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Abstract Cardiac electrophysiology is an evolving field that relies heavily on costly device- and catheter-based technologies. An in
creasing number of patients with heart rhythm disorders are becoming eligible for cardiac interventions, not least due to 
the rising prevalence of atrial fibrillation and increased longevity in the population. Meanwhile, the expansive costs of health
care face finite societal resources, and a cost-conscious approach to new technologies is critical. Cost-effectiveness analyses 
support rational decision-making in healthcare by evaluating the ratio of healthcare costs to health benefits for competing 
therapies. They may, however, be subject to significant uncertainty and bias. This paper aims to introduce the basic concepts, 
framework, and limitations of cost-effectiveness analyses to clinicians including recent examples from clinical electrophysi
ology and device therapy.
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Introduction
In a recent analysis from the European Society of Cardiology and 
Oxford University, the costs of cardiovascular care in Europe were es
timated at €282 billion in 2021 alone1—and costs continue to ascend. 
This looming imbalance between societal resources and the costs of 
healthcare has heightened the demand for health economic evaluations. 
This implies that new interventions need not only be assessed within a 
context of clinical efficacy but also economic efficiency to ensure that 
healthcare is provided evenly, appropriately, and ingeniously.2,3

Cost-effectiveness analyses (CEAs) are gaining awareness among 
healthcare professionals and acceptance into clinical scientific journals. 
To guide resource allocation, CEAs evaluate the comparative monetary 
costs of new interventions over the assumed health effects. The overall 
goal is to maximize value (i.e. health) for money. As such, they may fa
cilitate or impede new treatments from being adopted into clinical care. 
This may occur at national health policy level but results from CEAs 
may also influence clinical practice guidelines,4,5 and for many interven
tions in electrophysiology, the decision to accept or discard new tech
nologies is taken at an institutional level. Hence, results from CEAs 
inform policymakers and clinicians alike. Despite their general appeal, 
CEAs may be subject to significant uncertainty and bias, which is easily 
obscured when results are presented. Moreover, the methodological 
principles underlying these models are unfamiliar to most 
non-economists. The aim of this paper is therefore to briefly introduce 
the basic concepts, framework, and limitations of CEAs including exam
ples from recent applications within clinical electrophysiology and de
vice therapy.

Economic models
This review will focus on CEAs, but common types of economic models 
are briefly outlined in Table 1. Cost-effectiveness analyses can be model 
based or performed directly from or alongside clinical trials. In many 
cases, trial data are insufficient for economic analyses, and it may be ap
propriate to source data from literature (e.g. survival with and without 
the intervention) to incorporate into decision models. The most com
mon models are decision trees and Markov models (Figure 1).6 In a de
cision tree, the flow of events is unidirectional: each sequential health 
state is assigned a probability, and each possible outcome is populated 
with specific costs.7 The tree ends in a terminal node at which point 
the individual may die or return to the original health state (healthy). 
Markov models, in turn, are cyclic, and transitions from any (non-fatal) 
health state to another is allowed to occur in successive cycles with a 
fixed duration (often 1 year) until all cases reach the absorption state (of
ten death). For this reason, Markov models are especially suited for dis
eases that involve ongoing risk. Important assumptions in the Markov 
model are that each state retains no memory of the previous state mean
ing that the probability of transitioning depends on the current state 
only, and the transition probabilities remain constant over time.

Costs and effects
Although effect estimates used in CEAs are ideally obtained from ran
domized clinical trials (RCTs), several limitations may arise. The inter
vention under investigation in a CEA is always compared to usual 
care. Conversion of trial data, which are obtained under strictly 
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controlled settings, into real-world scenarios in cost-effectiveness mod
els is not always straightforward. Trial populations are typically subject 
to selection and therefore not necessarily representative of their target 
populations. Moreover, the comparator arm in clinical trials may not re
flect routine clinical practice, and this can cause discrepancy between 
the effect estimate and the calculated costs. Aside from selection, ap
propriate clinical outcomes used in RCTs may not be appropriate for 
CEAs. Examples might be freedom from device-detected atrial fibrilla
tion (AF) recurrence in an ablation study, use of surrogate endpoints 
such as reduction in left ventricular ejection function (LVEF), or com
posite clinical endpoints including both fatal and non-fatal events 
(e.g. major cardiovascular events). Another challenge is to choose an 
appropriate time horizon. This needs to be sufficiently long to capture 
all relevant consequences in terms of costs and effects associated with 
the intervention—even if this is rarely the case when using RCT data. 
Again, the primary appeal of composite endpoints in RCTs is to in
crease statistical power, reduce follow-up duration, and limit trial- 
related costs.

Once the basic outline of the model has been established, costs must 
be estimated based either on direct medical costs (the healthcare payer 
perspective) or all costs including indirect non-medical costs (the soci
etal perspective).5 Although seemingly straightforward, it is often chal
lenging to undertake: first, to identify which resources are relevant to 
include and, second, to accurately estimate the resources consumed.8

Independent costs are rarely available, and many CEAs rely on less ac
curate reference costs or national tariffs based on diagnosis-related 
group (DRG) codes. When the time horizon extends beyond 1 year 
into the future, it is common practice to apply discounting to adjust 
for future costs and health effects. Annual discount rates of 3–3.5% 
per year are usually applied.9 For example, the present value of 
€1000 in Year 2 would be €971 assuming a 3% discount rate 
[€1000 · (1/1.03)1], or €863 in Year 6 [€1000 · (1/1.03)5]—and so forth. 
The rationale behind discounting is to account for opportunity costs 
(Figure 2) and positive time preference, i.e. present benefits are gener
ally preferred over future benefits. However, the relevance and/or level 
of discounting (including whether uniform or differential discounting on 

health and effects are more appropriate) has been heavily debated. This 
is because the dynamics of how costs and health are valued over time 
are complex, and discounting can have substantial impact on the out
comes when the time horizon is long.10,11 Costs also vary significantly 
across healthcare systems, and this further complicates comparability 
and transferability of results from one healthcare system to another.

The incremental cost-effectiveness 
ratio
Cost-effectiveness analyses evaluate the incremental monetary costs 
per unit of incremental benefit; this defines the incremental cost- 
effectiveness ratio (ICER):

ICER =
Δ Costs
Δ Health

, 

where Δ indicates the difference in costs/health with the new intervention 
vs. usual care. The ICER thus estimates the proportional relationship be
tween costs and different dimensions of health gained. The denominator 
may comprise single natural units (i.e. life-years gained or lives saved) or 
composites of two or more factors [i.e. quality-adjusted life years 
(QALYs) or disability-adjusted life years (DALYs)]. When the denomin
ator incorporates multiple domains of health (quantity and quality), it is 
typically referred to as a cost–utility analysis (CUA), which can be consid
ered a specific type of CEA. As such, the ICER does not constitute a single 
entity but a ratio of parameters that may on several levels be influenced by 
uncertainty. Inherently, if the denominator is small, the ICER becomes 
highly sensitive even to minute changes. Negative ICERs are not usually 
presented due to ambiguity; they may result from two possible scenarios: 
(i) the intervention is cheaper and more effective (negative incremental 
costs) or (ii) the intervention is more costly and less effective than the 
comparator (negative incremental health). Rather, in scenario i, the inter
vention is referred to as ‘dominant’ over the comparator, and in scenario 
ii, the intervention is ‘dominated’ by the comparator. Likewise, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Four main types of economic analyses

Model Purpose Comments

Cost-effectiveness 

analyses (CEAs)

Measures differences in outcomes (costs and health benefits) of 

one or more health interventions compared to another (the 

status quo). Outcomes are measured in single, natural units (e.g. 
life years).

Comparisons across different health conditions and 

interventions are not straightforward.

Cost–utility analysis 
(CUAs)

Type of cost-effectiveness analysis that measures differences in 
outcomes of one or more health interventions compared to 

another (the status quo) in multiple dimensions of health (e.g. 

QALYs or DALYs).

Health outcomes are aggregated into a single index, which 
allows comparisons across different health conditions and 

interventions.

Cost–benefit analysis 

(CBA)

Measures differences in costs of one or more health interventions 

compared to another (the status quo), where both costs and 
outcomes (benefits) are assigned monetary values. In principle, 

CBAs assume that all health effects can be valued based on 

people’s willingness-to-pay preferences.

Uses a single unit of measurement, which eases comparisons 

across different health conditions and interventions. 
However, individual willingness to pay is subjective and 

sensitive to external factors and can therefore be highly 

variable.

Cost–minimization 

analysis (CMAs)

Compares costs related to two interventions (including 

downstream costs) that are assumed equivalent in terms of 
health effects. The purpose is to ascertain the least costly 

alternative.

Can only be applied for interventions that infer identical 

outcomes. It is pivotal for these analyses that costs are 
determined accurately.

CBA, cost-benefit analysis; CEA, cost-effectiveness analysis; CMA, cost-minimization analysis; CUA, cost-utility analysis; DALY, disability-adjusted life year; QALY, quality-adjusted life year.
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interpretation of the ICER becomes counterintuitive if the intervention is 
both less effective and cheaper than its comparator.

The quality-adjusted life year and 
cost–utility analyses
To allow comparisons of cost-effectiveness across treatments and 
health conditions, it is necessary to aggregate health outcomes in a sin
gle index. This is needed because the concept of ‘health’ ideally encom
passes more domains than simply ‘absence of disease’. The QALY is an 
internationally recognized standard metric in CEAs, and several coun
tries use ‘costs per QALYs’ as benchmarks for cost-effectiveness. For 
example, in the UK, use of QALYs is required by the National 
Institute for Health and Clinical Excellence (NICE) for health technol
ogy assessments. The QALY attempts to integrate survival with 
quality-of-life measures.5,12 It is expressed in a scale ranging from 0 
to 1, where 1 corresponds to utility of the best possible outcome (op
timal health) and 0 is an arbitrary value that corresponds to the utility of 
being dead. To exemplify, if the health-related QALY year is 0.5 for a 
particular condition, 1 year of living with this condition will correspond 
to 0.5 years in perfect health. Quality-adjusted life years thus operate 
on an interval scale, and this implies that all QALYs are valued equally, 
e.g. a change from 0.1 to 0.2 is assumed equal to a change from 0.8 to 
0.9.13 This specific feature of the QALY has raised both moral and eth
ical debate, as well as operational concerns since quantity (survival time) 
is measured on a ratio scale.12,13

The concept behind QALYs is based in utilitarianism, and to estimate 
the QALY, you simply multiply the utility value of a given health 
condition with the years spent in this state (Figure 3). As such, the 
QALY represents quality-adjustment weights (‘utilities’) that when ap
plied to ‘time’ provide a measure of ‘health’.14 There are various strat
egies to obtain these weights. Most commonly, responses from clinical 
quality-of-life questionnaires [usually using the EuroQol five-dimension 
questionnaire (EQ-5D)] administered to trial participants are used to 
estimate disease-specific quality of life.12 These are then matched to 
national preferences obtained from general surveys. As previously 

addressed, quality of life will often vary over time, and for assessments 
over extensive time horizons, it is usual to discount QALYs by 
3–3.5%5,12 per year, assuming that immediate health benefits are gen
erally preferred over longer-term effects.

Cost-effectiveness thresholds
Most new health interventions impose costs, and it remains a matter of 
judgement to decide whether the new intervention provides sufficient 
benefits to justify the added costs. To guide decision-makers, results 
from CEAs are often interpreted in relation to arbitrary cost- 
effectiveness thresholds, i.e. the fixed maximum amount a decision- 
maker is willing to pay for a new intervention. Incremental 
cost-effectiveness ratios that fall below the cost-effectiveness threshold 
are considered cost-effective and vice versa (Figure 4). Since they are not 
context specific and there is no scientific justification for determining 
these thresholds, they have fostered great debate.15 Willingness- 
to-pay (WTP) thresholds vary considerably across healthcare 
systems, and not all countries have established thresholds for cost- 
effectiveness—such is the case for Denmark and Germany.16,17

Moreover, they encourage simplistic interpretations of complex issues. 
To exemplify the substantial variation in acceptable costs, NICE in the 
UK proposed a threshold range of £20–30 000,18 the World Health 
Organization (WHO) promotes a threshold of three times the gross 
national product per capita as a guide (in Denmark, this would imply 
an upper bound of ∼€200 000), and in the USA, thresholds ranging 
from $50 000 to $150 000 per QALY have been considered econom
ically acceptable.19

Sensitivity analyses
It is common to define a base case (or reference case) based on the best 
available data. However, as can be deduced from the above, uncertainty 
may arise from multiple levels.20 To quantify the level of uncertainty, 
probabilistic sensitivity analyses (PSAs) apply repeated random sam
pling to generate a distribution of ICER estimates that can be graphed 

Markov modelDecision tree

Intervention

Survival

Survival

Survival

Survival

Death

Death

No event

Death

Death

Event

Event

P1 P2

P3

P5

P4

P7

P6

Death

Event

Event

Event

No event

Death

Control

Intervention

No event

Control

Figure 1 Example of a decision tree (left) and a simplified three-state Markov model (right). An important distinction between these two models is 
that decision trees are unidirectional, whereas Markov models are cyclic. The different disease states in the models should represent significant events 
both clinically and economically. Squares indicate decision nodes. Triangles indicate terminal nodes. P’s indicate transition probabilities, which are usually 
estimated from literature. P7 is an absorptive state (death) for which the transition probability will always be 1.
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on the cost-effectiveness plane (Figure 4) or used to construct cost- 
effectiveness acceptability curves (CEACs). Cost-effectiveness accept
ability curves graphically relate the uncertainty of results (or the 
probability of cost-effectiveness) over a range of possible cost- 
effectiveness thresholds (Figure 4), whereas the cost-effectiveness plane 
is used to display differences in costs and health effects in two planes. 
Uncertainty in the cost-effectiveness plane can be deduced from the 
dispersion of points, ‘the cloud’ (each point representing one iteration), 
in the plot. In PSAs, model parameters are presented as distributions 
(normal, Weibull, gamma etc.) around the point.

Many studies also present results from deterministic sensitivity ana
lyses (DSAs). Here, individual or sets of model parameters are allowed 
to vary across a prespecified range (keeping the rest constant) to assess 
the relative influence of misspecification in the base case on the out
come, including whether this would have been sufficient to alter the 
study conclusions. The range of possible outcomes can be determined 
based on expert opinion or often simply according to the 95% 

confidence intervals of the point estimates. Because DSAs are typically 
univariate (one way), these may be more likely to underestimate uncer
tainty.20 Multiway DSAs are rarely reported as they are both difficult to 
present and to interpret, especially if included parameters correlate. 
Results from DSAs can be visualized using line or bar charts and some
times summarized in tornado diagrams (Figure 5).

Examples from clinical 
electrophysiology
Below we briefly showcase two examples of economic analyses in clin
ical electrophysiology. First, we introduce a protocolled subanalysis to 
The Early Treatment of Atrial Fibrillation for Stroke Prevention Trial 
(EAST-AFNET 4). Atrial fibrillation affects approximately one-third of 
individuals of European ancestry, and the prevalence of AF is projected 
to increase. Hence, AF represents a major clinical and health economic 
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challenge.21 Early intervention and risk factor control are believed to re
duce incident AF,21,22 and economic analyses of AF interventions carry 
significant societal interest. Second, we present an economic evaluation 
of the antibiotic-eluting envelope. While clinical efficacy is well estab
lished, the economic efficiency of the envelope became the pivot of de
bate and a central argument against its uptake into clinical care at many 
centres. Finally, we evaluate the role of catheter ablation for ventricular 
tachycardia (VT) in coronary artery disease.23 A series of moderately 
sized RCTs demonstrated that VT ablation reduces VT recurrence 
and appropriate implantable cardioverter defibrillator (ICD) therapy 
but with no significant effect on mortality or quality of life.24

Meanwhile, ablation is associated with high economic costs and a non- 
negligible risk of complications.

Early rhythm control in atrial 
fibrillation
In a study recently published in Europace, Gottschalk et al.17 completed 
a planned trial-based economic evaluation of early rhythm control com
pared to usual care in AF based on data from EAST-AFNET, a multi
national randomized controlled trial.25 The main trial demonstrated 
that an early rhythm control strategy (pharmacological or ablation) re
duced the risk of the primary outcome (a composite of cardiovascular 
death, stroke, or hospitalization for worsening heart failure or acute 
coronary syndrome) by ∼20%. Observational cohort studies demon
strated consistent results.26–28 The cost-effectiveness study was based 
on the German patient subsample comprising nearly 60% of the total 
population and was conducted from the German healthcare payer per
spective over a 6-year time horizon. Costs were restricted to hospita
lizations and medication costs estimated based on DRG taxes with 
deductions and surcharges according to length of hospital stay and con
sidering the individual revenue of each hospital. Correction for baseline 
imbalances was obtained using regression-based methods. Incremental 
cost-effectiveness ratios were reported per life gained and per year free 

from the primary outcome, and the study assumed a WTP value of 
€55 000 per year. Quality of life did not differ between treatment 
groups in the main study and was not assessed in the CEA. The study 
was reported in accordance with the Consolidated Health Economic 
Evaluation Reporting Standards (CHEERS).29 To evaluate robustness 
of the base-case results, scenario analyses, univariate DSAs, and PSAs 
were performed. Appropriate measures of uncertainty were reported 
throughout. Probabilistic sensitivity analysis results were visually dis
played on the cost-effectiveness plane and using CEACs. The estimated 
ICERs for early rhythm control were €10 638 per year free of the pri
mary outcome and €22 536 per life year gained. The probabilities of 
cost-effectiveness at a WTP ≥€55 000 were estimated at 95 and 
80%, respectively. Hence, the study indicated that an early rhythm con
trol strategy is associated with increased costs, but—assuming a WTP 
of ≥€55 000—they concluded that this strategy has a high probability of 
being cost-effective in the German healthcare system.

The study is well performed, transparently reported, and draws on 
the advantages of having large-scale trial data available, albeit also its lim
itations. Composite endpoints are not ideal for CEAs as non-fatal and 
fatal events can rarely be considered equal, and the time horizon was 
restricted to 6 years. Again, Germany has no established threshold 
for cost-effectiveness,30 although ranges between €50 and €55 000 
per QALY are often assumed for reporting purposes. As also ad
dressed by the authors, costs per QALY were not used as an outcome 
measure, which limits comparability across studies including the applic
ability of a threshold commonly used with reference to QALYs. 
Considering results from the quality-of-life assessments in the main 
study, application of QALY weights to the reported ICERs would likely 
produce substantially higher ICERs. Furthermore, the treatment inter
vention in EAST-AFNET 4 comprises a composite of multiple possible 
treatment modalities [different types of antiarrhythmic drug (AAD), 
cardioversions, and/or AF ablation], and a change in the ratio of 
pharmacological rhythm control to ablation procedures could have 
substantial impact on the estimated costs—and perhaps also on the ob
served effects. Moreover, since AF is a chronic condition, longer-term 
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effects and costs are of interest, and these were not assessed. Patients 
included in the EAST-AFNET 4 had a mean age of 70 years, and many 
patients presenting with early AF are <65 years and can expect a rela
tively long duration of therapy. Pharmacological rhythm control often 
requires ambulatory follow-up visits throughout the duration of treat
ment, and AF recurrence is not uncommon even after AF ablation. 
Insufficient follow-up time could therefore both under- and overesti
mate the downstream benefits of an early rhythm control strategy.

The antibiotic-eluting envelope
Cardiac implantable electronic device (CIED) infections are feared compli
cations to CIED therapy. They are associated with high patient morbidity, 
mortality, and substantial economic costs as they generally warrant pro
longed hospitalization, an inherent requirement for CIED extraction and 
(usually) a later reimplantation, and patients retain higher complication 
rates in the aftermath of CIED infections—on the short and on the 
long term.16,31–34 The issue with CIED infections is that they are in nature 
iatrogenic, which only increases the incentive for prevention. Aside from 
sterile surgical technique and pre-procedural antibiotic prophylaxis, few 
preventive measures are evidence based.35 In 2019, the Worldwide 
Randomized Antibiotic Envelope Infection Prevention Trial (WRAP-IT) 
demonstrated clinical efficacy of the antibiotic-eluting envelope for se
lected moderate- to high-risk CIED procedures (HR 0.60, 95% CI 0.36– 
0.98),36 however, at an absolute risk reduction of only 0.5% corresponding 
to a number needed to treat of 200. This raised cost-effectiveness con
cerns37–39 and speculations about whether results from WRAP-IT were 
transferable to higher risk settings, which would imply a more attractive 
cost-effectiveness profile as the envelope represents a costly intervention 
to prevent rare, but serious events.40,41 Several studies since evaluated the 
economic efficiency of an envelope in various subpopulations of CIED pa
tients and across different healthcare settings16,39,42–48; Table 2 provides 

an overview of results from published cost–utility assessments of the ab
sorbable antibacterial envelope, excluding two studies that did not esti
mate cost utility.48,49

Four of six studies used effect estimates derived from 
WRAP-IT39,42,43,46 and/or the same basic decision tree model,16,42–44

and five of six used utility estimates from WRAP-IT.16,39,42,43,46 It was con
sistent that inclusion of all patients eligible for WRAP-IT was associated 
with high costs (112 000 USD to 274 000 CDN per QALY) whereas ana
lyses based on patient subgroups with higher infection risk estimated 
ICERs below most established cost-effectiveness thresholds. The key lim
itations of these studies were, however, that they were based on effect 
estimates obtained from observational data,16 from which causality cannot 
be inferred, or from the complete and multinational WRAP-IT population 
and, hence, not the subpopulation under investigation.42,46 Despite this, 
multiple observational studies support that an envelope reduces infection 
risk after high-risk CIED implantations by 30–70% in various CIED subpo
pulations. Of interest, across settings and subgroups, the costs of a CIED 
were highly variable according to local context and to whether an extrac
tion procedure was performed, and model uncertainty was high. Thus, 
even when comparable outcomes measures are applied (here, costs per 
QALY), straightforward comparisons are seldom possible, and when 
the outcome is rare, the uncertainty in the economic models is often 
also substantial. Finally, both examples included in this review take on a 
healthcare payer perspective, and hence, consequences to these interven
tions beyond the healthcare sector were not explored, although these 
may be of crucial importance for decision-making.

Ventricular tachycardia ablation in 
coronary artery disease
Guidelines recommend catheter ablation over escalated AAD therapy 
in ICD carriers with coronary artery disease and recurrent sustained 
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Figure 5 Example of tornado diagram. Tornado diagrams are used to depict results from one-way sensitivity analyses. The parameters in a tornado 
diagram are sorted from the highest (top) to the lowest range. The bars visually display which parameters have the strongest influence on the outcome; 
as shown, a change in Parameters 1 and 2 could potentially influence the conclusions of the analyses. Red and turquoise colours indicate the highest vs. 
the lowest values of each range.
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monomorphic VT despite chronic amiodarone therapy.50 Although 
several moderately sized RCTs demonstrated that ablation reduces 
VT recurrence and appropriate ICD shock therapy, a recent 
meta-analysis indicated no effect on mortality or overall quality of life 
over AAD therapy in patients with ICDs, and this calls into question 
the cost utility of such intervention. Two recent CUAs based on 
RCTs evaluated the cost-effectiveness of VT ablation in this patient 
group—reaching conflicting conclusions. One was a trial-based CUA 
based on the Ventricular Tachycardia Ablation versus Escalated 
Antiarrhythmic Drug Therapy in Ischemic Heart Disease (VANISH) 
trial51,52 and, the other, a Markov model based on data from multiple 
RCTs.53

In the CUA based on results from VANISH, Coyle et al.52 deter
mined that in patients with ICDs and coronary artery disease who 
had VT despite chronic AAD therapy, catheter ablation is likely to be 
cost-effective compared to escalated AAD therapy. In the main study, 
VT ablation reduced the rate of the primary composite endpoint (car
diac death, appropriate ICD therapy, and VT storm) by 28% (HR 0.72, 
95% CI 0.53–0.98); however, there were no significant differences in 
mortality or overall health-related quality of life between groups.51,54

For the CUA, results were weighted according to subgroup 
(amiodarone- or sotalol-refractory VT) as subgroup analyses indicated 
a significantly greater improvement with catheter ablation in patients 
with amiodarone-refractory VT. The study was completed taking the 
Canadian healthcare perspective, and the time horizon was 36 months. 
Information about quality of life (using the EQ-5D questionnaire) and 
resource expenditure was collected at each follow-up visit. Ablation 
produced greater QALYs than escalated AAD therapy (1.63 vs. 1.49, 
ΔQALY 0.14) and higher costs ($65 126 vs. $60 269, Δcost $4857). 
Probabilistic sensitivity analyses indicated that at a WTP of $50 000 
per QALY, the probability of cost-effectiveness was only 57%, i.e. indi
cative of substantial uncertainty. Nevertheless, the overall ICER of 
$34 057 for the base-case analysis suggested that catheter ablation 
was cost-effective in this scenario.

On the contrary, Chen et al.53 later evaluated the cost-effectiveness 
of VT ablation vs. AAD therapy concluding that the probability of cost- 
effectiveness was only 11% in the UK healthcare setting assuming a 
WTP of £30 000 per QALY. On this basis, cost-effectiveness was 
deemed unlikely. The study applied a decision-analytic Markov model 
with a 5-year time horizon (60 cycles with a duration of 1 month). 
There were five possible health states in each treatment arm: (i) death, 
successful ablation, successful ablation with adverse event, repeat abla
tion, and readmission or (ii) death, AAD maintenance, AAD mainten
ance with adverse event, readmission, and switch to ablation. Inputs 
for the model were predominantly informed by data from 
RCTs.51,55–59 While the difference in costs between the two arms 
was modest (£5657), the difference in QALY was only 0.039 corre
sponding to an ICER of £144 150—far exceeding the acceptable 
WTP threshold in the UK. This result was unsurprising: no RCT has de
monstrated a survival benefit with ablation over AAD therapy in pa
tients with ICDs,60 and the effects shown on quality-of-life measures 
have been marginal. Hence, the denominator of the ICER (ΔQALY) 
will be small and depend exclusively on sufficiency of the quality-of-life 
outcomes.

However, regardless of cost-effectiveness in the population at large, 
catheter ablation may be the only remaining treatment option for 
certain patients, and in VANISH, analyses indicated greatest benefit— 
clinically and economically—of early ablation in the subgroup of 
patients with amiodarone-refractory VT. Timing of ablation, duration 
of follow-up, and more meticulous assessment of quality-of-life mea
sures can significantly influence the cost-effectiveness profile of this 
intervention. As the authors, Chen et al.,53 specifically highlight in their 
final call for standardization and optimization of the collection of 
patient-reported outcomes in clinical trials, there remain considerable 
inaccuracies and knowledge gaps in the reporting of quality of life. This 

is a crucial parameter from the patient perspective and one that may 
critically influence CEAs and, consequently, whether or how new inter
ventions are adopted into clinical care.

Limitations of cost-effectiveness 
analyses
Although CEAs are seemingly very simple (divide costs by health out
comes), many assumptions underlie these models, and the longer the 
time horizon, the greater potential for error. Model-based approaches 
usually require inputs from multiple sources; any bias (e.g. selection bias 
in RCTs or confounding in observational studies) and statistical uncer
tainty in the model parameters will be carried forward to the economic 
model. Moreover, it is important to recognize that all modelling essen
tially reduces clinical decision-making to a finite number of decisions, 
which will never reflect real-world scenarios. Therefore, it is important 
to recognize both model uncertainty (the simplified clinical case scen
ario) and parameter uncertainty, which is uncertainty related to the in
put we feed into the model. Non-homogenous cost data and 
differences in healthcare systems further imply that results from 
CEAs are not easily generalizable to other healthcare settings, and 
hence, they are mainly valid within the context of their conduct. 
Aside from imprecision or even bias in the model and modelling para
meters, CEAs have also been subject to criticism directed towards their 
basic concepts of value: (i) their utilitarian approach to decision-making 
healthcare (i.e. the moral choice is that which ‘produces the greatest 
good for the greatest number’) and (ii) the validity (philosophical, moral, 
and ethical) of using QALYs to inform healthcare decisions.12

Finally, several studies associated industry sponsorship with more fa
vourable outcomes in CEAs, and this was recently substantiated in a 
large registry-based analysis including almost 6000 published CEAs.61

Specifically, sponsored model-based studies were significantly more 
likely to report lower ICERs and more likely to conclude the interven
tion was cost-effective than non-industry sponsored CEAs. Increased 
transparency in reporting from these models using standardized check
lists (e.g. CHEERS as exemplified by Gottschalk)29 or society recom
mendations (e.g. as proposed by Boriani et al.3 under commission 
from the European Heart Rhythm Association), pre-registration of 
study protocols, or open-source analytical tools to further increase 
comparability and reproducibility of results are possible solutions— 
preferably combined with dedicated involvement from clinicians during 
modelling to ensure reliable and realistic model scenarios.

Conclusions
To conclude, CEAs are performed to guide resource allocation in 
healthcare but are imperfect by nature. In CEAs, perspective matters, 
setting matters, scope matters, and imprecision matters; cautious inter
pretation of these analyses is strongly advised, and the level of confi
dence should be guided by the quality of information used to model 
these outcomes. For physicians especially, they invite reflections be
yond clinical efficacy and utility; what is value in healthcare, how do 
we assess it, and importantly, what are the economic costs and down
stream societal implications of the care at our disposal? Clinician in
volvement in the conduct of CEAs is key to determine the clinical 
framework within which results can meaningfully be interpreted.
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