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ABSTRACT: Layered materials (LMs), such as graphite, hexagonal boron nitride, and
transition-metal dichalcogenides, are at the center of an ever-increasing research effort, due
to their scientific and technological relevance. Raman and infrared spectroscopies are
accurate, non-destructive approaches to determine a wide range of properties, including the
number of layers, N, and the strength of the interlayer interactions. We present a general
approach to predict the complete spectroscopic fan diagrams, i.e., the relations between
frequencies and N for the optically active shear and layer-breathing modes of any multilayer
comprising N ≥ 2 identical layers. In order to achieve this, we combine a description of the normal modes in terms of a one-
dimensional mechanical model, with symmetry arguments that describe the evolution of the point group as a function of N.
Group theory is then used to identify which modes are Raman- and/or infrared-active, and to provide diagrams of the optically
active modes for any stack composed of identical layers. We implement the method and algorithms in an open-source tool to
assist researchers in the prediction and interpretation of such diagrams. Our work will underpin future efforts on Raman and
infrared characterization of known, and yet not investigated, LMs.
KEYWORDS: layered materials, Raman, infrared, multilayer, fan diagrams, spectroscopy, fingerprint, space groups

Layered materials (LMs) are at the center of an ever-
growing research effort due to the variety of their
potential applications in a wide range of fields.1 There are

at least 5000 materials that are layered,2 with at least 1800 that
are exfoliable,2−5 and even more that could be synthesized.6−9

However, only a very small fraction of these have been
experimentally investigated to date, such as graphene, hexagonal
boron nitride (hBN), black phosphorus (BP), transition metal
dichalcogenides (TMDs), InSe and other monochalcogenides,
MAXenes, and very few others. When a given bulk LM (B-LM)
is exfoliated into a multilayer (ML), the optical and electronic
properties change with the number of layers (N). For a given N,
the properties can be tuned by varying the relative orientation of
the layers.10−13 For a given N and orientation, properties can
also be changed by arranging different LMs in heterostructures
(LMHs).14−19 The degrees of freedom are such that it will take
decades, if ever, before all possible LMs will be exfoliated, and
investigated when arranged in LMHs, as a function of N and of
relative orientation. Due to the extraordinary range of properties
that can be addressed, it is essential to develop approaches to
identify N in any given assembly or device.
Techniques to measure N based on optical contrast20 have

been developed. However, they depend on the substrate and do
not readily provide information such as strain or doping. A more
informative approach is offered by Raman21 and infrared (IR)22

spectroscopies that probe phonons.

In particular, in LMs there are two fundamentally different
sets of modes: Those coming from the relative motion of the
constituent atoms within each layer, usually found at high
frequencies (>100 cm−1),21 and those due to relative motions of
the layers themselves, either perpendicular, C (or shear) modes,
or parallel, layer-breathing (LB) modes (LBMs), to their
normal.21,23−25 Several studies have identified these modes in
a limited set of ML-LMs, such as ML-graphene,26−29 TMDs30

(e.g., MoS2,
31,32 MoSe2,

33 WS2,
34 WSe2,

35 MoTe2,
36,37

ReS2,
38−40 ReSe2,

40,41 PtS2
42), NbSe2,

43−45 hBN,46 phosphor-
ene,47−49 Bi2X3,

50 and metal chalcogenides (e.g., GaSe,51,52

InSe,52 and SnS2
53).

The optically active (Raman or IR) modes can be plotted as a
function of N, in a graph that looks like a fan, thus called fan
diagram.26 The experimental data can be explained with a linear
chain model,26,54 whereby each plane is linked to the next by a
spring, modeled by scalar interlayer force constants correspond-
ing to a motion parallel (C) or perpendicular (LB) to the
planes.26
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Here, we extend the linear chain model to every possible
exfoliable LM composed of identical layers by implementing a
group-theory approach. We start from the B-LM symmetry
properties to derive a general tensorial expression for the
interlayer force constants. We show how to derive the evolution
of the point group for any N, knowing the space group of the B-
LM, considered as the repetition of a single layer (1L), stacked
recursively. This is then used to assign each normal mode to a
given irreducible representation of the corresponding point
group, in order to assess its optical activity and obtain the fan
diagram of each LM. Finally, we provide an online tool, available
onMaterials Cloud55 at the address https://materialscloud.org/
work/tools/layer-raman-ir, that accepts user-supplied structures
and computes on the fly the corresponding fan diagram and
symmetry-compliant form of the interlayer force constants. Our
work provides the interpretation of the C and LBM patterns
measured in any LM composed of identical layers, either already
experimentally investigated, or, more importantly, any of those
that will be studied in the future.

1. FAN DIAGRAMS: PREDICTION AND
INTERPRETATION

A fan diagram is a plot of the normal-mode frequencies
associated with the rigid relative motion of the layers in an ML-
LM, as a function of N. The fan diagram frequencies are a
fingerprint of each material. Their trend as a function of N
depends on the atomic structure and the symmetry, both of the
ML-LM system and of the corresponding B-LM.
We develop a theoretical model to interpret the experimental

results and to assess the origin and character of these vibrational
modes and their expected optical activity. Such a model needs a
number of components:

1. We need an approach to compute the normal vibrational
modes of ML-LMs and their frequencies, using a model
that can capture the system geometry and only depends
on a few material parameters, such as the force constants
between each pair of layers.

2. We need to identify and extract the layers of ML-LMs
from the B-LM structure and analyze their crystal
symmetry. Given the space group of B-LMs, we need to
determine all possible symmetries of ML-LM system with
a given N.

3. We need to exploit the symmetry information to identify
the optical activity of each normal mode (i.e., if the mode
is Raman- or IR-active, and, if so, if it can be detected in
the most commonly used back-scattering geometry21,56).
We use group theory to classify each mode, assigning it to
the irreducible representation to which it belongs, thus
determining its optical activity.

4. We then combine points 1−3 above in a single model to
enable the interpretation of the experimental data.

1.1. Definition of a Layered Material and Nomencla-
ture.We are interested in modeling the vibrational properties of
LMs when layers move as rigid units as a consequence of the
strong covalent bonds between atoms in a given layer, as
opposed to the weak van der Waals interactions keeping layers
together.
In this limit, C and LB vibrations can be described in terms of

interlayer force constants, acting as restoring forces between
nearby layers.
In order to limit the number of parameters in themodel and to

make use of crystal symmetry and space-group concepts to

predict the normal modes and their optical activity, we consider
LMs with a sufficiently regular stacking (to be described below,
in particular focusing on LMs composed of identical layers),
which covers the majority of naturally occurring LMs.
Here, we cover MLs comprising N ≥ 2 identical layers.
In refs 29, 57, 58, linear chain models were applied to twisted

grapheneMLs and graphene-MoS2 or hBN-WS2 stacks.We note
that these approaches are specific to the systems considered. Our
model could be numerically extended to any LM and LMH.
Group theory can still be used to obtain the form of the
interlayer mechanical couplings that enter the equations of
motion.59,60 These can then be solved numerically, to finally
assign the infrared or Raman character of the modes using
symmetry arguments. Stacking in LMHs lowers the symmetry,
lifting most symmetry constraints on the optical activity of
modes. Group theory alone could predict modes to be active
even if the corresponding intensity might be negligible. Thus,
further computation of the optical-coupling matrix elements
becomes essential. In non-recursive stacking sequences,
especially when involving different layers, more parameters
enter the description of interlayer force constants (with a
different force-constant matrix for each layer pair and for each
possible relative orientation of the two), which can be extracted
from additional first-principles simulations, in order to reduce
the number of free parameters in the model.
We follow a practical approach, giving a brief explanation of

the important symmetry properties of LMs. Ref 61 reported a
complete treatment with formal definitions and proofs. Because
the nomenclature used in the experimental literature of ML fan
diagrams often differs from that used in the crystallographic
community,61 we also provide a mapping between the names
used in the two communities, where appropriate.
The International Union of Crystallography calls ML-LMs

“polytypes” (see ref 62 for a formal definition). A theory to
describe these ML-LMs, based solely on the symmetry of each
layer and on the symmetry relation between subsequent layers,
was developed in refs 63 and 64.
Here, we limit our study to LMs where all layers are identical

and can be mapped onto each other through coincidence
operations, defined as isometries (i.e., space transformations that
preserve the distance between any two points) bringing a layer of
the ML-LM onto the next one. As already noted above, this
excludes, e.g., B-LMHs formed by different LMs, as in the case of
franckeite,65,66 but is the typical case for exfoliable materials.
The coincidence operation that brings one layer onto the next

might not be the same for all layers (e.g., if the first layer is
mapped onto the second one by a translation, while the second is
mapped onto the third by a rotation). Again, with the goal being
to limit the number of parameters in the model, we then
consider an additional requirement by limiting our analysis to
maximum degree of order (MDO) polytypes. These are LMs
where the coincidence operation is total; i.e., it is the same
between any pair of adjacent layers. As a consequence,61 in an
MDO polytype any triplet of subsequent layers is equivalent,
whereas it is not true that every pair is equivalent, as shown in the
example of Figure 1c for Bi2TeI. Because any triplet is
equivalent, MDO polytypes have only one or two independent
interatomic force-constant tensors that occur between nearby
layers in the triplet, while all other tensors can be reconstructed
using symmetry arguments. If the coincidence operation is not
total, the relative arrangement of atoms in pairs of subsequent
layers could be different, leading to different interactions
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between them, even if this almost never occurs in naturally
occurring exfoliable materials.
Within these constraints, we can classify all LMs in three

categories,61 shown with three examples in Figure 1. Table 1
provides a summary of the type of operations in each of the
categories of Figure 1.
We first consider the case where each layer is non-polar along

the stacking direction (i.e., it has a symmetry that flips it upside
down) and then when it is polar. In the non-polar case, only one
possibility exists (Category I, Figure 1a). In the polar case, there
are two options: either the polarity has the same orientation for
all layers (Category II, Figure 1b) or it alternates between layers
(Category III, Figure 1c). These three categories have very
different sets of symmetry operations.We note that Category III,
while considered here for completeness from a symmetry point
of view, never occurs to the best of our knowledge, for the most
common LMs, such as graphite, hBN or TMDs.
We define the planes of the layers in the LM as the

“horizontal” direction, and the stacking direction of the LM as
the “vertical” or z direction (note that the third vector of the bulk

unit cell might not be orthogonal to the plane of the layers, see,
e.g., Figure 1c).
We then distinguish the symmetry operations of 1L-LMs

(called λ symmetries in ref 61) and the coincidence operations
bringing a layer onto the next one (σ symmetries).
Any symmetry operation can either change the sign of any

vertical coordinate, i.e., flip the layer upside-down (called ρ
operations,61 like inversion, roto-reflections, reflections under
horizontal planes, or two-fold rotations with an horizontal axis),
or not change the sign of the vertical-direction coordinates
(called τ operations,61 e.g., translations, rotations with a vertical
axis, or reflections under vertical planes; these form a subgroup).
Because all ρ operations change the stacking order of the layers
in a LM (e.g., a stacking 1-2-3-1-2-3 becomes 3-2-1-3-2-1), in the
following we call them layer-order-changing (LOC) oper-
ations,69 whereas we call the τ ones non-LOC operations.
With these definitions, for non-polar layers (Figure 1a), both

λ and σ operations can be either LOC or non-LOC.61 Thus, we
can formally define the vertical z coordinate of each layer as that
of its inversion center (or reflection plane or rotation axis). The

Figure 1. 3 LM categories allowed from a symmetry point of view, for MDO polytypes of equivalent layers. (a) Category I: each layer is non-
polar along the stacking direction (i.e., it has a symmetry operation that flips it upside down), such as in MoS2 (structure from the
Crystallography Open Database (COD67), code 9007660). Mo atoms are shown in violet and S atoms in yellow. (b) Category II: each layer is
polar along the stacking direction, and all layers are oriented in the same direction, such as in BiTeCl (structure from the Inorganic Crystal
StructureDatabase (ICSD68), code 79362). Bi atoms are shown in light purple, Te atoms in brown, andCl atoms in green. (c) Category III: each
layer is polar along the stacking direction, and they stack in alternating polarization directions, such as Bi2TeI (ICSD

68 code 153858). Bi atoms
are shown in light purple, Te atoms in brown, and I atoms in dark purple. Symmetry planes for layer-order-changing operations (ρ planes) are
indicated with dashed lines (σ operations) or dotted-dashed lines (λ operations). Note that the LM in Category III is for illustrative purposes:
depending on the nature of the chemical bonding, this could be considered to be 3 non-equivalent layers (2 BiTeI layers analogous to those of
Category II, and 1 layer of Bi atoms).

Table 1. Summary Table of the Type of Operations in Each of the Categories of Figure 1
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plane with this z coordinate is called the layer plane.61 Then,
LOC operations can either be λ, and, in this case, their symmetry
elements are on a layer plane, or σ, and they must lie on planes
halfway between layer planes, as shown in Figure 1a.
Henceforth, we will call these planes “middle planes”. Non-
LOC σ operations (bringing one layer onto the next) are always
combined with a translation along the vertical direction.
Polar layers do not have any symmetry operation that flips the

z coordinates, so all λ operations are non-LOC. However,
whereas in Category II of Figure 1 all σ coincidence operations
are non-LOC (because the polarity direction is never reversed),
in Category III all σ coincidence operations must be LOC
(changing polarization orientation between consecutive layers)
and they also lie on middle planes. In Category II and III we
cannot univocally define a layer plane because there is no layer
inversion plane. However, by symmetry, it is possible to define
two sets of middle planes in Category III.
This distinction of three categories is thus important for

modeling the interlayer force constants. In Categories I and II all
pairs of layers are equivalent. Therefore, the same interlayer
force constant matrix (up to a similarity transformation) can be
used to describe the interaction between any pair of nearby
layers. In Category III there are two different interlayer force
constant matrices, depending on whether the polarizations of
the two neighboring layers are pointing inwards or outwards
with respect to the van der Waals gap between them. Although
this classification is extremely important to simplify the
description of C and LB modes by distinguishing possible
situations concerning the coincidence operation bringing one
layer into the next one, a full account of the symmetries of the
ML, discussed in Section 1.2, is needed to predict possible mode
degeneracies and their optical activity.
When a LM satisfies all the conditions above, the description

of its vibrational properties and of the symmetries of the
corresponding ML-LMs is greatly simplified and can be carried
out analytically or semi-analytically. For this reason, henceforth
we focus only on this class of LMs. Nonetheless, our approach
can be extended to any LMs or LMHs, although a numerical
treatment might be needed, with decreased predictivity due to
the increased number of free parameters associated with more
symmetry-inequivalent force-constant matrices. Under the
assumption of a rigid motion of the layers, if we relax the
conditions discussed above, the interlayer force constants
between neighboring layers might be all different if several
LMs are stacked together. In addition, the symmetry constraints
are less effective in reducing the number of independent
parameters entering such force constants, owing to the lower
symmetry for arbitrary-angle stacking configurations.
1.2. How To Derive the Point Group of a Multilayer

Layered Material. We now consider how to obtain the point
group of a ML-LM withN layers, as needed to predict its optical
activity, given the point group of its parent B-LM that extends
periodically in the direction orthogonal to the layers.
We call nc the number of layers in the B-LM conventional cell,

and np that in the B-LM primitive cell. By definition, the
primitive unit cell is the smallest unit cell that, when repeated
periodically, covers the full space without voids or overlaps.70 It
is not required for the axes of the cell to be along high-symmetry
directions.70 The conventional cell is the smallest cell that also
captures the symmetry of the system (i.e., with lattice vectors
along symmetry elements).70 In some cases, this leads to a larger
unit cell than the primitive one, so that, in general, nc≥ np.

70 For
Bernal-stacked graphite, the primitive and conventional cells

coincide and they both contain two layers, nc = np = 2.
Rhombohedral graphite has a rhombohedral primitive cell with
only one layer (np = 1), while the conventional hexagonal cell has
three layers (nc = 3).
We define the “stacking index” as an integer indexing the

layers so that, e.g., if a layer has stacking index l, then the next
layer (in the positive vertical direction) has l + 1.
The stacking direction, orthogonal to the planes of the layers,

is unique. Thus, for some crystal systems it is prescribed by
symmetry. In particular, in tetragonal, hexagonal, and trigonal
systems, it must be along the n-fold characteristic symmetry axis
(e.g., the c axis for tetragonal systems). If this was not the case, n-
fold rotations (with n > 2) would bring the stacking direction
into other distinct ones, which would violate its unicity. The
same arguments imply that cubic systems are not compatible
with a layered structure.69,70 If a given direction, say z, were the
stacking one, then also x and y should be by symmetry, as in
cubic systems all principal directions are equivalent. Therefore,
we do not consider cubic systems henceforth.
In orthorhombic, monoclinic, and triclinic systems, the

stacking direction is not prescribed by symmetry, therefore the
space group alone is not sufficient to characterize them. Instead,
we need to consider all inequivalent settings, i.e., possible non-
conventional choices for the origin and lattice vectors with
respect to symmetry elements. We consider all settings that are
typically discussed in crystallography,71,72 identified by their
Hall number.73 This ranges from 1 to 488 if we exclude cubic
systems. E.g., space group 17 (P2221, a primitive orthorhombic
system with 1 screw axis and no mirror symmetry) can be
realized in 3 different settings, depending on the direction of the
screw axis, with Hall numbers 109, 110, 111 for the screw axis
aligned along the third, first, and second cell axes, respectively.
Here, we assume the stacking direction to be orthogonal to the
first two lattice vectors. Then, for setting P2221 with Hall
number 109, the 21 screw axis is along the stacking direction, and
anML in this Hall setting has different symmetry properties than
one with Hall numbers 110 and 111, corresponding to P2122
and P2212, which are equivalent for our purposes, because, in
both cases, the screw axis is horizontal.
We now present a strategy to obtain “compatibility relations”,

i.e., rules determining the possible point groupsGN of anML-LM
as a function ofN, by knowing the B-LM space group and setting
(thus also the B-LM point group Gb), and the direction along
which the material is layered. This enables us to identify which
point-group operations of the B-LM (i.e., of Gb) are part of GN.
For N ≥ nc, GN is a subgroup of Gb because any operation of

theML-LMmust also be one of the B-LM for anMDOpolytype.
For N < nc, this statement is not always true, as we later discuss,
so this requires an independent treatment. nc ranges from 1 to 3
for the most-studied LMs, such as 1-T TMDs like PtS2 (nc = 1),
or MoS2, hBN, and Bernal-stacked graphite (nc = 2), or
rhombohedral graphite (nc = 3). Because the modes plotted in
the fan diagrams (i.e., relative rigid oscillations of the layers) only
exist for N ≥ 2, the condition N ≥ nc is, thus, not a strong
limitation.
We first consider non-LOC operations. Non-LOC σ

operations (σ−τ) can never be symmetries of a finite ML-LM
because theymap each layer with stacking index l onto that with l
+ 1. For λ non-LOC (λ−τ) symmetries, these non-LOC layer-
invariant operations form a group69 that we call the layer-
invariant point group, GI, which is a subgroup of Gb. Because all
elements of GI leave each layer invariant individually (i.e., they
map each layer onto itself69), they are also symmetry operations
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of theML for anyN. Thus,GI is a subgroup ofGN. Given a B-LM
space group, in order to obtain GI we need to consider all B-LM
symmetry operations that are non-LOC. For each of these, we
take only their rotational part, and consider the point group that
they form. GI for all space groups and settings are reported in
Table 3.
To obtain the complete GN, we have to complement GI with

all LOC (ρ) operations of the ML-LM, which are a subset of the
LOC operations of the B-LM. For Category II, no LOC
operations exist in B-LM, see Table 1. Therefore, there are no
additional operations to consider andGN =GI, independent ofN
and nc. For Categories I and III, LOC operations exist, and we
need to select the B-LM LOC operations compatible with a
finite ML-LM.
We focus on Category I because, as explained in Section 5.3,

Category III can be considered as a special case of Category I for
the determination of the point group. For an ML-LM with N
layers, if an inversion center for a LOC operation exists, this
must be the plane of the central layer if N is odd (e.g., layer with
stacking index 3 if N = 5), or the middle plane between the two
central layer planes if N is even. Therefore, GN will be obtained
complementing GI only with LOC operations that have
inversion planes on a layer or middle plane.
For Category I, there is always at least one operation with such

a plane. If nc is odd, any LOC can be considered as having
symmetry both on a layer plane or (with a different fractional
translation) on a middle one, so all such LOCs can be included
when computing GN. However, for even nc, LOCs can either
have inversion on a layer, or on a middle plane. Depending on
the parity ofN, two point groups might alternate, corresponding
to which set of LOCs is compatible with N.
Table 3 reports the complete set of possible GN for each Hall

setting and for nc = 1, ..., 6. Table 3 often gives two symbols (/ or
×) instead of one or two possible GN. These symbols indicate
cases in which it is impossible to create a ML in that setting with
the specified nc in the conventional cell. The meaning of the two
symbols is explained in the Table caption and, in detail, in
Sections 5.1, 5.2.
We now illustrate with a few examples how to use Table 3. We

stress that the online tool presented in Section 3 performs the
symmetry analysis automatically without the need to check
Table 3.
Given a LM, we first need to identify its layers and determine

in which category of Figure 1 it falls, depending on the 1L-LM
symmetry.
Let us start with an example for Category I. If we consider

MoS2 (in its 2H phase), hBN, or Bernal graphite, in all these
cases the 1L-LM is non-polar (there is a symmetry operation
that flips it upside down), so they belong to Category I, and the
bulk space group is P63/m2/m2/c (194), with a single choice of
Hall number (488). nc = 2 in all these cases (see, e.g., Figure 1a).
Table 3 shows that the possible ML-LM point groups are 6̅m2
and 3̅m. 6̅m2 is for odd N (without a center of symmetry)
whereas 3̅m occurs for even N (with a center of symmetry). We
emphasize the assumption N ≥ nc. For graphene (N = 1) the
point group is 6/mmm, meaning that neither of the twoGN occur
for N < 2 because it has an additional center of symmetry, that
disappears in the graphite stacking for any odd N > 1.
From our analysis, it is only possible to identify the set of

possible GN given the Hall number and nc. To make a specific
assignment for odd and even N, as in the above example, it is
necessary to know the 1L symmetries. To illustrate this, Figure
2a and Figure 2b show two fictitious crystals with the same B-

LM space group (51, Hall number 242, Hall symbol P2/c2/
m21/m) and nc = 2. From Table 3, the 2 possibilities for GN are
(i) 2/m (having inversion) or (ii) mm2 (not having inversion).
In both cases, the B-LM has both inversion symmetry and
horizontal mirror symmetry, with a corresponding B-LM Gb =
mmm. However, 1Ls have either horizontal reflection symmetry
(Figure 2a) or inversion symmetry only (Figure 2b). As a result,
the inversion and mirror LOC operations have different centers
in B-LMs, with the inversion one on middle (layer) planes for
Figure 2a (Figure 2b), and horizontal mirror symmetry on layer
(middle) planes for Figure 2a (Figure 2b). Because symmetries
frommiddle planes are selected for evenN, and those from layer
planes for oddN, for Figure 2a the assignment is 2/m for evenN,
and mm2 for odd N. The opposite holds for Figure 2b.
We now consider some examples from Categories II and III.

BiTeCl (Figure 1b) has B-LM space group P63mc (186, Hall
number 480). Because each layer is polar and all have the same
polarity (Category II), the point group of anyML-BiTeCl will be
GI = 3m (see Table 3). For Bi2TeI (Figure 1c), instead, the B-
LM space group is C2/m (12, Hall number 63). Because it
belongs to Category III, the point group of any ML-Bi2TeI with
odd N will be GI = m. If N is even, we then need to check the
column for nc = 1 in Table 3 (Table 3 can be used by interpreting
nc as the number of layer pairs, i.e., half of the number of layers in
the bulk conventional cell, as discussed in Methods), so that the
resulting point group is 2/m, independent of the termination of
the ML-Bi2TeI. Because some entries in Table 3 have two
possible values, this implies that, for Category III, some space
groups might have an alternation GN for N multiples of 4 or 2,
and the specific point group taken will depend on the
termination of the finite ML.

1.3. Computing Normal Modes. In a fan diagram, we
focus only on vibrational modes associated with a rigid relative
motion of the layers, typically <100 cm−1.
The simplest approximation26,54,74 is to model the ML-LM as

a finite linear chain of masses with a force constant K between
them, which might depend on the direction of motion. This is
often able to capture the qualitative behavior of the frequency of
the modes as a function of N, but it might not be able to predict
the frequencies or the coupling between C and LB modes
accurately in some systems. Extensions of this model have been
proposed to include further neighbors29 or intralayer coupling,75

Figure 2. Two fictitious crystals with same B-LM space group (51,
Hall number 242, Hall symbol P2/c2/m21/m) and nc = 2 (with an
orthorhombic unit cell and translational invariance in the y
direction orthogonal to the page). (a) 1L has mirror symmetry,
but no inversion. The alternation of point groups for aML is 2/m for
even N, mm2 for odd N. (b) 1L has inversion symmetry but no
mirror plane. The alternation of point groups for ML is mm2 for
even N, 2/m for odd N.
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e.g., in the case of MoS2, where a diatomic chain model was
derived31 to take into account the two types of atoms in the
system (Mo and S).
Because layers are held together by van der Waals forces

(which are typically much weaker than the chemical bonds
between atoms in a layer), we derive a more general tensorial
model under the following two assumptions: (1) layers move as
rigid units, i.e., the atomic displacements u(l) depend only on the
stacking index l, and (2) we include only first neighbor
interactions between layers. These two assumptions are typically
very good in most ML-LMs.23−25 In some cases these might
break, like at the interface between different or twistedMLs,29,57

where further neighbors are needed to fully account for the
mode frequencies. Nonetheless, the predictions of ourmodel are
still useful to interpret experimental data qualitatively, and could
be generalized to include further neighbors, if necessary, within a
numerical treatment.
Under these assumptions, the equation of motion can be

written as:

Mu l K u l u l

K u l u l

( ) ( 1) ( )

( 1) ( )

l

l

( )

( 1)

∑̈ = { [ + − ] +

[ − − ]}

α
β

αβ β β

αβ β β
−

(1)

whereM is the 1L total mass per unit cell, α and β are Cartesian
directions, and Kαβ

(l) is the (tensorial) force constant between
layer l and (l + 1). Eq 1 is valid for B-LMs when periodic
boundary conditions are applied, uβ(l = nc + 1) = uβ(l = 1), and
for finiteML-LMs when all uβ(l) terms for < 0 or l >N are set to
zero.
The Kαβ

(l) tensor, which describes the interaction between two
adjacent layers, can be different for each pair of layers. For
Category III of Figure 1, there are two types of interfaces that
alternateone set having Te atoms facing each other and the
other having Bi atomsand the corresponding force constants
will, thus, be different. Even for Categories I and II, where all
layers and interfaces are identical, the matrices for different
interfaces between layers l and l + 1 can differ, e.g., because an
interface is obtained from the previous one by a rotation along
the vertical axis, or some other symmetry operation (as forMoS2
and BiTeCl, see Figure 1a,b). In these cases, the matrices are
related by the coincidence operation bringing one layer onto the

next one, and we can write K l( ) = RK Rl( 1) 1− − = R KRl l1 1= − − + ,
with R the rotational part (proper or improper) of the
coincidence operation, andK =K(1) the interlayer force constant
between first and second layer. For Category III, K(l) can be
generated in an analogous way starting from one of the two
matrices K(1) and K(2), depending on the parity of l. Thus, in
general, we expect not a single Kαβ

(l), but a set of interlayer force-
constant matrices, depending on a few parameters.
In the online tool described in Section 3, we apply and solve

numerically eq 1, so we use the appropriately transformed K(l)

for each layer. To get a qualitative understanding of the
frequencies, their degeneracies, and their interpretation as C or
LB modes, we summarize here the analytical results when there
is a single Kαβ for all layer pairs (i.e., Categories I or II, and the
operation R commutes with Kαβ

(1), so that all K matrices are
identical). This is the case, e.g., with MoS2 or hBN.
Because Kαβ is symmetrical, it can be diagonalized with

eigenvalues k1, k2 and k3. Then, one can solve the equation of
motion to get 3N solutions (for an ML with N layers),
obtaining:26,35
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where Vβν are the eigenvectors of Kαβ and ν = 1, 2, 3 denotes
three branches (of N modes each, indexed by n = 1, ..., N). The
corresponding vibrational frequencies are given by:
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which can be interpreted as a discretization of the bulk
dispersion along the vertical direction at momenta compatible
with the finite size of the system.54,74,76 The oscillation direction
in each branch ν coincides with one of the principal directions of
the symmetric tensor, identified by the eigenvector Vβν. In order
to define C and LB modes, corresponding, respectively, to
oscillations parallel to the layers (in the xy plane) and out-of-
plane (along z), theKmatrix must be block-diagonal, with a 2×2
block for the C modes and a 1×1 element for the LBM block. In
this case, we can then define if ν is a C or LB mode. The
frequency of the highest C mode in an ML with N layers is

usually written as Pos(C)N =
c2

N(C, )ω
π

= ( )cos
c

k
M N

1
2

C

π
π , when

expressed in cm−1 (with c being the speed of light). Similarly
Pos(LBM)N refers to the highest LBM.
In general, however, the K matrix does not have such block

form, and the in-plane and out-of-plane vibrations are not
decoupled, meaning that a distinction between LB and Cmodes
is not possible, such as in the case of WTe2 (see the Methods
section for an in-depth discussion on the separation of C and LB
modes depending on symmetry).
Because K describes the interaction between adjacent layers,

its tensorial form (i.e., which elements are zero, which are equal
to each other) depends on the crystal system77 of the 2L-LM
obtained by isolating the two layers, as directly derived from its
point group.
The 7 possible cases77 (skipping cubic systems, not

compatible with a layered structure) are reported in Table 2.
For trigonal, hexagonal, and tetragonal 2L-LMs a distinction

Table 2. Components of the Kαβ
(l) Force-Constants Tensora

According to the Crystal System of the Corresponding 2L-
LM Formed by Layers l and (l + 1)b

tetragonal, hexagonal, or trigonal
i
k
jjjj

y
{
zzzz

xx
xx

zz
0 0

0 0
0 0

orthorhombic
i
k
jjjjj

y
{
zzzzz

xx
yy

zz

0 0
0 0
0 0

monoclinic (y): in-plane unique axis
i
k
jjjjj

y
{
zzzzz

xx xz
yy

xz zz

0
0 0

0

monoclinic (z): out-of-plane unique axis
i

k
jjjjjj

y

{
zzzzzz

xx xy
xy yy

zz

0
0

0 0

triclinic
i
k
jjjj

y
{
zzzz

xx xy xz
xy yy yz
xz yz zz

aFrom general symmetry considerations, see ref 77. bThe stacking
direction is z. Non-zero components are indicated. Components that
are equal have the same name. For monoclinic systems, we distinguish
the case where the unique axis is in-plane (here arbitrarily chosen as
y), or along z.
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Table 3. Possible ML GN That Can Be Obtained Knowing the Space Group and Hall Number of the Corresponding B-LMa

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Triclinic
1 1 (P1) 1 1 1 1 1 1 1 1
2 2 (P1̅) 1̅ 1 1̅ 1 or 1̅ × × × ×

Monoclinic
3 3 (P121) 2 1 2 1 or 2 × × × ×
4 3 (P112) 2 2 2 2 2 2 2 2
Equivalent Hall numbers: 5 (P211) → 3
6 4 (P1211) 2 1 2 1 or 2 × × × ×
7 4 (P1121) 2 1 / 1 / 1 / 1
Equivalent Hall numbers: 8 (P2111) → 6
9 5 (C121) 2 1 2 1 or 2 × × × ×
11 5 (I121) 2 1 / 2 / 1 or 2 / ×
12 5 (A112) 2 2 / 2 / 2 / 2
Equivalent Hall numbers: 10 (A121) → 11, 13 (B112) → 12, 14 (I112) → 12,15 (B211) → 11, 16 (C211) → 9, 17 (I211) → 11
18 6 (P1m1) m m m m m m m m
19 6 (P11m) m 1 m 1 or m × × × ×
Equivalent Hall numbers: 20 (Pm11) → 18
21 7 (P1c1) m 1 / 1 / 1 / 1
23 7 (P1a1) m m m m m m m m
24 7 (P11a) m 1 m 1 or m × × × ×
Equivalent Hall numbers: 22 (P1n1) → 21, 25 (P11n) → 24, 26 (P11b) → 24, 27 (Pb11) → 23, 28 (Pn11) → 21, 29 (Pc11) → 21
30 8 (C1m1) m m m m m m m m
32 8 (I1m1) m m / m / m / m
33 8 (A11m) m 1 / m / 1 or m / ×
Equivalent Hall numbers: 31 (A1m1) → 32, 34 (B11m) → 33, 35 (I11m) → 33, 36 (Bm11) → 32, 37 (Cm11) → 30, 38 (Im11) → 32
39 9 (C1c1) m 1 / 1 / 1 / 1
41 9 (I1a1) m m / m / m / m
45 9 (A11a) m 1 / m / 1 or m / ×
Equivalent Hall numbers: 40 (A1n1) → 41, 42 (A1a1) → 41, 43 (C1n1) → 39, 44 (I1c1) → 41, 46 (B11n) → 45, 47 (I11b) → 45,

48 (B11b) → 45, 49 (A11n) → 45, 50 (I11a) → 45, 51 (Bb11) → 41, 52 (Cn11) → 39, 53 (Ic11) → 41,
54 (Cc11) → 39, 55 (Bn11) → 41, 56 (Ib11) → 41

57 10 (P12/m1) 2/m m 2/m 2/m or m × × × ×
58 10 (P112/m) 2/m 2 2/m 2 or 2/m × × × ×
Equivalent Hall numbers: 59 (P2/m11) → 57
60 11 (P121/m1) 2/m m 2/m 2/m or m × × × ×
61 11 (P1121/m) 2/m 1 / 1̅ or m / × / ×
Equivalent Hall numbers: 62 (P21/m11) → 60
63 12 (C12/m1) 2/m m 2/m 2/m or m × × × ×
65 12 (I12/m1) 2/m m / 2/m / 2/m or m / ×
66 12 (A112/m) 2/m 2 / 2/m / 2 or 2/m / ×
Equivalent Hall numbers: 64 (A12/m1) → 65, 67 (B112/m) → 66, 68 (I112/m) → 66, 69 (B2/m11) → 65, 70 (C2/m11) → 63,

71 (I2/m11) → 65
72 13 (P12/c1) 2/m 1 / 2 or 1̅ / × / ×
74 13 (P12/a1) 2/m m 2/m 2/m or m × × × ×
75 13 (P112/a) 2/m 2 2/m 2 or 2/m × × × ×
Equivalent Hall numbers: 73 (P12/n1) → 72, 76 (P112/n) → 75, 77 (P112/b) → 75, 78 (P2/b11) → 74, 79 (P2/n11) → 72,

80 (P2/c11) → 72
81 14 (P121/c1) 2/m 1 / 2 or 1̅ / × / ×
83 14 (P121/a1) 2/m m 2/m 2/m or m × × × ×
84 14 (P1121/a) 2/m 1 / 1̅ or m / × / ×
Equivalent Hall numbers: 82 (P121/n1) → 81, 85 (P1121/n) → 84, 86 (P1121/b) → 84, 87 (P21/b11) → 83, 88 (P21/n11) → 81,

89 (P21/c11) → 81
90 15 (C12/c1) 2/m 1 / 2 or 1̅ / × / ×
92 15 (I12/a1) 2/m m / 2/m / 2/m or m / ×
96 15 (A112/a) 2/m 2 / 2/m / 2 or 2/m / ×
Equivalent Hall numbers: 91 (A12/n1) → 92, 93 (A12/a1) → 92, 94 (C12/n1) → 90, 95 (I12/c1) → 92, 97 (B112/n) → 96,

98 (I112/b) → 96, 99 (B112/b) → 96, 100 (A112/n) → 96, 101 (I112/a) → 96, 102 (B2/b11) → 92,
103 (C2/n11) → 90, 104 (I2/c11) → 92, 105 (C2/c11) → 90, 106 (B2/n11) → 92, 107 (I2/b11) → 92
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Table 3. continued

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Orthorhombic
108 16 (P222) 222 2 222 2 or 222 × × × ×
109 17 (P2221) 222 1 / 2 / 1 or 2 / ×
110 17 (P2122) 222 2 222 2 or 222 × × × ×
Equivalent Hall numbers: 111 (P2212) → 110
112 18 (P21212) 222 2 222 2 or 222 × × × ×
113 18 (P22121) 222 1 / 2 / 1 or 2 / ×
Equivalent Hall numbers: 114 (P21221) → 113
115 19 (P212121) 222 1 / 2 / 1 or 2 / ×
116 20 (C2221) 222 1 / 2 / 1 or 2 / ×
117 20 (A2122) 222 2 / 222 / 2 or 222 / ×
Equivalent Hall numbers: 118 (B2212) → 117
119 21 (C222) 222 2 222 2 or 222 × × × ×
120 21 (A222) 222 2 / 222 / 2 or 222 / ×
Equivalent Hall numbers: 121 (B222) → 120
122 22 (F222) 222 2 / 222 / 2 or 222 / ×
123 23 (I222) 222 2 / 222 / 2 or 222 / ×
124 24 (I212121) 222 2 / 222 / 2 or 222 / ×
125 25 (Pmm2) mm2 mm2 mm2 mm2 mm2 mm2 mm2 mm2
126 25 (P2mm) mm2 m mm2 m or mm2 × × × ×
Equivalent Hall numbers: 127 (Pm2m) → 126
128 26 (Pmc21) mm2 m / m / m / m
130 26 (P21ma) mm2 m mm2 m or mm2 × × × ×
Equivalent Hall numbers: 129 (Pcm21) → 128, 131 (P21am) → 130, 132 (Pb21m) → 130, 133 (Pm21b) → 130
134 27 (Pcc2) mm2 2 / 2 / 2 / 2
135 27 (P2aa) mm2 m mm2 m or mm2 × × × ×
Equivalent Hall numbers: 136 (Pb2b) → 135
137 28 (Pma2) mm2 mm2 mm2 mm2 mm2 mm2 mm2 mm2
139 28 (P2mb) mm2 m mm2 m or mm2 × × × ×
140 28 (P2cm) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 138 (Pbm2) → 137, 141 (Pc2m) → 140, 142 (Pm2a) → 139
143 29 (Pca21) mm2 m / m / m / m
145 29 (P21ab) mm2 m mm2 m or mm2 × × × ×
146 29 (P21ca) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 144 (Pbc21) → 143, 147 (Pc21b) → 146, 148 (Pb21a) → 145
149 30 (Pnc2) mm2 2 / 2 / 2 / 2
151 30 (P2na) mm2 1 / 2 or m / × / ×
152 30 (P2an) mm2 m mm2 m or mm2 × × × ×
Equivalent Hall numbers: 150 (Pcn2) → 149, 153 (Pb2n) → 152, 154 (Pn2b) → 151
155 31 (Pmn21) mm2 m / m / m / m
157 31 (P21mn) mm2 m mm2 m or mm2 × × × ×
158 31 (P21nm) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 156 (Pnm21) → 155, 159 (Pn21m) → 158, 160 (Pm21n) → 157
161 32 (Pba2) mm2 mm2 mm2 mm2 mm2 mm2 mm2 mm2
162 32 (P2cb) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 163 (Pc2a) → 162
164 33 (Pna21) mm2 m / m / m / m
166 33 (P21nb) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 165 (Pbn21) → 164, 167 (P21cn) → 166, 168 (Pc21n) → 166, 169 (Pn21a) → 166
170 34 (Pnn2) mm2 2 / 2 / 2 / 2
171 34 (P2nn) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 172 (Pn2n) → 171
173 35 (Cmm2) mm2 mm2 mm2 mm2 mm2 mm2 mm2 mm2
174 35 (A2mm) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 175 (Bm2m) → 174
176 36 (Cmc21) mm2 m / m / m / m
178 36 (A21ma) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 177 (Ccm21) → 176, 179 (A21am) → 178, 180 (Bb21m) → 178, 181 (Bm21b) → 178
182 37 (Ccc2) mm2 2 / 2 / 2 / 2
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Table 3. continued

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Orthorhombic
183 37 (A2aa) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 184 (Bb2b) → 183
185 38 (Amm2) mm2 mm2 / mm2 / mm2 / mm2
187 38 (B2mm) mm2 m / mm2 / m or mm2 / ×
188 38 (C2mm) mm2 m mm2 m or mm2 × × × ×
Equivalent Hall numbers: 186 (Bmm2) → 185, 189 (Cm2m) → 188, 190 (Am2m) → 187
191 39 (Abm2) mm2 mm2 / mm2 / mm2 / mm2
193 39 (B2cm) mm2 m / mm2 / m or mm2 / ×
194 39 (C2mb) mm2 m mm2 m or mm2 × × × ×
Equivalent Hall numbers: 192 (Bma2) → 191, 195 (Cm2a) → 194, 196 (Ac2m) → 193
197 40 (Ama2) mm2 mm2 / mm2 / mm2 / mm2
199 40 (B2mb) mm2 m / mm2 / m or mm2 / ×
200 40 (C2cm) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 198 (Bbm2) → 197, 201 (Cc2m) → 200, 202 (Am2a) → 199
203 41 (Aba2) mm2 mm2 / mm2 / mm2 / mm2
205 41 (B2cb) mm2 m / mm2 / m or mm2 / ×
206 41 (C2cb) mm2 1 / 2 or m / × / ×
Equivalent Hall numbers: 204 (Bba2) → 203, 207 (Cc2a) → 206, 208 (Ac2a) → 205
209 42 (Fmm2) mm2 mm2 / mm2 / mm2 / mm2
210 42 (F2mm) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 211 (Fm2m) → 210
212 43 (Fdd2) mm2 2 / / / 2 / /
213 43 (F2dd) mm2 1 / / / 2 or m / /
Equivalent Hall numbers: 214 (Fd2d) → 213
215 44 (Imm2) mm2 mm2 / mm2 / mm2 / mm2
216 44 (I2mm) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 217 (Im2m) → 216
218 45 (Iba2) mm2 mm2 / mm2 / mm2 / mm2
219 45 (I2cb) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 220 (Ic2a) → 219
221 46 (Ima2) mm2 mm2 / mm2 / mm2 / mm2
223 46 (I2mb) mm2 m / mm2 / m or mm2 / ×
Equivalent Hall numbers: 222 (Ibm2) → 221, 224 (I2cm) → 223, 225 (Ic2m) → 223, 226 (Im2a) → 223
227 47 (P2/m2/m2/m) mmm mm2 mmm mm2 or mmm × × × ×
228 48 (P2/n2/n2/n) mmm 2 / 2/m or 222 / × / ×
Equivalent Hall numbers: 229 (P2/n2/n2/n) → 228
230 49 (P2/c2/c2/m) mmm 2 / 2/m or 222 / × / ×
231 49 (P2/m2/a2/a) mmm mm2 mmm mm2 or mmm × × × ×
Equivalent Hall numbers: 232 (P2/b2/m2/b) → 231
233 50 (P2/b2/a2/n) mmm mm2 mmm mm2 or mmm × × × ×
235 50 (P2/n2/c2/b) mmm 2 / 2/m or 222 / × / ×
Equivalent Hall numbers: 234 (P2/b2/a2/n) → 233, 236 (P2/n2/c2/b) → 235, 237 (P2/c2/n2/a) → 235, 238 (P2/c2/n2/a) → 235
239 51 (P21/m2/m2/a) mmm mm2 mmm mm2 or mmm × × × ×
242 51 (P2/c2/m21/m) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 240 (P2/m21/m2/b) → 239, 241 (P2/b21/m2/m) → 239, 243 (P2/m2/c21/m) → 242, 244 (P21/m2/a2/m) → 239
245 52 (P2/n21/n2/a) mmm 2 / 2/m or 222 / × / ×
247 52 (P2/b2/n21/n) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 246 (P21/n2/n2/b) → 245, 248 (P2/c21/n2/n) → 245, 249 (P21/n2/c2/n) → 245, 250 (P2/n2/a21/n) → 247
251 53 (P2/m2/n21/a) mmm m / 2/m or mm2 / × / ×
253 53 (P21/b2/m2/n) mmm mm2 mmm mm2 or mmm × × × ×
254 53 (P21/c2/n2/m) mmm 2 / 2/m or 222 / × / ×
Equivalent Hall numbers: 252 (P2/n2/m21/b) → 251, 255 (P2/n21/c2/m) → 254, 256 (P2/m21/a2/n) → 253
257 54 (P21/c2/c2/a) mmm 2 / 2/m or 222 / × / ×
259 54 (P2/b21/a2/a) mmm mm2 mmm mm2 or mmm × × × ×
260 54 (P2/c2/a21/a) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 258 (P2/c21/c2/b) → 257, 261 (P2/b2/c21/b) → 260, 262 (P21/b2/a2/b) → 259
263 55 (P21/b21/a2/m) mmm mm2 mmm mm2 or mmm × × × ×
264 55 (P2/m21/c21/b) mmm m / 2/m or mm2 / × / ×
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Table 3. continued

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Orthorhombic
Equivalent Hall numbers: 265 (P21/c2/m21/a) → 264
266 56 (P21/c21/c2/n) mmm 2 / 2/m or 222 / × / ×
267 56 (P2/n21/a21/a) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 268 (P21/b2/n21/b) → 267
269 57 (P2/b21/c21/m) mmm m / 2/m or mm2 / × / ×
272 57 (P21/m21/a2/b) mmm mm2 mmm mm2 or mmm × × × ×
Equivalent Hall numbers: 270 (P21/c2/a21/m) → 269, 271 (P21/m2/c21/a) → 269, 273 (P21/b21/m2/a) → 272, 274 (P2/c21/m21/b) → 269
275 58 (P21/n21/n2/m) mmm 2 / 2/m or 222 / × / ×
276 58 (P2/m21/n21/n) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 277 (P21/n2/m21/n) → 276
278 59 (P21/m21/m2/n) mmm mm2 mmm mm2 or mmm × × × ×
280 59 (P2/n21/m21/m) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 279 (P21/m21/m2/n) → 278, 281 (P2/n21/m21/m) → 280, 282 (P21/m2/n21/m) → 280,

283 (P21/m2/n21/m) → 280
284 60 (P21/b2/c21/n) mmm m / 2/m or mm2 / × / ×
286 60 (P21/n21/c2/a) mmm 2 / 2/m or 222 / × / ×
Equivalent Hall numbers: 285 (P2/c21/a21/n) → 284, 287 (P21/n2/a21/b) → 284, 288 (P2/b21/n21/a) → 284, 289 (P21/c21/n2/b) → 286
290 61 (P21/b21/c21/a) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 291 (P21/c21/a21/b) → 290
292 62 (P21/n21/m21/a) mmm m / 2/m or mm2 / × / ×
Equivalent Hall numbers: 293 (P21/m21/n21/b) → 292, 294 (P21/b21/n21/m) → 292, 295 (P21/c21/m21/n) → 292,

296 (P21/m21/c21/n) → 292, 297 (P21/n21/a21/m) → 292
298 63 (C2/m2/c21/m) mmm m / 2/m or mm2 / × / ×
300 63 (A21/m2/m2/a) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 299 (C2/c2/m21/m) → 298, 301 (A21/m2/a2/m) → 300, 302 (B2/b21/m2/m) → 300, 303 (B2/m21/m2/b) → 300
304 64 (C2/m2/c21/a) mmm m / 2/m or mm2 / × / ×
306 64 (A21/b2/m2/a) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 305 (C2/c2/m21/b) → 304, 307 (A21/c2/a2/m) → 306, 308 (B2/b21/c2/m) → 306, 309 (B2/m21/a2/b) → 306
310 65 (C2/m2/m2/m) mmm mm2 mmm mm2 or mmm × × × ×
311 65 (A2/m2/m2/m) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 312 (B2/m2/m2/m) → 311
313 66 (C2/c2/c2/m) mmm 2 / 2/m or 222 / × / ×
314 66 (A2/m2/a2/a) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 315 (B2/b2/m2/b) → 314
316 67 (C2/m2/m2/a) mmm mm2 mmm mm2 or mmm × × × ×
318 67 (A2/b2/m2/m) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 317 (C2/m2/m2/b) → 316, 319 (A2/c2/m2/m) → 318, 320 (B2/m2/c2/m) → 318, 321 (B2/m2/a2/m) → 318
322 68 (C2/c2/c2/a) mmm 2 / 2/m or 222 / × / ×
326 68 (A2/b2/a2/a) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 323 (C2/c2/c2/a) → 322, 324 (C2/c2/c2/b) → 322, 325 (C2/c2/c2/b) → 322, 327 (A2/b2/a2/a) → 326,

328 (A2/c2/a2/a) → 326, 329 (A2/c2/a2/a) → 326, 330 (B2/b2/c2/b) → 326, 331 (B2/b2/c2/b) → 326,
332 (B2/b2/a2/b) → 326, 333 (B2/b2/a2/b) → 326

334 69 (F2/m2/m2/m) mmm mm2 / mmm / mm2 or mmm / ×
335 70 (F2/d2/d2/d) mmm 2 / / / 2/m or 222 / /
Equivalent Hall numbers: 336 (F2/d2/d2/d) → 335
337 71 (I2/m2/m2/m) mmm mm2 / mmm / mm2 or mmm / ×
338 72 (I2/b2/a2/m) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 339 (I2/m2/c2/b) → 338, 340 (I2/c2/m2/a) → 338
341 73 (I2/b2/c2/a) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 342 (I2/c2/a2/b) → 341
343 74 (I2/m2/m2/a) mmm mm2 / mmm / mm2 or mmm / ×
Equivalent Hall numbers: 344 (I2/m2/m2/b) → 343, 345 (I2/b2/m2/m) → 343, 346 (I2/c2/m2/m) → 343, 347 (I2/m2/c2/m) → 343,

348 (I2/m2/a2/m) → 343

Tetragonal
349 75 (P4) 4 4 4 4 4 4 4 4
350 76 (P41) 4 1 / / / 1 / /
351 77 (P42) 4 2 / 2 / 2 / 2
352 78 (P43) 4 1 / / / 1 / /
353 79 (I4) 4 4 / 4 / 4 / 4
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Table 3. continued

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Tetragonal
354 80 (I41) 4 2 / / / 2 / /
355 81 (P4̅) 4̅ 2 4̅ 2 or 4̅ × × × ×
356 82 (I4̅) 4̅ 2 / 4̅ / 2 or 4̅ / ×
357 83 (P4/m) 4/m 4 4/m 4 or 4/m × × × ×
358 84 (P42/m) 4/m 2 / 2/m or 4̅ / × / ×
359 85 (P4/n) 4/m 4 4/m 4 or 4/m × × × ×
Equivalent Hall numbers: 360 (P4/n) → 359
361 86 (P42/n) 4/m 2 / 2/m or 4̅ / × / ×
Equivalent Hall numbers: 362 (P42/n) → 361
363 87 (I4/m) 4/m 4 / 4/m / 4 or 4/m / ×
364 88 (I41/a) 4/m 2 / / / 2/m or 4̅ / /
Equivalent Hall numbers: 365 (I41/a) → 364
366 89 (P422) 422 4 422 4 or 422 × × × ×
367 90 (P4212) 422 4 422 4 or 422 × × × ×
368 91 (P4122) 422 1 / / / 2 / /
369 92 (P41212) 422 1 / / / 2 / /
370 93 (P4222) 422 2 / 222 / 2 or 222 / ×
371 94 (P42212) 422 2 / 222 / 2 or 222 / ×
372 95 (P4322) 422 1 / / / 2 / /
373 96 (P43212) 422 1 / / / 2 / /
374 97 (I422) 422 4 / 422 / 4 or 422 / ×
375 98 (I4122) 422 2 / / / 222 / /
376 99 (P4mm) 4mm 4mm 4mm 4mm 4mm 4mm 4mm 4mm
377 100 (P4bm) 4mm 4mm 4mm 4mm 4mm 4mm 4mm 4mm
378 101 (P42cm) 4mm mm2 / mm2 / mm2 / mm2
379 102 (P42nm) 4mm mm2 / mm2 / mm2 / mm2
380 103 (P4cc) 4mm 4 / 4 / 4 / 4
381 104 (P4nc) 4mm 4 / 4 / 4 / 4
382 105 (P42mc) 4mm mm2 / mm2 / mm2 / mm2
383 106 (P42bc) 4mm mm2 / mm2 / mm2 / mm2
384 107 (I4mm) 4mm 4mm / 4mm / 4mm / 4mm
385 108 (I4cm) 4mm 4mm / 4mm / 4mm / 4mm
386 109 (I41md) 4mm mm2 / / / mm2 / /
387 110 (I41cd) 4mm mm2 / / / mm2 / /
388 111 (P4̅2m) 4̅2m mm2 4̅2m 4̅2m or mm2 × × × ×
389 112 (P4̅2c) 4̅2m 2 / 222 or 4̅ / × / ×
390 113 (P4̅21m) 4̅2m mm2 4̅2m 4̅2m or mm2 × × × ×
391 114 (P4̅21c) 4̅2m 2 / 222 or 4̅ / × / ×
392 115 (P4̅m2) 4̅2m mm2 4̅2m 4̅2m or mm2 × × × ×
393 116 (P4̅c2) 4̅2m 2 / 222 or 4̅ / × / ×
394 117 (P4̅b2) 4̅2m mm2 4̅2m 4̅2m or mm2 × × × ×
395 118 (P4̅n2) 42̅m 2 / 222 or 4̅ / × / ×
396 119 (I4̅m2) 4̅2m mm2 / 4̅2m / 4̅2m or mm2 / ×
397 120 (I4̅c2) 4̅2m mm2 / 4̅2m / 4̅2m or mm2 / ×
398 121 (I4̅2m) 4̅2m mm2 / 4̅2m / 4̅2m or mm2 / ×
399 122 (I4̅2d) 4̅2m 2 / / / 222 or 4̅ / /
400 123 (P4/m2/m2/m) 4/mmm 4mm 4/mmm 4mm or 4/mmm × × × ×
401 124 (P4/m2/c2/c) 4/mmm 4 / 4/m or 422 / × / ×
402 125 (P4/n2/b2/m) 4/mmm 4mm 4/mmm 4mm or 4/mmm × × × ×
Equivalent Hall numbers: 403 (P4/n2/b2/m) → 402
404 126 (P4/n2/n2/c) 4/mmm 4 / 4/m or 422 / × / ×
Equivalent Hall numbers: 405 (P4/n2/n2/c) → 404
406 127 (P4/m21/bm) 4/mmm 4mm 4/mmm 4mm or 4/mmm × × × ×
407 128 (P4/m21/nc) 4/mmm 4 / 4/m or 422 / × / ×
408 129 (P4/n21/mm) 4/mmm 4mm 4/mmm 4mm or 4/mmm × × × ×
Equivalent Hall numbers: 409 (P4/n21/mm) → 408
410 130 (P4/n21/cc) 4/mmm 4 / 4/m or 422 / × / ×
Equivalent Hall numbers: 411 (P4/n21/cc) → 410
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Table 3. continued

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Tetragonal
412 131 (P42/m2/m2/c) 4/mmm mm2 / 4̅2m or mmm / × / ×
413 132 (P42/m2/c2/m) 4/mmm mm2 / 4̅2m or mmm / × / ×
414 133 (P42/n2/b2/c) 4/mmm mm2 / 4̅2m or mmm / × / ×
Equivalent Hall numbers: 415 (P42/n2/b2/c) → 414
416 134 (P42/n2/n2/m) 4/mmm mm2 / 4̅2m or mmm / × / ×
Equivalent Hall numbers: 417 (P42/n2/n2/m) → 416
418 135 (P42/m21/b2/c) 4/mmm mm2 / 4̅2m or mmm / × / ×
419 136 (P42/m21/n2/m) 4/mmm mm2 / 4̅2m or mmm / × / ×
420 137 (P42/n21/m2/c) 4/mmm mm2 / 4̅2m or mmm / × / ×
Equivalent Hall numbers: 421 (P42/n21/m2/c) → 420
422 138 (P42/n21/c2/m) 4/mmm mm2 / 42̅m or mmm / × / ×
Equivalent Hall numbers: 423 (P42/n21/c2/m) → 422
424 139 (I4/m2/m2/m) 4/mmm 4mm / 4/mmm / 4mm or 4/mmm / ×
425 140 (I4/m2/c2/m) 4/mmm 4mm / 4/mmm / 4mm or 4/mmm / ×
426 141 (I41/a2/m2/d) 4/mmm mm2 / / / 4̅2m or mmm / /
Equivalent Hall numbers: 427 (I41/a2/m2/d) → 426
428 142 (I41/a2/c2/d) 4/mmm mm2 / / / 4̅2m or mmm / /
Equivalent Hall numbers: 429 (I41/a2/c2/d) → 428

Trigonal
430 143 (P3) 3 3 3 3 3 3 3 3
431 144 (P31) 3 1 / / 1 / / 1
432 145 (P32) 3 1 / / 1 / / 1
433 146 (R3) 3 3 / / 3 / / 3
435 147 (P3̅) 3̅ 3 3̅ 3 or 3̅ × × × ×
436 148 (R3̅) 3̅ 3 / / 3̅ / / 3 or 3̅
438 149 (P312) 32 3 32 3 or 32 × × × ×
439 150 (P321) 32 3 32 3 or 32 × × × ×
440 151 (P3112) 32 1 / / 2 / / 1 or 2
441 152 (P3121) 32 1 / / 2 / / 1 or 2
442 153 (P3212) 32 1 / / 2 / / 1 or 2
443 154 (P3221) 32 1 / / 2 / / 1 or 2
444 155 (R32) 32 3 / / 32 / / 3 or 32
446 156 (P3m1) 3m 3m 3m 3m 3m 3m 3m 3m
447 157 (P31m) 3m 3m 3m 3m 3m 3m 3m 3m
448 158 (P3c1) 3m 3 / 3 / 3 / 3
449 159 (P31c) 3m 3 / 3 / 3 / 3
450 160 (R3m) 3m 3m / / 3m / / 3m
452 161 (R3c) 3m 3 / / / / / 3
454 162 (P3̅12/m) 3̅m 3m 3̅m 3m or 3̅m × × × ×
455 163 (P3̅12/c) 3̅m 3 / 32 or 3̅ / × / ×
456 164 (P3̅2/m1) 3̅m 3m 3̅m 3m or 3̅m × × × ×
457 165 (P3̅2/c1) 3̅m 3 / 32 or 3̅ / × / ×
458 166 (R3̅2/m) 3̅m 3m / / 3̅m / / 3m or 3̅m
460 167 (R3̅2/c) 3̅m 3 / / / / / 32 or 3̅

Hexagonal
462 168 (P6) 6 6 6 6 6 6 6 6
463 169 (P61) 6 1 / / / / / 1
464 170 (P65) 6 1 / / / / / 1
465 171 (P62) 6 2 / / 2 / / 2
466 172 (P64) 6 2 / / 2 / / 2
467 173 (P63) 6 3 / 3 / 3 / 3
468 174 (P6̅) 6̅ 3 6̅ 3 or 6̅ × × × ×
469 175 (P6/m) 6/m 6 6/m 6 or 6/m × × × ×
470 176 (P63/m) 6/m 3 / 3̅ or 6̅ / × / ×
471 177 (P622) 622 6 622 6 or 622 × × × ×
472 178 (P6122) 622 1 / / / / / 2
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between LB and C modes is possible and the C branches are
degenerate. For orthorhombic systems, LB and C modes can be
still defined, but the degeneracy of the two C branches is lifted.
For monoclinic systems, we can distinguish two cases: (i) in-
planemonoclinic unique axis, for which we can identify one pure
C branch, while the other two branches aremixed (no pure LBM
can be defined, such as in the case of WTe2); (ii) unique axis
along the stacking direction, for which we can distinguish LB and
C modes, even though the C polarization has no specific
orientation with respect to the crystal axes. For triclinic systems,
there is no symmetry constraint, therefore a distinction between
LB and C modes is not possible (although there might still be a
mode mostly polarized orthogonally to the layers, i.e., with a
large LB character. This could happen, e.g., in LMHs).
For an ML-LM with N > 2, although the optical activity

(discussed in Section 2) and the degeneracies depend only on
the point group, in general, the previous considerations on when
we can define pure C and LB modes cannot be directly applied.
Not only does GN often differ from Gb (e.g., in MoS2, hBN), it

might also belong to another crystal system, and the
degeneracies of the modes might be different in B-LM and
ML-LM. E.g., B-WTe2 is orthorhombic (space group Pmn21,
Hall number 155), but for all N the ML-WTe2 point group is
always m, a monoclinic point group. In other cases, this occurs
only for some N, like for ZnCl2 (tetragonal bulk, Hall number
420), where theML-LMpoint group is 4̅2m (tetragonal) for odd
N, but is mmm (orthorhombic) for even N.
The C modes are degenerate whenever the ML has an n-fold

rotation axis with n > 2.59,60 Thus, the degeneracies vary with N
in the case of ZnCl2, as illustrated in Figure 3. For evenN there is
a two-fold rotation axis and the C modes are non-degenerate,
while a four-fold one exists for odd N, so that C modes become
degenerate. This behavior can be used as an additional
fingerprint of the material. More generally, the C modes
degeneracy can be obtained for any LM from Table 3 by looking

at the ML point groups and checking if they include a n-fold axis
with n > 2.

1.4. Optical Activity of a Multilayer. Once the point
group of an ML-LM and its normal modes (frequencies and
eigenvectors) are known, one can assess its Raman or IR activity
by projecting the normal modes onto the different irreducible
representations of the point group (listed in standard
crystallography references78−80) to understand to which one
they belong. In particular, apart from accidental degeneracies, a
normal mode belongs to only one irreducible representation,81

provided that pairs of complex representations that are
conjugates of each other are grouped together because of

Table 3. continued

ML point group GN

Hall number bulk space group Gb GI nc = 1 nc = 2 nc = 3 nc = 4 nc = 5 nc = 6

Hexagonal
473 179 (P6522) 622 1 / / / / / 2
474 180 (P6222) 622 2 / / 222 / / 2 or 222
475 181 (P6422) 622 2 / / 222 / / 2 or 222
476 182 (P6322) 622 3 / 32 / 3 or 32 / ×
477 183 (P6mm) 6mm 6mm 6mm 6mm 6mm 6mm 6mm 6mm
478 184 (P6cc) 6mm 6 / 6 / 6 / 6
479 185 (P63cm) 6mm 3m / 3m / 3m / 3m
480 186 (P63mc) 6mm 3m / 3m / 3m / 3m
481 187 (P6̅m2) 6̅m2 3m 6̅m2 3m or 6̅m2 × × × ×
482 188 (P6̅c2) 6̅m2 3 / 32 or 6̅ / × / ×
483 189 (P6̅2m) 6̅m2 3m 6̅m2 3m or 6̅m2 × × × ×
484 190 (P6̅2c) 6̅m2 3 / 32 or 6̅ / × / ×
485 191 (P6/m2/m2/m) 6/mmm 6mm 6/mmm 6mm or 6/mmm × × × ×
486 192 (P6/m2/c2/c) 6/mmm 6 / 6/m or 622 / × / ×
487 193 (P63/m2/c2/m) 6/mmm 3m / 3̅m or 6̅m2 / × / ×
488 194 (P63/m2/m2/c) 6/mmm 3m / 3̅m or 6̅m2 / × / ×

aResults for all settings compatible with a layered structure (e.g., discarding cubic space groups) and for different nc in the B-LM conventional cell,
for systems of Category I. See sections 5.2 and 5.3 to apply the results of this table to Categories II and III. For each space group all inequivalent
settings are considered and labeled by their Hall number. The bulk (Gb) and layer-invariant (GI) point groups are also provided. / and × indicate
that a LM with given Hall setting and nc cannot exist with our assumptions of being an MDO polytype (see sections 5.1 and 5.2 for more details).
Rhombohedral structures are only considered in their hexagonal setting.

Figure 3. C-modes fan diagram for ZnCl2 obtained by solving eq 1.
The phonon frequency is normalized to the mean of the two
frequencies for N = 2. Red plus signs and blue diamonds denote C
modes along the x and y in-plane directions, respectively. Both B-
ZnCl2 and ML-ZnCl2 with oddN have tetragonal symmetry, and the
two C modes are always degenerate. However, ML-ZnCl2 with even
N have a reduced orthorhombic symmetry, which removes the
degeneracy between some of the C modes.
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Table 4. LBM Classification for NL-MLs According to Their Point Group GN
a
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time-reversal symmetry. Thus, the following expectation value
will be 1 for the irreducible representation γ, with characters
χ(γ)(g), to which the normal mode (ν,n) belongs, and 0 for all
others:81

p n
d

h
g OU U( , ) ( )

g G

n
g

n( ) ( , ) ( , )∑ν χ= [ ]* ̂
γ

γ γ ν ν

∈

†

(4)

where U(ν,n) is a vector collecting the displacements u(ν,n)(l) of
the layers obtained by solving eq 2, dγ is the dimension of the
representation, h the order of the point group, and Ôg the

operator associated with the symmetry element g (all these are
tabulated for all point groups). From the knowledge of the
representation γ for which pγ(ν,n) = 1, we can determine if the
mode is Raman- and/or IR-active depending on whether the
representation transforms as the components of a vector (x, y, z)
or of a quadratic form (x2, y2, xz, ...), respectively. Additionally, if
there exists at least one quadratic form associated with γ that
does not involve the z coordinate, the mode should also be
visible in a back-scattering Raman geometry, as the light
polarization vector in a back-scattering experiment with light
propagating along z cannot have a z component.

Table 4. continued

aFor a given point group and N, the modes are reported from left to right in order of increasing frequency. Raman-active modes are denoted as ○,
infrared (IR)-active modes as ×, and those that are both Raman- and IR-active are denoted as ⊗. A red symbol indicates that the mode can be
detected in a back-scattering Raman experiment orthogonal to the layers. The irreducible representation to which each mode belongs is also
reported. Whenever necessary, different orientations of the principal symmetry element with respect to the layering direction (z) are considered
and specified in parentheses. In cases where it is not possible to decouple C and LB modes, we still report them, and we note that the mode
assignment coincides with that of the corresponding mixed mode in Table 5.
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Table 5. C Modes Classification for NL-MLs According to Their Point Group GN
a

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.0c10672
ACS Nano 2021, 15, 12509−12534

12524

https://pubs.acs.org/doi/10.1021/acsnano.0c10672?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c10672?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c10672?fig=tbl5&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.0c10672?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table 5. continued

aFor a given point group and N, the modes are reported from left to right in order of increasing frequency. Raman-active modes are denoted as ○,
infrared (IR)-active modes as ×, and those that are both Raman- and IR-active are denoted as ⊗. A red symbol indicates that the Raman mode can
be detected in a back-scattering Raman experiment orthogonal to the layers. The irreducible representation to which each mode belongs is also
reported. Whenever necessary, different orientations of the principal symmetry element with respect to the layering direction (z) are considered
and specified in parentheses. In cases where it is not possible to decouple C and LB modes, we still report them, and we note that the mode
assignment coincides with that of the corresponding mixed mode in Table 4. Only modes along the first principal direction are reported if the
pattern of Raman/IR activity is the same as for modes along second direction, and the irreducible representations differ just by a naming
convention (e.g., B2 versus B3). Otherwise, displacements in both principal directions are shown.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.0c10672
ACS Nano 2021, 15, 12509−12534

12525

https://pubs.acs.org/doi/10.1021/acsnano.0c10672?fig=tbl5&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.0c10672?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To showcase the application of the method, Tables 4 and 5
report the results obtained for all point groups when a single
force-constant tensor is sufficient, so that the analytical
expressions of the previous section can be adopted. In particular,
for each mode of a N-layer ML-LM with point group GN, we
indicate the irreducible representation to which it belongs,
together with its IR/Raman activity, and whether the mode is
visible in a Raman spectroscopy experiment with a back-
scattering geometry. The overall number of IR/Raman-active
modes is in agreement with general predictions for rigid-layer
vibrations of ML-LM.59,60 We note that, in addition to the
results of refs 59 and 60, we also derived here the ML point
group starting from the B-LM symmetry properties. A full
analysis for any input LM including when more than one force-
constant tensor is needed is performed by our online tool.

2. RESULTS

We now show with a few examples how to use this approach to
reconstruct the fan diagram and the pattern of modes detectable
in IR or Raman spectroscopy.

Let us start with the case of MoS2 and black phosphorus (BP).
As previously discussed, the ML point group is 6̅m2 for odd N
and 3̅m for even N.
Figure 4a,b plots the fan diagrams for the C and LB modes of

ML-MoS2 as a function ofN, where the assignment of themodes
is obtained by considering the appropriate entries in Tables 4
and 5. These reproduce the experiments in refs 31 and 35.
We then consider ML-BP, whose bulk space group is A21/b2/

m2/a (space group 64, Hall number 306 for the shortest in-plane
vector along the second axis), nc = 2, and the correspondingML-
BP point group is mmm, both for even and odd N. Figure 4c,d
reports the corresponding fan diagrams, reproducing the
experiments of ref 48. We note that, in this case, C modes are
not visible in back-scattering, consistent with ref 48.
As a further example, Figure 5 shows the fan diagram of PtO2,

which can crystallize in at least two different allotropes that differ
only in their layer-stacking sequences.82 One phase has space
group P63mc (space group 186, Hall number 480) with nc = 2;
the other has nc = 1 and space group P3̅m1 (space group 164,
Hall number 456). In the first case, the ML-PtO2 point group is
always 3m as reported in Table 3, so that all C and LBmodes are
Raman-active in back-scattering (see Tables 4 and 5). In the

Figure 4. Fan diagram for C modes (panels a, c) and LBMs (panels b, d) for ML-MoS2 (panels a, b) and ML-BP (panels c, d). Open circles
indicate Raman-active modes and crosses indicate IR-active ones. Red symbols denote Raman-active modes that are detectable in back-
scattering geometry. For eachmode withN≤ 6, the corresponding irreducible representation of the point group is shown (in the case ofML-BP
two non-degenerate sets of Cmodes exits, but only one of them is reported with the corresponding irreducible-representation names). Red lines
are guides to the eye, following the pattern of Raman-active modes visible in back-scattering. The frequencyω on the y axis is normalized to the
frequency ωN=2 of the corresponding mode in 2L, that is different between C and LB modes.
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second case, the point group is 3̅m for everyN, and the pattern of
Raman-active modes is in Figure 5c,d. Because the pattern is
different from the first phase, this implies that the pattern of
Raman-active modes detectable in back-scattering can be used
as a fingerprint to recognize the stacking sequence and symmetry
properties of a given ML-PtO2.

3. ONLINE TOOL

In order tomake the aforementioned algorithm readily available,
we implemented it in an online web tool, published on the
Materials Cloud web platform55 at https://materialscloud.org/
work/tools/layer-raman-ir. This does not require any installa-
tion and works directly in the browser. In the first selection page,
shown in Figure 6a, the user can upload the bulk crystal structure
of a LM in a number of common formats, leveraging the parsers
implemented in the ASE83 and pymatgen84 libraries. A “skin
factor” parameter f can also be selected to tune the bond-
detection algorithm. In particular, the tool considers two atoms
A and B bonded if their distance is <f(rA + rB), where rA and rB
are the corresponding covalent atomic radii from ref 85.
Alternatively, it is possible to choose among a few selected
examples that we provide as demonstrations.
Once the bulk structure is selected or uploaded, the tool

performs computations in the background and produces an
output page. It first computes the bonds and then detects the

disconnected lower-dimensional components. Once these are
determined, the tool checks that all these components are two-
dimensional and identical between them (using the pymatgen
code84 and, in particular, the structure_matcher
module, to compare layers, check if they are identical within a
numerical threshold, and determine which coincidence
operation brings one onto the other). It then rotates the
whole structure so that the stacking axis is along z and computes
the coincidence operation between each pair of layers in the
conventional cell, verifies that the system satisfies the hypotheses
of this paper (same coincidence operation between any pair of
consecutive layers) and assigns one of the three categories
described in Figure 1. If any of the steps does not succeed, the
tool displays a message informing that the structure does not
satisfy the assumptions. After this geometry analysis, the tool
determines the symmetry of B-LM and 2L-LM, thus, the
number and shape of the force-constant matrices. Extending the
assumptions used here to produce Tables 4 and 5, the tool also
works in the case in which the force constant K and the
rotational part (proper or improper) of the coincidence
operation R do not commute, such as, e.g., in WTe2 and
ZnCl2, where force-constant matrices between successive layer
pairs are related by symmetry, but are not identical. The output
page then includes relevant information on the structure
(interactive visualizations of B-LM and 1L-LM, information
on coincidence operation), and shows the independent

Figure 5. Fan diagram for C modes (panels a, c) and LBMs (panels b, d) of ML-PtO2 for two different bulk allotropes with space group P63mc
(panels a, b, point group 6mm) and P3̅m1 (panels c, d, point group 3 ̅m). See Figure 4 for the meaning of symbols and colors.
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Figure 6. Screenshots of the online tool implementing the algorithms of this paper, available on the Materials Cloud55 Work/Tools section. (a)
Selection page, where it is possible to upload a structure in a number of common formats, or to select an example. (b) Part of the output page
with the resulting fan diagram for a material, in this case MoS2, where the option to show only LBMs has been selected. The output page of the
tool can display much more information, like visualizations of the crystal structure of B-LM and of the layers, the coincidence operation of the
ML-LM, and the symmetry analysis for the B-LM, 1L-LM, and ML-LM for all possible N.
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components of the force-constant matrices. An initial random
value for these components is provided, chosen to be in the
range of those typically occurring in LMs, but these can be
changed interactively (e.g., to fit experimental data, or to use
values obtained from first-principles). The tool then computes
the corresponding fan diagram, including the optical activity for
IR and Raman spectroscopy. Multiple units are supported both
for the force constants and for the phonon frequencies. A
screenshot of the resulting fan diagram as provided by the tool
(including the section to select the force-constant parameters) is
in Figure 6b.

4. CONCLUSIONS

We presented an approach to predict the spectroscopic
fingerprints of layered materials composed of repetitions of
the same layer. We explained how to obtain, using symmetry
considerations, the point group of a finite ML, knowing the
space group and theHall setting of the bulk, and provided a table
for all possible space groups and settings. We derived the
vibrational modes for any number of layers using a tensorial
linear chain model. We then exploited these results to associate
each normal mode to a given irreducible representation of the
point group of the ML, to assess the corresponding optical
activity and, thus, to obtain the fan diagram and the pattern of
modes that are detectable in IR and Raman spectroscopy. We
demonstrated with various examples that this approach can
distinguish different stacking sequences of a given LM, and
provides stringent conditions on the symmetry properties of
MLs.
We also provided an easy-to-use online web tool that enables

users to upload a bulk LM of their choice (accepting a variety of
common crystal-structure formats) and to perform all
operations to obtain and to display interactively the correspond-
ing fan diagram, even beyond some of the approximations used
in this paper (like those used in Tables 4 and 5). The tool is
available on the Materials Cloud web platform55 at https://
materialscloud.org/work/tools/layer-raman-ir and it is fully
open-source (the code is at https://github.com/epfl-theos/
tool-layer-raman-ir). This will guide computational and
experimental researchers interested in studying or interpreting
fan diagrams of LMs.

5. METHODS
5.1. Compatibility Relations of Fractional Translations. We

consider a space group operation defined by the following expression
for the coordinate transformation:

Rr r τ→ + (5)

where R is an orthogonal matrix. The translation τ is applied by
convention after the application of the R matrix. We refer to R as the
rotation part of the transformation (either proper or improper rotation,
e.g., a mirror operation). A non-zero τ is called a fractional translation.
Because we focus on LMs stacked along the z axis, we consider only

the τz component. In order for an operation with a non-zero τ to be
compatible with a LM with nc layers in the conventional cell, the
product nc·τzmust be an integer: e.g., if we consider a space group with a
31 screw axis along z, it might be possible to construct a LM with this
space group having 3, 6, ... layers in the B-LM conventional cell, but it is
not possible to define an ML system having nc = 1, 2, 4, 5, .... In Table 3
we indicate therefore with a slash (/) any space group that contains at
least one incompatible operation for a given nc.
Non-vanishing τ (in the case of MDO polytypes) are therefore

admissible only when nc = 2, 3, 4, 6. This limit follows from the usual
crystallographic conditions for which, e.g., if we rotate a layer by an

arbitrary angle, the next one cannot be periodic with the same unit cell,
except for a few angles (see Chapters 1 and 2 of ref 70).

5.2. Grouping Fractional Translations of Layer-Order-
Changing Operations: Category I. As discussed in the main text,
in order to obtain GN of an ML-LM we need to identify the B-LM LOC
operations compatible with it. These, together with the elements of the
layer-invariant point group GI, will form the GN that we seek.

We now consider independently the 3 categories of Figure 1. In
Category II, there are no LOC operations, therefore GN = GI. We focus
in the rest of this section on Category I and we show in Section 5.3 that
for Category III we can adapt the results of Category I.

We consider the subset of LOC operations of a given space group
(and setting), defined as those that swap the orientation of the z axis, i.e.,
where the third column of the rotation matrix R is the vector (0, 0,−1) .
Focusing only on the third coordinate z of a coordinate vector r and
using eq 5, the transformation will therefore read:

z z zτ→ − + (6)

Let us first fix the origin of our coordinate system by setting it on the
inversion plane of the ith LOC operation, which will then have no
fractional translation along the vertical direction (τz

i = 0).
If we now choose another LOC operation, say the jth, we might need

to associate with it a non-zero τz
j . In order to connect the coordinate of

the inversion planes zj̃ for this jth LOC to its τzj, we note that the jth
transformation can be equivalently interpreted as the combination of
the following operations: (1) translating one inversion plane at z = zj̃ to
z = 0 with a transformation z → z − zj̃; (2) applying the inversion
transformation about the plane that is now at z = 0, therefore changing
the sign of the z coordinate, so that the combined transformation reads
z→ −(z − zj̃); and (3) shifting back the inversion plane to its original
position by adding zj̃ to the third coordinate. The total transformation is
thus z→−(z− zj̃) + zj̃ =−z + 2zj̃. Comparing this with eq 6, we obtain
τz
j = 2zj̃.
As we discussed earlier (see Figure 1), for Category I inversion

centers can only be on a layer or on a middle plane. Having also chosen
earlier the origin on one of these planes, the zj̃ coordinate of any center
(in fractional coordinates) can, thus, only be at position zj̃ = k/2nc, with
k ∈ . In the case of two layers A and B in the conventional cell (nc = 2),
centers will be at zj̃ = 0 (on layer A), zj̃ = 1/4 (between layer A and layer
B), zj̃ = 1/2 (on layer B) or zj̃ = 3/4 (between layer B and layer A in the
next unit cell). Thus, fractional translations for any inversion plane can
only assume values τz = k/nc, with k ∈ .

We can then use the information on τz
j to group all LOC operations

in sets that share the same inversion plane(s), distinguishing those
operations having τz = 2h/nc (with h ∈ ), and, thus, inversion on a
layer plane, from those having τz = (2h+1) /nc, with inversion on a
middle plane. If nc is odd, the two sets are equivalent (i.e., each LOC
transformation with inversion on a layer plane can be also written as an
operation with inversion on a middle plane and a different τ). E.g., in the
case nc = 3, one of the two groups is {τz = 0, 2/3, 4/3, 6/3 = 2, ...} and
the second {τz = 1/3, 3/3 = 1, 5/3, 7/3, ...}. Remembering that adding
an integer to τz does not change the operation, we have that 4/3 is
equivalent to 1/3, 2 to 0, 5/3 to 2/3, and so on, so that both sets
coincide with {0, 1/3, 2/3}. If nc is even, instead, there are two separate
sets of τz, giving rise to transformations having inversion either on layer
planes or middle planes. E.g., for n = 4, one such set contains {τz = 0, 1/
2} and the other {τz = 1/4, 3/4}.

For each τz in one of these sets we can construct a potential point
groupGN

τz by adding toGI all LOC operations with fractional translation
τz. In order to be consistent with our initial assumption of a layered
structure with nc identical layers per cell and with the same relation
between nearest layers (MDO polytypes), all possible GN

τz should be
identical for all τz belonging to the same set. This stems from the fact
that for Category I MDO polytypes all layer and middle planes are
equivalent. If this is not the case, we indicate it with a cross (×) in Table
3. E.g., in the case of space group P1̅ (Hall number 2) the B-LM point
group is 1̅, whereasGI is 1. For nc = 3, considering LOC operations with
τz = 0 would add the 1̅ operation and giveGN

0 = 1̅. However, considering
operations with τz = 1/3 (or τz = 2/3) would give rise to a differentGN

1/3

= 1 (GN
2/3 = 1), because P1̅ has no LOC operations with these τz, thus
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GN
τ
z = GI in this case. These point groups (1 and 1̅) are not the same.

Therefore, we mark this with ×, indicating that it is not possible to
construct an ML with symmetry P1̅ and nc = 3 identical layers with the
same relation between each pair.
We summarize the results as follows: if nc is odd, we can either obtain

a / or a×, or there will be only one possible value forGN, independent of
N. When nc is even, the only difference is that, in general, there can be
two possible choices for GN. Which value is taken in the finite ML
depends on the parity ofN: the only LOCs compatible with a finite ML
are those with symmetry plane at its center (a middle plane for even N
or a layer plane for odd N). Therefore, in these cases, the two possible
point groups alternate as a function of N.
In the example of Figure 2, the Hall number is 242 (Hall symbol P2/

c2/m21/m), nc = 2, and GI = m. Because we have a 21 vertical axis, nc
must be even, and in Table 3 there is a / for all odd nc. If we add LOC
operations with a given fractional translation toGI, we obtainGI =m for
τz = 1/6, 1/4, 1/3, 2/3, 3/4, 5/6 (because there is no additional LOC
operation with these τz). We obtain instead 2/m for τz = 0, andmm2 for
τz = 1/2. Therefore, for nc = 2 we have two independent sets of τz ({0}
and {1/2}), and we thus obtain the two valid options for GN: 2/m and
mm2. However, for nc = 4 (and similarly for larger even values of nc) we
obtain a×, because one set of τz {0, 1/2} (that must be equivalent for nc
= 4) would instead contain two different point groups, 2/m and mm2.
From pure symmetry considerations it is not possible to establish

which of the two point groups takes place for odd or even N, as
discussed in Figure 2, unless something is known for 1L.
5.3. Grouping Fractional Translations of Layer-Order-

Changing Operations: Category III. If we limit ourselves to
symmetry considerations (e.g., for the determination of the results of
Table 3), we note that Category III is equivalent to Category I. Indeed,
if we consider a pair of adjacent layers in Category III, these together
can be considered as a (now non-polar) “layer” of Category I. In
particular, the σ−ρ plane between the pairs takes the role of the σ−ρ
middle plane of Category I, and the σ−ρ plane between the layers of the
pair takes the role of the λ−ρ of Category I. There are two ways of
pairing adjacent layers, and changing such choice swaps the role of
middle and layer planes.
Intuitively, we can understand why these two categories are

equivalent with the following Gedankenexperiment: if the chemical
bonding between the two layers in a pair becomes stronger, without
changing the atomic positions (without any change to the symmetry of
the system), we will eventually end up considering both layers in the
pair to be chemically bonded and, therefore, part of the same rigid layer.
In this case, we would have considered the system as belonging to
Category I. Thus, for the purpose of knowing the possible point groups,
Table 3 can still be used, with the caveat that now nc indicates the
number of pairs of layers for Category III.
We emphasize, however, that a separate treatment is needed when

we consider the force constants between layers. In this case, the strength
of the chemical bonds matters in determining which layers can be
considered as moving rigidly, and we need to consider two different sets
of force constants for the various σ−ρ planes of Category III.
In conclusion, to determine the point group of an ML with N layers,

there are the following options:

• N is odd. In this case, on one of the two terminations there is
only one layer in a pair. The ML loses all LOC symmetries, and
GN = GI.

• N is even.We can thenmap this case to Category I, considering a
system with Ñ = N/2 pairs of layers as discussed above.
Depending on the parity of nc (which now indicates the number
of pairs of layers in the conventional cell) we might have only
one or two possibilities for the resulting GN. The termination of
the finite ML will uniquely determine how to pair together
adjacent layers.

Therefore, for Category III, there might be up to 3 different point
group values as a function of N.
“Dimerized” systems with non-polar layers, where the interlayer

distance alternates (A/B/A/B/...), are still MDO polytypes and behave
like those of Category III, and the symmetry plane of the σ−ρ

coincidence operation does not coincide with the layer plane. We do
not consider them explicitly here (and they are quite unlikely to occur in
real ML-LMs) but the online tool is able to account for these correctly,
and mark them as Category III.

5.4. Point Group of Multilayer Layered Materials with N < nc.
In the main text, we focused on the case N ≥ nc, for which we can
deduce GN starting from Gb, and remove the operations that are not
valid in an ML-LM with N layers. The operations that remain form GN.
Therefore GN is always a subgroup of Gb.

If N < nc, this group−subgroup relation is, in general, not valid
anymore. When looking at the point group, e.g., of a 1L, we have fewer
conditions to satisfy (in particular, we remove the constraints on the
specific stacking order of the layers). Therefore, in general, the 1L point
group could have more operations than the ML. The examples of ML
graphite and graphene are covered in themain text. As another example,
we discuss WTe2 in the caption of Figure 7.

5.5. An Orthorhombic System Where Modes Are Not Purely
Perpendicular or Parallel.We now consider the system of Figure 2a.
2L-LM has point group 2/m (monoclinic, as anyML-LMwith evenN),
whereas MLs with odd N are orthorhombic. By inspecting the crystal
structure, we deduce that the unique axis of the 2L-LM is along y.
Therefore (see Table 2), the force-constant tensor for 2L-LM has the
form:
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for some non-zero values of K11, K22, K33, K31.
In addition, the coincidence operation can be written as a mirror

orthogonal to x followed by a translation along z, so that if we write the
coincidence operation in the form of eq 5, its (improper) rotational part
R is:
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Figure 7. ML-WTe2 (COD67 entry ID 2310355; gray = W, yellow =
Te). (a) Side view (x−z projection). (b) Side view (y−z projection).
B-WTe2 has space group Pmn21 (number 31) with two layers in the
conventional unit cell (nc = 2; the unit cell is shown); Gb is mm2
(C2v). With the given choice of axes, the Hall setting is 155 (Pmn21),
with a mirror plane orthogonal to x, a glide plane orthogonal to y,
and a 21 screw axis along z. 1L-WTe2 has space group P21/m (with
inversion symmetry and a 21 screw axis along x), thus GN=1 is 2/m
(C2h). There is no group−subgroup relation betweenmm2 and 2/m.
From Table 3, forN≥ 2, the point group of any ML-WTe2 isGN =m
(a subgroup both ofmm2 and of 2/m). Inversion symmetry, and the
horizontal 21 screw axis, are lost for any ML-WTe2 for the given
stacking with a B-WTe2 orthorhombic cell (they might be retrieved
with a different stacking having an appropriate monoclinic cell).
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This is not the only way to write the coincidence operation. Composing
it with any bulk operation still provides a valid one. The results
discussed below, however, are independent of the specific choice.
R and K(1) do not commute. Therefore, force constants alternate at

each interface, taking the values K(1) and K(2), with the latter being
defined as:
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We first observe that, if we limit ourselves to the 1×1 block along y, we
can consider R and K as commuting. Therefore, there will be a mode
with pure oscillations along y, i.e., a pure C mode.
Let us now focus only on the xz subspace, and define the xz sub-

blocks of K(1) and K(2) as:
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We first note that, in 2L-LM, the x and z components mix (due to the
off-diagonal K31 component), so that, as expected for a monoclinic
system, we cannot define pure LB or Cmodes. The same happens for all
evenN (monoclinic). One might expect that for odd N, since the point
group is instead orthorhombic, x (LB) and z (C)modes would perfectly
decouple. However, this is not the case. This is verified by defining a
displacement vectorU = (ux(1), uz(1), ux(2), uz(2), ..., ux(N), uz(N))

T

so that the equation of motion eq 1 can be written as −Mωn
2U = K̂U,

with K̂ having the following block form:
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(11)

where K̂(0) = K̂(1) + K̂(2) and i = 1 for even N, while i = 2 for odd N.
Even if the K̂(0) block is diagonal, there are still mixed xz components

in the off-diagonal K̂(1) and K̂(2) blocks. Thus (independent ofN parity)
all eigenvectors have non-zero x and z components. Nevertheless, for
odd N (orthorhombic) K̂ commutes with the mirror operation
orthogonal to z at the center of the ML, therefore eigenvectors can
be chosen to be simultaneously eigenvectors also of this mirror
operation (whereas this is not the case for even N). Thus, they respect
the orthorhombic symmetry ofMLs with oddN, and the optical activity
is given by the irreducible representations of the corresponding
orthorhombic point group.
In summary, even in the orthorhombic case we cannot define purely

LB and C modes (on the xz subspace) and, more generally, the
decoupling of the modes is determined by the crystal symmetry of 2L-
LM, not of the full ML-LM. The optical activity, however, is determined
by the point group of the full ML-LM, as discussed in the main text.
5.6. Worked-Out Example: Activity for Group 2/m. We now

consider how to obtain the classification of the optical activity of the
modes in the example of Figure 2a with N = 4. The symmetry of this
system is described in Section 5.5 (ML-LM point group 2/m), and the
four symmetry operations are 1 (identity), 2 (180° rotation about the y
axis), 1̅ (inversion), and m (mirror plane, orthogonal to the y axis).
There are two force-constant tensors, K(1) and K(2) in eqs 7 and 9,

that alternate. However, if we limit ourselves to the 1×1 subspace for
the decoupled C mode with oscillations along y, only a single
component K22 is sufficient to describe the force between any pair of
layers. We can, therefore, for this specific case, use the model described
earlier, limiting to α = β = 2 (y axis). The final equation of motion can be
written in matrix form as:
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k
M

U U

1 1 0 0
1 2 1 0

0 1 2 1
0 0 1 1

n
2ω =

−
− −

− −
− (12)

where, as in the main text, we assume a harmonic form for u(l,t) =
u(l) eiωnt, so that ü(l,t) = −ωn

2u(l,t); U is the column vector of the
displacements along y for each layer, i.e.,U = (uy(l = 1), uy(l = 2), uy(l =
3), uy(l = 4))T; and k = K22.

Eq 12 is an eigenvector equation with eigenvalues ωn
2, and can be

solved to find the following 4 solutions (U(n) being the corresponding
eigenvectors):
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with v 2 2
8

′ = + and v 2 2
8

″ = − . The frequencies are the same as

those obtained from eq 3.
Now that we haveU(n), in order to apply eq 4 we still need to get the

table of the irreducible representations for the point group 2/m. These
are found in refs 78 and 79:

m
A x y z xy J
B xz yz J J

A z
B x y

1 2 1 functions
1 1 1 1 , , , ,
1 1 1 1 , , ,

1 1 1 1
1 1 1 1 ,

g z

g x y

u

u

2 2 2
γ ̅

− −
− −

− −

where the first row indicates the symmetry elements g, and the values in
the table are the characters χ(γ)(g) for the 4 irreducible representations γ
= Ag, Bg, Au, Bu of 2/m (they all have the same dimension dγ = 1, and the
order of the 2/m group is h = 4). Ag and Bg are Raman-active since they
transform as quadratic functions, while Au and Bu are IR-active since
they transform as linear functions. Between the two Raman-active
representations, only modes corresponding to Ag are visible in a back-
scattering geometry, because there are quadratic forms (x2, y2, xy) that
involve only the x and y coordinates.

Applying eq 4 is straightforward when we note that Ô1 is the identity;
Ô2 is a 180° rotation with the axis along y, so it does not change the sign
of displacements along y, but it swaps the order of the layers; Ô1̅ changes
both the signs of the displacements and the order of the layers; Ôm
changes the signs of displacements along y, but not the order of the
layers:
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Applying eq 4, we get that pγ(n = 2) and pγ(n = 4) are 1 only for γ = Bg
(i.e., Raman-active only), while pγ(n = 3) is 1 only for γ = Au (i.e., IR-
active only). We skip n = 1 because this is an acoustic mode with zero
frequency where all layers move by the same amount. These
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representations correspond to the top row of the 2/m (x) case of Table
5.
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VOCABULARY
C mode, a mode in which layers in a multilayer oscillate as rigid
units parallel to the planes; layer-breathing mode, a mode in
which layers in a multilayer oscillate as rigid units perpendicular
to the planes; fan diagram, a plot of the frequency of C and
layer-breathing modes as a function of the number of layers in a
multilayer; coincidence operation, a coordinate transformation

that preserves distances and angles, bringing a layer of a layered
material onto the next one; crystallographic (Hall) setting, the
specification of the space group together with the choice of
origin and the orientation of the symmetry elements;maximum
degree of order polytypes, multilayer layered materials where
the coincidence operation is total, i.e., the same between any pair
of adjacent layers; layer-order-changing operations, symmetry
operations that change the sign of any vertical coordinate
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