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ABSTRACT Flexible perovskite light-emitting diodes (LEDs) have attracted increasing interest to realize
ultrathin, light weight, highly conformable, and nonfragile vivid displays. Solution-processed lead halide
perovskite offers numerous distinctive characteristics, such as pure emission color, tunable bandgaps,
and low fabrication cost. In this paper, green perovskite LEDs (PeLEDs) are fabricated on 50-μm thick
polyimide substrates. Using colloidal 2-D formamidinium lead bromide perovskite emitter, the PeLEDs
show a high current efficiency (ηCE) of 5.3 cd A−1 with a peak emission at 529 ± 1 nm and a narrow
width of 22.8 nm. The resultant green emission shows color saturation > 95%, in the Rec. 2020 standard
gamut area. To demonstrate mechanical flexibility, the device functionality is tested by dynamic bending
experiments down to 10 mm for up to 5000 cycles, resulting in device lifetime over 36 h in a glove
box and a drop of ηCE and external quantum efficiency (ï ext) as low as 15% and 18%, respectively.
For the selective activation of multiple PeLEDs, 7×7 passive arrays on rigid and flexible substrates are
demonstrated. Moreover, preliminary results of active matrices show the compatibility of PeLEDs with
oxide-based thin-film transistors (TFTs) for display applications.

INDEX TERMS Perovskite, light-emitting diodes (LEDs), flexible, bending, pixel array, passive matrix,
active matrix.

I. INTRODUCTION
The field of flexible electronics has attracted substantial
interest for new and challenging applications, which require
electrical functionality on curvilinear and complex surfaces.
Together with wearable electronics [1]–[3] and health mon-
itoring systems [4], flexible displays are considered as most
promising candidates for light-weight, ultra-thin, portable,
and nonfragile consumer electronics [5]. This new class of
displays calls for high performances, high energy efficiency
and long-operational stability, as well as low fabrication
cost for mass production. In the past years, numerous
types of emitters, such as, organic emitters and chalco-
genide quantum dots, have been extensively investigated
in light emitting diodes to achieve efficient and color
pure flexible displays [6], [7]. However, the conventional

technologies were not able to realize Rec. 2020 standard
green emission because of their broad spectral width and
a bathochromic shift in photoluminescence after forming the
thin solid films. Recently, colloidal organic-inorganic hybrid
perovskites (OIHPs) have emerged as the most promising
color-pure emitters in light emitting diodes (LEDs) because
of their cost-effective facile synthesis at low temperature and
easy scalability. Moreover, they show very narrow emis-
sion width, tunable bandgap, and high photoluminescence
quantum yield (PLQY) [8], [9]. Although few flexible green
perovskite LEDs (PeLEDs) have been demonstrated, color-
pure electroluminescence that shows a 95% color saturation
in Rec. 2020 standard gamut, has never been achieved by far.
In this work, we demonstrate color-pure green flex-

ible PeLEDs using colloidal two dimensional (2D)
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FIGURE 1. Perovskite-based LED (PeLED) on flexible substrate.
a) Schematic of the device layer stack and b) energy level diagram of
materials utilized (data unit: eV).

formamidinium lead bromide (FAPbBr3) perovskite emit-
ters. The 2D FAPbBr3 shows a solid-state PLQY as high
as 94%. The devices, fabricated on 50 μm thick polyimide
foil using a spin-casted emission layer, show a high cur-
rent efficiency (ηCE) of 5.3 cd A−1 and a color saturation
of ∼96%. Moreover, the device exhibits a peak emission
at 529 nm. Differently from [9], to systematically test the
device flexibility under mechanical strain, PeLEDs are evalu-
ated in dynamic bending experiments, showing functionality
in a nitrogen-filled glove box down to 10 mm bending radius
for up to 5000 bending cycles. Moreover, the fabrication
scalability allows the realization of passive and active multi-
pixel matrices, consisting of 49 PeLEDs, on both rigid and
flexible substrates.

II. MATERIALS AND DEVICE FABRICATION
Monodisperse FAPbBr3 perovskites are synthesized by using
the synthetics route reported in [10]. The resultant nanocrys-
tals (NCs) show a PLQYs of ∼89% and 94% in solu-
tion and spin-casted thin film, respectively. Moreover, the
EL emission locate at 531 nm in solution and 529 nm
in spin-coated film. The unprecedented higher PLQY in
the thin film sample is a result of aggregation induced
emission [11]. A schematic architecture of flexible PeLEDs
is shown in Fig. 1a. A 50 μm-thick polyimide (Kapton)

FIGURE 2. Flexible PeLED based on 2D FAPbBr3. a) Current density and
luminance as a function of voltage. b) Current efficiency and power
efficiency as a function of current density. c) Electroluminescence (EL)
spectrum at 4 V and photoluminescence (PL) spectra, showing the
ultra-pure green emission at 529 ±1 nm. Inset: photograph of flexible
PeLED glowing at 4V with a bending radius of 2.5 mm, perovskite thin film
on glass substrate (left panel in ambient light and right panel under
ultraviolet irradiation), and colloidal solutions of perovskites under
ambient light (left panel) and ultraviolet light (right panel).

foil (from DuPont) is utilized as the substrate. First, this
substrate is cleaned in acetone and isopropanol for 10 min
and cured in oven for 48 h at 200 ◦C, to remove any sol-
vent residuals. To ensure a high mechanical and chemical
stability during the device fabrication, a 50 nm SiNx, act-
ing as buffer layer, is deposited by PECVD on both sides.
Once the Kapton foil preparation is complete, a 120 nm
thick ITO anode layer is deposited through RF sputter-
ing in Ar atmosphere. Then, the desirable ITO pattern is
obtained through UV photolithography and lift-off process.
Subsequently, the patterned ITO substrate is exposed to
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FIGURE 3. PeLEDs under dynamic bending experiments. a) Optical picture
for a) a fresh emitting device (0.5 h lifetime) and b) after 5000 cycles
(lifetime > 36 h) (Scale bar: 5 mm). The formation of black lines in the
emitting area prove the Perovskite degradation in ambient condition.
c) Normalized ηCE and ï ext for a PeLED bent down to 10 mm bending
radius for 100, 500, 1000 and 5000 cycles.

oxygen plasma for 10 min to ensure a smooth ITO sur-
face without any contamination. Thereafter, a hole injection
layer, 32±3 nm PEDOT:PSS, is deposited by spin coating.
Then, a hole transporting layer (HTL), 18±2 nm poly[N,N’-
bis(4-butylphenyl)-N,N’-bis(phenyl)-benzidine] (Poly-TPD),
is spin-coated in a glovebox. Before spin-coating, colloidal
FAPbBr3 NCs are mixed with the low-k PMMA host. The
resultant emissive layer (30±5 nm) is then deposited onto
the Poly-TPD layer. Then, the flexible substrate is transferred
to a high vacuum chamber and a 45 nm electron transport-
ing layer, tris(2,4,6-trimethyl-3-(phenyl)borane (3TPYMB),
a 1 nm LiF electron injection layer, and a 70 nm Al cathode
layer, are sequentially evaporated with the deposition rates
of 0.5, 0.1, and ∼2 A s−1, respectively. Particularly, the LiF
and Al layers are deposited through a shadow mask. The
active-area of device is defined as the overlap between ITO
and Al layers. Fig. 1b shows the energy band diagram of
the materials involved in the device stack.

III. PELEDS ELECTRICAL CHARACTERIZATION
The current density (J) and luminance (L) of a champion
device as a function of applied voltage (V) is presented in
Fig. 2a. The device shows a low turn-on voltage of 2.8 V

FIGURE 4. PeLED passive matrix. a) Layout of a passive matrix, where the
selection of a column line (Vcol-n) and a row line(Vrow-n) allows the
PeLED activation. An array of 7 x 7 PeLEDs is realized on both b) a rigid
glass slide (characterized by using a custom made setup) and (c) on a PET
flexible substrate (where Cu tape is used for improving the electrical
contact). For both substrates, the PeLED area is 1 mm x 2 mm (Scale bar:
1 cm) and the driving voltage is 5 V.

and a maximum luminance of 1642 cd m−2. Moreover, our
optimized device demonstrate a high ïCE of 5.30 cd A−1

and a power efficiency (ïPE) of 4.76 lm W−1 with a high
external quantum efficiency (ï ext) of 1.29% (see Fig. 2b).
As shown in Fig. 2c, PeLEDs exhibit a peak electrolumines-
cence (λEL) at 529 ± 1 nm and a full width at half maximum
of 22.8 nm with Commission internationale de l’éclairage
x and y coordinates (CIEx,y) of (0.173, 0.768). The CIEx,y
color-coordinates presented here show a color saturation of
∼96% in the 1931 CIE color space in Rec. 2020 standard
gamut area, which has never been achieved in the flexible
LEDs so far. We attribute the high device performance to
a charge injection balance and efficient recombination of
injected carriers under electrical excitation. Moreover, the
charge transporting layers, Poly-TPD and 3TPYMB, pos-
sessed an efficient carrier (electron and hole) confinement
function. Moreover, our devices also exhibit a consistent EL
spectrum with the PL spectra of 2D FAPbBr3 perovskites
(Fig. 2c). To the best of our understanding, we present the
first flexible PeLED using precise layer controlled colloidal
2D perovskites.
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FIGURE 5. Schematic and performance of the IGZO based active matrix. a) The green PeLED functionality is activated when the corresponding TFT is
on-state (namely, its column and row lines are selected). The operating voltage for VCOL and VROW is 8 V. b) IGZO-based TFT characteristics
(W/L = 1400 μm/20 μm) in flat and bent conditions. For each IGZO TFT, a PeLED is fabricated in series (inset) (Scale bar: 500 μm). c) The 7 x 7 active
matrix is fabricated on a free-standing 50 μm thick kapton foil (Scale bar: 1 cm). The electrical performance of the matrix is evaluated. d) Histogram of
the linear mobility μlin and threshold voltage VTH for the array. Here, a yield of ≈ 96 % is achieved. e-f) Coloured 2D mapping of the same parameters
over the substrate area (3 cm x 3 cm).

IV. MECHANICAL BENDING EXPERIMENTS
To test the device performance under mechanical stress,
a dynamic bending experiment is executed. The flexible
substrate, with four PeLEDs (for each device, the emission
area is equal to 5 mm x 5 mm) (see Fig. 3a), is mounted on
a dynamic bending setup, and bent down to 10 mm bending
radius. In this test, the PeLEDs are bent for a certain number
of times (100, 500, 1000 and 5000 cycles), and then electri-
cally characterized in ambient condition (see Fig. 3a and 3b),
monitoring the ïCE and ï ext. At zero cycles, the PeLEDs
show a ïCE and a ï ext of 3.47 cd A−1 and 0.85%, respec-
tively, at an operational voltage of 3V. Unexpectedly, slightly
higher efficiencies are observed after 500 cycles that can be
attributed to light induced healing in the perovskite layer.
After 5000 cycles, corresponding to > 36 h, the device
efficiencies exhibit a drop of 15 % in the ïCE and 18 %
in the ï ext (see Fig. 3c). In general, the lowering of the
device performance is mainly attributed to the absence of
a passivation layer. Indeed, the interaction with ambient
moisture (occurring during the characterization in ambient
condition) and the emission layer degradation, is proved by
the formation of black lines in the PeLED emitting area (see
Fig. 3b). Indeed, future studies need to understand the degra-
dation processes of Perovskites and find possible solutions,
to increase device lifetime and broaden the applications of
this class of materials [12].

V. PASSIVE MATRIX
The ease of fabrication scalability is demonstrated with the
realization of an array of 49 PeLEDs (arranged in 7 lines
and 7 columns). The passive matrix consists in a scheme
where each PeLED (or pixel) is activated without any driv-
ing circuitry (i.e., capacitors, Thin-Film Transistors (TFTs),
etc.). In this way, a pixel is turned on when both its cor-
responding column line (VCOL - n) and row line (VROW - n)
are selected (see Fig. 4a). To prove the fabrication compat-
ibility with flat planes as well as flexible displays, passive
PeLED matrices are realized on both glass and Polyethylene
terephthalate (PET) substrates, commercially available from
Sigma-Aldrich (substrate area = 3 cm x 3 cm). The choice
of changing the carriers is due to an higher quality of the
ITO layer, acting as anode, with the respect to the sputtered
one. Fig. 4b shows the rigid matrix in a custom made setup
for the selective characterization of the pixels. In parallel,
the flexible array (Fig. 4c) is tested while bending strain is
applied, showing functionality down to 1 cm bending radius.
A stable EL emission is observed throughout the bending
test. Most interestingly, the devices demonstrate stable EL
peak at 529 nm during the mechanical strain test.

VI. TOWARDS ACTIVE MATRIX
To prove the compatibility of PeLEDs with other elec-
tronics, the next step is their integration with Thin-Film
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Transistors (TFT), to form an active matrix. For this purpose,
metal-oxide semiconductors, and in particular amorphous
Indium-Gallium-Zinc-Oxide (a-IGZO), have been widely
used for flexible electronics [13]–[15], due to the low fab-
rication complexity, large-area deposition and field-effect
mobility as high as 10 cm2/Vs. The active matrix display
is designed with an array of 7 x 7 driving cells, where
an IGZO TFT drives in series a PeLED, as presented in
Fig. 5a. Each single TFT is selected by choosing the corre-
sponding column line VCOL and row line VROW, allowing
the PeLED functionality (see Fig. 5a). Considering the J-V
curve for the PeLEDs (see Fig. 2a), the W/L ratio for the
TFTs is chosen to provide enough drain current ID. For
a LED area of 2 mm x 1 mm and a voltage across the
LED of 8.5 V, ID has to be equal to 2 mA (reached by
a W/L = 1400 μm/20 μm) (see Fig. 5b). With these design
parameters, the TFTs are fabricated on a flexible 50 μm-
thick Polyimide (or kapton) foil using a bottom-gate inverted
staggered configuration (see Fig. 5c). Similarly to other
works [3], a 120 nm ITO layer is RF sputtered in Ar atmo-
sphere at room temperature, and patterned as the gate contact
for the TFT, and anode pad for the PeLED, using a lift-off
process in acetone and isopropanol. Afterwards, aluminum
oxide (Al2O3), IGZO and Ti/Au are deposited as gate dielec-
tric (and passivation layer), semiconductor and source/drain
contacts, respectively [16], [17]. To conclude the array fab-
rication, the TFTs are protected with photoresist (AZ1518,
from MicroChemicals) to allow the cleaning of the ITO
pads in the PeLED stack by an O2 plasma treatment, with-
out damaging the TFTs. Once the step is performed, acetone
and isopropanol are used to remove the photoresist. Next, the
PeLEDs fabrication is performed as presented in paragraph
II. An optical picture of the flexible display is presented
in Fig. 5c.
The overall matrix uniformity, in terms of electrical prop-

erties, is evaluated. The fabrication yield is as high as
96%, with two TFTs (over the whole matrix) not prop-
erly functional on the substrate edge, due to damages in
the gate dielectric layer, resulting in high leakage current
(IG > 1 mA). An average linear mobility μlin, threshold
voltage VTH, subthreshold swing SS and ION/IOFF ratio
of 10.88 cm2/Vs, 0.86 V, 130 mV/dec and 3.9x109, are
extracted. Figure 5d gives an overview of the variation
of linear mobility and threshold voltage, while a col-
ored 2D mapping of the same parameters is presented in
Fig. 5e and 5f.
Here, additional optimizations are required to improve

the active matrix performance, in terms of LED brightness,
as well as uniform activation of each pixel. Nevertheless,
these preliminary results show the compatibility of oxide-
based Thin-Film electronics with Pervoskites, for display
applications.

VII. CONCLUSION
In this work, flexible PeLEDs are presented. A low-cost
and room temperature manufacturing process is developed to

allow fabrication compatibility with flexible substrates. The
green PeLEDs, realized on a 50 μm kapton foil with 2D
FAPbBr3 nanocrystals, show peak emission at 529 nm, turn-
on voltage Von of 2.8 V and a maximum current efficiency
ïCE of 5.30 cd A−1. To prove the device flexibility, dynamic
bending experiments are performed, showing functionality
while bent down to 10 mm bending radius for 5000 cycles.
Moreover, passive matrixes as well as active arrays are real-
ized on both rigid and flexible substrates, for the selective
activation of multiple PeLEDs. Given the compatibility with
standard IGZO TFT technology (room temperature and low-
cost deposition), colloidal 2D FAPbBr3 perovskites could
represent a potential contestant for next-generation flexible
display devices.
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