
19/04/2024 20:35

Bapat, Asilata, Robyn, Brooks, Celia, Hacker, Claudia, Landi e Barbara I., Mahler. "Morse-based
Fibering of the Persistence Rank Invariant" Working paper, ASSOCIATION FOR WOMEN IN MATHEMATICS
SERIES, 2020.

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

ar
X

iv
:2

01
1.

14
96

7v
2

 [
m

at
h.

A
T

]
 1

3
A

pr
 2

02
1 Morse-based Fibering of the Persistence Rank

Invariant

Asilata Bapat∗

asilata.bapat@anu.edu.au

Robyn Brooks †

robyn.brooks@bc.edu

Celia Hacker‡

celia.hacker@epfl.ch

Claudia Landi§

claudia.landi@unimore.it

Barbara I. Mahler ¶

mahler@maths.ox.ac.uk

April 15, 2021

Abstract

Although there is no doubt that multi-parameter persistent homology

is a useful tool to analyse multi-variate data, efficient ways to compute

these modules are still lacking in the available topological data analy-

sis toolboxes. Other issues such as interpretation and visualization of the

output remain difficult to solve. Software visualizing multi-parameter per-

sistence diagrams is currently only available for 2-dimensional persistence

modules. One of the simplest invariants for a multi-parameter persistence

module is its rank invariant, defined as the function that counts the num-

ber of linearly independent homology classes that live in the filtration

through a given pair of values of the multi-parameter. We propose a step

towards interpretation and visualization of the rank invariant for persis-

tence modules for any given number of parameters. We show how discrete

Morse theory may be used to compute the rank invariant, proving that

it is completely determined by its values at points whose coordinates are

critical with respect to a discrete Morse gradient vector field. These crit-

ical points partition the set of all lines of positive slope in the parameter

space into equivalence classes, such that the rank invariant along lines in

the same class are also equivalent. We show that we can deduce all per-

sistence diagrams of the restrictions to the lines in a given class from the

persistence diagram of the restriction to a representative in that class1.

∗Australian National University, Canberra, Australia
†Boston College, Massachusetts, United States
‡EPFL, Lausanne, Switzerland
§Università di Modena e Reggio Emilia, DISMI, Italy
¶University of Oxford, United Kingdom
1MSC: 55N31, 57Q70, Keywords: persistence module, persistence diagram, discrete gra-

dient vector field, critical value

1

http://arxiv.org/abs/2011.14967v2

Introduction

Digital data are being produced at a constantly increasing pace, and their avail-
ability is changing the approach to science and technology. The fundamental
hypothesis of Topological Data Analysis is that data come as samples taken from
an underlying shape, and unveiling such shape is important for understanding
the studied phenomenon. Topological shape analysis amounts to determining
non-trivial topological holes in any dimension. Computational Topology pro-
vides tools to derive specific signatures – topological invariants – which depend
only on topological features of the shape of data and are robust to local noise
[15]. Among them, persistent homology [19, 6, 26, 17, 29] stands out as most
useful, having already found numerous applications in a diverse range of fields
[7, 8, 20, 23, 28].

The first step in the persistence pipeline is to build a family, called a fil-
tration, of nested simplicial complexes that model the data at various scales
by varying one or more parameters. The second step focuses on the maps in-
duced in homology by the simplicial inclusions to extract invariants such as the
persistence module. The third step is to use persistence invariants as a source
of feature vectors in machine learning contexts, the final goal being to use the
acquired topological information to improve the understanding of the underly-
ing data. An important feature of this pipeline is its robustness to noise in the
input data [15].

Some systems warrant analysis across multiple parameters, so it is important
to focus on multi-parameter persistence [11] where the filtration may depend on
any number of real-valued parameters, and n-tuples of parameter values have
an inherited partial order. Unlike single-parameter persistent homology, which
is completely described by a persistence diagram, multi-parameter persistence
modules contain more information than it is possible to handle, understand,
and visualize easily. Therefore, it is convenient to summarize them by simpler
invariants.

Among the various invariants considered for a multi-parameter persistence
module, such as the blockcodes of [16] and the multi-graded Betti numbers of
[25], one of the simplest invariants is the rank invariant [11], defined as the
function that counts the number of linearly independent homology classes that
live in the filtration through any given pair of values of the multi-parameter.
Theoretically, computation of the rank invariant can be carried out by fibering it
along lines with positive slope in an n-dimensional space, where n is the number
of parameters [12]. Indeed, the rank invariant of the restriction of a persistence
module to an increasing line is completely described by a persistence diagram.
The union of all such persistence diagrams forms a compact object called the
persistence space [14]. Practically though, one needs to restrict the number of
relevant lines to a reasonable number. For example, the state-of-the-art tool for
rank invariant visualization RIVET [24] achieves reduction to some template
lines using Betti tables, takes O(m3) runtime (with m the number of simplices),
and is limited to two parameters.

Given the dimensional, computational, and interpretability limits of the cur-

2

rently available methods, multi-parameter persistence is not yet a viable option
for data analysis. It is thus worth exploring different approaches that could
enable faster computation and better understanding of the rank invariant in
a dimension-agnostic way. To this end, we propose to exploit the information
contained in the critical cells of a discrete gradient vector field consistent with
the given multi-filtration as a means to enhancing geometrical understanding
and computational efficiency of multi-parameter persistence.

Evidence for the usefulness of Morse theory in multi-parameter persistence
is given in [4, 5, 27]. In these papers, discrete Morse theory is used to reduce
the multi-parameter persistence input data size by substituting the original
simplicial complex with a Morse complex containing only critical cells but having
the same persistence as the initial complex. This approach takes advantage of
the fact that number of critical cells is very small in comparison with m, the
total number of simplices. Computations are sped up by reducing the actual
value of m, while the runtime complexity of obtaining a discrete gradient vector
field compatible with the filtration is m · s2, where s denotes the maximum
number of simplices in a vertex star. Although in the worst case s may be as
large as m, in many applications it is negligible in comparison to m, so that
the complexity may be considered linear in m. Moreover, as shown by tests
in [27], this global reduction also avoids repeating the retrieval of the same
null persistence pairs when fibering the rank invariant along different lines,
improving time performances proportionally to the number of lines: the larger
the number of lines, the more convenient the reduction to the Morse complex.

Supported by such empirical evidence, in this paper we investigate the theo-
retical connection between critical cells of discrete Morse theory and rank invari-
ant computation along lines, with the goal of improving the available methods
for fibering the rank invariant of multi-parameter persistence in a way that is
computationally efficient, geometrically interpretable, and readily visualizable.
To this end, we exploit the correspondence between critical cells of a discrete
gradient vector field and topological changes in filtrations compatible with it to:

1. Show that the rank invariant for n-parameter persistence modules can be
computed by selecting a small number of values in the parameter space R

n

determined by the critical cells of the discrete gradient vector field, and
using these values to reconstruct the rank invariant for all other possible
values in the parameter space (Theorem 2.4).

2. Use such critical values to define an equivalence relation among lines so
that representatives from each equivalence class form a convenient selec-
tion of lines for fibering the rank invariant (Definition 3.8).

3. Show that fibering the rank invariant along lines in the same equivalence
class yields persistence diagrams that can be obtained one from the other
by simple bijections between critical values (Theorem 3.17).

4. Present a method based on the previous results for computing any fiber
of the rank invariant using only finitely many template fibers (Section 4).

We emphasize that all of our results hold for any number of parameters, thus
improving the state-of-the-art methods that allow for only two. Moreover, our

3

method’s input requires only the critical cells of a discrete gradient vector field,
so that the required pre-processing can be achieved in just linear time accord-
ing to various available algorithms [4, 5, 27]. Finally, the connection to Morse
theory allows for a more immediate geometric interpretation and visualization
of the topological features detected by persistence as pairs of critical cells in the
given simplicial complex.

The outline of this paper is as follows: in Section 1, we outline background
information which will be necessary for the reader to understand the rest of the
text. Section 2 focuses on computing the rank invariant, supported by lemmas
and diagram-chasing. Section 3 explains the computation of the persistence
space along with delving into fibering the rank invariant along equivalent lines.
We conclude with Section 4 by laying out a method for fibering the rank in-
variant of persistence by lines, and suggesting possible applications. Finally, in
Appendix A we discuss a result that allows us to develop an algorithm which
chooses a representative line for each equivalence class in the case of 2-parameter
persistence modules. The generalization of this algorithm to higher dimensional
persistence modules remains future work.

1 Notation and Definitions

These definitions are partially based on the definitions in [24, 21] and [18].
Let K be a field. For computational purposes, K is often taken to be finite.

Define the following partial order on R
n: for u = (ui), v = (vi) ∈ R

n, we say
that u � v (resp. u ≺ v) if and only if ui ≤ vi (resp. ui < vi) for all i. The
poset (Rn,�) will be our parameter space.

Definition 1.1 (Persistence module). A persistence module V over the param-
eter space R

n is an assignment of a K–vector space Vu to each u ∈ R
n, and

transition maps iu,v : Vu → Vv to pairs of points u � v ∈ R
n, satisfying the

following properties:

• iu,u is the identity map for all u ∈ R
n.

• iv,w ◦ iu,v = iu,w for all u � v � w ∈ R
n.

A persistence module over R
n is also known as an n-parameter persistence

module or an nD persistence module.

Definition 1.2 (Rank invariant). For n ≥ 1, let Hn ⊂ R
n × R

n be the subset
of pairs (u, v) such that u � v. Let V be an nD persistence module. Then the
rank invariant of V is a function ρV : Hn → Z, defined as

ρV(u, v) = rank(iu,v).

Persistence modules most often arise from filtered simplicial complexes.

Definition 1.3 (Finite simplicial complex). A finite simplical complex K is a
collection of subsets of a finite set V0, such that:

4

• all singletons of V0 are in K, and

• If β ∈ K and α ⊂ β, then α ∈ K.

The elements of V0 are called vertices, and the elements of K are called simplices.
If α ∈ K contains p + 1 vertices, then we say α has dimension p, sometimes
denoted α(p). If β ∈ K and α ⊂ β, then we say α is a face of β and β is a coface
of α, and denote this by α < β. If α is a codimension one face of β, we say that
α is a facet of β and β is a cofacet of α. If α is a face of a dimension p simplex
β, and is not a face of any other p dimensional simplex, then we say that α is
a free face of β.

Definition 1.4 (Filtration). Let K be a finite simplicial complex. An n-
parameter filtration of K is a collection of subcomplexes K = {Ku}u∈Rn of
K, such that Ku ⊂ Kv whenever u � v, and moreover that

K =
⋃

u∈Rn

Ku.

A complex with such a filtration is called a multi-filtered simplicial complex or
an n-filtered simplicial complex.

Remark. Since K is finite, there is some u ∈ R
n such that K = Ku.

Definition 1.5. We say that a simplex σ in K has entrance value u ∈ R
n if

σ ∈ Ku −
⋃

w�u,u6=w

Kw

This value tells us where σ has entered the filtration. Note that if the
entrance value of σ is u, then σ ∈ Kv for all u � v, and σ /∈ Kw for all w � u
such that u 6= w. Therefore, if u is an entrance value of σ, then u is a (possibly
non-unique) minimal value of the set {v ∈ R

n | σ ∈ Kv}.
According to the definition of filtration, if a simplex σ enters the filtration at

u, all of its faces have to be in Ku as well. The faces can enter jointly with σ or
at earlier values of the filtration. However, entrance values are not guaranteed
to exist. To avoid pathological situations in which a simplex does not have any
entrance values, such as in the 1-parameter filtration of K defined by Ku = ∅
for each u ≤ 0 and Ku = K for each u > 0, we will only consider filtrations as
follows.

Definition 1.6. (Tameness) A filtration of a simplicial complex K is said to
be tame if each simplex of K has at least one entrance value.

Remark. For a tame filtration, it is guaranteed that there exists some u ∈ R
n

such that Ku = ∅.

Example 1.7. Consider a function f : K → R
n that is monotonic with respect

to the face relation. That is, α < β ∈ K implies that f(α) � f(β). Every such
function gives rise to a tame filtration, by defining the filtered pieces of K to be
sublevel sets as follows:

Kv = f−1({u ∈ R
n : u � v}).

5

On the other hand, not all filtrations of K as in Definition 1.4 define a func-
tion f : K → R

n, even under the tameness assumptions, because the entrance
value of a simplex may not be unique. This motivates the following definition
that can be found in [10].

Definition 1.8 (One-criticality). An n-parameter filtration is said to be one-
critical if every simplex of K has a unique entrance value in the filtration.

Proposition 1.9. Each tame one-critical filtration of a simplicial complex K
is the sublevel set filtration of a monotonic function f : K → R

n. Conversely,
if f : K → R

n is monotonic, then its sublevel sets form a tame and one-critical
filtration of K.

Proof. Let K be a simplicial complex and K a tame and one-critical filtration of
K. We construct a monotonic function fK : K → R whose sublevel set filtration
is precisely K. For each simplex σ ∈ K, set fK(σ) to be the unique entrance
value of σ in K with respect to K, which exists and is unique because the
filtration is tame and one-critical. Let α, β ∈ K such that α < β. Recall that
if β ∈ Ku for some u ∈ R

n, then α ∈ Ku as well. In particular, α ∈ KfK(β).
Since fK(α) is the unique minimum value u such that α ∈ Ku, it must be the
case that fK(α) � fK(β), and therefore fK is monotonic.

Conversely, let f : K → R
n be a monotonic function. As before, set K to be

the set of all sublevel sets

Kv = f−1({u ∈ R
n : u � v}).

Let σ be any simplex of K. It is clear that σ ∈ Kf(σ). We prove that f(σ)
is the unique entrance value of σ. Note that it is indeed an entrance value: if
u � f(σ) and u 6= f(σ), then f(σ) /∈ Ku. Suppose that v is any entrance value
of σ, which means that σ ∈ Kv and σ /∈ Ku for any u 6= v such that u � v.
Since σ ∈ Kv, we must have f(σ) � v. Since σ /∈ Ku for any u 6= v such that
u � v, it must be the case that f(σ) 6= u for any such u. Therefore v = f(σ).
Since every simplex σ ∈ K has the unique entrance value f(σ), we obtain a
tame and one-critical filtration of K from the sublevel sets of f .

To avoid pathologies, we always assume the filtrations considered in this
paper are tame and one-critical.

Now think of the poset R
n
� = (Rn,�) as a category where the objects are

elements of R
n, and the morphisms are given by the order relation. Let SC

be the category of finite simplicial complexes with inclusions as the morphisms.
A filtered simplicial complex can be thought of as a functor K : Rn

� −→ SC.
Further, for each i ∈ Z, we can take the i-th homology of a simplicial complex
to obtain a vector space. The two functors above can be composed to obtain a
functor from R

n
� to VectK, the category of K-vector spaces. By Definition 1.1,

a persistence module can be viewed as a functor from R
n
� to VectK, so the

construction above is a special case of a persistence module. This motivates the
following definition.

6

Definition 1.10 (Persistent homology). For an integer i, the i-th multi-parameter
persistent homology group is the persistence module

HiK : Rn
� −→ VectK

defined as the composition of the filtration functor K with the i-th homology
functor for simplicial complexes:

R
n
� SC VectK .K

HiK

Hi

We now introduce the basic constructions of discrete Morse theory, which
we will heavily use in the remainder of the paper. More details may be found
in [18].

Definition 1.11 (Discrete vector field). A discrete vector field V on K is a
collection of pairs of simplices (α, β) of K where α is a facet of β, such that
each simplex is in at most one pair of V . Given a discrete vector field V on a
simplicial complex K, a V -path is a sequence of simplices of dimensions p and
p + 1,

α0, β0, α1, β1, α2, . . . , βr, αr+1

such that for each i = 0, . . . , r, we have (αi, βi) ∈ V and βi > αi+1 6= αi. A
path is called a non-trivial closed path if r > 0 and α0 = αr+1.

Definition 1.12. A discrete vector field V on a simplicial complex K is called
a gradient vector field if it contains no non-trivial closed V -paths. A simplex
σ ∈ K is critical if it is not paired in V .

An example of such a discrete gradient vector field can be found in Figure
1.

Figure 1: An example of discrete gradient vector field. The pairs in the vector
field are denoted by arrows and the critical cells are marked by a circle.

Definition 1.13 (Elementary collapse). Let K1,K2 be simplicial complexes
such that K2 ⊂ K1, and K1 \K2 = {α, β} where α is a free facet of β. Then the
combinatorial deformation retract of K1 to K2 given by removing α and β is
called an elementary (simplicial) collapse. The pair (α, β) is called a collapsing
pair.

Remark. The definition of elementary collapse is also valid for CW-complexes.

7

Example 1.14. In Figure 2 we can see how to collapse the complex in Figure 1
using the given discrete gradient vector field. The first collapsing pair is formed
by the edge α and the triangle β. The second collapse uses the pair (γ, δ), given
by the edge δ and the vertex γ.

∼
β α

∼

δ γ

Figure 2: The complex on the right is obtained by the one on the left by first
collapsing the pair (α, β), then the pair (γ, δ).

An elementary simplical collapse is a homotopy equivalence between two
simplicial complexes, which in turn induces an isomorphism on the level of
homology. Therefore, if K1 and K2 are related through a series of elementary
collapses, then Hi(K2) ∼= Hi(K1) for all i.

In the case when a simplicial complex has no free faces available, it is still
possible to simulate an elementary collapse, which in this case is called internal,
by first removing a critical cell in order to obtain a free face, and then reinserting
it after updating the incidence relations. The cell complex obtained in this case
may no longer be simplicial, but internal collapses still induce isomorphisms in
homology.

To turn simplicial collapses from just homology preserving into persistent
homology preserving transformations, it is convenient to confine ourselves to
considering gradient vector fields compatible with filtrations.

Definition 1.15 (Consistency). A discrete gradient vector field V on a sim-
plicial complex K is said to be consistent (or compatible) with a filtration
K = {Ku}u∈Rn of K if the following condition is satisfied:

∀(σ, τ) ∈ V , σ ∈ Ku ⇐⇒ τ ∈ Ku.

In this case, we say that a value u ∈ R
n is a critical value of K if it is the

entrance value of a critical cell of V .

Example 1.16. In Figure 3 we see a bifiltration, i.e. a filtration with 2 pa-
rameters, of a finite simplicial complex. This filtration is one-critical and the
gradient vector field is consistent with the given filtration.

8

0 1 2 3

0

1

2

3

Figure 3: Each box corresponds to a multi-parameter in R
2, showing the sim-

plices that are present at the corresponding step of the filtration. As before,
the pairs of the discrete gradient vector field are indicated by arrows and the
critical cells by circles. As we will see later on, we are interested in the entrance
values of the critical cells. When the critical cells enter the filtration, they are
denoted in a darker red, whereas they are denoted in a lighter orange for larger
values, so as to not lose track of them throughout the filtration.

2 Computing the Rank Invariant

Let K be a finite simplical complex, V be a discrete gradient vector field on
K, and K = {Ku}u∈Rn be a one-critical n-parameter filtration on K which is
consistent with V . Then, for each integer i, there is an n-parameter persistence
module Vi where the K-vector space associated to u ∈ R

n is Hi(K
u), the i-th

homology group of Ku. Furthermore, for u � v ∈ R
n, iu,v is the induced map,

on the level of homology, of the inclusion of Ku into Kv. The goal of this section
is to identify a finite subset of values in R

n from which the rank invariant of Vi

can be computed. In other words, we want some finite U ⊂ R
n such that, for

all u � v ∈ R
n, there exists u � v ∈ U such that ρVi

(u, v) = ρVi
(u, v).

Define C to be the set of critical values of V :

C = {u ∈ R
n|σ is critical in V , the entrance value of σ is u}.

9

Let C be the closure of C under least upper bound. Theorem 2.4 states that our
candidate set U as described above is exactly given by C. In order to identify
each u ∈ R

n with an element of C, define u = max{u′ ∈ C|u′ � u}.

Example 2.1. Figure 4 shows the set of critical values and its closure in the
parameter space for the bifiltration in Example 1.16. We can see there that for
the value u, its corresponding ū is the critical value c2.

c1

c2 = ū

c3

c4

u

Figure 4: Taking the set of critical values C to consist of {c1, c2, c3}, C =
C ∪ {c4}. The grey area contains all values x � u, and in this case ū = c2.

Lemma 2.2. Let U be a non-empty finite set closed under least upper bound.
For all u in R

n, the set U ′ = {u′ ∈ U |u′ � u}, if non-empty, admits a (unique)
maximum.

Proof. From the fact that U is non-empty and finite, it admits maximal ele-
ments. Let a and b be maximal elements in U ′. Because U is closed under least
upper bound, there is c in U such that a, b � c � u. Hence, c ∈ U ′. Thus,
c = a = b by maximality of a and b in U ′.

The idea behind the definition of C is as follows. Since the filtration K has
a consistent discrete gradient vector field V , the tools of discrete Morse theory
may be used to identify which elements of K are guaranteed to be homotopy
equivalent, and therefore have isomorphic homology groups. Lemma 2.3 can
be used to show the existence of a simplicial collapse, induced by V , between
certain elements of K; this simplicial collapse is a homotopy equivalence.

Lemma 2.3. Let K = {Ku}u∈Rn be a one-critical filtration and V a discrete
gradient vector field on a finite simplicial complex K consistent with K. For
u ∈ R

n, let u = max{u′ ∈ C|u′ � u}, with C the set of critical values of V
and C its closure under least upper bound. If Ku − Ku is non-empty, then it
contains two simplices σ, τ such that (σ, τ) ∈ V and σ is a free facet of τ .

Proof. Because Ku − Ku is non-empty and finite, we can take τ ∈ Ku − Ku

of maximal dimension. Denote by l.u.b.(u, v) the least upper bound of two

10

elements u, v ∈ R
n. If τ is critical, there is a critical value û such that u 6=

l.u.b.(û, u) � u. Since l.u.b.(û, u) ∈ C, this contradicts the definition of u.
Thus, it must be that τ is non-critical, and belongs to a vector (σ, τ) ∈ V .

Because V is consistent with K, σ must belong to Ku −Ku as well, and since
τ is of maximal dimension, it must be that σ is a face of τ . Hence, each of the
simplices of maximal dimension in Ku −Ku belongs to a vector (σ, τ) ∈ V with
σ also in Ku −Ku, and there are finitely many of them because K is finite.

We claim that one of the pairs of simplices (σ, τ) ∈ V , with τ of maximal
dimension in Ku −Ku, must be a collapsing pair, meaning σ is a free facet of
τ . Supposing that this is not the case, we create a non-trivial cyclic path in V ,
contradicting the assumption that V is a discrete gradient vector field.

Choose a pair (σ1, τ1) ∈ V of simplices in Ku − Ku, with τ1 of maximal
dimension. If σ1 is not a free facet of τ1, there exists another cofacet τ2 ∈ Ku

such that σ1 < τ2 6= τ1. As V is consistent with K, σ1 cannot be added to
the filtration after τ2, so it must be that τ2 ∈ Ku − Ku as well. Moreover,
since the dimension of τ1 is maximal and σ1 is a facet of τ2, τ1 and τ2 must
have the same dimension. Thus also τ2 is of maximal dimension. Thus, τ2 is
in some non-critical pair (σ2, τ2) ∈ V of simplices in Ku − Ku. Finally, since
V is a discrete gradient vector field, σ1 can only exist in one pair of V , so that
σ2 6= σ1.

We may iterate the above argument. After an appropriate finite number of
iterations, we obtain the following V -path:

σ1 < τ1 > σ2 < τ2 > · · · < τn−1 > σn < τn > σn+1.

Since there are only finitely many possible choices for σi, it must be that
σi = σj for some i 6= j ∈ {1, . . . , n + 1}. The portion of the V -path between
σi and σj is non-trivial and cyclic. This is a contradiction, as V is a discrete
gradient vector field. Thus, for some pair (σ, τ) ∈ V of simplices in Ku − Ku

with τ of maximal dimension, σ must be a free facet of τ , proving our claim.

We may now prove the main result of the section, which gives a formula for
computing the rank invariant for any pair (u, v), using elements of C.

Theorem 2.4. Let K be a finite simplicial complex, and let K = {Ku}u∈Rn be
a filtration on K. Suppose V is a discrete gradient vector field on K consistent
with K. Let Vi = Hi(K). Then, for all u � v,

ρVi
(u, v) = ρVi

(u, v)

with
u = max{u′ ∈ C|u′ � u},

v = max{v′ ∈ C|v′ � v}.

if {u′ ∈ C|u′ � u} is non-empty, and ρVi
(u, v) = 0 otherwise.

11

Proof. Let u, v ∈ R
n. Because C is non-empty and C contains all least upper

bounds, if {u′ ∈ C|u′ � u} = ∅, then Ku = ∅, yielding ρVi
(u, v) = 0. Otherwise,

if {u′ ∈ C|u′ � u} is non-empty, then also {v′ ∈ C|v′ � v} is so, and u, v exist
and are unique by Lemma 2.2.

Set K0 := Ku. If K0 = Ku, then obviously Hi(K
u) = Hi(K

u) for all i.
Otherwise, K0−Ku is non-empty and by Lemma 2.3 there is a pair (σ1, τ1) ∈ V
of simplices of K0 − Ku such that σ1 is a free facet of τ1. Let K1 be the
simplical complex obtained by performing the elementary collapse of σ1 onto
τ1; note that this means that the map induced on homology by the inclusion
of K1 into K0 is an isomorphism: Hi(K1) ∼= Hi(K0). Now, either K1 = Ku,
in which case obviously Hi(K1) = Hi(K

u) for all i, or, we may restrict V to
K1 and consider the filtration of K1 induced from that of K0. By applying
Lemma 2.3 to K1, there is a vector in V whose elementary collapse gives K2

such that the map induced by the inclusion of K2 into K1 is an isomorphism:
Hi(K2) ∼= Hi(K1). By induction, for any r ≥ 1, either Kr = Ku, in which
case obviously Hi(Kr) = Hi(K

u) for all i, or, we may restrict V to Kr and
consider the filtration of Kr induced from that of Kr−1. By applying Lemma
2.3 to Kr, there is a vector in V whose elementary collapse gives Kr+1 such
that the map induced by the inclusion of Kr+1 into K1 is an isomorphism:
Hi(Kr+1) ∼= Hi(Kr). By the finiteness of K, there must be a value of r such
that Kr = Ku, yielding that the map induced by the inclusion of Ku into Ku

is an isomorphism for all i:

Hi(K
u) ∼= Hi(K

u)

Analogous argument works for v:

Hi(K
v) ∼= Hi(K

v).

Because the above isomorphisms are induced by inclusions, the following dia-
gram commutes and gives equality of the ith rank invariants of the pairs (u, v)
and (u, v):

Hi(K
u) Hi(K

v)

Hi(K
u) Hi(K

v).

iu,v
∗

∼= ∼=

iu,v
∗

3 Computing the persistence space

For the sake of visualization, the rank invariant of an n-parameter persistence
module V can be completely encoded as a multiset of points known as a persis-
tence diagram when n = 1 [15], and as a persistence space when n ≥ 1 [14]. By
completeness of the encoding we mean that the rank invariant can be exactly

12

reconstructed from the persistence space (cf. the k-Triangle Lemma in [15] and
the Representation Theorem in [14]).

While the persistence space is easier to visualize than the rank invariant, as
it is a set of points rather than a function, still for an n-parameter persistence
module it lives in a 2n-dimensional space. So, it is convenient to visualize
it along fibers [12]. For example, PHOG [9] and RIVET [24] visualize the
persistence space of a 2-parameter persistence module by fibering it through
lines.

The goal of this section is to propose a computational procedure to recover
such fibration along lines for persistence modules with any number of parame-
ters, by using critical values of gradient vector fields.

We start by reviewing the necessary definitions and properties.

A point (u, v) ∈ Hn belongs to the persistence space spc(V) if and only if
its multiplicity

µV(u, v) := min
~e ≻ 0

u + ~e ≺ v − ~e

ρV(u + ~e, v − ~e) − ρV(u− ~e, v − ~e) + (1)

−ρV(u + ~e, v + ~e) + ρV(u− ~e, v + ~e) (2)

is positive. This corresponds to the number of independent cycles that, along
a positive direction in the parameter space, appear at u and become boudaries
at v.

Similarly, a point (u,∞) belongs to the persistence space of V if and only if
its multiplicity

µV(u,∞) := min
~e ≻ 0
v � u

ρV(u + ~e, v) − ρV(u− ~e, v) (3)

is positive. This corresponds to the number of independent cycles that, along
a positive direction in the parameter space, appear exactly at u and persist for
every larger value of the parameter.

In both cases, the multiplicity can be computed by fixing a direction for ~e
and only varying its length (with alternate sums of the ranks decreasing as the
length decreases). Two convenient directions for ~e are the diagonal direction
and the v − u direction. Moreover, for points at infinity, the multiplicity is
reached for increasing values of v.

In particular, for n = 1, the persistence space is the persistence diagram
of a 1-parameter persistence module. In terms of intervals in a persistence
module bar decomposition, points in Hn of positive multiplicity correspond to
finite intervals, points at infinity of positive multiplicity correspond to infinite
intervals.

3.1 Restriction of a persistence module to lines

Given a line L contained in the parameter space R
n, each point u ∈ L can be

written as u = ~mt + u0, with u0 a fixed starting point on L, ~m ∈ R
n a fixed

13

velocity vector, and t a real parameter. If ~0 ≺ ~m, we say that L has positive
slope.

For an n-parameter persistence module V and a line L ⊆ R
n with positive

slope, the restriction of V to L is the persistence module VL that assigns Vu to
each u ∈ L, and whose transition maps iu,vL : Vu → Vv for u � v ∈ L are the
same as in V. Once a parametrization u = ~mt+u0 of L is fixed, the persistence
module VL is isomorphic to the 1-parameter persistence module, by abuse of
notation denoted by VL, that assigns to each t ∈ R the vector space (VL)t = Vu,
and to s < t ∈ R, the transitions maps is,t = iu,vL = iu,v.

By construction, for u = ~ms + u0 and v = ~mt + u0, it holds that

ρV(u, v) = ρVL
(s, t).

Hence, the multiplicity of a point (u, v) ∈ Hn in spc(V) coincides with that of
(s, t) ∈ H1 in dgm(VL):

µV(u, v) = µVL
(s, t).

In conclusion, the persistence space spc(V) can be viewed as the fibered
union of infinitely many persistence diagrams dgm(VL), each associated with a
line L with positive slope.

3.2 Critical values determine the persistence space

Our next goal is to demonstrate that, for a persistence module V obtained
from a tame and one-critical filtration K of a simplicial complex, points of the
persistence space spc(V) are completely determined by the critical values of a
discrete gradient vector field V compatible with K. This claim is proven in
Proposition 3.7. The underlying idea to prove it is as follows.

As spc(V) can be viewed as the fibered union of infinitely many persistence
diagrams dgm(VL), with each VL obtained by restricting V to a line L with
positive slope, the filtration K may also be restricted to L. This way we obtain
a 1-parameter filtration KL, and VL turns out to be the persistence module
of KL. Moreover, if K has a compatible discrete gradient vector field V , then
this discrete gradient vector field is inherited by KL. Each critical cell of V
has an entrance value in KL (as L has positive slope). As is the case with
K, the entrance values in KL of the critical cells in C identify elements in KL

where the filtration may undergo a change in homotopy type, and therefore a
change in homology. Therefore, to determine spc(V), it is enough to identify
the entrance values of critical cells of K in the restricted filtration KL. To this
end, we introduce the following notation.

For every point u in R
n, let S+(u) be the positive cone with vertex u:

S+(u) = {v ∈ R
n : u � v}

The boundary of the positive cone, ∂S+(u), decomposes into open faces. In par-
ticular, ∂S+(u) can be partitioned by non-empty subsets A of [n] = {1, 2, . . . , n}
in the following way. For ∅ 6= A ⊆ [n], define

SA(u) = {(x1, . . . , xn) ∈ R
n|xi = ui for i ∈ A, xj > uj for j /∈ A}.

14

Then, for A 6= B ⊆ [n], SA ∩ SB = ∅, and ∂S+(u) =
⋃

∅ 6=A⊆[n]

SA.

Example 3.1. If n = 2 and u = (u1, u2), the open faces of ∂S+(u) consist
of the vertex u and the two half-lines exiting from u rightwards and upwards,
respectively as shown in Figure 5.

∂S+(u) = S{1,2}(u) ∪ S{1}(u) ∪ S{2}(u)

= {(u1, u2)} ∪ {(x1, x2) ∈ R
2|x1 = u1, x2 > u2}

∪ {(x1, x2) ∈ R
2|x1 > u1, x2 = u2}.

u = S{1,2} S{2}

S{1}
S+(u)

Figure 5: The positive cone S+(u) of u ∈ R
2 and the decomposition of its

boundary into S{1}, S{2} and S{1,2}, which correspond respectively to the ver-
tical boundary, horizontal boundary, and u.

It will be useful to consider the projection of points in the parameter space
onto lines with positive slope (cf. [22]).

Definition 3.2. Given a line L ⊆ R
n with positive slope, for every u ∈ R

n

define
pushL(u) := L ∩ ∂S+(u).

15

u

L

pushL(u)

Figure 6: The push of u along the line L.

Proposition 3.3 (Properties of pushL(u)). Some properties of pushL(u) are
(see also Figure 6):

1. pushL(u) consists of exactly one point because L has positive slope.

2. There is a unique non-empty subset AL
u of [n] such that

pushL(u) = L ∩ SAL
u

(u)

For ease of notation, we concisely write SL(u) meaning SAL
u

(u).

3. u � pushL(u) with equality only when u ∈ L.

4. pushL(u) is the smallest point on L which is greater than or equal to u;
smaller points on L are either incomparable or less than u.

5. If u � v, then pushL(u) � pushL(v).

6. Let u � v. Let ∅ 6= A,B ⊆ [n] such that pushL(u) ∈ SA(u) and
pushL(v) ∈ SB(v). We have:

(a) SA(u) ∩ SB(v) 6= ∅ implies that A ⊆ B.

(b) pushL(u) = pushL(v) if and only if SA(u) ∩ SB(v) 6= ∅.

Proof. Properties 1, 2, 3 and 4 are immediate.

Proof of property 5: Suppose not; then u � v and pushL(v) ≺ pushL(u).
Note that, since both pushL(u) and pushL(v) are points on L with positive
slope, pushL(v) ≺ pushL(u) if and only if each coordinate is strictly less than,
i.e., (pushL(v))i < (pushL(u))i for all i ∈ [n]. Also, since L has positive slope,
there must exist at least one j ∈ [n] such that uj = (pushL(u))j . Combining
these, we have

vj ≤ (pushL(v))j < (pushL(u))j = uj

16

which contradicts u � v. So, the claim holds.

Proof of property 6(a): Suppose there exists y ∈ SA(u) ∩ SB(v). By defini-
tion, yi > vi ≥ ui for all i /∈ B; yi > ui implies that i /∈ A. Thus, i /∈ B implies
i /∈ A, and the contrapositive must also be true, j ∈ A implies j ∈ B.

Note that the converse is not necessarily true; one could have A = B = {1}
but u1 < v1, so that SA(u) ∩ SB(v) = ∅.

Proof of property 6(b): Indeed, pushL(u) = pushL(v) implies that SA(u) ∩
SB(v) 6= ∅. Now, suppose SA(u) ∩ SB(v) 6= ∅. By Property 6(a), this implies
that A ⊆ B, and ui = vi for i ∈ A. Now, since pushL(u) and pushL(v)
both belong to L, a line with positive slope, either pushL(u) = pushL(v) or
pushL(u)j < pushL(v)j for all j ∈ [n]. And, since pushL(u) ∈ SA(u) and
pushL(v) ∈ SA(v), pushL(u)j = uj = vj = pushL(v)j for all j ∈ A. Therefore,
pushL(u) = pushL(v).

Recall the notations of Theorem 2.4 where a single bar on some value u ∈ R
n,

for which {u′ ∈ C|u′ � u} is non-empty, denotes the greatest value in C less
than or equal to that value:

ū := max{u′ ∈ C|u′ � u}.

We also introduce a double bar notation that depends on a given line L with
positive slope (see also Figure 7):

¯̄uL := max{u′ ∈ C|u � u′ and SL(u) ∩ SL(u′) 6= ∅}.

c1

c2

c3

c4 = ¯̄uL

L

u

Figure 7: The double bar of u with respect to the line L is the value c4 ∈ C.
In this case we also have ¯̄cL3 = ¯̄uL = c4.

Lemma 3.4. For every u ∈ C, it holds that

pushL(u) = ¯̄uL.

17

Proof. First we note that for all u ∈ C, using notation from Theorem 2.4,

pushL(u) = max{u′ ∈ C|u′ � pushL(u)}

= max{u′ ∈ C|u � u′ � pushL(u)}

as u ∈ C, and u � pushL(u). Note that u � u′ implies pushL(u) � pushL(u′),
and u′ � pushL(u) implies that pushL(u′) � pushL(pushL(u)) = pushL(u). So,
we may write

pushL(u) = max{u′ ∈ C|u � u′ and pushL(u) = pushL(u′)}.

By definition of ∅ 6= AL
u , A

L
u′ ⊆ [n] as the unique subsets ∅ 6= AL

u , A
L
u′ ⊆ [n]

such that pushL(u) ∈ SAL
u

(u) and pushL(u) ∈ SAL

u′
(u′). Hence, u � u′ and

pushL(u) = pushL(u′) if and only if SAL
u

(u) ∩ SAL

u′
(u′) 6= ∅. So, finally we

obtain,

pushL(u) = max{u′ ∈ C|u � u′ and SAL
u

(u) ∩ SAL

u′
(u′) 6= ∅}

= ¯̄uL.

that yields the claim recalling that the notation SL(u) is a shorthand for SAL
u

(u).

Lemma 3.5. For all lines L with positive slope, and for all u ≺ v ∈ C, we have

ρV(pushL(u), pushL(v)) = ρV(¯̄uL, ¯̄vL).

Proof. Using Theorem 2.4 and Lemma 3.4, we obtain

ρV(pushL(u), pushL(v)) = ρV(pushL(u), pushL(v))

= ρV(¯̄uL, ¯̄vL)

Lemma 3.6. For all lines L with positive slope, and all u ∈ L, we have

ū = (ū)
L

.

Proof. By definition of double bar, ū � (ū)
L

and SL(ū)∩SL((ū)
L

) 6= ∅. So, by
Proposition 3.3.6(b),

pushL(ū) = pushL

(

(ū)
L
)

.

18

Additionally, Proposition 3.3.3 implies that (ū)
L

� pushL

(

(ū)
L
)

, and, by

Proposition 3.3.5, we have pushL(ū) � pushL(u) because ū � u. Moreover, as
u ∈ L, pushL(u) = u. So finally we have

ū � (ū)
L

� pushL

(

(ū)
L
)

= pushL(ū) � pushL(u) = u.

As (ū)
L

∈ C, the above ineqalities imply that ū = (ū)
L

by definition of ū.

Our next goal is to prove that critical values of the discrete vector field on
K determine points of the persistence diagram of the restriction along a line
through the parameter space. Given such a line L, we may define

pushL(C) = {pushL(c) | c ∈ C}.

Note that, since C is finite, so is pushL(C). We can order the elements of
pushL(C) as c1, c2, . . . , cm, with ci ≺ ci+1.

Proposition 3.7. Let L be a line with positive slope. Let pushL(C) = {c1, c2, . . . , cm}
be increasingly ordered. For all points u ≺ v on L, it holds that:

(i) If u = ci and v = cj, then

µV(u, v) = ρV(ci, cj−1) − ρV(ci−1, cj−1) − ρV(ci, cj) + ρV(ci−1, cj),

and µV(u, v) = 0 if u or v not in C.

(ii) If u = ci, then

µV(u,∞) = ρV(ci, cm) − ρV(ci−1, cm),

and µV(u,∞) = 0 if u not in C.

Proof. From C 6= ∅ we get pushL(C) 6= ∅. Note that we may partition the line
L by points of pushL(C). For each ci ∈ pushL(C), we have

ci = pushL(ci).

Indeed, by the bar notation, d � ci � ci for all d ∈ push−1
L (ci). Thus,

ci = pushL(d) � pushL(ci) � pushL(ci) = ci.

We first consider the case when u ∈ L and u ≺ c1. In this case, µV(u, v) = 0
for all v � u, and µV(u,∞) = 0. Indeed, we can take ~e ≻ 0 small enough so

that, for all 0 ≺ ~e′ � ~e, we have u− ~e′ ≺ u ≺ u + ~e′ ≺ c1. Hence, Theorem 3.17
ρV(u− ~e′, v) = ρV(u + ~e′, v) = 0 for all v � u.

19

We now consider the case of a point u ∈ L such that c1 � u. Let ci be the
maximal element in pushL(C) such that ci � u. In this case we claim that

u = ci

Indeed, suppose not. Since ci � u, we must have ci � u. Therefore,

ci = pushL(ci) � pushL(u) � pushL(u) = u.

Since pushL(u) is in pushL(C) and ci is maximal in pushL(C) such that ci � u
(by assumption), we must have that ci = pushL(u). But then u � ci,with

u ∈ C, implying u � ci by the bar notation. So, it must be that u = ci.

Now, we are ready to prove the first statement in the case c1 � u. First,
suppose that u is not in pushL(C). Then there is a maximal element in pushL(C)
such that ci ≺ u. If i 6= m, there exists ~e ≻ 0 such that

ci ≺ u− ~e ≺ u ≺ u + ~e ≺ ci+1;

if i = m, then there exists ~e ≻ 0 such that

cm ≺ u− ~e ≺ u ≺ u + ~e,

and the above inequalities hold for all 0 ≺ ~e′ � ~e. Moreover, by the above claim,

we have that for all such ~e′, u− ~e′ = u + ~e′ = ci.
Therefore,

µV(u, v) = min
~e ≻ 0

u + ~e ≺ v − ~e

ρV(u + ~e, v − ~e) − ρV(u− ~e, v − ~e)+

− ρV(u + ~e, v + ~e) + ρV(u− ~e, v + ~e)

= min
~e ≻ 0

u + ~e ≺ v − ~e

ρV(u + ~e, v − ~e) − ρV(u− ~e, v − ~e)+

− ρV(u + ~e, v + ~e) + ρV(u− ~e, v + ~e)

= min
~e ≻ 0

u + ~e ≺ v − ~e

ρV(ci, v − ~e) − ρV(ci, v − ~e)+

− ρV(ci, v + ~e) + ρV(ci, v + ~e)

= 0.

Similarly, if v is not in pushL(C), we obtain µV(u, v) = 0.
Now, if cj = v and ci = u for ci, cj ∈ pushL(C), then we can find ~e ≻ 0 small

enough such that both

ci−1 ≺ ci − ~e ≺ ci ≺ ci + ~e ≺ ci+1

and
cj−1 ≺ cj − ~e ≺ cj ≺ cj + ~e ≺ cj+1;

20

(note that if j = m, then the second set of equalities does not have the final
“≺ cj+1” term.)

Additionally, for all 0 ≺ ~e′ ≺ ~e:

• cj − ~e′ = cj−1 ,

• cj + ~e′ = cj ,

• ci − ~e′ = ci−1 , and

• ci + ~e′ = ci.

Using these, we find that:

µV(u, v) = min
~e ≻ 0

ci + ~e ≺ cj − ~e

ρV(ci + ~e, cj − ~e) − ρV(ci − ~e, cj − ~e)+

− ρV(ci + ~e, cj + ~e) + ρV(ci − ~e, cj + ~e)

= min
~e ≻ 0

ci + ~e ≺ cj − ~e

ρV(ci + ~e, cj − ~e) − ρV(ci − ~e, cj − ~e)+

− ρV(ci + ~e, cj + ~e) + ρV(ci − ~e, cj + ~e)

= min
~e ≻ 0

ci + ~e ≺ cj − ~e

ρV(ci, cj−1) − ρV(ci−1, cj−1) − ρV(ci, cj) + ρV(ci−1, cj)

= ρV(ci, cj−1) − ρV(ci−1, cj−1) − ρV(ci, cj) + ρV(ci−1, cj)

= ρV(ci, cj−1) − ρV(ci−1, cj−1) − ρV(ci, cj) + ρV(ci−1, cj).

To prove the second statement, we again first suppose that u is not in
pushL(C), and that ci is the maximal element in pushL(C) such that ci ≺ u.
Then, as in the proof of the first statement, we can find 0 ≺ ~e such that, for all

0 ≺ ~e′ � ~e, u− ~e′ = u + ~e′ = ci. Thus,

µV(u,∞) = min
~e ≻ 0
v � u

ρV(u + ~e, v) − ρV(u− ~e, v)

= min
~e ≻ 0
v � u

ρV(u + ~e, v) − ρV(u− ~e, v)

= min
~e ≻ 0
v � u

ρV(ci, v) − ρV(ci, v)

= 0.

If u = ci for some ci ∈ pushL(C), then we can find 0 ≺ ~e such that, for all

0 ≺ ~e′ � ~e, u− ~e′ = ci−1 and u + ~e′ = ci. We also note that for all v ∈ L such
that cm ≺ v, v = cm.

Thus,

21

µV(u,∞) = min
~e ≻ 0
v � u

ρV(u + ~e, v) − ρV(u− ~e, v)

= min
~e ≻ 0
v � u

ρV(u + ~e, v) − ρV(u− ~e, v)

= min
v � u

ρV(ci−1, v) − ρV(ci, v)

= min
v � u

ρV(ci−1, v) − ρV(ci, v)

= min
v � u

ρV(ci−1, v) − ρV(ci, v).

= min
v � u

ρV(ci−1, cm) − ρV(ci, cm)

= ρV(ci−1, cm) − ρV(ci, cm)

= ρV(ci−1, cm) − ρV(ci, cm).

3.3 Grouping fibers of persistence spaces by equivalence

We now use critical values to partition the set of all lines of Rn into equivalence
classes, as illustrated in Figure 8, such that the persistence diagrams of the
restriction along lines in the same class are easily obtainable from each other by
a bijective correspondence.

Definition 3.8. Two lines L,L′ ⊆ R
n with positive slope are said to have the

same reciprocal position with respect to u if and only if pushL(u) and pushL′(u)
belong to the same open face of ∂S+(u). Given a non-empty subset U of Rn,
we write L ∼U L′, if L and L′ have the same reciprocal position with respect
to u for all u ∈ U .

Example 3.9. Figure 8 shows two examples of the equivalence classes of lines
yielded by the set C of Example 1.16.

Lines with the same reciprocal position with respect to C are characterized
by the property of hitting the same face of the positive cone of u for each u ∈ C:

Lemma 3.10. L ∼C L′ if and only if SL(u) = SL′(u) for all values u ∈ C.

Hence, AL
u = AL′

u for all values u ∈ C.

Proof. Recall that SL(u) = SAL
u

(u) and AL
u is the unique non-empty subset

of [n] such that pushL(u) = L ∩ SAL
u

(u). Therefore, pushL(u) ∈ SAL
u

(u) and
pushL′(u) ∈ SAL′

u
(u).

By definition, if L ∼C L′, then for all u ∈ C, pushL(u) and pushL′(u) belong
to the same open face of ∂S+(u), i.e.

22

c1

c2

c3

c4

L

L′

L′′

Figure 8: The dashed lines represent the boundaries of the positive cones of
the values in C. Here L and L′ have the same reciprocal position with respect
to C but L′′ does not.

SAL
u

= SAL′

u

for all u ∈ C. This can only happen if AL
u = AL′

u for all u ∈ C.

Proposition 3.11. Given a non-empty subset U in R
2, L ∼U L′ defines an

equivalence relation on the set of lines with positive slope.

Proof. We can define AL(U) = {AL
u}u∈U . By Lemma 3.10, L ∼U L′ if and only

if AL(U) = AL′(U). Using this equivalent definition of L ∼U L′, it is clear
that ∼U is reflexive, transitive, and symmetric, and therefore an equivalence
relation.

The rank invariant on equivalent lines satisfies the following condition.

Proposition 3.12. If u ≺ v ∈ L, with {u′ ∈ C|u′ � u} non-empty, and
L ∼C L′, then it holds that

ρV(u, v) = ρV(pushL′(ū), pushL′(v̄)).

Proof. Since u � v, it follows from Theorem 2.4 that

ρV(u, v) = ρV(u, v).

As u, v ∈ L, ū = (ū)
L

and v̄ = (v̄)
L

by Lemma 3.6, implying

ρV(u, v) = ρV

(

(ū)
L

, (v̄)
L
)

.

23

As u, v ∈ C, and u � v implies u � v, from Lemma 3.5 we get

ρV((ū)
L

, (v̄)
L

) = ρV(pushL(u), pushL(v)).

Lemma 3.13. If L ∼C L′, then pushL(u) = pushL′(u) for all values u ∈ C.

Proof. By Lemma 3.4,

pushL(u) = max{u′ ∈ C|u � u′ and SL(u) ∩ SL(u′) 6= ∅},

pushL′(u) = max{u′ ∈ C|u � u′ and SL′(u) ∩ SL′(u′) 6= ∅}.

So the claim follows because SL(u) = SL′(u) and SL(u′) = SL′(u′) by Lemma
3.10.

Lemma 3.14. If L ∼C L′, then pushL′(ū) = ū for all values u ∈ L.

Proof. It follows by successively applying Lemmas 3.13, and 3.4, 3.6.

Lemma 3.15. If L ∼C L′, then the correspondence σ : pushL(C) → pushL′(C)

defined by σ(d) = pushL′(push−1
L (d)) for all d ∈ pushL(C), is an order preserv-

ing bijective function. In particular, σ(d) = pushL′(d̄) with d̄ = max{u ∈ C :
u � d} as usual, for all d ∈ pushL(C).

Proof. Let d ∈ pushL(C). Then there exists at least one c ∈ C such that
d = pushL(c). We first show that, for all c ∈ push−1

L (d),

pushL′(c) = pushL′(d̄) . (4)

By definition of double bar, we have that SL(¯̄cL) ∩ SL(c) 6= ∅. So, as L ∼C L′

implies that SL(¯̄cL) = SL′(¯̄cL) and SL(c) = SL′(c) by Lemma 3.10. This means
that

SL′(¯̄cL) ∩ SL′(c) 6= ∅ .

Therefore, by Proposition 3.3.6(b), we have that

pushL′(¯̄cL) = pushL′(c) .

Now note that d̄ = pushL(c) = ¯̄cL by Lemma 3.4, and so

pushL′(d̄) = pushL′(¯̄cL) = pushL′(c) .

Equality (4) implies that σ is a well defined function because d̄ is unique by
Lemma 2.2 and pushL′(d̄) is also unique by Property 1 of Proposition 3.3.

Now for any d′ ∈ pushL′(C), there exists (at least one) c′ ∈ C such that
d′ = pushL′(c′) and σ(pushL(c′)) = pushL′(c′), showing that σ : pushL(C) →
pushL′(C) is surjective.

We can analogously define a function τ : pushL′(C) → pushL(C) by setting
τ(d′) = pushL(push−1

L′ (d′)) for all d′ ∈ pushL′(C).

24

Now we prove that σ and τ are bijective by showing that σ is the inverse of
τ : for all d′ ∈ pushL′(C),

σ(τ(d′)) = σ(pushL(push−1
L′ (d′))) = pushL′(push−1

L′ (d′)) = d′

and, similarly, for all d ∈ pushL(C),

τ(σ(d)) = τ(pushL′(push−1
L (d))) = pushL(push−1

L (d)) = d .

Finally, we show that σ is order-preserving: Assume that d, e ∈ pushL(C)
with d � e. Then d̄ ∈ C and d̄ � d � e by definition of bar, and therefore

d̄ � ē = max{u′ ∈ C|u′ � e} .

Hence, by Proposition 3.3.5, we have that

σ(d) = pushL′(d̄) � pushL′(ē) = σ(e) ,

as required.

Lemma 3.16. Let L ∼C L′ be equivalent lines with positive slope. For any
ci ∈ pushL(C) = {c1, c2, . . . , cm} increasingly ordered, let di = σ(ci) with σ as
in Lemma 3.15. Then,

µV(di, dj) = µV(ci, cj)

for ci ≺ cj, and
µV(di,∞) = µV(ci,∞).

Proof. Assuming ci ≺ cj ∈ pushL(C), by Proposition 3.7(i),

µV(ci, cj) = ρV(ci, cj−1) − ρV(ci−1, cj−1) − ρV(ci, cj) + ρV(ci−1, cj)

On the other hand, setting dh = σ(ch) for h ∈ {i, i − 1}, and dk = σ(ck) for
k ∈ {j, j − 1} yield

ρV(ch, ck) = ρV(ch, ck) (by Theorem 2.4)

= ρV(pushL′(ch), pushL′(ck)) (by Lemma 3.14)

= ρV(pushL′(ch), pushL′(ck)) (by Theorem 2.4)

= ρV(dh, dk) (by definition).

Therefore,

µV(ci, cj) = ρV(di, dj−1)−ρV(di−1, dj−1)−ρV(di, dj) +ρV(di−1, dj) = µV(di, dj)

with the second equality holding by Proposition 3.7(i) applied to L′.
Analogously, by Proposition 3.7(ii), we can see that

µV(ci,∞) = ρV(ci, cm) − ρV(ci−1, cm) = ρV(di, dm) − ρV(di−1, dm) = µV(di,∞).

25

Theorem 3.17. Let L ∼C L′ be equivalent lines with positive slope, parametrized
by L : u = ~ms + u0 and L′ : u = ~m′s′ + u′

0, respectively. Let dgm(VL) and
dgm(VL′) be the persistence diagrams of the restrictions of V to L and L′,
respectively. Then, there exists a multi-bijection (that is, a bijection between
sets of points with multiplicities), γ : dgm(VL) → dgm(VL′) such that, for all
(s, t) ∈ dgm(VL),

γ(s, t) = (s′, t′) ∈ dgm(VL′)

with

• s′ ∈ R such that ~m′s′ + u′
0 = pushL′(~ms + u0), and

• t′ ∈ R such that ~m′t′ + u′
0 = pushL′(~mt + u0) if t ∈ R, while t′ = ∞ if

t = ∞.

Proof. For (s, t) ∈ dgm(VL) with s < t < ∞, we have µVL
(s, t) = µV(u, v) with

u = ~ms + u0 and v = ~ms + u0 in L. By Proposition 3.7, we can see that (u, v)
will be of the form (ci, cj) where ci ≺ cj ∈ pushL(C). By Lemma 3.16, the

bijection σ : pushL(C) → pushL′(C) such that σ(ci) = di with di = pushL′(ci)
for 1 ≤ i ≤ m, satisfies µV(ci, cj) = µV(di, dj) and µV(ci,∞) = µV(di,∞).
The parametrization of L′ uniquely determines values s′ < t′ ∈ R such that
di = ~m′s′ + u′

0 and dj = ~m′t′ + u′
0. Since

µVL′
(s′, t′) = µV(di, dj) = µV(ci, cj) = µVL

(s, t)

and
µVL′

(s′,∞) = µV(di,∞) = µV(ci,∞) = µVL
(s,∞)

we see that σ induces the desired multi-bijection

γ : dgm(VL) → dgm(VL′)

(s, t) → (s′, t′)

4 Conclusions and discussion

Based on the results of this paper, we can derive a method to fiber the rank
invariant of multi-parameter persistence along lines of positive slope chosen by
a user. This way, the persistence space of an n-parameter persistence module
is sliced into persistence diagrams.

The method consists of an offline preprocessing step, where we compute
the representative lines and their persistence diagrams, and an interactive step
where we can compute the rank invariant for any chosen line in real time. Start-
ing from a discrete gradient vector field V consistent with the multi-filtration at
hand as input data, the offline step requires:

• computing the set C of entrance values of the critical cells of V ,

26

• taking the closure C of C with respect to their least upper bound,

• partitioning the set of lines with positive slope by the equivalence rela-
tion ∼C and picking a representative line from each equivalence class (for
example, following the procedure shown in Appendix A).

• storing the persistence diagrams of the restriction of filtration to each
representative line.

Having pre-computed these data, the interactive part

• takes as input from the user a line L with positive slope,

• detects the representative line L0 of its equivalence class with respect to
∼C ,

• computes the persistence diagram relative to L by pushing onto L the bar
of the persistence diagram relative to L0.

The correctness of the method is guaranteed by Theorem 3.17.
The method requires additional routines from computational geometry in

order to efficiently detect representatives of equivalence classes of lines, com-
puting the bars of points, and pushing points onto lines. In Appendix A, we
propose a method applied to 2-parameter persistence modules to find represen-
tative lines for the equivalence classes defined in Section 3. The method is based
on a bijection between segments linking points of C and lines cutting C in two
non-empty subsets.

Moreover, the method requires routines for the persistence diagram compu-
tation such as those implemented in [1], [2], or [3]. It is worth noticing that,
based on the tests using [2] presented in [27], it is more efficient to compute
persistence diagrams of the persistence module restricted to lines starting with
the Morse complex obtained from V rather than directly from the original cell
complex. In other words, the gradient vector field V is used twice: its critical
cells allow us both to determine representative lines, and to reduce persistence
computation

In conclusion, the presented method allows for: computational efficiency, by
requiring only linear asymptotic time complexity to obtain the input gradient
field, e.g. with the algorithm of [27]; theoretical improvements, by permitting
any number of parameters; data analysis and understanding advantages, by
making explicit the correspondence between persistence features and critical
cells. For future work we plan to extend the algorithm to a larger number of
parameters.

The rank invariant fibering along lines is central also in the definition of the
matching distance, a metric on rank invariants of multi-parameter persistence
modules [13, 12] ensuring their stability. In [21], the exact computation of the
matching distance is achieved for at most two parameters in polynomial run-
time in the number of simplices requiring O(m11) runtime and O(m4) memory,
with m denoting the number of simplices. Motivated by the practical need of

27

decreasing the number of operations, and increasing the number of allowed pa-
rameters, our next project will be to extend equivalence classes of lines to pairs
of persistence modules and to apply the method presented here to the matching
distance exact computation in any number of parameters.

Acknowledgements

This research began at the 2019 Women in Computational Topology (Win-
CompTop) workshop in Canberra. We thank Ashleigh Thomas and Elizabeth
Stephenson for joining us in the initial discussions during that week. The results
of this paper have been presented within the Summer 2020 AATRN Seminars.
We thank Anand Deopurkar, Anthony Licata, and Nicholas Proudfoot for help-
ful conversations related to Appendix A.

References

[1] GUDHI library, geometry understanding in higher dimensions.
http://gudhi.gforge.inria.fr/.

[2] Phat (persistent homology algorithm toolbox).
https://github.com/blazs/phat.

[3] TTK the topological toolkit. https://topology-tool-kit.github.io/.

[4] Madjid Allili, Tomasz Kaczynski, and Claudia Landi. Reducing complexes
in multidimensional persistent homology theory. J. Symbolic Comput.,
78:61–75, 2017.

[5] Madjid Allili, Tomasz Kaczynski, Claudia Landi, and Filippo Masoni.
Acyclic partial matchings for multidimensional persistence: algorithm and
combinatorial interpretation. J. Math. Imaging Vision, 61(2):174–192,
2019.

[6] S. Barannikov. Framed Morse complexes and its invariants. Advances in
Soviet Mathematics, 21:93–116, 1994.

[7] Paul Bendich, J. S. Marron, Ezra Miller, Alex Pieloch, and Sean Skw-
erer. Persistent homology analysis of brain artery trees. Ann. Appl. Stat.,
10(1):198–218, 2016.

[8] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Persistent ho-
mology for path planning in uncertain environments. IEEE Transactions
on Robotics, 31(3):578–590, Jun 2015.

[9] S. Biasotti, A. Cerri, D. Giorgi, and M. Spagnuolo. PHOG: Photometric
and geometric functions for textured shape retrieval. Computer Graphics
Forum, 32(5):13–22, Aug 2013.

28

http://gudhi.gforge.inria.fr/
https://github.com/blazs/phat
https://topology-tool-kit.github.io/

[10] Gunnar Carlsson, Gurjeet Singh, and Afra Zomorodian. Computing mul-
tidimensional persistence. In Algorithms and computation, volume 5878 of
Lecture Notes in Comput. Sci., pages 730–739. Springer, Berlin, 2009.

[11] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional
persistence. Discrete Comput. Geom., 42(1):71–93, 2009.

[12] Andrea Cerri, Barbara Di Fabio, Massimo Ferri, Patrizio Frosini, and Clau-
dia Landi. Betti numbers in multidimensional persistent homology are sta-
ble functions. Math. Methods Appl. Sci., 36(12):1543–1557, 2013.

[13] Andrea Cerri, Marc Ethier, and Patrizio Frosini. The coherent matching
distance in 2D persistent homology. In Computational topology in image
context, volume 9667 of Lecture Notes in Comput. Sci., pages 216–227.
Springer, 2016.

[14] Andrea Cerri and Claudia Landi. Hausdorff stability of persistence spaces.
Found. Comput. Math., 16(2):343–367, 2016.

[15] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of
persistence diagrams. Discrete Comput. Geom., 37(1):103–120, 2007.

[16] Tamal K. Dey and Cheng Xin. Generalized persistence algorithm for de-
composing multi-parameter persistence modules, 2020.

[17] Edelsbrunner, Letscher, and Zomorodian. Topological persistence and sim-
plification. Discrete Comput. Geom., 28(4):511–533, November 2002.

[18] Robin Forman. A user’s guide to discrete Morse theory. Sém. Lothar.
Combin., 48:Art. B48c, 35, 2002.

[19] Patrizio Frosini. Discrete computation of size functions. Journal of Com-
binatorics, Information & System Sciences, 17(3-4):232–250, 1992.

[20] Sheridan B. Green, Abby Mintz, Xin Xu, and Jessi Cisewski-Kehe. Topol-
ogy of our cosmology with persistent homology. CHANCE, 32(3):6–13, Jul
2019.

[21] Michael Kerber, Michael Lesnick, and Steve Oudot. Exact computation
of the matching distance on 2-parameter persistence modules. In Gill
Barequet and Yusu Wang, editors, 35th International Symposium on Com-
putational Geometry, SoCG 2019, June 18-21, 2019, Portland, Oregon,
USA, volume 129 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[22] C. Landi. The Rank Invariant Stability via Interleavings, volume 13 of
Association for Women in Mathematics Series, pages 1–10. 2018.

[23] Yongjin Lee, Senja D. Barthel, Pawe l D lotko, S. Mohamad Moosavi,
Kathryn Hess, and Berend Smit. Quantifying similarity of pore-geometry
in nanoporous materials. Nature Communications, 8(1), May 2017.

29

[24] Michael Lesnick and Matthew Wright. Interactive Visualization of 2-D
Persistence Modules. 2015. arXiv:1512.00180 [math.AT].

[25] Michael Lesnick and Matthew Wright. Computing minimal presentations
and bigraded betti numbers of 2-parameter persistent homology, 2020.

[26] Vanessa Robins. Computational topology at multiple resolutions: Founda-
tions and applications to fractals and dynamics. PhD thesis, University of
Colorado at Boulder, 2000.

[27] Sara Scaramuccia, Federico Iuricich, Leila De Floriani, and Claudia Landi.
Computing multiparameter persistent homology through a discrete Morse-
based approach. Comput. Geom., 89:101623, 19, 2020.

[28] Michael Sinhuber and Nicholas T. Ouellette. Phase coexistence in insect
swarms. Phys. Rev. Lett., 119:178003, Oct 2017.

[29] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology.
Discrete Comput. Geom., 33(2):249–274, Nov 2004.

Appendix

A Enumerating equivalence classes of lines

In this appendix we describe an algorithm to enumerate the equivalence classes
of lines with positive slope with respect to a set C in R

2. The results of this
section will be initially presented in a slightly more general form.

Consider a set P of n points in the real plane, not necessarily in general
position. We say that any division of P into two non-empty subsets via a line
not passing through any point of P is a cut in the plane. Note that a cut
determines an equivalence class of lines if and only if the cut can be realised by
a line of positive slope.

A.1 Cuts are determined by primitive pairs

A key observation is that we can associate a certain pair of points in P to any
given cut. We say that a pair of distinct points in P is primitive if no other
point of P lies in the interior of the segment joining the two points.

Proposition A.1. There is a bijection between the primitive pairs of points in
P and the cuts of P .

Proof. We give an explicit bijection, as follows: given a primitive pair of points
in P , we can rotate the line joining the two points clockwise by a small amount,
around the midpoint of the segment. It is possible to choose a small enough
angle so that this rotated line does not pass through any point of P . Moreover,
the two original points lie on opposite sides of this line, and so this line defines
a cut.

30

L

a

A

B

~v

Figure 9: Choosing the initial center of rotation a

Let us now prove that to every cut we can associate a pair of points as above.
Let {A,B} be a cut, where A and B are non-empty disjoint subsets of P with
P = A ∪B. We can represent this cut by a dividing line L.

Now fix a direction ~v orthogonal to L. Translate L along ~v until it hits at
least one point of P for the first time. Let H be the set of points that L hits.
If H has only one element, set a to be the unique element of H . If H has more
than one element, then set a to be the one with the following property: for
any other point a1 ∈ H , the dot product of the vector ~v with the vector −→aa1 is
positive. In other words, if we consider ~v to be the positive direction along the
x-axis, then a is the point with the minimum y-coordinate (see Figure 9).

Note that until the line hits a, it still defines the same cut. Without loss
of generality, assume that a ∈ A. Taking a to be the centre of rotation, rotate
the line L counter-clockwise until it hits another point of P . Note that the line
defines a cut of all points of P other than those on this line, and it is the same
cut except for these points.

If the line simultaneously hits multiple points, then exactly one of the fol-
lowing is true of these points: they all points lie in A, they all lie in B, or they
include both points in A and in B. In the third case, a lies between the rest
of the points in A and those in B on the line. Now we have an algorithm to
generate the primitive pair a, b for the cut L, as follows.

1. If at least one point hit lies in B, set b to be the point of B hit by the line
that is closest to a, as shown in Figure 10 (Left).

In this case, rotating the line ab clockwise around the midpoint of the
segment ab gets us back the original cut. This is because the line yields
the original cut excluding the points of P that lie on it, and therefore
rotating it slightly clockwise restores these points to the correct subsets
(either A or B). We are done.

2. If all points hit lie in A, reset the center of rotation to be the point of A hit
by the line that is farthest away from a as in Figure 10 (Right). Rename

31

a

A

b

B

a

A

new center of rotation

B

Figure 10: Left: Rotating L around a will hit at least one point in B. Right:
Rotating L around a hits only points in A.

this point as a. Continue to rotate the line counter-clockwise around the
new centre of rotation until it hits another point of P , and repeat the
above steps until the algorithm terminates.

The algorithm terminates when the rotating line hits a point of B. This
always happens, for the following reason. As the line makes a full rotation
around the convex hull of A, it sweeps through the entire plane except for the
convex hull of A, while B is a non-empty set outside the convex hull of A.

Remark A.2. There is a similar, counter-clockwise, bijection between cuts and
primitive pairs: rotate a line segment joining a primitive pair by a small amount
counter-clockwise. Thus each cut corresponds to a “clockwise primitive pair”,
and another “counter-clockwise primitive pair”. These pairs are distinct unless
all points of P lie on a single line. Correspondingly, there is a counter-clockwise
version of the algorithm explained in the previous proposition (see Figure 11).
We use this fact in the next section.

A.2 Achieving positive slope

We have determined that every primitive pair of points in P determines a cut by
rotating the line segment through this pair slightly clockwise about the midpoint
of the segment. This is the clockwise primitive pair associated to this cut.
Similarly, every primitive pair of points determines another cut by rotating the
line segment through this pair slightly counter-clockwise around the midpoint of
the segment. This is the counter-clockwise primitive pair associated to this cut.
These are shown in Figure 11. The clockwise and counter-clockwise primitive
pairs associated to any cut can be found by the algorithm in the previous section,
and its variant explained in Remark A.2 respectively. We now tackle the problem

32

a1

a2

b2

b1

A

B

a1 = a2

b1

b2

B

A

Figure 11: The clockwise and counter-clockwise primitive pairs associated to
the cut {A,B}. The pair (a1, b1) is the clockwise primitive pair and (a2, b2) is
the counter-clockwise primitive pair.

of determining whether such a cut can be defined by a line of positive slope.
The answer is given by Algorithm 1.

We will need some preparatory lemmas to prove the correctness of the algo-
rithm. We use the same setup for all of these lemmas, as follows. Let (a1, b1)
and (a2, b2) be the clockwise and anti-clockwise primitive pairs respectively for
a cut {A,B}. It may be the case that either a1 = a2 or b1 = b2, but we suppose
that not both are true. This supposition is true unless all points in P lie on a
line.

Let p be the intersection point of the segments a1b1 and a2b2. Note that p
must exist, for the following reason. If all four points are distinct, then a2 and
b2 lie on opposite sides of the line a1b1, and so the segments intersect somewhere
in their interiors. Otherwise, if a1 = a2 (resp. b1 = b2), then p = a1 = a2 (resp.
p = b1 = b2).

Lemma A.3. Suppose that the four points a1, a2, b1, b2 are distinct. If we start
at the line a1b1 and rotate clockwise around p until we hit a2b2, every interme-
diate line defines the cut {A,B}.

Proof. Let L1 be the line a1b1 and L2 be the line a2b2. Note that each of the
two lines has a well-defined “A” side and a well-defined “B” side: the side of
the line on which the remaining points of A lie is the “A” side, and the side on
which the remaining points of B lie is the “B” side.

The lines L1 and L2 cut up the plane into four open cones. We can label
these cones as CAA, CAB , CBB, CBA, where for example CBA is the intersection
of the “B” side of L1 with the “A” side of L2. The cones CAB and CBA contain
no points of P . This is precisely because these cones lie on the “A” side of one
of the lines and on the “B” side of the other. Moreover, their closures only
intersect at the point p.

33

Algorithm 1 An algorithm to determine whether a cut can be obtained by a
line of positive slope.

1: Let (a1, b1) and (a2, b2) be the clockwise and anti-clockwise primitive pairs
respectively for a cut {A,B}.

2: Let m1 and m2 be the slopes of the lines a1b1 and a2b2 respectively.
3: if a1 = b1 and a2 = b2 then
4: return true
5: end if
6: if 0 < m1 ≤ ∞ then
7: return true
8: else if 0 ≤ m2 < ∞ then
9: return true

10: else
11: We have −∞ < m1 ≤ 0 and −∞ ≤ m2 < 0.
12: if m1 < m2 then
13: return true
14: else
15: return false
16: end if
17: end if

It is clear that any line rotated clockwise around p starting from L1 until we
hit L2, excluding L1 and L2 itself, lies completely in the set CAB ∪ CBA ∪ {p}
and has a1 on its “A” side and b1 on its “B” side. So any such line continues
to define the same cut {A,B}.

Lemma A.4. Suppose that a1 = a2. If we start at the line a1b1 and rotate
clockwise around a1 = a2 until we hit a1b2 keeping track of the trace of b1 under
this rotation, then every intermediate line, except for a1b2 itself, defines the cut
{A,B} after a sufficiently small clockwise rotation about the midpoint between
a1 and the trace of b1.

Proof. As in the proof of Lemma A.3, let L1 be the line a1b1 and L2 be the
line a1b2, and notice that L1 and L2 cut up the plane into four open cones
CAA, CAB, CBB , CBA. As in the proof of Lemma A.3, the cones CAB and CBA

contain no points of P and their closures only intersect in the point of intersec-
tion of L1 and L2, which is a1 in this case.

It is clear that any line rotated clockwise around a1 starting from L1 until we
hit L2, excluding L1 and L2 itself, lies completely in the set CAB ∪CBA ∪ {a1}
and has b1 on its “B” side, so defines the cut {A,B} excluding a1. A sufficiently
small clockwise rotation of such a line about the midpoint between a1 and the
trace of b1 moves a to its “A” side without crossing any other points in P , so
the resulting line indeed defines the cut {A,B}.

34

Lemma A.5. Let S be the set of possible slopes of lines obtained by starting at
the line a1b1 and rotating clockwise through p until we hit the line a2b2, excluding
the slopes of the lines a1b1 and a2b2 themselves. Then the slope of any line L
that defines the same cut {A,B} lies in S.

Proof. For the proof of this lemma, the four points a1, a2, b1, b2 need not all
be distinct. First note that if L is any line defining the cut {A,B}, then it
intersects the interiors of the segments a1b2 and a2b1. This is precisely because
{a1, a2} and {b1, b2} lie on opposite sides of L.

Now suppose L is any line that intersects the interiors of the segments a1b2
and a2b1. These are two opposite sides of the (possibly degenerate) quadrilateral
a1a2b1b2. Therefore L must also intersect the interiors of the diagonals of this
(possibly degenerate) quadrilateral, namely the segments a1b1 and a2b2. In
particular, because L intersects both a1b1 and a2b2, it cannot have slope equal
to either m1 or m2.

The set of possible slopes of lines in the plane can be identified with the real
projective line, by noting that slopes can lie between [−∞,∞] with ∞ = −∞.
We now have a continuous map

a1b2 × a2b1 → RP
1, (5)

defined by mapping an ordered pair of points to the slope of the line joining
the two points. By the previous argument, the image of this map lies in RP

1 \
{m1,m2}, which has two connected components. Since the domain is connected,
the image of the map must lie in exactly one of the connected components.

The set S is precisely one of the two connected components: we start at m1,
rotate clockwise until we hit m2. The other connected component is obtained
by rotating counter-clockwise starting at m1 until we hit m2.

We already know by either Lemma A.3 or Lemma A.4 (depending on whether
or not the four points a1, a2, b1, b2 are distinct) that there are points in the image
of the map in Equation 5 that lie in S. By connectedness, all lines that intersect
the interiors of a1b2 and a2b1 have slopes that lie in S. In particular, all lines
that define the same cut {A,B} have slopes that lie in S.

Now we can prove the correctness of the algorithm.

Proposition A.6. Algorithm 1 correctly determines whether a cut can be ob-
tained by a line of positive slope.

Proof. Recall that (a1, b1) and (a2, b2) are the clockwise and anti-clockwise prim-
itive pairs respectively for a cut {A,B}. Recall that m1 and m2 are the slopes
of the lines a1b1 and a2b2 respectively. We treat each step of the algorithm in
order.

First, a1 = a2 and b1 = b2 if and only if all points of P lie on a single line.
In this case it is clearly always possible to achieve any cut by a line of positive
slope. Now assume that not all points of P lie on a single line, which implies
that either a1 6= a2 or b1 6= b2. This is the setting of the previous lemmas.

35

If 0 < m1 ≤ ∞, then a small clockwise rotation of the line a1b1 has positive
slope. Since the rotated line determines the desired cut {A,B}, we are done.
Similarly, if 0 ≤ m2 < ∞, then a small counter-clockwise rotation of the line
a2b2 has positive slope. Since the rotated line determines the desired cut {A,B},
we are done.

Now suppose that −∞ < m1 ≤ 0 and −∞ ≤ m2 < 0. Let p be the
intersection point of a1b1 and a2b2. Let S be the set of possible slopes of lines
obtained by starting at the line a1b1 and rotating clockwise through p until we
hit the line a2b2.

Suppose first that −∞ < m1 < m2 < 0. As we sweep clockwise from a1b1,
we begin at m1, decrease slope until we hit a vertical line with slope −∞ = ∞,
and then decrease again from ∞ until we cross 0 down to m2. In particular, at
least one of the intermediate lines has positive slope. If the points a1, a2, b1, b2
are all distinct, then by Lemma A.3 we have a line of positive slope that gives
the cut {A,B}. If two of the four points are equal, then Lemma A.4 states that
a sufficiently small clockwise rotation of one of the intermediate lines (which
will also have positive slope) gives the cut {A,B}.

Now suppose that m1 ≥ m2. In this case, the set S consists only of negative
numbers: these are the slopes starting from m1 and decreasing down to m2.
By Lemma A.5, we see that there is no line of positive slope that defines this
cut.

A.3 Cuts through a fixed point

In order to address equivalence classes of lines that pass through a given point
c of C, we now say that a division of a non-empty set of points P of the plane,
with c /∈ P , into two disjoint subsets A and B, of which at most one can be
empty, via a line passing through the given point c and disjoint from P , is a
c-cut of P . Reciprocally, we say that a line through c and a point of P is a
c-primitive line of P .

Proposition A.7. There is a bijection between the c-primitive lines of P and
the c-cuts of P .

Proof. We construct an explicit bijection, called the clockwise bijection, as fol-
lows. Given a c-primitive line of P , we can rotate this line clockwise by a small
amount, around c, so that this rotated line does not pass through any point of
P . This line defines a c-cut. Vice versa, with every c-cut of P we can associate
a c-primitive line by rotating the line realing the c-cut counter-clockwise until
it hits some point of P , which exists because P is non-empty. Note that by a
completely symmetric argument we also have a counter-clockwise bijection.

We have determined that any c-cut L of P can be determined by rotating
both a c-primitive line L1 clockwise and a c-primitive line L2 counter-clockwise.
Let m1 and m2 be the slopes of L1 and L2, respectively. In the case m1 = m2,
because L1 and L2 both pass though c, we have L1 = L2. In this case all points

36

of P belong to L1 and positive slope can be achieved by rotation around c for
every value of m1.

In the case when m1 6= m2, Algorithm 1 applied to c-primitive lines instead
of primitive pairs of points achieves the goal. Indeed, again, L1 and L2 have a
well defined A-side and B-side, and L − {c} is contained in CAB ∪ CBA. Then
the argument follows as in Proposition A.6.

A.4 Retrieving representatives lines

With reference to the equivalence relation on lines defined by their reciprocal
position with respect to the set C of critical values and their least upper bounds
as given in Definition 3.8, our goal is to retrieve a representative line with
positive slope for each possible equivalence class. Recall from Lemma 3.10 that
two lines belong to the same equivalence class with respect to C if and only if
they hit the positive cone of each point of C at the same facet.

There are three possible situations for lines in the same class: (i) There is
only one line in the equivalence class passing through two points c and c′ of C;
(ii) the lines in the considered equivalence class contain exactly one point of C,
say c; (iii) the lines in the considered equivalence class do not contain any point
of C.

Case (i) can be easily solved by taking lines through all possible pairs of
distinct points c and c′ in C, provided that c � c′, paying attention to not
taking the same line multiple times if there are more than two points on the
same line.

Case (ii). In this case, each such line partitions C − {c} into two subsets A
and B. For each equivalence class of lines for which A and B are both empty,
c is the only point of c, so there is only one such equivalence class and any line
through c with positive slope is a representative of it. In the case when at least
one between A and B are non-empty, we can obtain a representative line by
applying the algorithm presented in Subsection A.2 as explained in Subsection
A.3. Note that since C is closed under least upper bound, the case where
−∞ < m1 < m2 < 0 (line 12 in Algorithm 1) cannot occur.

Case (iii). In this case, each such line partitions C into two subsets A and B.
For each equivalence class of lines for which A and B are both non-empty, we
can obtain a representative by applying the algorithm presented in Subsection
A.2. For the case when either A or B is empty, the other one is necessarily
equal to C. There are exactly two such equivalence classes of lines depending
on whether the lines hit all the positive cones of points of C at their horizontal or
vertical facets. As a representative of the first class, we can take a line parallel to
the diagonal of R2 passing to a point with abscissa greater than the maximum
abscissa of points of C, and ordinate smaller than the minimum ordinate of
points of C. Symmetrically, as a representative of the second class, we can take
a line parallel to the diagonal of R2 passing to a point with abscissa smaller than
the minimum abscissa of points of C, and ordinate greater than the maximum
ordinate of points of C.

37

	1 Notation and Definitions
	2 Computing the Rank Invariant
	3 Computing the persistence space
	3.1 Restriction of a persistence module to lines
	3.2 Critical values determine the persistence space
	3.3 Grouping fibers of persistence spaces by equivalence

	4 Conclusions and discussion
	A Enumerating equivalence classes of lines
	A.1 Cuts are determined by primitive pairs
	A.2 Achieving positive slope
	A.3 Cuts through a fixed point
	A.4 Retrieving representatives lines

