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ABSTRACT

A detailed analysis of the structure of turbulence in a temporal planar turbulent jet is reported. Instantaneous snapshots of the flow and
three-dimensional spatial correlation functions are considered. It is found that the flow is characterized by large-scale spanwise vortices
whose motion is felt in the entire flow field. Superimposed to this large-scale motion, a hierarchy of turbulent structures is present. The most
coherent ones take the form of quasi-streamwise vortices and high and low streamwise velocity streaks. The topology of these interacting
structures is analyzed by quantitatively addressing their shape and size in the different flow regions. Such information is recognized to be rel-
evant for a structural description of the otherwise disorganized motion in turbulent free-shear flows and can be used for the assessment of
models based on coherent structure assumptions. Finally, the resulting scenario provides a phenomenological description of the elementary
processes at the basis of turbulence in free-shear flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085091

I. INTRODUCTION

Research on turbulence generally aims at providing a description
of the phenomenon that is simpler than that given by the Navier–
Stokes equations. To this purpose, almost every approach to turbu-
lence is essentially based on a decomposition of the turbulent field.
Historically, famous examples are the Reynolds decomposition in a
mean and fluctuating flow and the spectral decomposition in a hierar-
chy of scales of motion. More recently, research efforts often rely on
the decomposition of turbulence in random processes and coherent
structures.1 The interest is in describing turbulence in terms of a small
number of relevant elementary processes.

In the present work, we aim at identifying and characterizing
such relevant structures of turbulence in free-shear flows by using
direct numerical simulation (DNS) data of a temporal planar turbulent
jet. In the context of free-shear flows, the assessment of the statistically
relevant structure of turbulence2–7 is of importance for a number of
scientific and applicative issues. An example is the study of turbulent
entrainment.8,9 It is well-known that entrainment is not only diffusion
of vorticity at the turbulent interface. Indeed, it is widely accepted that
entrainment is also the result of engulfment processes of irrotational
fluid and, hence, of large-scale coherent motions.10–12 In particular,
the anisotropy induced by large-scale structures was found in
Cimarelli and Boga13 to represent a fundamental phenomenon for the

effective sustainment of the entrainment and mixing processes.
Another example is the modeling of the interaction mechanisms
between large and small scales in a context of Large Eddy
Simulation.14–16 As shown in da Silva and Mètais,17 the most intense
energy exchanges between large and small scales are related to the
presence of coherent structures in the flow, such as spanwise and lon-
gitudinal vortices. From an application point of view, the identification
of the coherent structure of turbulence is highly relevant for flow con-
trol. A structural representation of turbulence is indeed known to be
effective in identifying the action mechanisms to manipulate specific
turbulence properties.18,19

The study of the structure of turbulence in free-shear flows dates
back some time ago. Jim�enez20 showed that superimposed on the pri-
mary spanwise vortex structure of plane mixing layers, a second insta-
bility develops in the form of an undulation of the primary vortex
core. This picture was later refined by Bernal and Roshko,21 where this
deformation was shown to evolve in longitudinal vortex structures, see
also Liepmann and Gharib,4 Nogueira et al.22 The structure of turbu-
lence in free-shear layers has been also analyzed in flows with separa-
tion. In this context, it is shown that the flow first develops spanwise
vortices as a result of the two-dimensional shear instability.
Perturbations of the flow field lead to a lift up and stretching of the pri-
mary spanwise vortices, thus forming hairpin-like structures23 that by
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flowing downstream undergo stretching giving rise to streamwise vor-
tices.24 As shown by Lasheras and Choi,25 streamwise vortices are then
found to induce entrainment and streamwise velocity streaks. More
recently, this picture has been quantitatively assessed in Cimarelli
et al.26 by means of a statistical analysis of three-dimensional spatial
velocity correlation.

The present work is devoted to the statistical characterization of
the structure of turbulence in the plane shear layers developed in a
temporal jet. We start by reporting the numerical settings adopted for
the direct numerical simulation in Sec. IIA and by briefly describing
the main flow features in Sec. II B. Important considerations on the
domain size are reported in Sec. IIC. The structure of turbulence is
analyzed first in Sec. III by addressing the instantaneous flow topology.
Then, in Sec. V, a characterization of the statistically relevant flow
structures is reported by means of a detailed analysis of the three-
dimensional spatial velocity correlation functions that in turn are
defined in Sec. IV. The work is closed by final remarks in Sec. VI.

II. TURBULENT TEMPORAL JET
A. Direct numerical simulation

In the present work, we consider direct numerical simulation
(DNS) data of a temporal plane jet performed by solving the Navier–
Stokes equations coupled with the evolution equation of a passive scalar,

@ui
@xi
¼ 0;

@ui
@t
þ
@uiuj
@xj
¼ � @p

@xi
þ 1
Re

@2ui
@xj@xj

;

@h
@t
þ @huj
@xj
¼ 1

ReSc
@2h
@xj@xj

:

(1)

Equation (1) is written in a dimensionless form by using the initial jet
half-widthH, the initial jet centerline velocity U0 and the initial center-
line scalar concentration H0. Here, Re ¼ U0H=� is the Reynolds
number, where � is the kinematic viscosity while Sc ¼ �=a is the
Schmidt number where a is the diffusivity of the scalar. The indices
i¼ 1, 2, 3 correspond to the streamwise, spanwise, and cross-flow
velocities (u, v, w) and directions (x, y, z), respectively. The numerical
method used to solve the problem is based on a finite volume discreti-
zation of the governing equations, see Craske and van Reeuwijk27 for
details. The symmetry-preserving method of Verstappen and Veldman28

is employed, thus allowing for mass, momentum, and energy conser-
vation and for a fourth-order accuracy. To advance the solution in
time a third-order variable-time step, Adams–Bashforth scheme is
finally used.

Periodic boundary conditions are imposed in the streamwise and
spanwise directions, free-slip on the cross-flow boundaries. The initial
condition is a fluid layer that is quiescent and characterized by a null
concentration of the scalar except for a thin region �H < z < H
where the streamwise velocity and the scalar are non-zero and homo-
geneously distributed in the streamwise and spanwise directions,

uðx; y; z; 0Þ ¼ U0

2
1þ tanh

H � jzj
2r0

� �� �
;

hðx; y; z; 0Þ ¼ H0

2
1þ tanh

H � jzj
2r0

� �� �
;

(2)

where r0 ¼ 2H=35 is the initial momentum thickness. In order to
facilitate a rapid transition to turbulence, a perturbation is superim-
posed at the initial conditions (2) consisting in a uniform random
noise with an intensity that is 4% the maximum initial velocity.

The flow problem considered here is for Re¼ 1000 and Sc¼ 1.
The computational domain is a cuboid of size 96H � 96H � 48H and
has been discretized by using 2304� 2304� 960 uniformly spaced
grid points. By using the smallest value of the Kolmogorov scale gmin

obtained at the centerline of the jet for t¼ 40, the corresponding reso-
lution is Dx ¼ Dy � 1:66gmin and Dz � 2gmin. By considering that
the Kolmogorov scale increases from this minimum in time as

ffiffi
t
p

and
with the cross-flow position z since dissipation is maximum at the cen-
terline, the resolution adopted is considered appropriate for a DNS.
Finally, a variable time step was used for the temporal integration in
order to obtain a condition CFL< 0.3. The total integration time for
each simulation is t¼ 160.

Starting from the same initial conditions (2) except for the per-
turbation superimposed, three simulations have been performed in
order to provide three statistically independent samples for the ensem-
ble average. In fact, average quantities denoted as h�i are computed by
performing an ensemble average between the different flow realiza-
tions, a spatial average in the statistically homogeneous streamwise
and spanwise directions and by taking advantage of the statistical sym-
metry of the flow in the cross-flow direction. Accordingly, the average
of a generic quantity b is defined as

hbiðz; tÞ ¼ 1
N

XN
i¼1

1
2

1
LxLy

ð ð
bðx; y; z; tÞ dxdy

�

6
1

LxLy

ð ð
bðx; y;�z; tÞ dxdy

�
; (3)

where the sum and difference of the two integrals are imposed by the
symmetric/antisymmetric nature of the considered variable, Lx and Ly
are the domain dimensions in the homogenous directions, and N¼ 3
is the number of independent flow samples used.

In what follows, the customary Reynolds decomposition of the
flow in a mean and fluctuating field will be adopted, i.e., ui ¼ Ui þ u0i
and h ¼ T þ h0. In order to take into account the self-similar behavior
of the flow, variables will be presented dimensionless by using the
mean centerline velocityUclðtÞ ¼ Uð0; tÞ and the jet half-width hXðtÞ,
defined as the jet centerline distance where the mean enstrophy profile
reaches 2% of its centerline value. The related non-dimensional flow
variables will be denoted with a superscript �.

B. Main flow features

As shown in van Reeuwijk and Holzner29 and da Silva and
Pereira,30 after an initial transient when the system develops turbu-
lence, the flow approaches a self-similar regime while decaying. This
dynamic equilibrium is characterized by an increase in the jet length
scales as�

ffiffi
t
p

and by a decrease in the jet velocity scales as�1=
ffiffi
t
p

. As
shown in Cimarelli et al.31 where the same data-set is used, all the flow
observables are found to follow this self-similar scaling for t> 60.
Accordingly, flow statistics are here reported for t¼ 120, thus allowing
us to characterize the flow structure in the self-similar regime. A con-
stant Taylor Reynolds number, Rek ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2kcl=3

p
kcl=� ¼ 50, is also

achieved in the self-similar regime, where kcl is the centerline turbulent
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kinetic energy and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�kcl=ecl

p
is the Taylor microscale with ecl

the centerline turbulent dissipation. This intermediate value of the
Reynolds number is probably not high enough to observe a complete
small-scale mixing.32–34 It is, however, sufficiently high to observe and
study the large-scale coherent structures of the flow and their interac-
tions as demonstrated in the rest of the work.

In Fig. 1(a), the mean velocity and turbulent kinetic energy pro-
files, U�ðzÞ and k�ðzÞ, respectively, are shown. The inner part of the
jet is characterized by high levels of velocity and turbulent kinetic
energy. Moving away from the jet centerline, the mean velocity
decreases while the turbulent kinetic energy increases reaching a maxi-
mum for z� � 0:3. This region of the flow is also characterized by the
highest values of mean shear and, as shown in Cimarelli et al.,31 of tur-
bulence production. By further increasing the jet centerline distance,
both the mean shear and the turbulent kinetic energy decrease asymp-
totically reaching zero values in the external region of the jet.

The one-dimensional streamwise turbulent spectrum evaluated
in the production region at z� ¼ 0:35 is shown in Fig. 1(b). As shown
in the main plot, the spectrum of fluctuations exhibits a small inertial

range, less than one decade, where the power law k�5=3x is followed.
This range takes origin from very large length scales of the order of
k�x ¼ 2p=k�x � 1:5 and is followed by a viscosity-dominated scaling
for k�x < 0:2. As shown in the inset panel of Fig. 1(b), the premulti-
plied streamwise turbulent spectrum highlights that the length scale
k�x � 1:5 origin of the inertial range scaling is also the most energetic
one. It is worth noting that this relevant length scale is larger than the
jet half-width hX, thus highlighting the relevance of using large com-
putational domains in order to correctly capture the turbulence
dynamics of temporal jets. This aspect is further addressed in Sec. IIC.

C. Effect of the domain size

The study of the topology of turbulence requires a detailed verifi-
cation of the influence of the numerical domain extent on the flow
structures. To address this issue, in the present section flow variables
will be presented dimensionless by using the initial jet half-width H
for lengths and the initial jet centerline velocity U0 for velocities, i.e.,
the numerically solved flow variables presented in Sec. IIA. Indeed, in
numerical simulations, H and U0 are prescribed with the initial condi-
tions and, hence, can be used to define a suitable dimensionless form
for the equations of motion and for the domain dimensions.

The computational domain used in the present work has dimen-
sions 96� 96� 48, see again Sec. IIA. This domain is significantly larger
than the 24� 24� 36 domain used in van Reeuwijk and Holzner29 and
even more than the 8� 8� 12 domain used in da Silva and Pereira.30

To verify the need of such a very large domain, we have performed two
additional simulations with the same numerical settings but different
domain lengths, specifically 24� 24� 36 and 72� 48� 36.

In Fig. 2, the instantaneous vorticity pattern of the simulations
with the larger and smaller domain is shown for t¼ 120. The simula-
tion with the larger domain (top plots) clearly highlights that the fine
scale of turbulence is superimposed to very-large motions. As better
shown in Sec. III, these motions induce large-scale meandering of the
turbulent jet region. On the contrary, the simulation with the smaller
domain (bottom plots) does not allow to reproduce such a large-scale
spatial modulation of the turbulent jet core. The spatial interaction
mechanisms between consecutive large-scale vortex motions cannot
be reproduced in the smaller domain. In this case, large-scale motions
emerge only through large-scale unsteadiness in time, thus, suppress-
ing the spatial instability mechanisms observed in the simulation with
the larger domain. On the contrary, the small scale motion does not
appear to be significantly affected by the domain size.

The suppression of large-scale mechanisms due to a limited
numerical domain extent strongly impacts the structure of the flow.
To analyze this issue, we consider the spatial correlation function of
streamwise, spanwise, and cross-flow velocity, Ruu, Rvv, and Rww,
respectively, evaluated at the jet centerline for t¼ 120. See Sec. IV for
the definition. As shown in Fig. 3, significant differences in terms of
correlation lengths and shapes by varying the domain size are present.
In particular, only the largest domain size appears to show a clear
decorrelation of the velocity field. Also the intermediate domain extent
is found to allow for a decorrelation of the velocity field with small dif-
ferences with respect to the behavior observed in the larger domain
extent. On the contrary, the smaller domain extent is found to produce
a substantially different large-scale flow. In particular, the streamwise
velocity fluctuations do not decorrelate in the streamwise direction
and shows an artificial positive peak for spanwise scales ry � 8.

FIG. 1. (a) Mean velocity and turbulent kinetic energy profiles, U�ðzÞ and k�ðzÞ,
respectively. The vertical lines denote the locations used for the analysis of the
three-dimensional spatial correlation function reported in Sec. V. (b) Streamwise tur-
bulent spectrum Ex�

kk evaluated at z� ¼ 0:35. The dashed line reports the k�5=3x
law. The inset panel shows the premultiplied streamwise turbulent spectrum k�x E

x�
kk

as a function of the wavelength k�x evaluated at the same position and time. The
vertical lines denote the value k�x ¼ 2p=k�x ¼ 1:5.
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Also the spanwise velocity fluctuations exhibit artificial negative and
positive peaks for streamwise scales rx � 3 and rx � 8, respectively,
and do not exhibit decorrelation both in the streamwise and spanwise
directions. Finally, the cross-flow fluctuations show an unnatural nega-
tive peak of correlation for spanwise scales ry � 7.

These results clearly highlight the need of using large domain
extents in order to capture the statistically relevant large-scale struc-
tures of the flow. In order to highlight the relevance of this information
for the common practice, let us recall that the smaller domain extent
analyzed here is the same used in van Reeuwijk and Holzner29 that is

FIG. 2. Instantaneous vorticity pattern x for the simulations with the larger (top) and smaller (bottom) domain extent evaluated at t¼ 120. The left plots show a y-plane view of
the spanwise vorticity, xy 2 ½�0:2; 0:2�. The right plots show a x-plane view of the streamwise vorticity, xx 2 ½�0:2; 0:2�.

FIG. 3. Spatial correlation functions evaluated at the jet centerline for t¼ 120 for the simulations with large (solid line), intermediate (dashed line), and small (dashed-dotted
line) domain. The spatial correlation is computed for the streamwise (left plots), spanwise (central plots), and cross-flow (right plots) velocity fluctuations, i.e., Ruu, Rvv, and
Rww, respectively. The spatial correlation is shown as a function of the streamwise separation r ¼ ðrx ; 0; 0Þ (top plots) and of the spanwise separation r ¼ ð0; ry ; 0Þ (bottom
plots).
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three times larger in each direction than that adopted in da Silva and
Pereira.30 Finally, let us emphasize that the use of very large domains
also allows to substantially improve the statistical convergence.

III. INSTANTANEOUS FLOW PATTERN

In this section, we further analyze the instantaneous structures of
the flow. Figure 4 shows iso-surfaces of the three-dimensional swirl
x � u=juj of the temporal jet. A very complex pattern appears. As
highlighted by the inset, these swirling motions are predominantly
aligned with the axial direction. In particular, they appear to be super-
imposed on larger scale motions. As shown in Figs. 5(a) and 5(b), the
lateral and front views of the iso-contours of the scalar field highlight
that these large scale motions take the form of spanwise rolls (lateral
view) and of plume-like structures (front view). The common picture
of these large scale motions is the following. The flow first develops
spanwise vortex tubes as a result of a two-dimensional shear instabil-
ity. The strain field associated with this spanwise vortex pattern ampli-
fies flow field perturbations leading to the formation of vortex tubes
aligned with it (see the swirling motions reported in Fig. 4). In turn,
these predominantly streamwise vortices interact with the primary
spanwise vortices that created them inducing an undulation of their
axis of rotation.20 The lift-up of spanwise vortices within pairs of coun-
ter rotating streamwise vortices leads to the formation of spanwise
arranged array of mushroom-like structures, see panel 5(b), and, con-
sequently to high- and low-speed streamwise velocity streaks.21,25

Interestingly, the scalar field highlights that the mixing processes are
not able to fill the entire space even within the turbulent core. As
shown by the top views in Figs. 5(c) and 5(d), regions of zero concen-
tration of the scalar are observed also within the turbulent core.
Obviously, these regions of unmixed flow are more prevalent in the
outer regions of the jet.

IV. THREE-DIMENSIONAL SPATIAL CORRELATION
FUNCTIONS

The statistical signature of the previously described flow pattern
can be studied by means of two-point statistics, such as the velocity
correlation function in physical space. This observable allows us to
identify the statistically dominant three-dimensional structures of the

flow and to quantitatively assess their topology. For the symmetries of
the flow, the spatial correlation function for a generic quantity b can
be defined as

Rbbðrx; ry; rz; z; tÞ ¼
hb0ðx; y; z; tÞb0ðx þ rx; y þ ry; z þ rz; tÞi

hb0b0iðz; tÞ : (4)

Note that in inhomogeneous turbulence, the two-point correla-
tion function lacks an unique definition. The related technical details
are reported in the Appendix. Equation (4) highlights that the correla-
tion function, for a fixed time, is defined in a four-dimensional space
of separations ðrx; ry; rzÞ and positions (z). For each position (z)
within the flow, the spatial correlation function allows us to define the
lengths ðrx; ry; rzÞ of the statistically dominant coherent motions. Due
to statistical inhomogeneity in the cross-flow direction and to the pres-
ence of a mean flow in the streamwise direction, the three-
dimensional spatial correlation function (4) among the space of sepa-
rations is symmetric only in the ry-direction, i.e.,

Rbbðrx; ry; rz; z; tÞ ¼ Rbbðrx;�ry; rz; z; tÞ: (5)

The following analysis of the behavior of the three-dimensional
spatial correlation function allows us to describe the shape of statisti-
cally relevant flow structures. In order to give a more quantitative
description of their size, we will use the quantity ‘j defined as the max-
imum distance between points of a given three-dimensional correla-
tion iso-surface along the j direction and dj to denote the distance
between peaks of positive and negative correlation along the j direc-
tion. Accordingly, ‘j describes the size of fluctuating velocity structures
while dj both the distance between alternating fluctuating velocity
structures or the diameter of vortical structures.35

V. STATISTICALLY RELEVANT FLOW STRUCTURES

For reasons of compactness, the analysis of the three-
dimensional spatial correlation function of the velocity field is reported
in this section for four fixed reference z-locations. As shown in Fig.
1(a) with vertical lines, the selected locations have been chosen in
order to characterize the structures of the flow in the inner, produc-
tion, outer, and external regions of the jet, see Cimarelli et al.31 for a

FIG. 4. Iso-surface of swirl, x � u=juj ¼ 63:6 colored with streamwise velocity u for t¼ 120.
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description. In the following, these regions will be addressed
separately.

It is finally useful to recall that, as shown in Cimarelli et al.31 and
discussed in Secs. IIA and II B, the flow observables exhibit a clear
self-similar behavior for t> 60. For this reason, the following analysis
of the statistically relevant flow structures is reported in self-similar
units denoted with a superscript �, see their definition in Sec. IIA, and
for t¼ 120, so well within the self-similar regime. Accordingly, the
reported self-similar size and shape of the three-dimensional correla-
tion functions are expected to be time invariant.

A. Inner region

We start by considering the most relevant turbulent structures
populating the jet inner core by studying the behavior of the spatial
correlation function at z� ¼ 0. As shown in Fig. 6, the most relevant
feature of this region is given by the fact that the intensity of the nega-
tive peaks of the correlation function Ruu and Rvv is very weak, of the

order of 5%–7% the maximum value of correlation. Furthermore,
these negative peaks are at very large separations far exceeding the jet
half-width. Hence, we argue that no vortical structures nor streaky pat-
tern are statistically relevant in this region of the flow. On the contrary,
the spatial correlation function Rww shows a significant negative peak
of correlation in the streamwise direction of the order of the 17% of
the maximum correlation. This behavior is the statistical signature of
the large-scale spanwise vortices and will be further analyzed in Secs.
VB and VC.

Overall, the scenario described by the spatial correlation function
for the jet inner core is similar to isotropic turbulence. No turbulent
structures are detected, thus suggesting that turbulent vortices and
structures are randomly oriented in this region of the flow such as in
isotropic turbulence. The only exception is given by a large-scale signa-
ture given by the spanwise vortex structures related to the shear insta-
bility. Hence, we argue that randomly oriented turbulent eddies are
superimposed on this anisotropic large-scale motion without being
significantly modulated.

FIG. 5. Iso-contours of the scalar field at t¼ 120 evaluated for a fixed y-plane (a), x-plane (b) and for two fixed z-planes in the core of the jet (c) for z¼ 0 and in the outer
region of the jet (d) for z� ¼ 0:5.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045109 (2022); doi: 10.1063/5.0085091 34, 045109-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


B. Production region

We now consider the structure of turbulence in the production
region by considering the behavior of the spatial correlation function
at z� ¼ 0:35. As reported in Fig. 7, the spatial correlation function
Ruu shows the presence of high and low streamwise velocity fluctua-
tions alternated in the spanwise direction with a spacing d�y � 0:64.
The shape of these structures is elongated in the streamwise direc-
tion, ð‘�x; ‘�y ; ‘�zÞ � ð1:5; 0:7; 0:9Þ. As anticipated in Sec. III, stream-
wise velocity streaks are associated with the presence of quasi-
streamwise vortices, which lift up high velocity fluid. The presence of
these structures is unveiled by the behavior of the spatial correlation
function Rvv. Indeed, as shown in Fig. 7, Rvv highlights the presence
of vortical motions inclined with respect to the symmetry plane of
the jet with an angle u � �31	. These vortical structures have an
elongated shape whose principal axis are ðrs; ry; rgÞ. The size of these
structures is ð‘�s ; ‘�y ; ‘�gÞ � ð1:34; 0:92; 0:32Þ, and the diameter of the
corresponding vortical motion is d�g � 0:4. Contrary to Ruu and Rvv,
a completely different flow pattern induced by the large-scale span-
wise vortex structures is unveiled by the spatial correlation function
Rww. As shown in Fig. 7, the shape of these cross-flow structures is
elongated in the cross-flow direction, ð‘�x; ‘�y ; ‘�z Þ � ð0:7; 1:16; 1:52Þ,
while the diameter of the corresponding vortical motion is
d�x � 0:64. Hence, this vortical motion involves the entire jet region.
The strength of this motion cancels out the appearance of negative
peaks of correlation in the spanwise direction that we are expecting
to see as related to the previously observed inclined vortical motions.

This is probably due to the fact that the latter occurs at smaller scales
and, hence, is probably less intense with respect to the former.

Overall, we observe that in the production region quasi-
streamwise vortical structures inclined �31	 with respect to the sym-
metry plane of the jet exist and are associated with the appearance of a
streamwise velocity streak pattern. Considering that this region is also
characterized by high levels of mean shear, this structure of turbulence
is classically associated with turbulence production mechanisms. The
interactions between these structures are superimposed on a larger-
scale spanwise vortex motion. The clear matching of the spatial corre-
lation functions reported in Fig. 7 with those reported in Balamurugan
et al.36 for the case of a spatially evolving mixing layer actually suggests
a possible universality of the type of structures involved in the produc-
tion of turbulence in free shear flows.

C. Outer region

The structure of turbulence in the outer region at z� ¼ 0:82 is
similar to that observed in the production region, i.e., streamwise
velocity streaks and inclined vortical motions superimposed on a very-
large spanwise vortex motion. The main differences are the size of the
structures and their regions of influence. As reported in Fig. 8, the spa-
tial correlation function Ruu shows that the streaky pattern is not local-
ized at the same distance from the jet centerline. Streamwise
fluctuations in this region are correlated with streamwise fluctuations
with opposite sign at inner locations. As it will be shown in Sec. VD,

FIG. 6. Three-dimensional spatial correlation function evaluated in the inner region, z� ¼ 0. Left panels (a)–(c): Ruu. Central panels (d)–(f): Rvv. Right panels (g)–(i): Rww. The
top panels (a), (d), and (g) show a three-dimensional view of the ðr�x ; r�y ; r�z Þ-space by means of two iso-surfaces of positive and negative correlation, i.e., for Rbb ¼ 0:3Rmax

bb

(red) and for Rbb ¼ 0:7Rmin
bb (blue), respectively. Two-dimensional section of the iso-levels of velocity correlations for r�x ¼ 0, central panels (b), (e), and (h), and for r�y ¼ 0,

bottom panels (c), (f), and (i). Solid lines represent positive values, while dashed lines denote negative values.
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this behavior is associated with the cross-flow mushroom-like shape
taken by the very-large spanwise vortex structures that, in turn, is due
to the lift-up phenomenon induced by pairs of counter-rotating quasi-
streamwise vortices. On the other hand, the spatial correlation func-
tion Rvv shows that the inclined quasi-streamwise vortices in the outer
region have a larger inclination, u � �45	, and a larger size,
d�g � 0:58. The spatial correlation function Rww is again dominated by
the signature of the spanwise vortex motions. The main difference
with respect to the production and inner region is given by the fact
that the width of the statistically relevant cross-flow fluctuations is
larger and that are correlated with cross-flow fluctuations of opposite
sign at inner locations.

The overall scenario of the outer region is similar to that reported
in the production region, i.e., inclined vortical structures and stream-
wise velocity streaks superimposed on a larger-scale spanwise vortical
motion. The main difference is given solely to the larger size and incli-
nation of these turbulent structures. We argue that the larger inclina-
tion is given by the fact that in this region the direction of strain
induced by pairs of spanwise vortices is more inclined than in the pro-
duction region. The intensity of the production mechanisms in the
outer region are smaller than in the production region despite the
structures of turbulence are almost the same. This is probably due to
the lower mean shear levels reached in the outer region.

D. External region

We consider here the structure of turbulence in the external
region of the jet at z� ¼ 1:17. As shown in Fig. 9, the spatial

correlation function Ruu does not show any more a streaky pattern for
the streamwise velocity fluctuations. Streamwise fluctuations are very
wide structures ‘�y � 3:5 and are correlated with streamwise fluctua-
tions of opposite sign at inner locations, thus highlighting that in the
external region of the flow, the streamwise velocity field is actually
dominated by the spanwise vortex motion resulting from the shear
instability of the flow. The inclination of these streamwise velocity
structures with respect to the symmetry plane of the jet is u � 38	.
Interestingly, Ruu exhibits a mushroom-like shape that appears to be
the result of a lift-up phenomenon of the very-large spanwise vortex
motion of the jet. We argue that the lift-up of very-large spanwise vor-
tices is induced by the action of pairs of counter-rotating quasi stream-
wise vortices populating the inner regions of the flow as shown in
Secs. VB and VC. Accordingly, the mushroom-like shape can be
clearly associated with the interaction of the flow motion induced by
quasi-streamwise vortices with that of the very-large spanwise vortices.

All the spatial correlation functions show a peak of correlation at
inner locations with respect to the detection point, i.e., for negative val-
ues of rz. This shift is particularly large for the spanwise and cross-flow
turbulent structures, Rvv and Rww, respectively. In particular, we mea-
sure that the peak of correlation occurs at ðz þ rzÞ� � 0:64 and
ðz þ rzÞ� � 0:52 for Rvv and Rww, respectively. Hence, the spanwise
and cross-flow velocity fluctuations in the external region are not a
result of local turbulent structures but are given by the motions
induced by turbulent structures centered at inner locations. In particu-
lar, the spanwise velocity motion in the external region appears as the
spanwise velocity spreading induced by the inclined vortical motions
populating the outer and production regions. On the other hand, the

FIG. 7. Three-dimensional spatial correlation function evaluated in the production region, z� ¼ 0:35. Left panels (a)–(c): Ruu. Central panels (d)–(f): Rvv. Right panels (g)–(i):
Rww. The top panels (a), (d), and (g) show a three-dimensional view of the ðr�x ; r�y ; r�z Þ-space by means of two iso-surfaces of positive and negative correlation, i.e., for
Rbb ¼ 0:2Rmax

bb (red) and for Rbb ¼ 0:8Rmin
bb (blue), respectively. Two-dimensional section of the iso-levels of velocity correlations for r�x ¼ 0, central panels (b), (e), and (h),

and for r�y ¼ 0, bottom panels (c), (f), and (i). Solid lines represent positive values, while dashed lines denote negative values.
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FIG. 8. Three-dimensional spatial correlation function evaluated in the outer region, z� ¼ 0:82. Left panels (a)–(c): Ruu. Central panels (d)–(f): Rvv. Right panels (g)–(i): Rww.
The top panels (a), (d), and (g) show a three-dimensional view of the ðr�x ; r�y ; r�z Þ-space by means of two iso-surfaces of positive and negative correlation, i.e., for

Rbb ¼ 0:2Rmax
bb (red) and for Rbb ¼ 0:5Rmin

bb (blue), respectively. Two-dimensional section of the iso-levels of velocity correlations for r�x ¼ 0, central panels (b), (e), and (h),
and for r�y ¼ 0, bottom panels (c), (f), and (i). Solid lines represent positive values while dashed lines denote negative values.

FIG. 9. Three-dimensional spatial correlation function evaluated in the external region, z� ¼ 1:17. Left panels (a)–(c): Ruu. Central panels (d)–(f): Rvv. Right panels (g)–(i):
Rww. The top panels (a), (d), and (g) show a three-dimensional view of the ðr�x ; r�y ; r�z Þ-space by means of two iso-surfaces of positive and negative correlation, i.e., for

Rbb ¼ 0:5Rmax
bb (red) and for Rbb ¼ 0:5Rmin

bb (blue), respectively. Two-dimensional section of the iso-levels of velocity correlations for r�x ¼ 0, central panels (b), (e), and (h),
and for r�y ¼ 0, bottom panels (c), (f), and (i). Solid lines represent positive values while dashed lines denote negative values.
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cross-flow velocity motion in the external region appears as a result of
the flow circulation induced by the spanwise vortex rolls.

Overall, it appears that the motions in the external regions of the
jet are induced by the flow circulation generated by turbulent struc-
tures populating inner locations. Indeed, the peaks of correlation are
reached for significantly negative cross-flow separations rz < 0. In
particular, the streamwise and cross-flow fluctuations in the outer
region are the result of the interaction of very-large spanwise vortices
with quasi-streamwise vortices populating the inner jet regions.
Accordingly, the streamwise fluctuations have a mushroom-like shape
‘�y � 3:5 wide and u � 38	 inclined. This is in agreement with the
presence of lift up phenomena of the spanwise vortex rolls that is
induced by the flow circulation of pairs of quasi-streamwise vortices
whose influence is felt also in the external region of the jet as shown by
the spatial correlation function of spanwise velocity.

VI. CONCLUDING REMARKS

Based on direct numerical simulation data of a temporal planar
turbulent jet, the structure of turbulence in free-shear flows was ana-
lyzed in detail. The instantaneous flow pattern revealed the presence
of large-scale motions induced by the flow instability and of small-
scale turbulent structures superimposed on it. To characterize the
topology of the statistically relevant structures populating the different
flow regions, a study of the three-dimensional spatial correlation func-
tion was performed. The presence of large spanwise vortices was
highlighted. The induced motion is found to be felt in the entire flow
field, especially for the cross-flow fluctuations. Superimposed to this
large-scale motion, the presence of quasi-streamwise vortices is
unveiled in the production and outer regions of the jet. The length of
these vortices is ‘�s � 1:4 while their inclination and diameter is found
to increase by moving from the core to the outer regions of the jet. In
particular, we measure, u � �31	 and d�g � 0:4 at z� ¼ 0:35 and
u � �45	 and d�g � 0:58 at z� ¼ 0:82. The flow motion induced by
pairs of quasi-streamwise vortices is responsible for the lift-up of the
large-scale spanwise rolls and for their deformation forming
mushroom-like flow structures flanked from below by streamwise
velocity streaks. To summarize, the flow topology can be schematized
as in Fig. 10. It consists of a spanwise arranged array of intense span-
wise vortices whose diameter is d�x � 0:64 and whose width changes
with the jet centerline distance from ‘�y � 1:1 to ‘�y � 3:5 due to their
cross-sectional mushroom-like shape. These spanwise vortices are
flanked from below by counter-rotating pairs of quasi-streamwise vor-
tices that created them. This hairpin-like flow circulation is in turn
responsible for the generation of high and low streamwise velocity
streaks whose length and width are ‘�x � 1:5 and ‘�y � 0:7.

In conclusion, the present statistical analysis is shown to provide a
rigorous description of the coherent structures populating free-shear
flows. The emerging qualitative picture is in agreement with several pre-
vious observations, such as those of Perry and Tan,3 Liepmann and
Gharib,4 Bernal and Roshko,21 Brancher et al.,37 Kantharaju et al.38 On
the other hand, the quantitative description given by the correlation
functions can be eventually used to assess and calibrate large-scale eddy
models, such as that of Philip and Marusic7 to give a structural predic-
tion of the otherwise disorganized motion in turbulent free-shear flows.
As a side result, it is also found that the very large separation of scales
occurring in free-shear flows calls for the adoption of very large compu-
tational domains in order to capture the interactions between large-scale

instability and small-scale turbulence. By increasing the area spanned by
the two homogeneous directions, larger domains are also found to
improve the statistical convergence of the data.
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FIG. 10. Schematic of the structure of quasi-streamwise and very-large spanwise
vortices. The lateral view (a) highlights the inclination of quasi streamwise vortices
inducing the lift-up of the spanwise vortex motion. The green arrow indicates the
sense of rotation of the vortices using the right-hand rule. The frontal view (b) high-
lights how the lift-up of spanwise vortices induced by counter-rotating quasi-stream-
wise vortices leads to a mushroom-like shape of the spanwise vortex structure
itself. To note that this cross-flow pattern leads to a high streamwise velocity streak
in between the two counter-rotating vortices and two low streamwise velocity
streaks at their sides.
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APPENDIX: CORRELATION FUNCTIONS
IN INHOMOGENEOUS FLOWS

There are two ways to define the spatial correlation function in
inhomogeneous flows,

Ra
bbðrx; ry; rz; zÞ ¼

hb0ðx; y; zÞb0ðx þ rx; y þ ry; z þ rzÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb0b0iðzÞhb0b0iðz þ rzÞ

p (A1)

and

Rb
bbðrx; ry; rz; zÞ ¼

hb0ðx; y; zÞb0ðx þ rx; y þ ry; z þ rzÞi
hb0b0iðzÞ ; (A2)

where, without loss of generality, we have considered inhomogene-
ity in a single direction z as it is for the temporal jet and statistical
stationarity. By using the rearrangement inequality, it is possible to
demonstrate that

hb0ðx; y; zÞb0ðx þ rx; y þ ry; z þ rzÞi 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb0b0iðzÞhb0b0iðz þ rzÞ

q
;

(A3)

so that we have

Ra
bb 
 1;

while

Rb
bb 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb0b0iðz þ rzÞ
hb0b0iðzÞ

s
:

The two definitions (A1) and (A2) are equal in statistically
homogeneous flows since hb0b0iðzÞ ¼ hb0b0iðz þ rzÞ and, hence,
satisfy the same constraint, i.e., Ra

bb 
 1 and Rb
bb 
 1. However, in

inhomogeneous flows, the two definitions differ from each other
and, in particular, the constraint for Rb

bb is in general different from
1. Thus, the advantage of the first definition is that the constraint
Ra

bb 
 1 is always satisfied, thus making it easier to recognize what
is correlated and what is not. On the other hand, the second defini-
tion has the advantage that all the observed variations in the space
of separations can be attributed uniquely to the correlation function
itself, i.e., hb0ðx; y; zÞb0ðx þ rx; y þ ry; z þ rzÞi, and not to variations
of the statistical variance between the two points. This is the reason
why we decided to use the second definition in the present work.
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