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Abstract

In heterogeneous CPU+GPU SoCs where a sin-
gle DRAM is shared between both devices, concur-
rent memory accesses from both devices can lead to
slowdowns due to memory interference. This pre-
vents the deployment of real-time tasks, which need
to be guaranteed to complete before a set deadline.
However, freedom from interference can be guaran-
teed through software memory scheduling, but may
come at a significant cost due to frequent CPU-
GPU synchronizations. In this paper we provide
a compile-time model to help developers make in-
formed decisions on how to achieve freedom from
interference at the lowest cost.

1 Introduction

In heterogeneous systems, the CPU and one or
more accelerators are typically sharing a single
DRAM. As memory accesses constitute a critical
point for every process, heavy contention for the
shared DRAM is bound to introduce significant de-
lays in every process of the system. This makes
the deployment of real-time workloads on such sys-
tems troublesome, as they must be dimensioned
such that every task can finish before its deadline,
even under the worst case interference. Budgeting
for the worst case interference in a heterogeneous
system is bound to introduce very pessimistic de-
lays.

To enable freedom from interference in heteroge-
nous systems, it must be guaranteed that the CPU
and the GPU will not access the shared DRAM in
parallel. However, as there is no possibility to in-
terrupt the GPU during execution, the launching
of a GPU kernel would by default block the CPU
from accessing memory for a potentially prohibitive
amount of time. Therefore, mechanisms to control

the GPU memory accesses at a finer granularity are
required.

A known software-based method for fine-grained
memory scheduling in multi-core systems is the
Predictable Execution Model (PREM) [1, 2J.
PREM-style memory scheduling is enabled by sep-
arating tasks into fine-grained Memory and Com-
pute phases. The memory phase is programmed to
prefetch into local memory all data required by the
Compute phase, guaranteeing that the latter will
never experience a cache miss, and will therefore
never access the shared DRAM. By further only al-
lowing a single memory phase to execute at a time
within the system, freedom from interference is ef-
fectively achieved.

Recently, PREM has been proposed for use in
heterogeneous SoCs with integrated GPUs [3]. To
enable PREM memory scheduling in heterogeneous
systems, a CPU-GPU synchronization infrastruc-
ture is required, to be able to co-schedule the mem-
ory accesses of both devices. However, a possible
drawback of the approach is the potentially high
cost of the fine granularity of memory scheduling.
On the GPU the available local storage is small.
If the execution time of useful work that can be
done on the local data is dominated by the cost of
memory scheduling, a PREM-enabled kernel will
experience large slowdowns.

On the other hand, executing the full kernel
to completion has no fine-grained synchronizations
and does not experience these slowdowns, but may
block the CPU for a prohibitive amount of time.
Thus, there exists a tradeoff between the costs
of fine- vs. coarse-grained memory scheduling to
achieve freedom from interference.

The creation of PREM-compliant code is a te-
dious and error-prone process, and is better left to
a compiler [1, 2, 4]. Such a compiler was recently
presented for GPU-equipped heterogeneous SoCs



[5], performing the separation into PREM Mem-
ory and Compute phases. As the compiler is able
to analyze the characteristics of the GPU kernel, it
could be used to predict the cost to achieve freedom
from interference, and provide the developer with
important information to make the correct tradeoff
decision.

In this paper we present a model to determine the
cost of freedom from interference based on kernel
information extracted during compilation. We val-
idate the results against measured execution times
on the NVIDIA Tegra TX1 [6] heterogeneous SoC,
which features a 4-core ARM A57 CPU and a 2-
cluster 128-core Maxwell GPU.

The rest of the paper is structured as follows:
Section 2 introduces the underlying compiler, fol-
lowed by the model in Section 3. Section 4 discusses
a possible use case of the presented model, and Sec-
tion 5 concludes.

2 Enforcing PREM through
compilation and Runtime
support

The considered PREM compiler [5] operates
on high-level programming languages, such as
OpenMP, in which GPU kernels are described
through the annotation of parallel loops. As par-
allel loops can be statically analyzed during com-
pilation, it is possible to determine the memory
accesses of the GPU kernel, and transform the
loop to operate on tiles that only access so much
data as fits in the local storage. This tiling forms
the basis for the PREM memory and compute
phases. All prefetches of the memory phase are
directed to the software managed scratchpad mem-
ory (CUDA shared memory), as this does not suf-
fer from the eviction effects that are common in
hardware-managed caches.

To PREM-ize the code, each tile is cloned into
three copies, which are then transformed to per-
form one of three functions: (i) Load — to prefetch
all the data required for the execution of the tile
from global DRAM to the local scratchpad mem-
ory; (ii) Execute — where all memory accesses of
the original code are changed to use the data loaded
to the scratchpad memory; (iii) Store — to write
back all data to the global DRAM upon execution

completion.

We refer to this compilation scheme as PREM
LES. The Execute implements the PREM Com-
pute phase, while the Load and Store codes
together implement the PREM memory phase.

To ensure that the Memory phase of the GPU
kernel is not executed while the CPU is accessing
memory, the memory accesses of both CPU and
GPU must be coordinated. This is achieved by
using a CPU-GPU synchronization infrastructure,
that allows a memory access token to be passed
between the CPU and the GPU [3]. The device
that is currently holding the token is allowed to
execute memory phases, and thus access the global
DRAM. The token is passed between the device in
accordance with a time-triggered schedule. As the
synchronization comes with a cost, kernels that are
not able to perform a sufficient amount of work on
the data that is loaded to the scratchpad will be
dominated by synchronization and see a significant
performance degradation.

3 Compile-time prediction of
Runtime performance

This section describes the modeling of the run-
time performance of the compiled kernels, and ver-
ifies the results against measured values. The
evaluation is performed on benchmarks from the
PolyBench-ACC benchmark suite [7] on both avail-
able GPU clusters.

3.1 Compiler analysis and hardware
parameters

3.1.1 Understanding the hardware

Hardware-specific operation latencies considered in
our approach consist of (a) arithmetic operations
larithmetic; (b) scratchpad accesses lspar, and (c)
DRAM accesses Iprans. For arithmetic operation
and scratchpad access latencies we refer to data re-
ported by the hardware vendor [8]. To determine
the DRAM latency, a synthetic benchmark was exe-
cuted under several configurations, and the average
latencies extracted.

To determine the DRAM latency, two high-level
classes were found to influence the latency: a) the
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Figure 1: The difference in time it takes to load
fully sequential and non-sequential data into the
scratchpad (49152 bytes).

number of threads that are used, as this influences
the bandwidth usage, and b) the memory access
pattern.

For the memory access pattern two configura-
tions are used, one in which all memory accesses
are coalesced, i.e., threads executing concurrently
will touch data on consecutive addresses, and one
in which the accesses are sparse, i.e., every thread
will need to fetch a unique cache line to satisfy its
memory request. Based on these results, we fur-
ther divide Ipgraps into the latency for coalesced
memory accesses (594, and the latency of sparse
memory accesses )y 4ns- both of which depend on
the blockDim, i.e., the number of threads used for
the kernel. The result for this experiment is pre-
sented in Figure 1.

3.1.2 Compile-time identification of in-
structions by latency

From the compiled code, the corresponding opera-
tions at each latency can be extracted. Due to the
loop-based offloading in high-level languages, the
compiler is able to distinguish coalesced from sparse
accesses to arrays through scalar evolution analy-
sis, as each value of the induction variable (IV) of
the offloaded loop maps to a specific thread®. By
analyzing the evolution of the IV it is thus pos-
sible to determine which thread will perform each
access, and by extension, if the access is part of a
coalesced pattern. By iterating over the instruc-
tions, the compiler can therefore count the num-
ber of arithmetic operations C, and the number
of coalesced Mcoq; and sparse Mgpqrse Memory ac-
cesses. These operations map to the identified la-
tencies of lorithmetics 15584 and [5g ot In LES,
these accesses will also be performed in the scratch-

I Assuming static scheduling.

pad memory, at the corresponding lspys latency.
Furthermore, due to the use of local storage, LES
will only have to load the data to the scratchpad
once, even if it is used multiple times during the
computation. Thus, the compiler also keeps track
of the unique memory accesses Ucoqr and Usparse-
While the M values can be found by iterating over
the instructions, to determine the unique memory
accesses U, the scalar evolution and alias analysis
frameworks of LLVM are employed.

3.2 Estimating the Performance of
PREM Load Execute Store

When estimating the performance of the LES
transformations, both the cost of executing the
PREM phases Tppqses, and the time required for
the synchronization T'sy,. must be taken into ac-
count. As the LES code consists of two parts,
Tphases is further split up into the individual exe-
cution times for the Compute and Memory phases
such that TPhases = TMemory + TC’ompute-

3.2.1 Execution time of PREM Phases

For the LES transformation, the memory phase ex-
ecution time is dependent on both the data move-
ments from DRAM, as well as the cost for accessing
the scratchpad memory through which the data is
staged. Because of this, the latency of both mem-
ories is taken into account in this phase. As data
is only loaded once only the unique accesses U are
considered. The execution time of the computation
is only considered in the Compute phase, and as
its accesses are performed on the scratchpad mem-
ory, only these latencies need to be considered. We
model the execution time of each phase as shown
in Equation 1.

coal coal
Thiemory = Ucoal X Ipran + Ucoat X Ipart
sparse sparse
Usparse X lDRAM + Usparse X ZSPM
coal
Tcompute = C X larithmetic + Meoar X USP o+

sparse
Miparse X lgpps

(1)

3.2.2 Synchronization cost

The cost of performing the synchronization S with
the host at the end of each PREM interval is a
system-dependent parameter, in this case equal to
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Figure 2: Validation of the modeled LES execution
times against measurements on real hardware.

5.6p4s. As both the Load and Store phases are ex-
ecuted in a PREM Memory phase, only two CPU-
GPU synchronizations are required per interval,
and thercfore Tsyn. = 2 x S. Because the syn-
chronization are triggered by CPU timers, there is
also a minimum granularity Gy, = 10us at which
the timers can be triggered, and thus each phase is
forced to execute for at least this time (idling if the
phase is shorter). The full LES interval execution
time is as shown in Equation 2.

Tres = max(TMemorya Gsync)+
max (TCOmputea Gsync)+
2x S

(2)

As the model calculates the execution time of a
tile in LES the execution time of each tile needs
to be added up to produce the full kernel execu-
tion time. This value is already determined by the
compiler to be able to produce the tiling loops.

The modeled execution time is validated against
measured values, and the results are presented in
Figure 2. It can be seen that the predicted values
follow quite accurately the measured ones (the error
is on average below 10%).

3.3 Estimating Performance of the
Original Kernel

To be able to estimate the cost of the LES transfor-
mation, the original kernel must be used as a base-
line, and therefore its execution time must also be
estimated.

To this aim, we rely on the model captured by
Equation 3.

TUnmodified = Rx
(Mcoal X lI?RAM"'
sparse
Msparse X ZDRAM)+

C x la'rithmetic

3)

In contrast to the LES kernel, in which the mem-
ory phase accesses were organized into well-behaved
pattern, and duplicate accesses are deferred to the
scratchpad, the original kernel will perform every
access through the cache hierarchy to global mem-
ory. This requires the model for the baseline to
make predictions about the cache behavior of ker-
nels. To capture this, a new parameter R is intro-
duced, which provides a scaling factor for the ex-
perienced DRAM latency based on the cache per-
formance. We empirically found that to capture
this effect the benchmarks can be grouped in three
classes, based on their access patterns.

e Cache-friendly: For kernels which perform
most of their accesses in a coalesced pat-
tern, the unmodified kernel may benefit from a
higher degree of temporal data reuse compared
to the average latency experiments (see Figure
1). These patterns can be easily detected in
the compiler by looking at the indexing func-
tions for the outermost loop nests (e.g., when
thread IDs are used for indexing at this level
the resulting pattern generates coalesced ac-
cesses).

e Neutral: For these kernels, no adjustments
is necessary, as they conform to the average
latencies from the original experiment.

e Cache-unfriendly: The average DRAM la-
tencies [prapy only consider accesses from a
single data structure, and thus fail to take into
account the self-eviction that occurs between
multiple data structures when accessed repeat-
edly (i.e., not only once as in LES). This pat-
tern is identified in the compiler by determin-
ing the number of distinct data structures that
are accessed sparsely, and already at three or
more, the self eviction effect becomes signifi-
cant.

Figure 3 shows the grouping of the vari-
ous benchmarks in these three classes, and the
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Figure 3: The memory adjustment factor R applied
to each benchmark.
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Figure 4: Comparison of the full execution time of
the baseline program with the times estimated by
the model.

empirical value for the R parameter for each
class (Rcache—fm'endly = 066,
1.0; Rcache—unfriendly = 167)

As with LES, the model calculates the execution
time of a tile-equivalent amount of work, and the
execution time is added up to produce the full ker-
nel execution time.

The modeled execution time is validated against
measured values, and the results are presented in
Figure 4. Also in this case, the predicted values fol-
low quite faithfully the measured ones, the average
error being below 10%.

Rneutral =

4 Discussion

From the modeled results, we can see that the cost
for LES varies heavily within the PolyBench-ACC
suite, as illustrated by the LES-only column in Ta-
ble 1. The column shows the slowdown factor of
the LES kernel compared to the original (1.0 means
the same execution time, less than 1.0 is an im-
provement). However, the kernels that show bad
behavior under LES are also relatively short-lived,
and with this knowledge it is possible to reserve the

memory for the GPU during the full kernel execu-
tion. In this case, no LES transformation is applied,
and the execution time is unchanged (1.0). In the
two right-most columns of the table, we apply two
different upper bounds on how long we are willing
to reserve the memory for the GPU, and if the orig-
inal kernel is shorter and LES shows a slowdown,
we choose to go with the original kernel. We refer
to this value as the Tinaz.G PU_reserve- In doing this,
the average slowdown for the entire set of bench-
marks is reduced from 44% for LES-only to 21% if
10ms of CPU blocking is allowed, and 0.5% if 20m.s
is allowed.

In the two left-most columns, the benchmarks
that can be executed on the T}, GPU reserve are
marked by 1.0 (original execution time), and ker-
nels that would block the CPU for longer than that
are left blank. Only 7 kernels can be supported at
10ms, and is increased to 12 at 20ms. For all other
kernels finer-grained memory scheduling, i.e., LES,
is required.

Thus, these two approaches complement each
other, and the information required for an informed
tradeoff can be generated at compile-time. At both
memory protection granularities, freedom from in-
terference can be guaranteed through the synchro-
nization infrastructure, enabling low-cost freedom
from interference on heterogeneous CPU+GPU

SoCs.

5 Conclusion

We have presented a compile-time model to esti-
mate the cost of fine- and coarse-grained mem-
ory control in heterogeneous CPU 4+ GPU systems.
Through this information, a system developer can
make informed decision on how to achieve freedom
from interference with the lowest cost.
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