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Abstract 

Cellular filling materials are a commonplace in additively manufactured parts to lower 

the structural weight without detriment to the mechanical properties. This technical note 

undergoes the heuristic optimization of a 2D metamaterial with repetitive supercells 

derived from a square frame divided by median and diagonal lines into eight triangles. 

The inherent quadriaxiality of this layout is ideally suited to resist multiaxial stress fields, 

while enabling size refinement to match the local scale of the component. A step-by-step 

procedure is developed which optimizes the thickness of the beams along the principal 

axes of the cell (sidewise and diagonal) according to a fully stressed design concept. 

Preliminary Finite Element models, including either bar or beam elements, confirm the 

theoretical results for a case study. Extension of the optimal approach to 3D geometries 

is envisioned using a cubic cell which incorporates the present 2D grid on each face of 

the cube. 
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Introduction 

Additive manufacturing of structural machinery parts allows overall weight reductions to 

be achieved by systematic use of cellular filling materials1,2. The outer surface of the part 

is normally continuous (solid wall, plate, shell etc.) and carries the external loads. The 

lightweight cellular material fills the internal volumes with the double aim to sustain the 

localized forces on the surface and distribute the global stresses. 

Filling materials are available in many architectures3. Very broadly, they can be 

divided into two categories: materials with flexural behaviour3-5 (i.e. hexagonal or square 

cells in 2D, cubic cells in 3D) and materials with membrane behaviour (i.e. triangular 

cells in 2D, tetrahedral cells in 3D). Materials with membrane behaviour are to be 

preferred for lightweight applications due to their superior structural efficiency3. 

Instances of this design principle are found in sandwich structures and trabecular bone. 

 

 (a)                             (b) 

Figure 1. Use of 2D filling materials in genuine 2D structures (a) and 3D geometries 

(b) undergoing in-plane loading. 
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This technical note focuses on the structural optimization of 2D cellular materials 

subjected exclusively (or mainly) to in-plane loading (Fig. 1). The cell geometry taken 

into consideration is loosely inspired by the panel framework forming the side girders of 

the renowned Bailey bridge6. As shown in Fig. 2a, it includes an outer square of side 2a, 

which is divided by means of two median and two diagonal lines into eight right-angled 

isosceles triangular cells. The resulting geometry is a redundant lattice structure (which 

represents the unit cell of the periodic metamaterial) with dominant membrane response 

under in-plane loading. Advantages of this architecture are the straightforward size 

gradation of the pattern (Fig. 2b) and the intrinsic quadriaxiality, which facilitates the 

structural optimization against multiaxial stresses. Published work7 supplies the 

macroscopic properties of the unit cell in Fig. 2a by assuming that all beams of the grillage 

are made from any homogeneous, isotropic material and that they feature the same 

thickness. The present paper forgoes the latter geometric limitation to pursue a fully 

stressed state of the beams under assigned global stresses. Design variables are the in-

plane thicknesses of the beams, namely: 𝑠𝑠1 for the set of horizontal beams, 𝑠𝑠2 for the set 

of vertical beams and 𝑠𝑠𝑑𝑑 for the set of diagonal beams (see Fig. 2a). 

 
                          (a)                         (b) 

Figure 2. Geometry of the unit pattern (a) with example of mesh refinement (b), in which 

the complete unit cells are highlighted in green and the white cells are transition areas.  
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Optimization 

The optimization process refers to the periodic material with the unit cell shown in Fig. 2a 

repeated indefinitely. For large areas with variable cell size as in Fig. 2b, the procedure 

must be applied separately for the different regions where the size is constant. Assuming, 

further, that the members of the unit grid behave either as tension rods or compressive 

struts, the optimization process is broken down into seven steps as follows.  

 

The first step is the acquisition of the global state of stress to which the cellular 

filling material is exposed with reference to convenient cartesian coordinates x-y 

 

 𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦, 𝜏𝜏𝑥𝑥𝑦𝑦 (1) 

 

The second step is the computation of principal directions (𝜙𝜙1,𝜙𝜙2) and principal 

stresses (𝜎𝜎1,𝜎𝜎2), based on the well-known relationships of the mechanics of solids 

 

 
       𝜙𝜙1 =

1
2

atan2
2𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦
        𝜙𝜙2 = 𝜙𝜙1 + 𝜋𝜋/2 

 𝜎𝜎1 = 𝜎𝜎𝑚𝑚 + 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥                𝜎𝜎2 = 𝜎𝜎𝑚𝑚 − 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 

(2) 

 

where 𝜎𝜎𝑚𝑚 e 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 are the normal and tangential stresses, respectively, acting on material 

planes inclined to ±45° with respect to the direction of 𝜎𝜎1 

 

𝜎𝜎𝑚𝑚 =
𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦

2
                   𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 =

1
2
��𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦�

2 + 4𝜏𝜏𝑥𝑥𝑦𝑦2  (3) 
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The third step involves the alignment of the natural directions of the material with 

the principal stress directions as sown in Fig. 3. 

 

 

Figure 3. Conceptual alignment of the material with the principal stress directions. 

 

In the fourth step, the scale of the grid (dimension 𝑎𝑎 in Fig. 2) is chosen, together 

with the base material (virgin polymer, reinforced polymer, metal, …) and its mechanical 

properties: tensile strength, 𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡, compression strength, 𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐, elastic modulus, 𝐸𝐸. 

 

From the fifth to the seventh step, the optimal thicknesses 𝑠𝑠1, 𝑠𝑠2 and 𝑠𝑠𝑑𝑑 of the beams 

in the directions of 𝜎𝜎1 (coloured blue in Fig. 3), 𝜎𝜎2 (coloured green in Fig. 3) and 𝜎𝜎𝑚𝑚 

(coloured red in Fig. 3) are calculated by requesting the full exploitation of the material 

(fully stressed design). For example, for the horizontal beams in Fig. 3, which are 

subjected to the tensile stress 𝜎𝜎1, the following equilibrium equation must hold 

𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡 �
1
2
𝑠𝑠1 + 𝑠𝑠1 + 1

2
𝑠𝑠1� = 𝜎𝜎1(2𝑎𝑎) (4) 

from which 
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𝑠𝑠1 = 𝑎𝑎 �
𝜎𝜎1

𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡
� (5) 

 

If stress 𝜎𝜎1 were compressive (i.e. negative), Eq. (4) would read 

𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐 �
1
2
𝑠𝑠1 + 𝑠𝑠1 + 1

2
𝑠𝑠1� = −𝜎𝜎1(2𝑎𝑎) (6) 

from which 

𝑠𝑠1 = −𝑎𝑎 �
𝜎𝜎1

𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐
� (7) 

For 𝜎𝜎1 compressive, there is also the risk of buckling of the beams. Assuming, 

conservatively, that both ends are hinged, the magnitude of critical load of the single 

horizontal beam (of length 𝑎𝑎) in Fig. 3 is8  

𝐹𝐹𝑐𝑐𝑐𝑐 =
𝜋𝜋2𝐸𝐸𝑠𝑠13

12𝑎𝑎2
 (8) 

The magnitude of the compressive force is (see Eq. (4)) 

𝐹𝐹 = −𝜎𝜎1𝑎𝑎 (9) 

By equating (8) and (9) the minimum thickness that prevents buckling of the beam 

is calculated as 

𝑠𝑠1 = −𝑎𝑎 �
12
𝜋𝜋
𝜎𝜎1
𝐸𝐸 �

1
3
 (10) 
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Finally, introducing a minimum thickness of 10% of 𝑎𝑎 (= 0.1𝑎𝑎) for manufacturing 

reasons, the optimal thickness of the horizontal beams is selected as the maximum value 

between 0.1 𝑎𝑎 and Eqs. (5), (7), (10). Symbolically 

 
𝑠𝑠1 = 𝑎𝑎 ∙ MAX�0.1 ,

𝜎𝜎1
𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡

 ,−
𝜎𝜎1

𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐
 ,−�

12
𝜋𝜋
𝜎𝜎1
𝐸𝐸 �

1
3

 � (11) 

 

If the same reasoning is applied to the directions of 𝜎𝜎2 (vertical in Fig. 3) and of 𝜎𝜎𝑚𝑚 

(diagonal), the following result is obtained 

 
𝑠𝑠2 = 𝑎𝑎 ∙ MAX�0.1 ,

𝜎𝜎2
𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡

 ,−
𝜎𝜎2
𝜎𝜎𝑚𝑚𝑚𝑚 𝑐𝑐

 ,−�
12
𝜋𝜋
𝜎𝜎2
𝐸𝐸 �

1
3

 � (12) 

   
 

𝑠𝑠𝑑𝑑 = 𝑎𝑎√2 ∙ MAX�0.1 ,
𝜎𝜎𝑚𝑚

𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡
 ,−

𝜎𝜎𝑚𝑚
𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐

 ,−�
12
𝜋𝜋
𝜎𝜎𝑚𝑚
𝐸𝐸 �

1
3

 � (13) 

 

Note that Eq. (13) does not contain the shear stress, 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥. This is because it is 

assumed that this stress component is taken care of by the beams of thickness 𝑠𝑠1 and 𝑠𝑠2, 

once designed according to Eqs. (11) and (12). 

 

Numerical example 

For 𝜎𝜎𝑥𝑥 = 5 MPa ,𝜎𝜎𝑦𝑦 = −8 MPa , 𝜏𝜏𝑥𝑥𝑦𝑦 = 3 MPa, Eqs. (2) and (3) give 𝜙𝜙1 = 32.6°,𝜙𝜙2 =

22.6°,   𝜎𝜎𝑚𝑚 = −1.50 MPa, 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 = 7.16 MPa,𝜎𝜎1 = 5.66 MPa,𝜎𝜎2 = −8.66 MPa. 

Assuming 𝑎𝑎 = 10 mm (Fig. 2a) and adopting as base material a spool of polylactic acid 

(PLA) with mechanical properties typical of the Fused Filament Fabrication (FFF) 
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technology9 (𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑡𝑡 = 20 MPa,𝜎𝜎𝑚𝑚𝑑𝑑𝑚𝑚 𝑐𝑐 = 25 MPa,  𝐸𝐸 = 3550 MPa), Eqs. (11-13) give 

the optimal thicknesses as: 𝑠𝑠1 = 2.83 mm (from the second term in Eq. (11)), 𝑠𝑠2 =

3.46 mm (from the third term in Eq. (12)), 𝑠𝑠𝑑𝑑 = 1.66 mm (from the fourth term in 

Eq. (13)). The resulting framework is shown with reduced scale in Fig. 4a (the thickness 

normal to the plane of the figure is arbitrary). 

 
                   (a)                                                                (b) 

Figure 4. Final grid of the optimized material (a) with corresponding FE model (b). 

 

Finite Element validation 

The grid in Fig. 4a was modelled with 2D bars (beams with end hinges) with cross-section 

having unit height (normal to the plane of the grid) and thicknesses corresponding to the 

optimal values of the previous Section. The elastic modulus was 𝐸𝐸 = 3550 MPa as 

before. Figure 4b superimposes the undeformed mesh (grey lines) to the displaced mesh 

(coloured lines) resulting from the application of the principal stresses calculated above 

(𝜎𝜎1 = 5.66 MPa,𝜎𝜎2 = −8.66 MPa). Table 1 compares the FE stresses with the 

theoretical predictions, showing close agreement. The main difference involves the 

diagonal beams, where the theoretical stresses exceed their numerical counterparts. This 

is due to the redundancy of the quadriaxial grid, not included in the theory, which leads 

to a conservative design (thickness 𝑠𝑠𝑑𝑑 somewhat larger than strictly needed). A run of the 
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model for the same geometry, material and applied stresses was performed by replacing 

the hinged bars with proper beams (featuring end rigid nodes). The results were mostly 

unchanged from Table 1, which confirms that the behaviour of the structure is regulated 

by membrane action of the beams (i.e. undergoing almost purely axial loading). 

 

Table 1 Theoretical and numerical stresses (MPa) for the optimized material in Fig. 4 

Model Horizontal beams Vertical beams Diagonal beams 

Theory +20.0  −25.0 −12.8 

FE +20.4 / +20.8 −24.5 / −24.8 −1.8 / −2.6 

 

 

Figure 5. Conceptual extension of the present grid geometry to 3D applications. 

 

Conclusions 

The square-triangular supercell studied in this note shows great versatility as 2D 

lightweight filling material for additively manufactured parts. The layout is easily scaled 

to match the local geometric features of the component.  The intrinsic quadriaxiality of 

the pattern allows the heuristic optimization of the beam thicknesses according to the fully 

stressed design criterion. Preliminary Finite Element results, based either on bar or beam 
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elements, agree with the theoretical predictions for a case study. The research will proceed 

according to the following lines: 1) systematic testing of the theory by means of 

parametric 2D Finite Element analyses; 2) experimental validation against physical 

models; 3) extension of the optimal approach to 3D designs (e.g. the cubic frame in Fig. 5, 

which incorporates the 2D grid on each face of the cube). 
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