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Abstract
We consider the multiparticle asymmetric diffusion model (MADM) intro-
duced by Sasamoto and Wadati with integrability preserving reservoirs at the
boundaries. In contrast to the open asymmetric simple exclusion process the
number of particles allowed per site is unbounded in the MADM. Taking
inspiration from the stationary measure in the symmetric case, i.e. the rational
limit, we first obtain the length 1 solution and then show that the steady state
can be expressed as an iterated product of Jackson q-integrals. In the proof of
the stationarity condition, we observe a cancellation mechanism that closely
resembles the one of the matrix product ansatz. To our knowledge, the occupa-
tion probabilities in the steady state of the boundary-driven MADM were not
available before.

Keywords: asymmetric, steady state, madm, integrable particle process,
boundary-driven, zero range process, matrix product ansatz

1. Introduction

A quarter century ago, the multiparticle asymmetric diffusion model (MADM) was intro-
duced by Sasamoto and Wadati [1] as an integrable generalization of the celebrated asym-
metric simple exclusion process (ASEP). Similar to the ASEP, the model is defined on a one-
dimensional lattice with periodic boundary conditions, and particles jump at a certain rate to
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nearest-neighboring sites. The asymmetry in the rates of left and right jumps is governed by a
parameter 0< γ < 1. The occupation number of particles per site is unbounded in the MADM
and multiple simultaneous jumps are allowed. The jump rates only depend on the number of
particles that jump to the left or to the right. As such the model belongs to the class of zero-
range processes with factorized steady state, see [2–5].

The MADM is solvable by Bethe ansatz, which can be explained by the fact that it can be
mapped to the XXZ spin chain with non-compact infinite-dimensional spin representations [6].
In particular, the q-deformation parameter of the underlyingUq(sl2) algebra is identified as the
asymmetry parameter via q2 = γ. This mapping parallels the relation between the ASEP and
the ordinary XXZ Heisenberg spin chain. More precisely, the Markov generator of the process
is mapped to an integrable Hamiltonian that, within the quantum inverse scattering method,
is part of the transfer matrix; see [7] for an overview. One advantage of such formulation is
that for a given integrable particle process, boundary reservoirs can be introduced without
breaking the integrable structure by following the work of Sklyanin [8]. This strategy led to
the definition of the MADM with integrable boundary reservoirs [9].

In the rational limit of γ→ 1, the MADM with integrable boundary reservoirs (boundary
driven MADM) reduces to the open harmonic process defined in [10] with non-compact spin
value s= 1/2 for where particles jump symmetrically to the left and right neighboring sites.
Remarkably, this model has an absorbing dual process and, therefore, can be mapped to equi-
librium by a non-local transformation, which in particular allows us to compute the steady state
exactly [11]. Using the integral representation of the Beta function, this closed-form expres-
sion for the steady state was written in the form of a nested integral in [12, appendix A], see
also [12, 13] where it has been interpreted as a mixed measure. We further remark that a sim-
ilar approach to the symmetric simple exclusion process (SSEP) has been presented in [14,
15]. However, unfortunately, the pathway outlined above has not yet been fully developed for
the asymmetric case (XXZ-type models). For some recent interesting developments in this
direction for the ASEP, we refer the reader to [16, 17].

In this paper, we provide a shortcut to the stationary measure of the boundary-driven
MADM by taking inspiration from the results available in the rational limit. We introduce the
boundary-driven MADM in section 2 along with the stationarity condition. Section 3 contains
the stationary measure for length N= 1 (see appendix B for the proof) and presents the con-
jecture for general N, see (3.7) for our main result. The conjecture is based on the observation
that the length 1 steady state can be written as a Jackson q-integral. In section 4, we prove the
conjecture and reveal a term-by-term cancellation as common for the matrix product ansatz. In
the case of equilibrium, where the insertion and extraction rates at both boundaries coincide,
we recover a product measure as outlined in section 5. Finally, we end with some concluding
remarks in section 6. Some useful formulas regarding the q-calculus and a generating function
method are collected in appendices A and C, respectively.

2. The boundary-driven MADM

The boundary-driven MADM is a continuous-time Markov process of interacting particles
defined on a one-dimensional lattice of length N. The number of particles per lattice site is
unbounded such that the occupation number mi ∈ N0 at site i = 1, . . . ,N. The particles can
jump from a given site to the two neighboring sites with rates that depend on the number
of particles jumping and the asymmetry parameter 0< γ < 1. In section 2.1, we present the
process that is obtained from the stochastic integrable Hamiltonian [9] in section 2.2. The
stationarity condition is found in section 2.3.
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2.1. The process

The MADM is defined through the action of the Markov generator L on functions f(m⃗) with
m⃗= (m1, . . . ,mN) as follows

Lf(m⃗) := LLf(m⃗)+
N−1∑
i=1

Li,i+1f(m⃗)+LR f(m⃗) (2.1)

where the density of the Markov generator acts as

Li,i+1f(m⃗) =
mi∑
k=1

1
[k]γ

[f(m⃗− kδi + kδi+1)− f(m⃗)]

+

mi+1∑
k=1

γk

[k]γ
[f(m⃗+ kδi − kδi+1)− f(m⃗)] ,

(2.2)

and, for i ∈ {1,N}, at the boundaries we have

LLf(m⃗) =
m1∑
k=1

γk

[k]γ
[f(m⃗− kδ1)− f(m⃗)]+

∞∑
k=1

βkL
[k]γ

[f(m⃗+ kδ1)− f(m⃗)] , (2.3)

and

LRf(m⃗) =
mN∑
k=1

1
[k]γ

[f(m⃗− kδN)− f(m⃗)]+
∞∑
k=1

(γβR)
k

[k]γ
[f(m⃗+ kδN)− f(m⃗)] . (2.4)

Here, we denote by δi the elementary unit vector

δi =

0, . . . ,0,1︸ ︷︷ ︸
i

,0, . . . ,0︸ ︷︷ ︸
N−i

 , (2.5)

and introduced the q-number as

[k]γ =
1− γk

1− γ
. (2.6)

The two boundary parameters take values 0< βL,βR < 1.
We like to stress that integrability fixes the boundary terms only up to a rescaling in the

boundary parameters. The choice in (2.3) and (2.4) is made such that the system is in equilib-
rium for βL = βR which is discussed in further detail in section 5.

2.2. Stochastic Hamiltonian

The generator of the process (2.1) is obtained from the stochastic Hamiltonian given below
using the relation Lf(m⃗) =−

∑
m⃗ ′ f(m⃗ ′)⟨m⃗ ′|H|m⃗⟩, see e.g. [18]. In the vectorial notation,

the f(m⃗) function is represented as f(m⃗) = ⟨f|m⃗⟩ with ⟨f|=
∑

m⃗ ′ f(m⃗ ′)⟨m⃗ ′|. The stochastic
Hamiltonian is of nearest-neighbor type and can be written as

H= BL+
N−1∑
i=1

Hi,i+1 +BR. (2.7)

HereHi,i+1 is the Hamiltonian density acting non-trivial on sites i and i+ 1 and the boundary
terms BL and BR that act non-trivially on the first and last site respectively.
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The Hamiltonian acts on the N-fold tensor product of infinite-dimensional highest
weight modules denoted by |m⟩ with m= 0,1,2, . . . such that the configuration space is
described by orthogonal infinite-dimensional vectors |m⃗⟩= |m1⟩⊗ . . .⊗ |mn⟩. The action of
the Hamiltonian density on two neighboring sites is of the form

H|m⟩⊗ |m ′⟩=

 m∑
k=1

1
[k]γ

+
m ′∑
k=1

γk

[k]γ

 |m⟩⊗ |m ′⟩

−
m∑
k=1

1
[k]γ

|m− k⟩⊗ |m ′ + k−
m ′∑
k=1

γk

[k]γ
|m+ k⟩⊗ |m ′ − k⟩.

(2.8)

The boundary terms act non-trivially on the first and last site, respectively. Their action reads

BL|m⟩=

(
m∑
k=1

γk

[k]γ
+

∞∑
k=1

βkL
[k]γ

)
|m⟩−

m∑
k=1

γk

[k]γ
|m− k⟩−

∞∑
k=1

βkL
[k]γ

|m+ k⟩, (2.9)

and

BR|m⟩=

(
m∑
k=1

1
[k]γ

+
∞∑
k=1

(γβR)
k

[k]γ

)
|m⟩−

m∑
k=1

1
[k]γ

|m− k⟩−
∞∑
k=1

(γβR)
k

[k]γ
|m+ k⟩. (2.10)

This formulation is equivalent to the one given in section 2.1.

2.3. Stationarity condition

We are interested in the stationary probability measure µ(m⃗). The evolution of the probability
measure P(m⃗) of the Markov process is described by the action of the transposed Markov
generator LtP(m⃗) defined via LtP(m⃗) =

∑ ′
m⃗ ′ P(m⃗ ′)L1m⃗(m⃗ ′) with 1m⃗(m⃗ ′) = δm⃗,m⃗ ′ and

∑ ′
m⃗ ′

denoting the sum over all configurations m⃗ ′ ̸= m⃗. The stationarity of the probability measure
then implies that Ltµ(m⃗) = 0, see [18]. In terms of the stochastic Hamiltonian the stationarity
condition reads

H|µ⟩= 0, (2.11)

where µ(m⃗) = ⟨m⃗|µ⟩. Explicitly this yields(
N∑
i=1

mi∑
k=1

1+ γk

[k]γ
+

∞∑
k=1

(γβR)
k+βkL

[k]γ

)
µ(m⃗) =

∞∑
k=1

γk

[k]γ
µ(m⃗+ kδ1)+

∞∑
k=1

1
[k]γ

µ(m⃗+ kδN)

+
m1∑
k=1

βkL
[k]γ

µ(m⃗− kδ1)+
mN∑
k=1

(γβR)
k

[k]γ
µ(m⃗− kδN)

+
N−1∑
j=1

mj∑
k=1

γk

[k]γ
µ(m⃗− kδj+ kδj+1)

+
N−1∑
j=1

mj+1∑
k=1

1
[k]γ

µ(m⃗+ kδj− kδj+1) .

(2.12)

In the following section, we will first determine the stationary measure µ(m⃗) for length N= 1
and present a conjecture for arbitrary length N. The proof of which is postponed to section 4.
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3. Stationary measure: from one site to all N

In order to construct the steady state, let us recall the result for the rational γ→ 1 model, see
[11]. For length N= 1, the stationarity measure found simply reads

lim
γ→1

µ(m1) =
(βL− 1)(βR− 1)

βL−βR

∞∑
k=m1+1

βkR−βkL
k

. (3.1)

The prefactor is just a normalization to ensure that
∑∞

m1=0 limγ→1µ(m1) = 1. Further, we
observe no mixing terms between βL and βR. Assuming that no such mixing appears in the
q-deformed case allows us to write an ansatz for the lengthN= 1 solution. Inserting this ansatz
into the stationarity condition (2.12), we obtain

µ(m1) =
1
c1

∞∑
k=m1+1

(γβR)
k−βkL

[k]γ
, (3.2)

with the q-numbers defined in (2.6) and a normalization constant c1 =
∑∞

m1=0µ(m1), see also
section 4. The proof that (3.2) obeys the stationarity condition can be found in appendix B.

We will now rewrite the stationary measure for N= 1 as given in (3.2) as a Jackson q-
integral whose definition can e.g. be found in [19, (1.11.1)–(1.11.3)]. Consider a function g(t),
the Jackson q-integral with boundaries a,b is then defined viaˆ b

a
g(t)dγ t=

ˆ b

0
g(t)dγ t−

ˆ a

0
g(t)dγ t, (3.3)

with ˆ a

0
g(t)dγ t= a(1− γ)

∞∑
n=0

g(aγn)γn. (3.4)

Next, we notice that each term in the sum of (3.2) can be written with some simple manipula-
tions as follows:

∞∑
k=n+1

βk

[k]γ
= (1− γ)

∞∑
ℓ=0

∞∑
k=n+1

βkγkℓ

= (1− γ)
∞∑
ℓ=0

∞∑
k=0

βk+n+1γ(k+n+1)ℓ

= β (1− γ)
∞∑
ℓ=0

(
βγℓ
)n

1−βγℓ
γℓ.

(3.5)

Comparing this result with the definition of the Jackson integral then yields

µ(m) =
1
c1

ˆ γβR

βL

tm

1− t
dγ t. (3.6)

Remarkably, this expression now resembles the expression for the rational case that was found
in [12, 13], up to a change of variables3,! However, the standard integral is replaced by the
Jackson q-integral, and γ is introduced in the upper integration limit.

3 In loc. cit. the density variables β = ρ
1+ρ

and t= θ
1+θ

are used.
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This result, combined with our preliminary numerics at length 2, suggests proceeding in
analogy to the rational case and leads us to the following representation of the stationary meas-
ure of the MADM in terms of nested Jackson integrals:

µ(m⃗) =
1
cN

ˆ γβR

βL

dγ t1

ˆ γβR

t1

dγ t2 · · ·
ˆ γβR

tN−1

dγ tN

N∏
i=1

tmi
i

1− ti
, (3.7)

with normalization constant

cN =

ˆ γβR

βL

dγ t1

ˆ γβR

t1

dγ t2 · · ·
ˆ γβR

tN−1

dγ tN

N∏
i=1

1

(1− ti)
2 . (3.8)

In the following section, we prove that (3.7) solves the stationarity condition (2.11).

4. Proof of the stationarity condition

To proceed, we introduce the shorthand notationˆ
Dγ t

N :=

ˆ γβR

βL

dγ t1

ˆ γβR

t1

dγ t2 . . .
ˆ γβR

tN−1

dγ tN, (4.1)

for the nested Jackson integral operator, cf (3.7), such that the steady state is written as

µ(m⃗) =
1
cN

ˆ
Dγ t

N
N∏
i=1

tmi
i

1− ti
. (4.2)

In the following, we provide the proof of stationarity (2.11).

4.1. Stationary measure as integral product state

In order to act with the Hamiltonian (2.7), we first introduce the space of states for each site
of the process. To do so, it is convenient to define the vector

X(t) =
∞∑
m=0

tm

1− t
|m⟩, (4.3)

such that the steady state can be written as

|µ⟩= 1
cN

ˆ
Dγ t

NX(t1)⊗ . . .⊗X(tN) . (4.4)

To proceed with the verification of (2.11) we move the Hamiltonian inside the integral and act
on the tensor product of X vectors (4.3).

We begin computing the action of the left boundary operator BL that solely acts on the
leftmost vector X(t1) in (4.4). From the action (2.9) and after shifting the sums, we find that

BLX(t1) = X̄(βL, t1) , (4.5)

where we defined

X̄(s, t) =
∞∑
m=0

tm

1− t

(
m∑
k=1

γk

[k]γ
−

m∑
k=1

1
[k]γ

( s
t

)k
+

∞∑
k=1

sk

[k]γ
−

∞∑
k=1

(γt)k

[k]γ

)
|m⟩. (4.6)

A similar procedure for the right boundary yields

BRX(tN) = Ȳ(tN,βR) , (4.7)

6
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with Ȳ defined via

Ȳ(s, t) =
∞∑
m=0

sm

1− s

(
m∑
k=1

1
[k]γ

−
m∑
k=1

1
[k]γ

(γt
s

)k
+

∞∑
k=1

(γt)k

[k]γ
−

∞∑
k=1

sk

[k]γ

)
|m⟩. (4.8)

We now turn to the bulk action of the Hamiltonian. The Hamiltonian density only acts on
two neighboring sites. Using

∞∑
mi,mi+1=0

tmi
i t

mi+1

i+1

mi∑
k=1

1
[k]γ

|mi− k⟩⊗ |mi+1 + k⟩

=
∞∑

mi,mi+1=0

tmi
i t

mi+1

i+1

mi+1∑
k=1

1
[k]γ

(
ti
ti+1

)k

|mi⟩⊗ |mi+1⟩,

and

∞∑
mi,mi+1=0

tmi
i t

mi+1

i+1

mi+1∑
k=1

γk

[k]γ
|mi+ k⟩⊗ |mi+1 − k⟩

=
∞∑

mi,mi+1=0

tmi
i t

mi+1

i+1

mi∑
k=1

γk

[k]γ

(
ti+1

ti

)k

|mi⟩⊗ |mi+1⟩,

we obtain

H (X(ti)⊗X(ti+1)) =
∞∑

mi,mi+1=0

tmi
i

1− ti

tmi+1

i+1

1− ti+1

×

(
mi∑
k=1

1
[k]γ

−
mi∑
k=1

γk

[k]γ

(
ti+1

ti

)k

+

mi+1∑
k=1

γk

[k]γ

−
mi+1∑
k=1

1
[k]γ

(
ti
ti+1

)k
)
|mi⟩⊗ |mi+1⟩

= X(ti)⊗ X̄(ti, ti+1)+ Ȳ(ti, ti+1)⊗X(ti+1) ,

(4.9)

with X̄ and Ȳ defined in (4.6) and (4.8).
Thus, in order to show that the action of the Hamiltonian on the steady state (4.2) vanishes,

it remains to verify that

N∑
i=1

ˆ
Dγ t

NX(t1)⊗ . . .⊗X(ti−1)⊗
[
X̄(ti−1, ti)+ Ȳ(ti, ti+1)

]
⊗X(ti+1)⊗ . . .⊗X(tN) = 0 (4.10)

where t0 = βL and tN+1 = βR.
This expression resembles the structure of the matrix product ansatz [20]. The term-by-term

cancellation happens after integration, which is shown in the following section.

4.2. Evaluation of the q-integrals

To proceed, it is convenient to introduce a polynomial vector space

λm1
1 · · ·λmN

N ≃ |m1⟩⊗ . . .⊗ |mN⟩, (4.11)

7
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with formal parameters λi ∈ C. Let us consider the projection by the covector

⟨λi|=
∞∑
m=0

λmi ⟨m|, (4.12)

at a given site i. Then, its action on X̄(ti−1, ti)+ Ȳ(ti, ti+1) can be written as

⟨λi|X̄(ti−1, ti)+ ⟨λi|Ȳ(ti, ti+1) =
∞∑
k=1

(
1−λki

)( tki−1 +(γti+1)
k

[k]γ
− tki +(γti)

k

[k]γ

)
1

1− ti

1
1−λi ti

= (1−λi)(Fλi (ti−1)+Fλi (γti+1)−Fλi (ti)−Fλi (γti)) fλi (ti) .

(4.13)

Here, we defined the function

fλ (t) =
1

(1− t)(1−λt)
, (4.14)

along with its q-antiderivative with respect to the argument t

Fλ (t) =
1

1−λ

∞∑
k=1

tk
(
1−λk

)
[k]γ

+C, (4.15)

cf (A.1) and (A.2), with the integration constant C.
It then follows that after multiplication (4.10) with ⟨λ1| ⊗ . . .⊗⟨λN| we get

N∑
j=1

(1−λj)

ˆ
Dγ t

N

[
N∏

ℓ=1

fλℓ
(tℓ)

][
Fλj (tj−1)+Fλj (γtj+1)−Fλj (tj)−Fλj (γtj)

]
= 0. (4.16)

For γ→ 1, we recover the rational case as considered in [13]. A less intuitive but equivalent
way to derive (4.16) is to introduce the λ parameters right from the beginning and collect
terms containing only λi corresponding to a given site i. In this way, one arrives at the same
result, but the analogy with the matrix product ansatz is lost. For completeness, we present it
in appendix C.

Let us now evaluate the Jackson integrals in (4.16). We first consider the Jackson integral
in tN over the last term in the sum of the integrand (4.16), i.e.

(1−λN)

ˆ γtN+1

tN−1

dγ tNfλN (tN) [FλN (tN−1)+FλN (γtN+1)−FλN (tN)−FλN (γtN)] . (4.17)

Using the q-analog of integration by parts, see (A.4), we observe that this Jackson integral
above vanishes

(FλN (tN−1)+FλN (γtN+1))(FλN (γtN+1)−FλN (tN−1))

−
(
F2
λN

(γtN+1)−F2
λN

(tN−1)
)
= 0.

(4.18)

We remark that for N= 1, the vanishing of the integral is equivalent to the proof given in
appendix B expressed through infinite sums.

We now focus on the Jackson integral over the kth term with k<N in the sum of the integ-
rand in (4.16). Similar to (4.1), we introduce the notationˆ

Dγ t
k−1 =

ˆ γtN+1

βL

dγ t1

ˆ γtN+1

t1

dγ t2 . . .
ˆ γtN+1

tk−2

dγ tk−1, (4.19)

for the nested Jackson q-integral operator and also the function

Lk+1 (tk+1) =

ˆ γtN+1

tk+1

dγ tk+2

ˆ γtN+1

tk+2

dγ tk+3 . . .

ˆ γtN+1

tN−1

dγ tN

N∏
j=k+2

fλj (tj) . (4.20)

8
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With these, the kth term in the sum of (4.16) can then be written as

(1−λk)

ˆ
Dγ t

k−1

k−1∏
j=1

fλj (tj)

ˆ γtN+1

tk−1

dγ tk

ˆ γtN+1

tk

dγ tk+1fλk (tk) fλk+1 (tk+1)

× [Fλk (tk−1)+Fλk (γtk+1)−Fλk (tk)−Fλk (γtk)]Lk+1 (tk+1) .

(4.21)

Let us focus on the integration over the tk and tk+1 variables. For ordinary integration when
γ→ 1, one can change the integration limits according to

ˆ tN+1

tk−1

dtk

ˆ tN+1

tk

dtk+1 g(tk, tk+1) =

ˆ tN+1

tk−1

dtk+1

ˆ tk+1

tk−1

dtk g(tk, tk+1) , (4.22)

for a generic function g. However, for the q-deformed Jackson integral, we have a correction
term, i.e.
ˆ γtN+1

tk−1

dγ tk

ˆ γtN+1

tk

dγ tk+1 g(tk, tk+1) =

ˆ γtN+1

tk−1

dγ tk+1

ˆ tk+1

tk−1

dγ tk g(tk, tk+1)

− (1− γ)

ˆ γtN+1

tk−1

dγ tk+1 g(tk+1, tk+1) tk+1.

(4.23)

This relation can be explicitly shown by writing the q-integrals as infinite sums like in the
definition of the Jackson integral (3.3) and (3.4). The extra term vanishes in the limit γ→ 1.

By performing the exchange of the integration limits in (4.21) and evaluating the tk integral
by using (A.2) and (A.4), we find that

ˆ γtN+1

tk−1

dγ tk

ˆ γtN+1

tk

dγ tk+1fλk(tk)fλk+1(tk+1) [Fλk(tk−1)+Fλk(γtk+1)

−Fλk(tk)−Fλk(γtk)]Lk+1(tk+1)

=

ˆ γtN+1

tk−1

dγ tk+1fλk+1(tk+1) [Fλk(tk−1)−Fλk(tk+1)]Lk+1(tk+1)

×{(Fλk(tk+1)−Fλk(γtk+1)− (1− γ)tk+1fλk(tk+1)} .

(4.24)

The expression between the curly brackets vanishes due to the definition of the q-derivative
(A.1); hence, so does all the j = 1, . . . ,N− 1 terms in the stationary equation (4.16). This ends
the proof that (3.7) is indeed the stationary solution of the MADM defined in (2.1).

5. Equilibrium stationary measure

In this section, we evaluate the stationary measure for the equilibrium case, i.e. β = βR = βL.
More precisely, we show that for this particular choice of boundary parameters, it becomes the
product measure of geometric distributions

µeq (m⃗) =
N∏
i=1

βmi (1−β) . (5.1)

For this purpose, we first examine the behavior of the non-normalized stationary measure
defined via

µ̃N (m⃗) = cNµN (m⃗) , (5.2)

9
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where we introduced theN subscript of the steady state to emphasize the lengthN of the system
on which the measure is defined. As direct consequence of the definition (3.2), we obtain

µ̃eq
1 (m1) = (γ− 1)

βm1+1

1−β
, (5.3)

for N= 1. For general N, we have the product structure

µ̃eq
N (m⃗) = (γ− 1)N

N∏
i=1

βmi+1

1−β
. (5.4)

This is proved by the method of induction below.
In order to prove (5.4), let us introduce the auxiliary function

ϕm (β) =
∞∑

k=m+1

βk

[k]γ
, (5.5)

to express the Jackson integral as
ˆ γβ

w
dγ t

tm

1− t
= ϕm (γβ)−ϕm (w) . (5.6)

With this notation, the definition of the steady state (3.7) implies the following recursion rela-
tion for N> 1:

µ̃N (m1, . . . ,mN) = µ̃N−1 (m1, . . . ,mN−1)ϕmN (γβR)

−
∞∑

k=mN+1

1
[k]γ

µ̃N−1 (m1, . . . ,mN−1 + k) .
(5.7)

Let us assume the form (5.4) is valid for µ̃eq
N−1(m1, . . . ,mN−1). Plugging it into (5.7) leads to

µ̃eq
N (m1, . . . ,mN) = (γ− 1)N−1

N−1∏
i=1

βmi+1

1−β

(
ϕmN (γβ)−

∞∑
k=mN+1

1
[k]γ

βk

)

= (γ− 1)N−1
N−1∏
i=1

βmi+1

1−β
(ϕmN (γβ)−ϕmN (β))

= (γ− 1)N−1
N−1∏
i=1

βmi+1

1−β

(
(γ− 1)

βmN+1

1−β

)
= (γ− 1)N

N∏
i=1

βmi+1

1−β
;

(5.8)

that is exactly of the form (5.4). Since we already showed the validity of the base case where
N= 1, the induction is complete and (5.4) is valid for general N.

The normalization of the stationary measure is then computed via

ceqN =
∞∑

m1,m2...,mN=0

µ̃eq
N (m1, . . . ,mN) = (γ− 1)N

βN

(1−β)
2N , (5.9)

and hence, we obtain

µeq
N (m⃗) =

1
ceqN

µ̃eq
N (m⃗) =

N∏
i=1

βmi (1−β) , (5.10)

cf (5.1).

10
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6. Conclusion

In this note, we gave an exact expression for the steady state of the boundary-driven MADM
and computed the product measure at equilibrium where β = βR = βL. The obtained results
rely to some extent on inspiration taken from the rational limiting case. The formula for the
steady state presented in (3.7) beautifully encodes the rational case where the Jackson q-
integral will turn into the ordinary integral.

Although leading to the desired result, the derivation presented here is somewhat dissat-
isfying. The reader may have noticed that we had to make two ansätze in order to derive the
stationary measure. The first concerns the stationary measure at length N= 1 in section 3, and
the second is the nested structure for arbitrary N in section 4. To gain further insights, it would
be interesting to reformulate our results in terms of a suitable, quasi-local representation of
the matrix product ansatz [20] that arises from the underlying Zamolodchikov algebra, see [7,
21]. The existence of such formulation is further motivated by the observation that in the proof
presented in section 4.2, only two neighboring integrals play a nontrivial role. We shall come
back to this point in a follow-up work.
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Appendix A. Basic q-calculus

The q-derivative of a function G(x) is defined via

DγG(x) = g(x) =
G(γx)−G(x)

γx− x
. (A.1)

The Jackson integral of g is expressed in terms of its q-antiderivative G via

G(b)−G(a) =
ˆ b

a
dγ tg(t) . (A.2)

The q-analog of the integration by parts can be found in [22]. For two functions G and H we
have ˆ b

a
H(t)(DγG(t))dγ t= H(b)G(b)−H(a)G(a)−

ˆ b

a
G(γt)(DγH(t))dγ t. (A.3)

For the special case where G=H, we getˆ b

a
(G(t)+G(γt))(DγG(t))dγ t= G(b)2 −G(a)2 . (A.4)

11
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Appendix B. Proof of the N= 1 sum formula of the stationary state

Our strategy to prove the stationary state formula for N= 1 is to plug in the ansatz (3.2)

µγ (m) = c
∞∑

k=m+1

(γβR)
k−βkL

[k]γ
, (B.1)

into the stationary equation (2.12)(
m∑
k=1

1+ γk

[k]γ
+

∞∑
k=1

(γβR)
k
+βkL

[k]γ

)
µ(m) =

∞∑
k=1

1+ γk

[k]γ
µ(m+ k)

+
m∑
k=1

(γβR)
k
+βkL

[k]γ
µ(m− k) ,

(B.2)

and show that coefficient of every βpLβ
q
R term vanish.

First, let us focus on the terms that have both βR and βL dependence. Moving all the terms
onto one side of the stationary equation, such terms are

∞∑
k=1

∞∑
l=m+1

(γβR)
k
βlL− (γβR)

l
βkL

[k]γ [l]γ
−

m∑
l=1

∞∑
k=m−l+1

(γβR)
l
βkL− (γβR)

k
βlL

[k]γ [l]γ
. (B.3)

With elementary manipulation, we can show
∞∑
k=1

∞∑
l=1

(γβR)
k
βlL− (γβR)

l
βkL

[k]γ [l]γ
−

∞∑
k=1

m∑
l=1

(γβR)
k
βlL− (γβR)

l
βkL

[k]γ [l]γ

−
m∑
l=1

∞∑
k=m−l+1

(γβR)
l
βkL− (γβR)

k
βlL

[k]γ [l]γ

=
∞∑
k=1

∞∑
l=1

(γβR)
k
βlL− (γβR)

l
βkL

[k]γ [l]γ
−

m∑
l=1

m−l∑
k=1

(γβR)
k
βlL− (γβR)

l
βkL

[k]γ [l]γ
,

(B.4)

where both the double sums vanish due to symmetry reasons.
With themixed terms vanishing, the rest of the stationary equation breaks into two equations

containing only γβR or only βL dependence. They are both proportional to
∞∑

l=m+1

βl

[l]γ

m∑
k=1

1+ γk

[k]γ
+

∞∑
k=1

∞∑
l=m+1

βk+l

[k]γ [l]γ

−
∞∑
k=1

1+ γk

[k]γ

∞∑
l=m+k+1

βl

[l]γ
−

m∑
k=1

∞∑
l=m−k+1

βk+l

[k]γ [l]γ
,

(B.5)

where β = (γβR) or β = βL. Reshuffling the summation indices leads to the form

∞∑
l=m+1

βl

[l]γ

m∑
k=1

1+ γk

[k]γ
+

∞∑
l=m+2

l−m−1∑
k=1

βl

[k]γ [l− k]γ

−
∞∑

l=m+2

l−m−1∑
k=1

1+ γk

[k]γ

βl

[l]γ
−

∞∑
l=m+1

m∑
k=1

βl

[k]γ [l− k]γ
.

(B.6)

To continue, we need to distinguish different cases according to the power of βp.

12
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In case p= m+ 1, the coefficient is

1
[m+ 1]γ

m∑
k=1

(
1+ γk

[k]γ
−

[m+ 1]γ
[k]γ [m+ 1− k]γ

)
=

1
[m+ 1]γ

m∑
k=1

(
1

[k]γ
− 1

[m+ 1− k]γ

)
, (B.7)

where we used the definition of the q-number (2.6). The sum vanishes due to symmetry
reasons.

In case m+ 2⩽ p⩽ 2m, the coefficient of βp is

1
[p]γ

m∑
k=p−m

(
1+ γk

[k]γ
−

[p]γ
[k]γ [p− k]γ

)
=

1
[p]γ

m∑
k=p−m

(
1

[k]γ
− 1

[p− k]γ

)
, (B.8)

that also vanishes due to symmetry reasons.
For p= 2m+ 1, the different terms in the coefficients cancel out each other automatically.
For 2m+ 2⩽ p, we have

1
[p]γ

p−m∑
k=m

(
1+ γk

[k]γ
−

[p]γ
[k]γ [p− k]γ

)
=

1
[p]γ

p−m∑
k=m

(
1

[k]γ
− 1

[p− k]γ

)
, (B.9)

that is zero, similar to the previous terms.
Since we showed that every coefficient of βpLβ

q
R vanishes, we proved that our ansatz is the

stationary state for length N= 1.

Appendix C. Generating function method

Let us consider the projection
∞∑

m1,...,mN=0

λm1
1 · · ·λmN

N ⟨m⃗|H|µ⟩= 0, (C.1)

cf (4.12), and recall the definition of f λ in (4.14). The following relations hold for arbitrary
coefficients ak:

∞∑
m1,...,mN=0

λm1
1 · · ·λmN

N µγ (m) =
ˆ

Dγ t
N

N∏
j=1

fλj (tj) ,

∞∑
m1,...,mN=0

λm1
1 · · ·λmN

N

mℓ∑
k=1

akµγ (m) =
ˆ

Dγ t
N

∞∑
k=1

akλ
k
ℓ t
k
ℓ

N∏
j=1

fλj (tj) ,

∞∑
m1,...,mN=0

λm1
1 · · ·λmN

N

mℓ∑
k=1

akµγ (m− kδℓ) =
ˆ

Dγ t
N

∞∑
k=1

akλ
k
ℓ

N∏
j=1

fλj (tj) ,

∞∑
m1,...,mN=0

λm1
1 · · ·λmN

N

∞∑
k=1

akµγ (m+ kδℓ) =
ˆ

Dγ t
N

∞∑
k=1

ak t
k
ℓ

N∏
j=1

fλj (tj) ,

∞∑
m1,...,mN=0

λm1
1 · · ·λmN

N

mℓ∑
k=1

akµγ (m− kδℓ + kδℓ+1) =

ˆ
Dγ t

N
∞∑
k=1

akλ
k
ℓ t
k
ℓ+1

N∏
j=1

fλj (tj) ,

∞∑
m1,...,mN=0

λm1
1 · · ·λmN

N

mℓ+1∑
k=1

akµγ (m+ kδℓ − kδℓ+1) =

ˆ
Dγ t

N
∞∑
k=1

akλ
k
ℓ+1 t

k
ℓ

N∏
j=1

fλj (tj) ,

(C.2)
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for 1⩽ ℓ⩽ N. These relations allow us to rewrite (C.1) as
ˆ

Dγ t
N

[
N∏

ℓ=1

fλℓ
(tℓ)

] ∞∑
k=1

1
[k]γ

[
βkL
(
1−λk1

)
+(γβR)

k (1−λkN
)

−
(
1−λkN

)
tkN− γk

(
1−λk1

)
tk1

+
N−1∑
j=1

(
λkj −λkj+1

)
tkj +

N∑
j=2

γk
(
λkj −λkj−1

)
tkj
]
= 0.

(C.3)

Further inserting a zero, i.e. 0= 1− 1, into the brackets of the second line above and collecting
the terms (1−λki ), we get

ˆ
Dγ t

N

[
N∏

ℓ=1

fλℓ
(tℓ)

] ∞∑
k=1

1
[k]γ

[(
1−λk1

)(
βkL− tk1 − γktk1 + γktk2

)
+

N−1∑
j=2

(
1−λkj

)(
tkj−1 − tkj − γktkj + γktkj+1

)
+
(
1−λkN

)(
(γβR)

k− tkN− γktkN+ tkN−1

)]
= 0.

(C.4)

The integrand can then be expressed in terms of the q-antiderivative (4.15) such that we find
exactly (4.16). We remark that for γ→ 1, i.e. the rational case, this path reduces to the calcu-
lation presented in [13].
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