ availability of an antidote, ¹⁹⁹ or ease of administration¹⁹⁴ were of greatest importance. However, methodological differences between studies may explain the inconsistency in outcomes, particularly where efficacy and safety were not included in the attributes presented.¹⁹⁴ None of the studies asked patients to actively generate the attributes they felt were most important; all used pre-defined lists generated by researchers for patients to rank, which might have led to exclusion of certain responses of importance to patients. Further, most of these studies¹⁹³⁻¹⁹⁹ did not examine patient perceptions of AF and stroke, or knowledge about stroke, which may determine these preferences. Only a few studies have compared patient preferences for vitamin K antagonists (VKAs) and NOACs.^{193,194,197-201} Generally NOACs were preferred to VKAs due to convenience factors mainly related to absence of INR monitoring^{194,198-201} and a lower risk of bleeding.²⁰¹ Cost of OAC, particularly NOACs, is problematic in countries where healthcare is not free or fully reimbursed, particularly in the US, and consequently affordability can drive patient (and physician) OAC preferences. Only three OAC preference studies in AF patients¹⁹⁵⁻¹⁹⁷ have examined the impact of cost/affordability on factors that were important in choosing an OAC; all reported stroke prevention to be the most important factor. One¹⁹⁷ found that NOACs were preferred over warfarin as their cost decreased. In two North American studies, one found that cost was the fifth most important attribute of OAC,¹⁹⁵ while in a larger US study of AF patients with and without stroke,¹⁹⁶ cost was the least important attribute. Consequently, patient preferences are likely to vary considerably based on the healthcare system in which they operate as well as their health expectations and previous experiences.

Patient education and counselling

Communication with patients is crucial as physicians may deliberately or inadvertently persuade patients to concur with their treatment decision by creating fear (either fear of stroke or fear of bleeding to death). Therefore, explaining risk of stroke and benefit/risks of treatment in terms the

patient can understand is paramount in enabling the patient to choose whether or not they wish to take OAC. Many patient decision aids have been created to assist physicians in these discussions with patients (see e-Table 26). Eliciting the barriers patients perceive they may have with NOACs/OAC allows HCPs to give clear explanations/offer strategies to overcome these barriers and improve OAC uptake, adherence, and persistence. In addition, it is important to dispel myths patients may hold about alternatives to OAC for stroke prevention.

Adherence and persistence with OAC is paramount to treatment efficacy and safety.²⁰² Educating patients on why adherence and persistence is so important, discussions on how to be adherent (timing of medication, frequency, with/without food, interacting medications to avoid, what to do if dose missed/overdose etc.) requires specific instructions from the HCP prescribing the medication; this could be facilitated by the use of patient education checklist (e-Table 26) and enhanced by devising and sharing strategies to increase adherence and persistence (reminders, medication tracking etc.). Understanding the necessity of OAC therapy and the potential adverse complications of non-adherence (stroke or bleeding) increases patient adherence and persistence.²⁰³

Physician education is also important to ensure that they are familiar with the latest guidelines and current preferred AF management strategies, implementing them in order to prevent under-treatment (choice of drug and dose should be decided on the basis of patient characteristics, and to use their knowledge to inform patients about the specifics of the OAC to improve shared-decision making and adherence and persistence. Comprehensive reviews of 'best practice' for patient education for AF and OAC are available.²⁰⁴⁻²⁰⁷

e-Table 25. Patient and healthcare provider decision aids and apps, patient resources, and patient and patient and professional organisations^{*†}

patient and professional organisations*†	
Patient decision aids	Reference/URL
AFGuST	208
Keele University Decision support	http://www.anticoagulation-dst.co.uk/
NICE 2014 PDA	https://www.nice.org.uk/guidance/cg180/resources/e
	ndorsed-resource-decision-support-tool-552601405
'Patient pages' for AF and OAC	200.240
Causes, symptoms and treatment of AF	209,210 211
Living with AF Prevention of stroke in AF	212,213
Management of vitamin K antagonists	214,215
Non-vitamin K antagonists oral anticoagulants	216
(NOACs)	
Left atrial appendage occlusion devices	217
Patient apps	
European Society of Cardiology Patient app (My AF)	²¹⁸ Free to download to all smartphones- search for 'My AF'
mAFA	219 220
Health Buddies app	
CardioVisual app	http://cardiovisual.com
Afib Companion app	http://afibcompanion.com
Medication tracker apps	
Medisafe	https://www.medisafe.com
Mango Health	https://www.mangohealth.com
HCP apps	
European Society of Cardiology Healthcare Professional app (AF manager)	²¹⁸ Free to download to all smartphones- search for 'AF manager'
Patient advocacy groups and foundations	
Anticoagulation Europe	http://www.anticoagulationeurope.org/
Arrhythmia Alliance International	www.aa-international.org
Atrial Fibrillation Association International	www.afa-international.org
Heart and Stroke Foundation-Canada	<u>http://www.world-heart-federation.org/what-we-</u> do/awareness/atrial-fibrillation/
My AFib Experience	http://myafibexperience.org/
Sign Against Stroke in Atrial Fibrillation	https://www.signagainststroke.com/en
Stop Afib.org	http://www.stopafib.org/
ettep / merer g	
World Heart Federation:	http://www.world-heart-federation.org/what-we-
	do/awareness/atrial-fibrillation/
Professional societies or organizations	
American College of Cardiology:	https://www.cardiosmart.org/Heart-Conditions/Atrial-
	Fibrillation
American Heart Association	http://www.heart.org/HEARTORG/Conditions/Arrhyth
	mia/AboutArrhythmia/AFib-Resources-and-
	FAQ UCM 423786 Article.jsp#
European Heart Rhythm Association	http://www.afibmatters.org/
Heart Rhythm Society	http://www.hrsonline.org/Patient-Resources/Heart- Diseases-Disorders/Atrial-Fibrillation-
	<u>AFib#axzz3L30TnuiT</u>
*Taken in part from ²⁰⁵ ; †not an exhaustive list	<u>ALIO II UALLOLJO IIIUII</u>

*Taken in part from²⁰⁵; †not an exhaustive list

Patient education checklist for oral anticoagulation for stroke prevention in atrial fibrillation	
The condition - Atrial fibrillation	completed
What is atrial fibrillation?	
What is the link between AF and stroke?	
Discuss patient's risk of stroke (CHA ₂ DS ₂ -VASc score & associated co-morbidities)	
Why is OAC recommended for stroke prevention?	
Duration of treatment (usually lifelong)	
reatment options	
Vhat are the treatment options? VKA or NOAC?	
Patient values/preferences for treatment (stroke prevention; lowest risk of bleeding; no	
outine monitoring; fewest side effects; once/twice daily dosing; cost etc.)	
Adde of action of chosen OAC (VKA or NOAC)	
Benefits/risks of specific OAC (stroke risk reduction vs. bleeding risk)	
For VKA patients, need for INR monitoring & explanation of INR tests; importance of TTR	
Vhy INR monitoring is not necessary (for VKA-experienced patients)	
Dosing	
How often the drug needs to be taken (once or twice daily)?	
What time(s) of day the OAC must be taken?	
Take with/without food	
f twice daily drug, NEVER take both doses together	
What to do if a dose is missed/overdose	
Highlight importance of medication adherence/ potential consequences of non-adherence	
Discuss how medication will be incorporated into daily routine	
Fools to assist patient to remember (if necessary)	
Bleeding	
Discuss patient's risk of bleeding on OAC treatment	
Distinction between minor and major bleeding	
Signs and symptoms of bleeding	
When to seek medical care or attend emergency room	
What do to in the case of head injury	
Presence/absence of antidote	
ifestyle	
Concomitant medication (interactions; avoid antiplatelets/other OAC; minimize NSAID use;	
liscuss permissible pain medication)	
Diet (for VKA patients)	
Icohol intake (particularly for VKA patients)	
latural remedies/health-food supplements	
for women: menstruation, pregnancy, breastfeeding	
folidays and travel	
Exercise and potentially dangerous hobbies	
Decupational hazards	
Surgical or dental procedures	
Before discharge	
Confirm patient understands dosing regimen, bleeding signs/symptoms and management	
of bleeding, when to seek medical attention and from whom	
Provide written education materials and Patient Alert card (if available)	
Arrange follow-up and provide contact details of prescribing physician	
Patient aware of laboratory tests needed – why, how and when	
atient aware of laboratory tests needed – wity, now and when	

AF, atrial fibrillation; NSAIDs, non-steroidal anti-inflammatory drugs; OAC, oral anticoagulation; VKA, vitamin K antagonist

References

- 1. Chugh SS, Roth GA, Gillum RF, Mensah GA. Global burden of atrial fibrillation in developed and developing nations. *Global heart*. 2014;9(1):113-119.
- 2. Lip GY, Fauchier L, Freedman SB, et al. Atrial fibrillation. *Nat Rev Dis Primers.* 2016;2:16016.
- 3. Marinigh R, Lip GY, Fiotti N, Giansante C, Lane DA. Age as a risk factor for stroke in atrial fibrillation patients: implications for thromboprophylaxis. *Journal of the American College of Cardiology.* 2010;56(11):827-837.
- 4. Lip GY, Brechin CM, Lane DA. The global burden of atrial fibrillation and stroke: a systematic review of the epidemiology of atrial fibrillation in regions outside North America and Europe. *Chest.* 2012;142(6):1489-1498.
- 5. Kaushal SS, DasGupta DJ, Prashar BS, Bhardwaj AK. Electrocardiographic manifestations of healthy residents of a tribal Himalayan village. *The Journal of the Association of Physicians of India*. 1995;43(1):15-16.
- 6. Krijthe BP, Kunst A, Benjamin EJ, et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. *Eur Heart J.* 2013;34(35):2746-2751.
- Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370-2375.
- 8. Sturm JW, Davis SM, O'Sullivan JG, Vedadhaghi ME, Donnan GA. The Avoid Stroke as Soon as Possible (ASAP) general practice stroke audit. *The Medical journal of Australia*. 2002;176(7):312-316.
- 9. Ball J, Carrington MJ, McMurray JJ, Stewart S. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. International journal of cardiology. 2013;167(5):1807-1824.
- 10. Soni A, Earon A, Handorf A, et al. High Burden of Unrecognized Atrial Fibrillation in Rural India: An Innovative Community-Based Cross-Sectional Screening Program. *JMIR public health and surveillance*. 2016;2(2):e159.
- 11. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. *Stroke; a journal of cerebral circulation.* 1991;22(8):983-988.
- 12. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. *Circulation*. 2003;107(23):2920-2925.
- 13. Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. *Circulation*. 1998;98(10):946-952.
- 14. Kalantarian S, Stern TA, Mansour M, Ruskin JN. Cognitive impairment associated with atrial fibrillation: a meta-analysis. *Annals of internal medicine*. 2013;158(5 Pt 1):338-346.
- 15. Freedman B, Potpara TS, Lip GY. Stroke prevention in atrial fibrillation. *Lancet*. 2016;388(10046):806-817.
- 16. Allan V, Honarbakhsh S, Casas JP, et al. Are cardiovascular risk factors also associated with the incidence of atrial fibrillation? A systematic review and field synopsis of 23 factors in 32 population based cohorts of 20 million participants. *Thromb Haemost.* 2017.
- 17. Allan V HS, Casas JP, Wallace J, Hunter R, Schilling R, Perel P, Morley K, Banerjee A, Hemingway H. Are cardiovascular risk factors also associated with the incidence of atrial fibrillation? A systematic review and field synopsis of 23 factors in 32 initially healthy cohorts of 20 million participants. 2017.
- 18. Katzenellenbogen JM, Teng TH, Lopez D, et al. Initial hospitalisation for atrial fibrillation in Aboriginal and non-Aboriginal populations in Western Australia. *Heart*. 2015;101(9):712-719.
- 19. Li N, Chiang DY, Wang S, et al. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. *Circulation*. 2014;129(12):1276-1285.
- 20. Chiang C-E, Wu T-J, Ueng K-C, et al. 2016 Guidelines of the Taiwan Heart Rhythm Society and the Taiwan Society of Cardiology for the management of atrial fibrillation. *Journal of the Formosan Medical Association*. 2016;115(11):893-952.
- 21. Amerena J, Chen SA, Sriratanasathavorn C, et al. Insights into management of atrial fibrillation in Asia Pacific gained from baseline data from REgistry on cardiac rhythm disORDers (RecordAF-Asia Pacific [AP]) registry. *The American journal of cardiology*. 2012;109(3):378-382.
- 22. Oldgren J, Healey JS, Ezekowitz M, et al. Variations in cause and management of atrial fibrillation in a prospective registry of 15,400 emergency department patients in 46 countries: the RE-LY Atrial Fibrillation Registry. *Circulation*. 2014;129(15):1568-1576.
- 23. Oh S, Goto S, Accetta G, et al. Vitamin K antagonist control in patients with atrial fibrillation in Asia compared with other regions of the world: Real-world data from the GARFIELD-AF registry. *International Journal of Cardiology.* 2016;223:543-547.
- 24. Determinants of warfarin use and international normalized ratio levels in atrial fibrillation patients in Japan. Subanalysis of the J-RHYTHM Registry. *Circulation journal : official journal of the Japanese Circulation Society*. 2011;75(10):2357-2362.
- 25. Akao M, Chun YH, Wada H, et al. Current status of clinical background of patients with atrial fibrillation in a community-based survey: the Fushimi AF Registry. *Journal of cardiology*. 2013;61(4):260-266.
- 26. Guo Y, Apostolakis S, Blann AD, et al. Validation of contemporary stroke and bleeding risk stratification scores in nonanticoagulated Chinese patients with atrial fibrillation. *International journal of cardiology*. 2013;168(2):904-909.
- 27. Xia S-j, Du X, Li C, et al. Uptake of evidence-based statin therapy among atrial fibrillation patients in China: A report from the CAFR (Chinese Atrial Fibrillation Registry) Study. *International Journal of Cardiology*. 2016;220:284-289.

- 28. Huisman MV. Ma CS. Diener H-C. et al. Antithrombotic therapy use in patients with atrial fibrillation before the era of nonvitamin K antagonist oral anticoagulants: the Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF) Phase I cohort. Europace. 2016;18(9):1308-1318.
- Chao TF, Liu CJ, Wang KL, et al. Using the CHA2DS2-VASc score for refining stroke risk stratification in 'low-risk' Asian patients 29. with atrial fibrillation. Journal of the American College of Cardiology. 2014;64(16):1658-1665.
- Siu CW, Lip GY, Lam KF, Tse HF. Risk of stroke and intracranial hemorrhage in 9727 Chinese with atrial fibrillation in Hong Kong. 30. Heart rhythm : the official journal of the Heart Rhythm Society. 2014;11(8):1401-1408.
- Nieuwlaat R, Capucci A, Camm AJ, et al. Atrial fibrillation management: a prospective survey in ESC Member Countries. 31. European heart journal. 2005;26(22):2422-2434.
- Le Heuzey JY, Breithardt G, Camm J, et al. The RecordAF study: design, baseline data, and profile of patients according to 32. chosen treatment strategy for atrial fibrillation. The American journal of cardiology. 2010;105(5):687-693.
- 33. Steinberg BA, Holmes DN, Ezekowitz MD, et al. Rate versus rhythm control for management of atrial fibrillation in clinical practice: results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) registry. American heart journal. 2013;165(4):622-629.
- 34. Lip GYH, Laroche C, Dan G-A, et al. A prospective survey in European Society of Cardiology member countries of atrial fibrillation management: baseline results of EURObservational Research Programme Atrial Fibrillation (EORP-AF) Pilot General Registry. Europace. 2014;16(3):308-319.
- Kirchhof P, Ammentorp B, Darius H, et al. Management of atrial fibrillation in seven European countries after the publication of 35. the 2010 ESC Guidelines on atrial fibrillation: primary results of the PREvention oF thromboemolic events--European Registry in Atrial Fibrillation (PREFER in AF). Europace. 2014;16(1):6-14.
- Ha ACT, Singh N, Cox JL, et al. Oral Anticoagulation for Stroke Prevention in Canadian Practice: Stroke Prevention and Rhythm 36. Interventions in Atrial Fibrillation (SPRINT-AF) Registry*. Canadian Journal of Cardiology. 2016;32(2):204-210.
- 37. Zubaid M, Rashed WA, Alsheikh-Ali AA, et al. Gulf Survey of Atrial Fibrillation Events (Gulf SAFE): design and baseline characteristics of patients with atrial fibrillation in the Arab Middle East. Circ Cardiovasc Qual Outcomes. 2011;4(4):477-482.
- 38. Friberg L. Rosenquist M. Lip GYH. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. European heart journal. 2012;33(12):1500-1510.
- 39. !!! INVALID CITATION !!! 39.
- Chao TF, Lip GY, Liu CJ, et al. Validation of a Modified CHA2DS2-VASc Score for Stroke Risk Stratification in Asian Patients With 40. Atrial Fibrillation: A Nationwide Cohort Study. Stroke. 2016;47(10):2462-2469.
- 41. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. The New England journal of medicine, 1998:339(10):659-666.
- Lin WS, Tai CT, Hsieh MH, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. 42. Circulation. 2003;107(25):3176-3183.
- Moran PS, Teljeur C, Ryan M, Smith SM. Systematic screening for the detection of atrial fibrillation. Cochrane Db Syst Rev. 43. 2016(6).
- Providencia R, Trigo J, Paiva L, Barra S. The role of echocardiography in thromboembolic risk assessment of patients with 44. nonvalvular atrial fibrillation. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2013;26(8):801-812.
- Gupta DK, Giugliano RP, Ruff CT, et al. The Prognostic Significance of Cardiac Structure and Function in Atrial Fibrillation: The 45. ENGAGE AF-TIMI 48 Echocardiographic Substudy. J Am Soc Echocardiogr. 2016;29(6):537-544.
- 46. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Hart RG. Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. Journal of the American College of Cardiology. 1998;31(7):1622-1626.
- 47. Leung DY, Black IW, Cranney GB, Hopkins AP, Walsh WF. Prognostic implications of left atrial spontaneous echo contrast in nonvalvular atrial fibrillation. Journal of the American College of Cardiology. 1994;24(3):755-762.
- 48. Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM. Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach The Euro Heart Survey on Atrial Fibrillation. Chest. 2010;137(2):263-272.
- Anderson DC, Asinger RW, Newburg SM, et al. Predictors of Thromboembolism in Atrial-Fibrillation .2. Echocardiographic 49. Features of Patients at Risk. Ann Intern Med. 1992;116(1):6-12.
- Osranek M, Bursi F, Bailey KR, et al. Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone 50. atrial fibrillation: three-decade follow-up. European heart journal. 2005;26(23):2556-2561.
- Lee SH, Choi S, Chung WJ, et al. Tissue Doppler index, E/E ', and ischemic stroke in patients with atrial fibrillation and preserved 51. left ventricular ejection fraction. J Neurol Sci. 2008;271(1-2):148-152.
- Shin HW, Kim H, Son J, et al. Tissue Doppler Imaging as a Prognostic Marker for Cardiovascular Events in Heart Failure with 52. Preserved Ejection Fraction and Atrial Fibrillation. J Am Soc Echocardiog. 2010;23(7):755-761.
- Azemi T, Rabdiya VM, Ayirala SR, McCullough LD, Silverman DI. Left atrial strain is reduced in patients with atrial fibrillation, 53. stroke or TIA, and low risk CHADS(2) scores. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2012;25(12):1327-1332.
- 54. Su HM, Lin TH, Hsu PC, et al. Global left ventricular longitudinal systolic strain as a major predictor of cardiovascular events in patients with atrial fibrillation. Heart (British Cardiac Society). 2013;99(21):1588-1596.

- 55. Hankey GJ. Potential new risk factors for ischemic stroke: what is their potential? Stroke; a journal of cerebral circulation. 2006;37(8):2181-2188.
- 56. Heppell RM, Berkin KE, McLenachan JM, Davies JA. Haemostatic and haemodynamic abnormalities associated with left atrial thrombosis in non-rheumatic atrial fibrillation. Heart (British Cardiac Society). 1997;77(5):407-411.
- 57. Mondillo S, Sabatini L, Agricola E, et al. Correlation between left atrial size, prothrombotic state and markers of endothelial dysfunction in patients with lone chronic nonrheumatic atrial fibrillation. International journal of cardiology. 2000;75(2-3):227-232.
- Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY. Prognostic value of plasma von Willebrand factor and soluble P-selectin as 58. indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation. 2003;107(25):3141-3145.
- Conway DS, Buggins P, Hughes E, Lip GY. Prognostic significance of raised plasma levels of interleukin-6 and C-reactive protein 59. in atrial fibrillation. Am Heart J. 2004;148(3):462-466.
- 60. Heeringa J, Conway DS, van der Kuip DA, et al. A longitudinal population-based study of prothrombotic factors in elderly subjects with atrial fibrillation: the Rotterdam Study 1990-1999. J Thromb Haemost. 2006;4(9):1944-1949.
- 61. Nozawa T, Inoue H, Hirai T, et al. D-dimer level influences thromboembolic events in patients with atrial fibrillation. International journal of cardiology. 2006;109(1):59-65.
- 62. Ferro D, Loffredo L, Polimeni L, et al. Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation. Arteriosclerosis, thrombosis, and vascular biology. 2007;27(12):2763-2768.
- 63. Lip GY, Patel JV, Hughes E, Hart RG. High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke; a journal of cerebral circulation. 2007;38(4):1229-1237.
- Kurl S, Ala-Kopsala M, Ruskoaho H, et al. Plasma N-terminal fragments of natriuretic peptides predict the risk of stroke and 64. atrial fibrillation in men. Heart (British Cardiac Society). 2009;95(13):1067-1071.
- 65. Pinto A, Tuttolomondo A, Casuccio A, et al. Immuno-inflammatory predictors of stroke at follow-up in patients with chronic non-valvular atrial fibrillation (NVAF). Clinical science (London, England : 1979). 2009;116(10):781-789.
- Yuce M, Cakici M, Davutoglu V, et al. Relationship between mean platelet volume and atrial thrombus in patients with atrial 66. fibrillation. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis. 2010;21(8):722-725.
- 67. Sadanaga T, Kohsaka S, Mitamura H, Ogawa S. Elevated B-type natriuretic peptide level as a marker of subsequent thromboembolic events in patients with atrial fibrillation. Heart and vessels. 2011;26(5):530-535.
- 68. Hijazi Z, Oldgren J, Andersson U, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation. 2012;125(13):1605-1616.
- 69. Szymanski FM, Lip GY, Filipiak KJ, Platek AE, Hrynkiewicz-Szymanska A, Opolski G. Stroke Risk Factors Beyond the CHA(2)DS(2)-VASc Score: Can We Improve Our Identification of "High Stroke Risk" Patients With Atrial Fibrillation? Am J Cardiol. 2015;116(11):1781-1788.
- 70. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Archives of internal medicine. 1994;154(13):1449-1457.
- 71. Stroke Prevention in Atrial Fibrillation I. Risk factors for thromboembolism during aspirin therapy in patients with atrial fibrillation: The stroke prevention in atrial fibrillation study. J Stroke Cerebrovasc Dis. 1995;5(3):147-157.
- van Latum JC, Koudstaal PJ, Venables GS, van Gijn J, Kappelle LJ, Algra A. Predictors of major vascular events in patients with a 72. transient ischemic attack or minor ischemic stroke and with nonrheumatic atrial fibrillation. European Atrial Fibrillation Trial (EAFT) Study Group. Stroke; a journal of cerebral circulation. 1995;26(5):801-806.
- 73. Patients with nonvalvular atrial fibrillation at low risk of stroke during treatment with aspirin: Stroke Prevention in Atrial Fibrillation III Study. The SPAF III Writing Committee for the Stroke Prevention in Atrial Fibrillation Investigators. JAMA. 1998;279(16):1273-1277.
- Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for 74. predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA : the journal of the American Medical Association. 2001;285(22):2864-2870.
- Albers GW, Dalen JE, Laupacis A, Manning WJ, Petersen P, Singer DE. Antithrombotic therapy in atrial fibrillation. Chest. 75. 2001;119(1 Suppl):194S-206S.
- 76. Wang TJ, Massaro JM, Levy D, et al. A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: the Framingham Heart Study. JAMA : the journal of the American Medical Association. 2003;290(8):1049-1056.
- 77. van Walraven C, Hart RG, Wells GA, et al. A clinical prediction rule to identify patients with atrial fibrillation and a low risk for stroke while taking aspirin. Arch Intern Med. 2003;163(8):936-943.
- Laguna P, Martn A, del Arco C, Gargantilla P, Investigators in the Spanish Atrial Fibrillation in Emergency Medicine Study G. Risk 78. factors for stroke and thromboprophylaxis in atrial fibrillation: what happens in daily clinical practice? The GEFAUR-1 study. Ann Emerg Med. 2004;44(1):3-11.
- 79. Lip GY, Rudolf M. The new NICE guideline on atrial fibrillation management. Heart (British Cardiac Society). 2007;93(1):23.
- 80. Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: full text: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the

management of patients with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2006;8(9):651-745.

- 81. Singer DE, Albers GW, Dalen JE, et al. Antithrombotic therapy in atrial fibrillation: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6 Suppl):546S-592S.
- 82. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263-272.
- You JJ, Singer DE, Howard PA, et al. Antithrombotic therapy for atrial fibrillation: Antithrombotic Therapy and Prevention of 83. Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e531S-e575S.
- 84. Camm AJ, Lip GY, De Caterina R, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012;33(21):2719-2747.
- 85. Kornej J, Hindricks G, Kosiuk J, et al. Renal dysfunction, stroke risk scores (CHADS2, CHA2DS2-VASc, and R2CHADS2), and the risk of thromboembolic events after catheter ablation of atrial fibrillation: the Leipzig Heart Center AF Ablation Registry. Circulation. Arrhythmia and electrophysiology. 2013;6(5):868-874.
- 86. Hippisley-Cox J, Coupland C, Brindle P. Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study. BMJ. 2013;346:f2573.
- 87. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):e199-267.
- 88. Senoo K, Lau YC, Lip GY. Updated NICE guideline: management of atrial fibrillation (2014). Expert review of cardiovascular therapy, 2014:12(9):1037-1040.
- Verma A, Cairns JA, Mitchell LB, et al. 2014 focused update of the Canadian Cardiovascular Society Guidelines for the 89. management of atrial fibrillation. The Canadian journal of cardiology. 2014;30(10):1114-1130.
- Hijazi Z, Lindback J, Alexander JH, et al. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk 90. score for predicting stroke in atrial fibrillation. European heart journal. 2016;37(20):1582-1590.
- 91. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016:37(38):2893-2962.
- 92. Aakre CA, McLeod CJ, Cha SS, Tsang TS, Lip GY, Gersh BJ. Comparison of clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation. Stroke. 2014;45(2):426-431.
- Abraham JM, Larson J, Chung MK, et al. Does CHA2DS2-VASc improve stroke risk stratification in postmenopausal women with 93. atrial fibrillation? The American journal of medicine. 2013;126(12):1143 e1141-1148.
- 94. Abu-Assi E, Otero-Ravina F, Allut Vidal G, et al. Comparison of the reliability and validity of four contemporary risk stratification schemes to predict thromboembolism in non-anticoagulated patients with atrial fibrillation. International journal of cardiology. 2013;166(1):205-209.
- 95. Abumuaileq RR, Abu-Assi E, Lopez-Lopez A, et al. Comparison between CHA2DS2-VASc and the new R2CHADS2 and ATRIA scores at predicting thromboembolic event in non-anticoagulated and anticoagulated patients with non-valvular atrial fibrillation. BMC cardiovascular disorders. 2015;15:156.
- Chao TF, Liu CJ, Tuan TC, et al. Comparisons of CHADS2 and CHA2DS2-VASc scores for stroke risk stratification in atrial 96. fibrillation: Which scoring system should be used for Asians? Heart rhythm : the official journal of the Heart Rhythm Society. 2016;13(1):46-53.
- 97. Chen JY, Zhang AD, Lu HY, Guo J, Wang FF, Li ZC. CHADS2 versus CHA2DS2-VASc score in assessing the stroke and thromboembolism risk stratification in patients with atrial fibrillation: a systematic review and meta-analysis. Journal of geriatric cardiology : JGC. 2013;10(3):258-266.
- 98. Coppens M, Eikelboom JW, Hart RG, et al. The CHA2DS2-VASc score identifies those patients with atrial fibrillation and a CHADS2 score of 1 who are unlikely to benefit from oral anticoagulant therapy. Eur Heart J. 2013;34(3):170-176.
- 99. Lip GYH, Nielsen PB, Skjoth F, Lane DA, Rasmussen LH, Larsen TB. The value of the European society of cardiology guidelines for refining stroke risk stratification in patients with atrial fibrillation categorized as low risk using the anticoagulation and risk factors in atrial fibrillation stroke score: a nationwide cohort study. Chest. 2014;146(5):1337-1346.
- Lip GY, Nielsen PB, Skjoth F, Rasmussen LH, Larsen TB. Atrial fibrillation patients categorized as "not for anticoagulation" 100. according to the 2014 Canadian Cardiovascular Society algorithm are not "low risk". Can J Cardiol. 2015;31(1):24-28.
- Nielsen PB, Skioth F, Rasmussen LH, Larsen TB, Lip GY. Using the CHA2DS2-VASc Score for Stroke Prevention in Atrial 101. Fibrillation: A Focus on Vascular Disease, Women, and Simple Practical Application. Can J Cardiol. 2015;31(6):820 e829-810.
- Nielsen PB, Larsen TB, Skjoth F, Overvad TF, Lip GY. Stroke and thromboembolic event rates in atrial fibrillation according to 102. different guideline treatment thresholds: A nationwide cohort study. Sci Rep. 2016;6:27410.
- 103. Okumura K, Inoue H, Atarashi H, et al. Validation of CHA(2)DS(2)-VASc and HAS-BLED scores in Japanese patients with nonvalvular atrial fibrillation: an analysis of the J-RHYTHM Registry. Circulation journal : official journal of the Japanese Circulation Society. 2014;78(7):1593-1599.

- 104.Palm F, Kleemann T, Dos Santos M, et al. Stroke due to atrial fibrillation in a population-based stroke registry (Ludwigshafen
Stroke Study) CHADS(2) , CHA(2) DS(2) -VASc score, underuse of oral anticoagulation, and implications for preventive measures.
European journal of neurology : the official journal of the European Federation of Neurological Societies. 2013;20(1):117-123.
- 105. Philippart R, Brunet-Bernard A, Clementy N, et al. Prognostic value of CHA2DS2-VASc score in patients with 'non-valvular atrial fibrillation' and valvular heart disease: the Loire Valley Atrial Fibrillation Project. *Eur Heart J.* 2015;36(28):1822-1830.
- 106. Potpara TS, Polovina MM, Licina MM, Marinkovic JM, Prostran MS, Lip GY. Reliable identification of "truly low" thromboembolic risk in patients initially diagnosed with "lone" atrial fibrillation: the Belgrade atrial fibrillation study. *Circulation. Arrhythmia and electrophysiology.* 2012;5(2):319-326.
- 107. Ruff CT, Giugliano RP, Braunwald E, et al. Cardiovascular Biomarker Score and Clinical Outcomes in Patients With Atrial Fibrillation: A Subanalysis of the ENGAGE AF-TIMI 48 Randomized Clinical Trial. *JAMA Cardiol.* 2016;1(9):999-1006.
- 108. Singer DE, Chang Y, Borowsky LH, et al. A new risk scheme to predict ischemic stroke and other thromboembolism in atrial fibrillation: the ATRIA study stroke risk score. *Journal of the American Heart Association*. 2013;2(3):e000250.
- 109. Tomita H, Okumura K, Inoue H, et al. Validation of Risk Scoring System Excluding Female Sex From CHA2DS2-VASc in Japanese Patients With Nonvalvular Atrial Fibrillation Subanalysis of the J-RHYTHM Registry. *Circulation journal : official journal of the Japanese Circulation Society*. 2015;79(8):1719-1726.
- 110. van den Ham HA, Klungel OH, Singer DE, Leufkens HG, van Staa TP. Comparative Performance of ATRIA, CHADS2, and CHA2DS2-VASc Risk Scores Predicting Stroke in Patients With Atrial Fibrillation: Results From a National Primary Care Database. *Journal of the American College of Cardiology*. 2015;66(17):1851-1859.
- 111. Aspberg S, Chang Y, Atterman A, Bottai M, Go AS, Singer DE. Comparison of the ATRIA, CHADS2, and CHA2DS2-VASc stroke risk scores in predicting ischaemic stroke in a large Swedish cohort of patients with atrial fibrillation. *Eur Heart J.* 2016;37(42):3203-3210.
- 112. Xiong Q, Chen S, Senoo K, Proietti M, Hong K, Lip GY. The CHADS2 and CHA2DS2-VASc scores for predicting ischemic stroke among East Asian patients with atrial fibrillation: A systemic review and meta-analysis. *International journal of cardiology*. 2015;195:237-242.
- 113. Zhu WG, Xiong QM, Hong K. Meta-analysis of CHADS2 versus CHA2DS2-VASc for predicting stroke and thromboembolism in atrial fibrillation patients independent of anticoagulation. *Texas Heart Institute journal / from the Texas Heart Institute of St. Luke's Episcopal Hospital, Texas Children's Hospital.* 2015;42(1):6-15.
- 114. Kim TH, Yang PS, Kim D, et al. CHA2DS2-VASc Score for Identifying Truly Low-Risk Atrial Fibrillation for Stroke: A Korean Nationwide Cohort Study. *Stroke; a journal of cerebral circulation*. 2017;48(11):2984-2990.
- 115. Rivera-Caravaca JM, Roldan V, Esteve-Pastor MA, et al. Long-Term Stroke Risk Prediction in Patients With Atrial Fibrillation: Comparison of the ABC-Stroke and CHA2DS2-VASc Scores. J Am Heart Assoc. 2017;6(7).
- 116. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJGM, Lip GYH. A Novel User-Friendly Score (HAS-BLED) To Assess 1-Year Risk of Major Bleeding in Patients With Atrial Fibrillation. *Chest.* 2010;138(5):1093-1100.
- 117. Fang MC, Go AS, Chang Y, et al. A New Risk Scheme to Predict Warfarin-Associated Hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. *Journal of the American College of Cardiology*. 2011;58(4):395-401.
- 118. Olesen JB, Lip GYH, Lindhardsen J, et al. Risks of thromboembolism and bleeding with thromboprophylaxis in patients with atrial fibrillation: A net clinical benefit analysis using a 'real world' nationwide cohort study. *Thrombosis and Haemostasis*. 2011;106(4):739-749.
- 119. Gallego P, Roldan V, Torregrosa JM, et al. Relation of the HAS-BLED bleeding risk score to major bleeding, cardiovascular events, and mortality in anticoagulated patients with atrial fibrillation. *Circulation. Arrhythmia and electrophysiology.* 2012;5(2):312-318.
- 120. Donzé J, Rodondi N, Waeber G, Monney P, Cornuz J, Aujesky D. Scores to Predict Major Bleeding Risk During Oral Anticoagulation Therapy: A Prospective Validation Study. *The American Journal of Medicine*. 2012;125(11):1095-1102.
- 121. Burgess S, Crown N, Louzada ML, Dresser G, Kim RB, Lazo-Langner A. Clinical performance of bleeding risk scores for predicting major and clinically relevant non-major bleeding events in patients receiving warfarin. *Journal of Thrombosis and Haemostasis*. 2013;11(9):1647-1654.
- 122. Steinberg BA, Kim S, Piccini JP, et al. Use and associated risks of concomitant aspirin therapy with oral anticoagulation in patients with atrial fibrillation: insights from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) Registry. *Circulation*. 2013;128(7):721-728.
- 123. Seet RCS, Rabinstein AA, Christianson TJH, Petty GW, Brown RD. Bleeding Complications Associated with Warfarin Treatment in Ischemic Stroke Patients with Atrial Fibrillation: A Population-Based Cohort Study. *Journal of Stroke and Cerebrovascular Diseases.* 2013;22(4):561-569.
- 124. Deitelzweig SB, Pinsky B, Buysman E, et al. Bleeding as an Outcome Among Patients With Nonvalvular Atrial Fibrillation in a Large Managed Care Population. *Clinical Therapeutics*. 2013;35(10):1536-1545.e1531.
- 125. Barnes GD, Gu X, Haymart B, et al. The Predictive Ability of the CHADS2 and CHA2DS2-VASc Scores for Bleeding Risk in Atrial Fibrillation: The MAQI2 Experience. *Thrombosis Research*. 2014;134(2):294-299.
- 126. Wang SV, Franklin JM, Glynn RJ, Schneeweiss S, Eddings W, Gagne JJ. Prediction of rates of thromboembolic and major bleeding outcomes with dabigatran or warfarin among patients with atrial fibrillation: new initiator cohort study. *BMJ (Clinical research ed.).* 2016;353.
- 127. Investigators* TBAATfAF. The Effect of Low-Dose Warfarin on the Risk of Stroke in Patients with Nonrheumatic Atrial Fibrillation. *New England Journal of Medicine*. 1990;323(22):1505-1511.

- 128. Connolly SJ, Laupacis A, Gent M, Roberts RS, Cairns JA, Joyner C. Canadian Atrial Fibrillation Anticoagulation (CAFA) Study. Journal of the American College of Cardiology. 1991;18(2):349-355.
- 129. Stroke Prevention in Atrial Fibrillation Study. Final results. Circulation. 1991;84(2):527-539.
- Ezekowitz MD, Bridgers SL, James KE, et al. Warfarin in the Prevention of Stroke Associated with Nonrheumatic Atrial 130. Fibrillation. New England Journal of Medicine. 1992;327(20):1406-1412.
- Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. EAFT (European Atrial 131. Fibrillation Trial) Study Group. Lancet. 1993;342(8882):1255-1262.
- Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. 132. Lancet. 1994;343(8899):687-691.
- 133. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet. 1996;348(9028):633-638.
- Gulløv A, Koefoed B, Petersen P, et al. Fixed minidose warfarin and aspirin alone and in combination vs adjusted-dose warfarin 134. for stroke prevention in atrial fibrillation: Second copenhagen atrial fibrillation, aspirin, and anticoagulation study. Archives of Internal Medicine. 1998;158(14):1513-1521.
- 135. Pengo V, Zasso A, Barbero F, et al. Effectiveness of fixed minidose warfarin in the prevention of thromboembolism and vascular death in nonrheumatic atrial fibrillation**The investigators and institutions participating in the study are listed in the Appendix. The American Journal of Cardiology. 1998;82(4):433-437.
- 136. Hellemons BSP, Langenberg M, Lodder J, et al. Primary prevention of arterial thromboembolism in non-rheumatic atrial fibrillation in primary care: randomised controlled trial comparing two intensities of coumarin with aspirin. BMJ. 1999;319(7215):958-964.
- 137. Yamaguchi T, Group fJNAFESPCS. Optimal Intensity of Warfarin Therapy for Secondary Prevention of Stroke in Patients with Nonvalvular Atrial Fibrillation: A Multicenter, Prospective, Randomized Trial. Stroke. 2000;31(4):817-821.
- 138. Olsson SB. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with nonvalvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet. 2003;362(9397):1691-1698.
- 139. Pérez-Gómez F, Alegría E, Berjón J, et al. Comparative effects of antiplatelet, anticoagulant, or combined therapy in patients with valvular and nonvalvular atrial fibrillation. Journal of the American College of Cardiology. 2004;44(8):1557-1566.
- 140. Albers GW, Diener HC, Frison L, et al. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA : the journal of the American Medical Association. 2005;293(6):690-698.
- 141. Connolly S, Pogue J, Hart R, et al. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet. 2006:367(9526):1903-1912.
- 142. Hu DY, Zhang HP, Sun YH, Jiang LQ. [The randomized study of efficiency and safety of antithrombotic therapy in nonvalvular atrial fibrillation: warfarin compared with aspirin]. Zhonghua xin xue quan bing za zhi. 2006;34(4):295-298.
- 143. Bousser MG, Bouthier J, Buller HR, et al. Comparison of idraparinux with vitamin K antagonists for prevention of thromboembolism in patients with atrial fibrillation: a randomised, open-label, non-inferiority trial. Lancet. 2008;371(9609):315-321.
- 144. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. New England Journal of Medicine. 2009;361(12):1139-1151.
- 145. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. The New England journal of medicine. 2011;365(10):883-891.
- Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. The New England 146. journal of medicine. 2011;365(11):981-992.
- 147. Hori M, Matsumoto M, Tanahashi N, et al. Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation - the J-ROCKET AF study. Circulation journal : official journal of the Japanese Circulation Society. 2012;76(9):2104-2111.
- 148. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. The New England journal of medicine. 2013;369(22):2093-2104.
- Barnes GD, Gu X, Haymart B, et al. The Predictive Ability of the CHADS2 and CHA2DS2-VASc Scores for Bleeding Risk in Atrial 149. Fibrillation: The MAQI(2) Experience. Thrombosis research. 2014;134(2):294-299.
- Caldeira D, Costa J, Fernandes RM, Pinto FJ, Ferreira JJ. Performance of the HAS-BLED high bleeding-risk category, compared to 150. ATRIA and HEMORR2HAGES in patients with atrial fibrillation: a systematic review and meta-analysis. Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing. 2014;40(3):277-284.
- 151. Christersson C, Wallentin L, Andersson U, et al. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation--observations from the ARISTOTLE trial. J Thromb Haemost. 2014;12(9):1401-1412.
- 152. Suzuki M, Matsue Y, Nakamura R, Matsumura A, Hashimoto Y. Improvement of HAS-BLED bleeding score predictive capability by changing the definition of renal dysfunction in Japanese atrial fibrillation patients on anticoagulation therapy. J Cardiol. 2014;64(6):482-487.
- 153. O'Brien EC, Simon DN, Thomas LE, et al. The ORBIT bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation. Eur Heart J. 2015;36(46):3258-3264.
- 154. Zhu W, He W, Guo L, Wang X, Hong K. The HAS-BLED Score for Predicting Major Bleeding Risk in Anticoagulated Patients With Atrial Fibrillation: A Systematic Review and Meta-analysis. Clinical cardiology. 2015;38(9):555-561.

- Esteve-Pastor MA, Garcia-Fernandez A, Macias M, et al. Is the ORBIT Bleeding Risk Score Superior to the HAS-BLED Score in 155. Anticoagulated Atrial Fibrillation Patients? Circulation journal : official journal of the Japanese Circulation Society. 2016;80(10):2102-2108.
- 156. Hijazi Z, Oldgren J, Lindback J, et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet. 2016;387(10035):2302-2311.
- Nielsen PB, Larsen TB, Lip GYH. Recalibration of the HAS-BLED Score: Should Hemorrhagic Stroke Account for One or Two 157. Points? Chest. 2016;149(2):311-314.
- Proietti M, Senoo K, Lane DA, Lip GY. Major Bleeding in Patients with Non-Valvular Atrial Fibrillation: Impact of Time in 158. Therapeutic Range on Contemporary Bleeding Risk Scores. Sci Rep. 2016;6:24376.
- Senoo K, Proietti M, Lane DA, Lip GY. Evaluation of the HAS-BLED, ATRIA, and ORBIT Bleeding Risk Scores in Patients with Atrial 159. Fibrillation Taking Warfarin. Am J Med. 2016;129(6):600-607.
- Steinberg BA, Shrader P, Kim S, et al. How well does physician risk assessment predict stroke and bleeding in atrial fibrillation? 160. Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). American heart journal. 2016;181:145-152.
- 161. Wang SV, Franklin JM, Glynn RJ, Schneeweiss S, Eddings W, Gagne JJ. Prediction of rates of thromboembolic and major bleeding outcomes with dabigatran or warfarin among patients with atrial fibrillation: new initiator cohort study. BMJ. 2016;353:i2607.
- 162. Poli D, Antonucci E, Pengo V, Testa S, Palareti G. Comparison of HAS-BLED and HAS-BED Versus CHADS2 and CHA2DS2VASC Stroke and Bleeding Scores in Patients With Atrial Fibrillation. The American journal of cardiology. 2017;119(7):1012-1016.
- 163. Esteve-Pastor MA, Rivera-Caravaca JM, Roldan V, et al. Long-term bleeding risk prediction in 'real world' patients with atrial fibrillation: Comparison of the HAS-BLED and ABC-Bleeding risk scores. The Murcia Atrial Fibrillation Project. Thrombosis and haemostasis. 2017;117(10):1848-1858.
- Guo Y, Zhu H, Chen Y, Lip GYH. Comparing Bleeding Risk Assessment Focused on Modifiable Risk Factors Only Versus Validated 164. Bleeding Risk Scores in Atrial Fibrillation. Am J Med. 2018;131(2):185-192.
- 165. Esteve-Pastor MA, Rivera-Caravaca JM, Shantsila A, Roldan V, Lip GYH, Marin F. Assessing Bleeding Risk in Atrial Fibrillation Patients: Comparing a Bleeding Risk Score Based Only on Modifiable Bleeding Risk Factors against the HAS-BLED Score. The AMADEUS Trial. Thrombosis and haemostasis. 2017;117(12):2261-2266.
- 166. Chao TF, Lip GYH, Lin YJ, et al. Major bleeding and intracranial hemorrhage risk prediction in patients with atrial fibrillation: Attention to modifiable bleeding risk factors or use of a bleeding risk stratification score? A nationwide cohort study. Int J Cardiol. 2018;254:157-161.
- 167. Glotzer TV, Hellkamp AS, Zimmerman J, et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation. 2003;107(12):1614-1619.
- 168. Capucci A, Santini M, Padeletti L, et al. Monitored atrial fibrillation duration predicts arterial embolic events in patients suffering from bradycardia and atrial fibrillation implanted with antitachycardia pacemakers. Journal of the American College of Cardiology. 2005;46(10):1913-1920.
- 169. Botto GL, Padeletti L, Santini M, et al. Presence and duration of atrial fibrillation detected by continuous monitoring: crucial implications for the risk of thromboembolic events. J Cardiovasc Electrophysiol. 2009;20(3):241-248.
- 170. Glotzer TV, Daoud EG, Wyse DG, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circulation. Arrhythmia and electrophysiology. 2009;2(5):474-480.
- 171. Shanmugam N, Boerdlein A, Proff J, et al. Detection of atrial high-rate events by continuous home monitoring: clinical significance in the heart failure-cardiac resynchronization therapy population. Europace. 2012;14(2):230-237.
- 172. Healey JS, Connolly SJ, Gold MR, et al. Subclinical atrial fibrillation and the risk of stroke. The New England journal of medicine. 2012;366(2):120-129.
- 173. Boriani G, Glotzer TV, Santini M, et al. Device-detected atrial fibrillation and risk for stroke: an analysis of >10,000 patients from the SOS AF project (Stroke preventiOn Strategies based on Atrial Fibrillation information from implanted devices). Eur Heart J. 2014;35(8):508-516.
- 174. Daoud EG, Glotzer TV, Wyse DG, et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 2011;8(9):1416-1423.
- Boriani G, Santini M, Lunati M, et al. Improving thromboprophylaxis using atrial fibrillation diagnostic capabilities in implantable 175. cardioverter-defibrillators: the multicentre Italian ANGELS of AF Project. Circ Cardiovasc Qual Outcomes. 2012;5(2):182-188.
- Brambatti M, Connolly SJ, Gold MR, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. 176. Circulation. 2014;129(21):2094-2099.
- Martin DT, Bersohn MM, Waldo AL, et al. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients 177. with implanted defibrillator and cardiac resynchronization devices. European heart journal. 2015;36(26):1660-1668.
- Boriani G, Biffi M, Diemberger I, Cervi E, Martignani C. Peri-operative management of patients taking antithrombotic therapy: 178. need for an integrated proactive approach. International journal of clinical practice. 2011;65(3):236-239.
- 179. Hendriks JM, Crijns HJ, Vrijhoef HJ. Integrated Chronic Care Management For Patients With Atrial Fibrillation - A Rationale For Redesigning Atrial Fibrillation Care. Journal of atrial fibrillation. 2015;7(5):1177.
- 180. Kirchhof P. The future of atrial fibrillation management: integrated care and stratified therapy. Lancet. 2017.
- 181. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-2962.

- 182. Kirchhof P, Breithardt G, Aliot E, et al. Personalized management of atrial fibrillation: Proceedings from the fourth Atrial Fibrillation competence NETwork/European Heart Rhythm Association consensus conference. *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* 2013;15(11):1540-1556.
- 183. Lip GYH. The ABC pathway: an integrated approach to improve AF management. *Nat Rev Cardiol.* 2017;14(11):627-628.
- 184. Borg Xuereb C, Shaw RL, Lane DA. Patients' and physicians' experiences of atrial fibrillation consultations and anticoagulation decision-making: A multi-perspective IPA design. *Psychology & health.* 2016;31(4):436-455.
- 185. Laidsaar-Powell RC, Butow PN, Bu S, et al. Physician-patient-companion communication and decision-making: a systematic review of triadic medical consultations. *Patient education and counseling*. 2013;91(1):3-13.
- 186. Seaburg L, Hess EP, Coylewright M, Ting HH, McLeod CJ, Montori VM. Shared decision making in atrial fibrillation: where we are and where we should be going. *Circulation*. 2014;129(6):704-710.
- 187. Alonso-Coello P, Montori VM, Diaz MG, et al. Values and preferences for oral antithrombotic therapy in patients with atrial fibrillation: physician and patient perspectives. *Health expectations : an international journal of public participation in health care and health policy.* 2015;18(6):2318-2327.
- 188. Devereaux PJ, Anderson DR, Gardner MJ, et al. Differences between perspectives of physicians and patients on anticoagulation in patients with atrial fibrillation: observational study. *BMJ (Clinical research ed.)*. 2001;323(7323):1218-1222.
- 189. Lahaye S, Regpala S, Lacombe S, et al. Evaluation of patients' attitudes towards stroke prevention and bleeding risk in atrial fibrillation. *Thrombosis and haemostasis*. 2014;111(3):465-473.
- 190. Mas Dalmau G, Sant Arderiu E, Enfedaque Montes MB, Sola I, Pequeno Saco S, Alonso Coello P. Patients' and physicians' perceptions and attitudes about oral anticoagulation and atrial fibrillation: a qualitative systematic review. *BMC family practice*. 2017;18(1):3.
- 191. Pugh D, Pugh J, Mead GE. Attitudes of physicians regarding anticoagulation for atrial fibrillation: a systematic review. *Age and ageing*. 2011;40(6):675-683.
- 192. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. *Lancet*. 2014;383(9921):955-962.
- 193. Andrade JG, Krahn AD, Skanes AC, Purdham D, Ciaccia A, Connors S. Values and Preferences of Physicians and Patients With Nonvalvular Atrial Fibrillation Who Receive Oral Anticoagulation Therapy for Stroke Prevention. *The Canadian journal of cardiology*. 2016;32(6):747-753.
- 194. Bottger B, Thate-Waschke IM, Bauersachs R, Kohlmann T, Wilke T. Preferences for anticoagulation therapy in atrial fibrillation: the patients' view. *Journal of thrombosis and thrombolysis*. 2015;40(4):406-415.
- 195. Edwards NT, Greanya ED, Kuo IF, Loewen PS, Culley CL. Patient preferences regarding atrial fibrillation stroke prophylaxis in patients at potential risk of atrial fibrillation. *International journal of clinical pharmacy.* 2017;39(2):468-472.
- 196. Frankel DS, Parker SE, Rosenfeld LE, Gorelick PB. HRS/NSA 2014 Survey of Atrial Fibrillation and Stroke: Gaps in Knowledge and Perspective, Opportunities for Improvement. *Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association*. 2015;24(8):1691-1700.
- 197. Ghijben P, Lancsar E, Zavarsek S. Preferences for oral anticoagulants in atrial fibrillation: a best-best discrete choice experiment. *PharmacoEconomics*. 2014;32(11):1115-1127.
- 198. Moia M, Mantovani LG, Carpenedo M, et al. Patient preferences and willingness to pay for different options of anticoagulant therapy. *Internal and emergency medicine*. 2013;8(3):237-243.
- 199. Palacio AM, Kirolos I, Tamariz L. Patient values and preferences when choosing anticoagulants. *Patient preference and adherence*. 2015;9:133-138.
- 200. Barcellona D, Luzza M, Battino N, Fenu L, Marongiu F. The criteria of the Italian Federation of Thrombosis Centres on DOACs: a "real world" application in nonvalvular atrial fibrillation patients already on vitamin K antagonist. *Internal and emergency medicine*. 2015;10(2):157-163.
- 201. Boom MS, Berghuis EM, Nieuwkerk PT, Pinedo S, Buller HR. When do patients prefer a direct oral anticoagulant over a vitamin K antagonist? *The Netherlands journal of medicine*. 2015;73(8):368-372.
- 202. Raparelli V, Proietti M, Cangemi R, Lip GY, Lane DA, Basili S. Adherence to oral anticoagulant therapy in patients with atrial fibrillation. Focus on non-vitamin K antagonist oral anticoagulants. *Thromb Haemost.* 2017;117(2):209-218.
- 203. Horne R, Chapman SC, Parham R, Freemantle N, Forbes A, Cooper V. Understanding patients' adherence-related beliefs about medicines prescribed for long-term conditions: a meta-analytic review of the Necessity-Concerns Framework. *PloS one.* 2013;8(12):e80633.
- 204. Heidbuchel H, Berti D, Campos M, et al. Implementation of non-vitamin K antagonist oral anticoagulants in daily practice: the need for comprehensive education for professionals and patients. *Thrombosis journal.* 2015;13:22.
- 205. Lane DA, Aguinaga L, Blomstrom-Lundqvist C, et al. Cardiac tachyarrhythmias and patient values and preferences for their management: the European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLEACE). *Europace*. 2015;17(12):1747-1769.
- 206. Lane DA, Barker RV, Lip GY. Best practice for atrial fibrillation patient education. *Curr Pharm Des.* 2015;21(5):533-543.
- 207. McCabe PJ. What patients want and need to know about atrial fibrillation. *Journal of multidisciplinary healthcare*. 2011;4:413-419.

CHEST[®] Online Supplement

- Eckman MH, Wise RE, Naylor K, et al. Developing an Atrial Fibrillation Guideline Support Tool (AFGuST) for shared decision 208. making. *Current medical research and opinion*. 2015;31(4):603-614.
- Thompson AE. JAMA patient page. Atrial fibrillation. JAMA : the journal of the American Medical Association. 209. 2015;313(10):1070.
- Torpy JM, Lynm C, Glass RM. JAMA patient page. Atrial fibrillation. JAMA : the journal of the American Medical Association. 210. 2010;303(4):380.
- Shea JB, Sears SF. Cardiology patient pages. A patient's guide to living with atrial fibrillation. Circulation. 2008;117(20):e340-211. 343.
- Berian JR, Livingston EH. JAMA PATIENT PAGE. Preventing Stroke in People With Atrial Fibrillation. JAMA : the journal of the 212. American Medical Association. 2015;314(3):310.
- Ruff CT. Cardiology patient page: stroke prevention in atrial fibrillation. Circulation. 2012;125(16):e588-590. 213.
- Bussey HI, Bussey M. Cardiology patient page. Warfarin management: international normalized ratio self-testing and warfarin 214. self-dosing. Circulation. 2012;126(5):e52-54.
- 215. Fiumara K, Goldhaber SZ. Cardiology patient pages. A patient's guide to taking coumadin/warfarin. Circulation. 2009;119(8):e220-222.
- 216. Lane DA, Wood K. Cardiology patient page. Patient guide for taking the non-vitamin K antagonist oral anticoagulants for atrial fibrillation. Circulation. 2015;131(16):e412-415.
- 217. Shehata M, Yeow WL, Kar S. Cardiology patient page: device interventions for stroke prevention in atrial fibrillation. Circulation. 2014:129(9):e360-362.
- 218. Kotecha D, Kirchhof P. ESC Apps for Atrial Fibrillation. European heart journal. 2017;38(35):2643-2645.
- Guo Y, Chen Y, Lane DA, Liu L, Wang Y, Lip GYH. Mobile Health Technology for Atrial Fibrillation Management Integrating 219. Decision Support, Education, and Patient Involvement: mAF App Trial. The American journal of medicine. 2017.
- 220. Desteghe L, Kluts K, Vijgen J, et al. The Health Buddies App as a Novel Tool to Improve Adherence and Knowledge in Atrial Fibrillation Patients: A Pilot Study. JMIR mHealth and uHealth. 2017;5(7):e98.