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A precise determination of the effective B0
s → K + K − lifetime can be used to constrain contributions from

physics beyond the Standard Model in the B0
s meson system. Conventional approaches select B meson

decay products that are significantly displaced from the B meson production vertex. As a consequence,
B mesons with low decay times are suppressed, introducing a bias to the decay time spectrum which
must be corrected. This analysis uses a technique that explicitly avoids a lifetime bias by using a neural
network based trigger and event selection. Using 1.0 fb−1 of data recorded by the LHCb experiment, the
effective B0

s → K + K − lifetime is measured as 1.455 ± 0.046 (stat.) ± 0.006 (syst.) ps.
© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

The study of charmless b-hadron decays can be used to explore
the phase structure of the CKM matrix and to search for indirect
evidence of physics beyond the Standard Model (SM). A measure-
ment of the effective lifetime of the B0

s → K +K − decay (charge
conjugate modes are implied throughout) is of considerable inter-
est as it is sensitive to new physical phenomena affecting the B0

s
mixing phase and entering the decay at loop level [1–4].

The B0
s → K +K − decay was first observed by the CDF Col-

laboration [5] and the most precise measurement to date of the
effective lifetime was made by the LHCb Collaboration using data
taken during 2010 [6]. A detailed theoretical description of the
B0

s → K +K − decay can be found in Refs. [3,4]. When the initial
flavour of the B0

s meson is unknown the decay time distribution
can be written as

Γ (t) ∝ (1 −A�Γs )e−ΓLt + (1 +A�Γs )e−ΓH t . (1)

The quantities ΓH and ΓL are the decay widths of the heavy
and light B0

s mass eigenstates and �Γs = ΓL − ΓH is the de-
cay width difference. The parameter A�Γs is defined as A�Γs =
−2 Re(λ)/(1 +|λ|2) where λ = (q/p)( Ā/A), where the complex co-
efficients p and q define the mass eigenstates of the B0

s –B0
s system

in terms of the flavour eigenstates (see e.g., Ref. [7]) and A ( Ā) is
the amplitude for a B0

s (B0
s ) meson to decay to the K +K − final

state.

✩ © CERN for the benefit of the LHCb Collaboration.

If the decay time distribution given by Eq. (1) is fitted with a
single exponential function the effective lifetime is given by [8]

τKK = τB0
s

1 − y2
s

[
1 + 2A�Γs ys + y2

s

1 +A�Γs ys

]

= τB0
s

(
1 +A�Γs ys +O

(
y2

s

))
, (2)

where τB0
s

= 2/(ΓH + ΓL) = Γ −1
s and ys = �Γs/2Γs . The K +K −

final state is CP-even and so in the SM the decay is dominated
by the light mass eigenstate such that A�Γs = −0.972 ± 0.012 [3,
9] and the effective lifetime thus is approximately equal to Γ −1

L .
Adopting the approach of Ref. [3] and using the world averages
of Γs and �Γs [10] and the SM prediction of A�Γs , the effec-
tive lifetime is predicted to be τKK = 1.40 ± 0.02 ps. However,
the B0

s → K +K − decay is dominated by penguin diagrams and
so is sensitive to physics beyond the SM entering at loop level,
which may affect A�Γs . The measurement is also sensitive to new
physics contributions to the B0

s mixing phase which in turn affects
�Γs [11]. Deviations from this prediction will therefore provide
evidence of new physics.

Conventional selections exploit the long lifetimes of b-hadrons
by requiring that their decay products are significantly displaced
from the primary interaction point. However, this introduces a
time-dependent acceptance of the selected b-hadron candidates
which needs to be taken into account in the analysis. This Letter
describes a technique based on neural networks which avoids such
acceptance effects. Only properties independent of the decay time
are used to discriminate between signal and background. To ex-
ploit the available information, including the correlations between
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variables, several neural networks are used in a dedicated trigger
and event selection.

2. The LHCb experiment and simulation software

The B0
s → K +K − lifetime is measured using 1.0 fb−1 of pp col-

lision data collected by the LHCb detector at a centre of mass
energy of

√
s = 7 TeV during 2011. The LHCb detector [12] is

a single arm spectrometer with a pseudorapidity acceptance of
2 < η < 5 for charged particles. The detector includes a high pre-
cision tracking system, which consists of a silicon vertex detector
and dedicated tracking planes. The tracking planes consist of sili-
con microstrip detectors in the region with high charged-particle
flux close to the beam pipe and straw tube detectors which pro-
vide coverage up to the edge of the LHCb geometrical acceptance.
The tracking planes are located either side of the dipole magnet
to allow the measurement of the momenta of charged particles
as they traverse the detector. Excellent particle identification ca-
pabilities are provided by two ring imaging Cherenkov detectors
which allow charged pions, kaons and protons to be distinguished
from each other in the momentum range 2–100 GeV/c. The energy
of particles traversing the detector is measured using a calorime-
ter system which is sensitive to photons and electrons, as well as
hadrons. Muons are identified using a dedicated detector system.

The experiment employs a multi-level trigger comprised of a
hardware trigger which uses information from the calorimeter and
muon system and a software trigger which performs a full recon-
struction of the event, including tracks and vertices.

The simulated events used in this analysis are produced using
the Pythia 6.4 generator [13], with a choice of parameters specifi-
cally configured for LHCb [14]. The EvtGen package [15] describes
the decay of b-hadrons and the Geant4 toolkit [16] simulates the
detector response, implemented as described in Ref. [17]. QED ra-
diative corrections to the B0

s → K +K − decay are generated with
the Photos package [18].

3. Trigger and event selection

At LHCb, b-hadrons are produced with an average momentum
of around 100 GeV/c and have decay vertices displaced from the
primary interaction vertex. Combinatorial background candidates,
produced by the random combination of tracks, tend to have low
momentum and originate from a primary pp collision vertex. These
features are typically exploited to select b-hadrons and reject back-
ground. The distance of closest approach (impact parameter) of
b-hadron decay products to any primary vertex is a particularly
important discriminant in the trigger because it is an order of
magnitude faster to compute than the momenta of the same de-
cay products. For this reason, the majority of triggers for hadronic
b-hadron decays begin by selecting tracks with a significant dis-
placement from any primary vertex. However, such requirements
introduce a time-dependent acceptance which biases the decay
time distribution of the selected b-hadron candidates and a signif-
icant investment of effort is often required to correct for this bias.

The analysis presented here uses an approach that selects b-
hadrons without biasing the decay time distribution, other than
trivially through a simple minimum decay time requirement, limit-
ing the systematic uncertainties associated with correcting for any
time-dependent acceptance effects. This is achieved using neural
networks based on the NeuroBayes package [19] in the software
trigger and event selection. Neural networks have advantages over
traditional “cut-based” approaches since they are able to exploit
the correlations between variables in order to increase signal pu-
rity, allowing b-hadrons to be selected without resorting to re-
quirements on impact parameters or flight distance.

The LHCb software trigger has two stages which run sequen-
tially. Due to restrictions on processing time it is not possible to
employ a neural network in the first level of the software trig-
ger. Instead, only tracks that are not used in the first level decision
are passed to the second trigger level in order to avoid a potential
bias. These tracks are required to pass a loose pre-selection with
requirements on their momenta, transverse momenta and track fit
quality. The tracks are then combined to form B meson candidates,
using a kaon mass hypothesis for both tracks, and further require-
ments are made on the distance of closest approach of the two
tracks to each other, the mass of the resulting candidate, the helic-
ity angle of the tracks in the B meson rest frame and the quality
of the decay vertex fit.

After this pre-selection the candidates pass through a first neu-
ral network, trained on simulated B0

s → K +K − , B0 → K +π− and
background events, which uses the momenta and transverse mo-
menta of the tracks and B meson candidate, the distance of closest
approach of the two tracks, helicity angle, the χ2 of the vertex
fit and the uncertainty on the fitted B meson mass to discrim-
inate between signal and background. After this stage the data
rate is reduced to a level such that each event may be fully re-
constructed, including information from the particle identification
system. A second network, trained on the same simulated events,
uses the information presented to the first network along with par-
ticle identification information to further increase the purity of B
mesons in the selected candidates.

Roughly half way through 2011 the luminosity delivered by the
LHC accelerator increased to a level such that it was necessary to
require that the decay time of B meson candidates exceeded 0.3 ps
in order to keep the trigger rate within acceptable limits. This re-
quirement only biases the decay time distribution in a trivial way,
except through a possible difference in the decay time resolutions
of the trigger and offline reconstruction software.

After the trigger, the tracks associated to the selected candi-
dates are removed from the primary vertex fit to avoid a potential
bias in the measured decay time. The purity of signal candidates
is then further enhanced using two additional sequential neural
networks. The first network is trained using simulated events and
combines the same information used by the trigger networks along
with particle identification information, the energy of each track
from the calorimeter, the probability that either track is formed
from the association of random hits in the detector and the χ2 per
degree of freedom for both track fits. This network benefits from
the more detailed full event reconstruction which is not available
in the trigger.

The second network is trained on the data recorded in 2011
using sWeights [20], which are calculated in a window around the
signal peak and in the upper sideband region (5.45 < mK + K − <

5.85 GeV/c2) of the invariant mass spectrum. The sWeights are ob-
tained from a fit to the invariant mass spectrum of the candidates
and the neural network uses them to discriminate between signal
and background. This network uses the output of the first network
as input, all the input variables used by the first network, the un-
certainty on the decay time of the B meson candidate and the
impact parameter of the B meson candidate with respect to the
primary interaction vertex. Only candidates with a decay time of
τ > 0.3 ps are used in the network training.

The event selection is determined by making a requirement on
the output of this second neural network that maximises the met-
ric s/

√
s + b, where s is the number of signal decays in the region

5.05 < mK + K − < 5.85 GeV/c2 and b is the number of background
combinations.

The trigger and offline software reconstruct B meson decay
times with different resolutions. Potential “edge-effects” intro-
duced by the trigger requirement that τ > 0.3 ps are avoided by
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Fig. 1. (a) Invariant mass spectrum for all selected B0
s → K + K − candidates. (b) Decay time distribution of B0

s → K + K − signal extracted using sWeights and the fitted
exponential function.
requiring that candidates satisfy τ > 0.5 ps in the final event se-
lection. The contribution from the B0 → K +π− and B0

s → K +K −
modes are separated by demanding tight requirements on the par-
ticle identification properties of the final state particles. A small
level of contamination from decays of Λb baryons is further sup-
pressed by demanding that the final state particles are not com-
patible with the proton hypothesis.

4. Analysis of the effective B0
s → K + K − lifetime

The effective B0
s → K +K − lifetime is evaluated using an un-

binned log-likelihood fit. A fit to the invariant mass spectrum
is performed to determine the sWeights that are used to isolate
the B0

s → K +K − decay time distribution from the residual back-
ground. The B0

s → K +K − signal component is described by a
Gaussian function. The background contamination from partially
reconstructed B meson decays is described by a further Gaus-
sian function and the combinatorial background is described by
a Chebychev polynomial with one free parameter. It should be
noted that the kaon mass is assigned to both final state particles
in the vertex fit and hence the reconstructed B0 → K +π− mass
is shifted towards higher values than the nominal mass, creating
an asymmetric distribution. The B0 → K +π− signal component is
therefore described by a Crystal Ball function [21] with the tail on
high mass side. The parameters of this distribution are fixed us-
ing a fit to the independent B0 → K +π− sample, separated using
particle identification information.

The fit finds 997 ± 34 B0
s → K +K − decays and 78 ± 17 B0 →

K +π− decays in the data with 253 ± 25 and 169 ± 20 combinato-
rial background and partially reconstructed combinations respec-
tively. Fig. 1(a) shows the resulting invariant mass spectrum for
B0

s → K +K − candidates.
Using the sWeights returned by the mass fit, the B0

s → K +K −
decay time distribution is extracted from data using the sPlot tech-
nique [20]. Since there is no acceptance bias to correct for, the
lifetime is determined using a fit of the convolution of an expo-
nential and Gaussian function to account for the resolution of the
detector. The mean of the Gaussian function is fixed to zero and its
width is fixed to the expected resolution from simulated events,
which is σt = 0.04 ps.

The effective B0
s → K +K − lifetime is found to be

τKK = 1.455 ± 0.046 (stat.) ps.

Fig. 1(b) shows the corresponding fit to the decay time distribution
of B0

s → K +K − signal.
Since the decay B0 → K +π− has similar kinematics, it can be

used as a control mode. However, since the kaon mass hypothesis
is assigned to both tracks, the measured decay time is biased to

Table 1
Contributions to the systematic uncertainty on the effective B0

s → K + K − lifetime
measurement. The total uncertainty is calculated by adding the individual contribu-
tions in quadrature.

Systematic sources Uncertainty on τKK [fs]

Reconstruction efficiency 5
Signal model 1
Background model 1
Length scale 1
Minimum decay time requirement 1
Production asymmetry 2

Total 6

larger values for B0 → K +π− . To avoid this bias a fit is made to
the reduced decay time, which is defined as the decay time divided
by the invariant mass. This quantity is independent of the mass
assigned to the two tracks and is also unbiased by the selection,
following an exponential distribution with decay constant equal to
mB0/τB0 .

Using the value of the B0 mass [7] as input, the B0 lifetime is
found to be

τB0 = 1.536 ± 0.031 (stat.) ps

which agrees with the current world-average τB0 = 1.519 ±
0.007 ps [7].

5. Evaluation of systematic uncertainties

A wide range of effects that can influence the measurement of
the effective B0

s → K +K − lifetime has been evaluated. The indi-
vidual contributions to the systematic uncertainties are described
below and their estimated values are summarised in Table 1.

The key principle of this analysis is that the trigger and event
selection do not bias the decay time distribution of the selected
B0

s → K +K − candidates other than in a trivial way through a min-
imum decay time requirement. This has been tested extensively
using simulated events at each stage of the selection process to
demonstrate that no step introduces a time-dependent acceptance.
Fig. 2 shows the efficiency of the full trigger and event selection
as a function of decay time for simulated B0

s → K +K − candidates.
The graph is fitted with a first order polynomial with a gradient of
−0.09 ± 0.30 ns−1 consistent with a uniform acceptance. Possible
discrepancies between simulated and real events are considered by
comparing the distributions of variables used by the neural net-
works and good agreement is observed. The available quantity of
simulated events limits any non-zero gradient in the acceptance to
within 0.30 ns−1. This limit is used to evaluate the shift in the
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Fig. 2. Combined efficiency of LHCb trigger, selection neural networks and particle
identification requirements as a function of decay time for simulated B0

s → K + K −
signal candidates.

measured effective lifetime due to the presence of a linear accep-
tance and a negligible deviation is observed and is not considered
any further.

Studies using simulated events have demonstrated that the effi-
ciency with which tracks are reconstructed decreases as the impact
parameter of the track with respect to the beam line (IPz) in-
creases. This introduces a decay time acceptance that may bias the
measured lifetime. Such a systematic bias has been evaluated us-
ing a combination of data and simulated events. First, the effective
lifetime of simulated B0

s → K +K − signal candidates is found after
reconstruction to deviate by 5 fs from the generated value. Sec-
ond, the tracking efficiency is parametrised as a function of IPz

using simulated events. The calculated efficiency is then applied as
a weight to events in data according to their IPz values and the ef-
fective lifetime is evaluated. This produces a deviation of 4 fs with
respect to the unweighted events. The larger of these two shifts is
taken as the systematic uncertainty introduced by the reconstruc-
tion acceptance.

The invariant mass distribution of B0
s → K +K − signal candi-

dates is modelled using a Gaussian function. Potential systematic
effects due to this parametrisation are evaluated by using the sum
of two Gaussian functions to model additional resolution effects
and separately a Crystal Ball function [21] to model final state
radiation. Additionally the background parametrisation is checked
by replacing the first order Chebychev polynomial with an ex-
ponential function. All these changes shift the measured lifetime
by approximately 1 fs which is taken as the systematic uncer-
tainty.

The decay time distribution is fitted with an exponential func-
tion convolved with a Gaussian function to model detector reso-
lution, where the resolution is fixed to the value obtained from
simulated events. As a cross-check, the fit is performed with the
resolution parameter allowed to vary and also using a simple expo-
nential function without attempting to model detector resolution.
No deviation from the default measurement of the effective life-
time is observed in either case.

The effective B0
s → K +K − lifetime measurement has been eval-

uated using an alternative method which makes a simultaneous fit
to the invariant mass and decay time distributions. This approach
requires a parametrisation of the background decay time distri-
bution since the sPlot technique is not used. Both methods give
equivalent numerical results.

A wide range of different approaches to the training of the neu-
ral network have been tested, as well as the influence of different
alignment and calibration settings and the number of simultaneous
primary interactions in the detector. All results obtained in these
checks are consistent with the result of the default analysis.

The measured decay times of B meson candidates are deter-
mined from the distance between the primary interaction and the
secondary decay vertex in the silicon vertex detector. A system-
atic bias may therefore be introduced due to uncertainty on the
LHCb length scale. This effect is estimated by considering the un-
certainty on the length scale from the mechanical survey, thermal
expansion and the current alignment precision. The uncertainty on
the length of the detector along the beam-line is determined to be
the dominant effect and a corresponding systematic uncertainty is
assigned.

The effective lifetime is obtained by fitting a single exponential
function to the distribution given by Eq. (1). However, the require-
ment that the decay time be greater than 0.5 ps diminishes the ΓL
component relative to the ΓH component in the decay time distri-
bution. This effect has been evaluated using simulated events and
a deviation of 1 fs from the result of a fit to the full decay time
range is observed.

If the production rates, R , of B0
s and B0

s mesons are not equal
then an additional oscillatory term is introduced into the decay
time distribution given in Eq. (1), proportional to the production
asymmetry A P ≡ [R(B0

s ) − R(B0
s )]/[R(B0

s ) + R(B0
s )]. This term may

alter the measured effective lifetime. Since the B0
s meson shares

no valence quarks with the proton A P (B0
s ) at LHCb is expected to

be small. Making the conservative assumption that the |A P (B0
s )| =|A P (B0)| = 0.01 [22] we find a shift from the expected value of

the effective lifetime of 2 fs using simulated events. This value is
assigned as the systematic uncertainty.

6. Conclusions

Two-body charmless B decays offer a rich phenomenology to
explore the phase structure of the CKM matrix and to search for
manifestations of physics beyond the SM. The effective lifetime of
the decay B0

s → K +K − is of considerable theoretical interest as it
is sensitive to new particles entering at loop level. A measurement
of this quantity is made possible by the excellent particle identifi-
cation capabilities of the LHCb experiment.

The effective lifetime of the decay mode B0
s → K +K − is mea-

sured using 1.0 fb−1 of data recorded by the LHCb detector
in 2011. A key element of this analysis is that the trigger and
event selection selects B mesons without biasing the decay time
distribution. This is achieved using a series of neural networks.
Although this dedicated trigger has a lower efficiency compared
to the one used in the previous LHCb measurement [6], it has
the advantage of avoiding systematic uncertainties related to the
depletion of candidates at low decay times and provides an inde-
pendent approach to measuring the B0

s → K +K − effective lifetime.
It is measured as

τKK = 1.455 ± 0.046 (stat.) ± 0.006 (syst.) ps,

in good agreement with the SM prediction of 1.40 ± 0.02 ps
and with the measurement on data recorded by LHCb in 2010 of
1.440 ± 0.096 (stat.) ± 0.008 (syst.) ± 0.003 (mod.) ps [6].
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