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1 Introduction

Since the seminal paper by Witten on knot theory [1], it has been clear that framing plays a
crucial role in the definition of topological invariants of three-manifolds via Chern-Simons
theory. In fact, the functional quantization of the theory unavoidably requires the introduction
of a metric, thus breaking general covariance. Similarly, a naïve regularization of gauge
invariant operators like Wilson loops does not lead to topologically invariant quantities in
the quantum theory. Both in the partition function and in the Wilson loops, a topological
anomaly arises as a non-invariant phase factor. As discussed in [1], one can then restore
topological invariance by compensating with a framing phase counterterm. In the partition
function it originates by choosing a particular trivialization of the tangent bundle of the
three-manifold where the theory is defined. In the evaluation of Wilson loops it can be traced
back to a particular choice of point-splitting regularization of short distance singularities [1–3].
Topological invariance is thus recovered at the price of introducing a non-trivial scheme
dependence. However, this is a controlled dependence, as it is clear how topologically
invariant quantities change under a change of scheme.
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Notoriously, pure Chern-Simons theory may be supersymmetrized by the introduction of
some quiver structure with a Chern-Simons gauge field at each node and matter fields in the
(anti)bifundamental representation connecting the nodes. This results in 2 ≤ N ≤ 6 Chern-
Simons-matter theories, with ABJ(M) theory [4, 5] being the maximally supersymmetric
one. It has a 2-node quiver with a U(N1) gauge field Aµ at the first node and a U(N2) gauge
field Âµ at the second node, with opposite Chern-Simons levels ±k, k > 2. It is coupled
to four complex scalars CI and four fermions ψα

I (I = 1, 2, 3, 4 is an SU(4)R R-symmetry
index). This theory is holographically dual to M-theory on AdS4 × S7/Zk, or, for large k,
to type IIA superstrings on AdS4 × CP3.

Because of the coupling to matter, ABJ(M) theory is no longer topological. Still, it has
a topological sector of operators whose correlation functions do not depend on the insertion
points [6–8]. More importantly for us, framing is still relevant in this theory when computing
expectation values of non-local operators such as Wilson loops.

ABJ(M) theory has a wealth of BPS Wilson loops preserving different amounts of
supersymmetry, see [9] for a rather recent review. Salient representatives are the 1/6 BPS
bosonic circle introduced in [10–12] and the 1/2 BPS fermionic circle of [13]. As the names
suggest, the former operator is invariant under 4 supercharges, and is defined solely in terms
of the bosonic fields of the theory, i.e. the gauge fields and the complex scalars CI . The
latter operator also includes a coupling to the fermions ψα

I and preserves 12 supercharges.
Given the premise above, it is quite natural to wonder whether framing plays any role in
the computation of these operators.

It has been known for quite some time that the answer to this question is in the
affirmative. The reason is that BPS Wilson loops in ABJ(M) are amenable to evaluation
via supersymmetric localization [14, 15] and that this procedure has a preferred framing
choice [16], namely f = 1. The ABJ(M) partition function localizes in fact to a finite-
dimensional matrix model integral for two interacting sets of eigenvalues corresponding to
the two nodes of the quiver and the expectation value of BPS Wilson loops is obtained by
considering certain insertions in this integral.

The 1/6 BPS bosonic and the 1/2 BPS fermionic Wilson loops are known to be coho-
mologically equivalent with respect to the supercharge Q used for localization [13]. This
means that they differ by a Q-exact term and, despite being different classical operators,
they correspond to the same matrix model insertion, as long as Q is not broken by quantum
effects. It is known that this condition is satisfied at framing f = 1 [14], where indeed the two
operators computed as a matrix model average have the same expectation value.

However, when computed in ordinary perturbation theory, which is typically performed
at zero framing, the expectation values of these cohomologically equivalent operators are
found to be different [17–19]. As we discuss in this paper, this is due to the appearance
of a cohomological anomaly which breaks the equivalence between the two operators at
framing zero. Since this anomaly turns out to be an overall phase, it can be compensated
by a framing counterterm, following a prescription similar to the one used for restoring general
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covariance in Chern-Simons topological invariants [1]. According to the matrix model result,
the cohomological anomaly is exactly canceled by the framing phase at f = 1.1

In Chern-Simons theories with matter, the appearance of the framing phase is not just
an ad hoc trick to force agreement between different procedures, rather it captures interesting
physics. For example, it enters the prescription for computing the Bremsstrahlung function
of the 1/2 BPS Wilson loop in ABJM theory exactly [17]. Therefore, a deeper interpretation
of the framing phase is mandatory. Moreover, recalling that 1/6 BPS and 1/2 BPS Wilson
loops define one-dimensional superconformal defect theories, it would be interesting to have
a physical interpretation of framing directly from the point of view of the defect theory. Still,
it would be desirable to be able to perform perturbative computations at generic framing
to determine the phase interpolating between the perturbative results and the localization
prediction. This would provide a strong test of the matrix model result and a solid basis
for attempting a holographic interpretation of framing.

A perturbative computation at generic framing was carried out for the 1/6 BPS bosonic
loop in [19], but so far it has eluded efforts in the case of fermionic operators. This is mainly
due to technical difficulties in the evaluation of integrals coming from Feynman diagrams with
fermions. In this paper, we manage to overcome these problems and compute the expectation
value of the 1/2 BPS fermionic circle in ABJ(M) at generic framing, up to two-loop order.2

Our general strategy relies on separating the Feynman diagrams into contributions which
are framing-independent and pieces potentially sourcing framing effects. The former were
already analyzed in [23–25], where the calculation was approached at vanishing framing up to
two loops. Likewise, bosonic diagrams are fully under control, since their framing-dependent
and independent contributions are known from the literature on pure Chern-Simons theory [2].
The novelty of our analysis lies in explicitly showcasing that fermionic diagrams of the
1/2 BPS Wilson loop in ABJ(M) theory are sensitive to framing and in calculating their
contribution. This is achieved by considering slightly deformed contours from the circle and
allowing field insertions on them, as in a point-splitting regularization of coincident operators.
We then identify terms in the fermionic diagrams’ integrands that are proportional to the
Gauss linking integral, or slight modifications of it. These are sensitive to the linking number
between the deformed contours, which survives the removal of the small deformations, though
not in a topologically invariant manner, contrary to pure Chern-Simons theory.

Our calculation provides a firmer test of localization than previous works [24, 25], as it
includes framing effects at all steps along the way. Moreover, our analysis is performed for
arbitrary framing and is further generalized to Wilson loops with multiple windings. These
results clarify the role of framing in perturbative calculations of Wilson loops and its relation
to localization. They also lay the bases for a deeper understanding of how cohomological
equivalences within families of supersymmetric Wilson loops are realized perturbatively.

1The same discussion also applies to other cohomologically equivalent operators, as for example the family
of interpolating Wilson loops considered in [20]. Their expectation value in perturbation theory depends on
the interpolating parameters, even though these do not appear in the matrix model insertion. The mismatch,
also in that case, can be fixed by framing phases relating the two different framing prescriptions.

2In a different setup, the perturbative computation of mesonic Wilson lines ending on fundamental matter,
both bosonic and fermionic, was carried out in [21, 22]. Also in that case framing played a central role in the
analysis.
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The paper is organized as follows. In section 2 we review some basic notions about the
Wilson loops of ABJ(M) theory and their evaluation as matrix model averages via localization.
In section 3 we discuss framing and its role in guaranteeing the cohomological equivalence
of different BPS operators. Section 4 is the core of the paper, in which we evaluate, for
the first time, fermionic Feynman diagrams at generic framing. This allows us to verify the
matrix model prediction for the expectation value of the 1/2 BPS fermionic Wilson loop,
up to second order in perturbation theory, directly at framing f = 1. Finally, in section 5
we repeat the computation for multiply wound loops, providing a non-trivial check of our
method. Technical details are collected in a series of appendices.

2 Preliminaries

We start by reviewing some basic notions about supersymmetric Wilson loops in ABJ(M) the-
ory, such as their definition and the computation of their expectation value using localization
to a matrix model.

2.1 BPS Wilson loops in ABJ(M) theory

In N = 6 U(N1)k × U(N2)−k ABJ(M) theory [4, 5], one can define BPS Wilson loops
preserving different amounts of supersymmetry, see [9] for a review. This is achieved by
including couplings to the matter fields in the holonomies of Aµ and Âµ at the two nodes
of the quiver.

A first possibility is to add bilinears of the scalar fields CI and C̄I through a scalar
coupling matrix M I

J , where I, J = 1, 2, 3, 4 are SU(4) R-symmetry indices [10, 11]. This
is possible because in three dimensions the scalars have dimension 1/2 and a bilinear of
(anti)bifundamental fields transforms in the adjoint representation of the gauge groups of the
nodes, as Aµ and Âµ do. This gives rise to so-called bosonic Wilson loops of the form3

W bos = TrP exp
(
−i
∮
A dτ

)
, A = Aµẋ

µ − 2πi
k
|ẋ|M I

J CIC̄
J ,

Ŵ bos = TrP exp
(
−i
∮
Â dτ

)
, Â = Âµẋ

µ − 2πi
k
|ẋ|M I

J C̄JCI .

(2.1)

For a contour along a unit radius circle in R3,

xµ = (cos τ, sin τ, 0) , 0 ≤ τ ≤ 2π , (2.2)

the choice MJ
I = diag(−1,−1, 1, 1) preserves 4 supercharges, giving 1/6 BPS bosonic Wilson

loops [10, 11]. Taking into account the quiver structure of the theory, (2.1) can be recast in
terms of a single operator that couples to both nodes and still preserves 1/6 of the supercharges

W1/6 = TrP exp
(
−i
∮
L0 dτ

)
, L0 =

(
A 0
0 Â

)
, (2.3)

where L0 is a U(N1) × U(N2) connection.
3Throughout the paper we only consider Wilson loops in the fundamental representation.
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More generally, L0 can be promoted to a U(N1|N2) superconnection L by adding fermions
in its off-diagonal entries [13].4 This defines what is called a fermionic Wilson loop

W =
STr

(
Pe−i

∮
LdτT

)
STr(T ) , L =

 A −i
√

2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I Â

 . (2.4)

The couplings ηI and η̄I are commuting spinors and the twist matrix T ensures (super)gauge
invariance [13, 28].5 Depending on the contour, a suitable choice of T , M I

J and ηI , η̄
I

may render the resulting operator supersymmetric. Notice that, unlike what happens with
the L0 above, the supersymmetry variation of L is not zero, it is rather given by a total
covariant derivative

δL = DτG ≡ ∂τG + i{L,G], (2.5)

where G is some U(N1|N2) supermatrix. In this way, the (super)gauge invariance of the
operator guarantees also the invariance under supersymmetry transformations.

We are interested in the maximally supersymmetric operator, the 1/2 BPS fermionic
Wilson loop of [13], which we call W1/2. This is obtained by taking the contour along the
circle in (2.2), the twist matrix to be T = diag(1N1 ,−1N2), the scalar coupling matrix as
MJ

I = diag(−1, 1, 1, 1), and the fermionic couplings as

ηα
I = 2eiτ/2δ1I (s̄Π+)α , η̄I

α = 2ie−iτ/2δI
1 (Π+ s)α , (2.6)

where Π+ is the projector

Π+ ≡
1
2

(
1 + γ · ẋ

|ẋ|

)
, (2.7)

γµ are the Pauli matrices, and sα, s̄α are constant commuting spinors6

sα =
(
1
0

)
α

, s̄α =
(
0
1

)
α

. (2.8)

As the name says, this operator preserves 12 supercharges.
Details about this specific parametrization of the matter couplings can be found in

chapter 2 of [9]. The important thing to note is that, apart from the overall phases e±iτ/2

appearing in (2.6),7 the rest of the couplings are defined in terms of the embedding coordinates
of the contour xµ(τ), rather than the parameter τ itself. This is going to be important in

4See also [26, 27] for the construction of this operator from a Higgsing procedure.
5It is possible to define W without the insertion of the twist matrix T , at the price of introducing constant

shifts in the diagonal blocks, see chapter 2 of [9]. While the latter is a more elegant formulation, it complicates
the perturbative analysis, see chapter 5 of [9]. For this reason, in this paper we have opted to keep the twist
matrix.

6Contracted spinor indices are omitted assuming ξψ ≡ ξαψα. Spinor indices are raised as ξα = ϵαβξβ , with
ϵ+− = 1.

7These phases can be eliminated by a gauge transformation [9] and do not play a relevant role for framing.
For example, when they enter the Gauss linking integral, they do not change its value, as proven in appendix A.
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section 4 in order to be able to implement framing and to consider contours that deviate
from the circle.

Many different generalizations of the operators above are possible. For example, while
maintaining a circular contour, one could deform the superconnection L by dressing it with
appropriate parameters, which allow to interpolate between different Wilson loops [9, 29].
These parameters act as marginally relevant deformations that trigger non-trivial RG flows
connecting the operators described above [20, 30, 31]. In this paper we do not consider
interpolating operators (whose analysis is left for future studies) and we focus instead on
the fixed points of such RG flows, in particular on the 1/6 BPS bosonic and the 1/2 BPS
fermionic Wilson loops.

Another possibility is to choose more general contours [28], instead of working with the
circle (2.2). One notable example is to the so-called latitude, which is supported on

xµ = (cos θ0 cos τ, cos θ0 sin τ, sin θ0) , θ0 ∈
[
− π

2 ,
π

2

]
, (2.9)

with θ0 being the latitude angle. In this case the maximally supersymmetric Wilson loop is
the 1/6 BPS fermionic operator [17], which corresponds to choosing the couplings as

M I
J =


−ν 0 e−iτ

√
1− ν2 0

0 1 0 0
eiτ
√
1− ν2 0 ν 0
0 0 0 1

 , ηα
I = e

iντ
2
√
2


√
1 + ν

−
√
1− νeiτ

0
0


I

(
1,−ie−iτ

)α
, (2.10)

with ν ≡ cos θ0, and the twist matrix

T =
(
e−

iπν
2 0

0 e
iπν
2

)
. (2.11)

While we focus mostly on the circle, in section 4 we comment on how framing works
for the latitude, evaluating a certain Feynman diagram that serves as a consistency check
of our method.

2.2 The matrix model computation

Using supersymmetric localization, the partition function of ABJ(M) theory can be reduced
to the non-Gaussian matrix model [14]

Z =
∫ N1∏

a=1
dλa e

iπkλ2
a

N2∏
b=1

dλ̂b e
iπkλ̂2

b

∏N1
a<b sinh

2 (π(λa − λb))
∏N2

a<b sinh
2
(
π(λ̂a − λ̂b)

)
∏N1

a=1
∏N2

b=1 cosh
2
(
π(λa − λ̂b)

) (2.12)

for two sets of eigenvalues λa and λ̂a associated with the two nodes of the quiver.
The evaluation of the expectation value of supersymmetric Wilson loops as a matrix

model average amounts to inserting appropriate functions of the eigenvalues in (2.12) [13–15].
For the circular loops W bos and Ŵ bos in (2.1), the insertions are

wbos = 1
N1

N1∑
a=1

e2πλa , ŵbos = 1
N2

N2∑
a=1

e2πλ̂a , (2.13)
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respectively, whereas for W1/6 it is

w1/6 =
1

N1 +N2

 N1∑
a=1

e2πλa +
N2∑
a=1

e2πλ̂a

 . (2.14)

Interestingly, the 1/2 BPS fermionic Wilson loop is also captured by the same matrix
model insertion. This is due to the fact that this operator and the 1/6 BPS bosonic Wilson
loop are cohomologically equivalent, differing solely by a BRST-exact term [13]

W1/2 =W1/6 +QV, (2.15)

where Q is a linear combination of the supercharges mutually preserved by the two operators,
and V is a supermatrix that can be explicitly determined. This cohomological equivalence is
not exclusive to this pair of Wilson loops. In fact, it has been proved to hold in more general
classes of operators, from the 1/6 BPS fermionic operators [32] to the latitude [17] and the
more general 1/24 and 1/12 BPS parametric operators introduced in [20].

Consequently, the expectation values of cohomologically equivalent operators, as computed
localizing the functional integral with Q, must all coincide. More precisely, one expects
that matrix model (mm) results satisfy

⟨W1/2⟩mm = ⟨W1/6⟩mm = N1⟨W bos⟩mm +N2⟨Ŵ bos⟩mm
N1 +N2

. (2.16)

Expanding the matrix model computation at small couplings one finds [15, 16]

⟨W bos⟩mm = 1 + iπN1
k
− π2

6k2
(
4N2

1 − 6N1N2 − 1
)
+O

(
k−3

)
,

⟨Ŵ bos⟩mm = 1− iπN2
k
− π2

6k2
(
4N2

2 − 6N1N2 − 1
)
+O

(
k−3

)
,

(2.17)

and therefore

⟨W1/2⟩mm = 1 + iπ(N1 −N2)
k

− π2

6k2
[
4(N2

1 +N2
2 )− 10N1N2 − 1

]
+O

(
k−3

)
. (2.18)

A direct perturbative computation of
〈
W1/2

〉
has been performed, up to second order in

perturbation theory, in [23–25]. Remarkably, it does not immediately match the expression
above, but it has to be corrected a posteriori by the introduction of a phase. The reason is
that the matrix model selects a preferred framing [15, 16], specifically f = 1, while perturbative
analyses are generically performed at zero framing.

In the next section we discuss the role of framing in the computation of Wilson loops
in theories with Chern-Simons terms and then, in section 4, we set out to reproduce (2.18)
directly from a perturbative computation done at generic framing and then specialized at f = 1.

3 Framing in Wilson loops

3.1 Pure Chern-Simons theory

Framing was first introduced in pure Chern-Simons (CS) theories in Witten’s seminal paper
on knot theory [1]. It was needed as a regularization required to remove a topological

– 7 –



J
H
E
P
1
2
(
2
0
2
4
)
0
5
3

anomaly which unavoidably arises in the partition function due to the gauge-fixing procedure.
More precisely, a topologically invariant partition function can be defined by trivializing
the tangent bundle of the three-dimensional manifold, including a phase counterterm to
cancel the anomaly. The scheme dependence introduced by the counterterm (i.e. by the
trivialization) is encoded into an integer f which is called framing. The appearance of such
a scheme dependence is not a problem, as the partition function changes in a controlled
way under a change of scheme: at large k, it simply gains a phase eiπf

dim(G)
12 , for a gauge

group G. We refer to [33] for a recent review.
For analogous reasons, the expectation value of Wilson loops in Chern-Simons theories

turns out to be a metric dependent quantity. However, topological invariance can be restored
by framing the contour [1]. In quantum perturbation theory this can be seen as a point-
splitting regularization of short distance singularities. Framing is then the scheme-dependent
phase which survives after removing the regulator. This interpretation as point-splitting
explains why framing appears also in Chern-Simons theories with matter, like ABJ(M),
which are not topological.

For pure Chern-Simons theory the first evaluation of the expectation value of Wilson
loops at two loops for generic framing was performed in [2]. Let us review the main idea
behind the computation. Along a smooth path Γ, the expectation value reads

⟨WCS⟩ =
1
N
⟨TrPe−i

∫
Γ Aµdxµ

⟩ . (3.1)

The perturbative expansion of the operator produces path-ordered integrated n-point functions
of the form ∫

τ1>τ2>···>τn

⟨Aµ1(x1)Aµ2(x2) . . . Aµn(xn)⟩ ẋµ1
1 . . . ẋµn

n dτ1 . . . dτn , (3.2)

where xi ≡ x(τi). Potential singularities arising from contractions of fields at coincident points
can be regularized via a point-splitting procedure, that is by moving the xi’s to auxiliary
contours, infinitesimally displaced from the original path Γ,

xµ
i → xµ

i + δ (i− 1)nµ(τi) , |n(τi)| = 1 , (3.3)

where δ is a small deformation parameter and nµ(τi) are vector fields orthonormal to Γ.
For instance, the one-loop correction to the expectation value (3.1) is proportional to

the integrated gauge propagator ⟨Aµ1(x1)Aµ2(x2)⟩ (see (B.4)), leading to∫
Γ
dxµ

1

∫
Γ
dxν

2 ϵµνρ
(x1 − x2)ρ

|x1 − x2|3
. (3.4)

Although the propagator can be proved to be contractible to a point, implying that the
integral does not develop a singularity at x1 = x2, we still apply the framing procedure
to compute it. We let x1 run on the original contour Γ, while x2 runs on an infinitesimal
deformation of the original path

Γf : xµ
2 → xµ

2 + δ nµ(τ2) , |n(τ2)| = 1 . (3.5)

– 8 –
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The resulting contribution is proportional to the Gauss linking integral

χ(Γ,Γf) =
1
4π

∫
Γ
dxµ

1

∫
Γf

dxν
2 ϵµνρ

(x1 − x2)ρ

|x1 − x2|3
, (3.6)

which is a topologically invariant quantity. Sending the deformation parameter δ to zero
does not affect the integral, so that one can define the framing

f ≡ lim
δ→0

χ(Γ,Γf) ∈ Z (3.7)

as the linking number between Γ and Γf. More details can be found in appendix A.
Considering higher-loop corrections one can check that diagrams containing at least one

collapsible gauge propagator are framing-dependent [3]. As a result, framing contributions
exponentiate. For a Wilson loop in the fundamental representation of the SU(N) gauge
group, this leads to

⟨WCS⟩f = e
iπN

k
f⟨WCS⟩f=0 . (3.8)

Point-splitting is usually applied as a regularization method. As such, it would be
unnecessary in this context. However, it provides a consistent prescription to remove the
topological anomaly and obtain a knot polynomial [1]. As for the partition function, the
scheme dependence appearing in (3.8) is harmless, as it changes in a controlled way under
a change of scheme, i.e. a change of f.

3.2 ABJ(M) theory

Chern-Simons-matter theories, such as ABJ(M) theory, are no longer topological, still their
Wilson loop expectation values are sensitive to framing. This phenomenon is especially
evident when computing them via supersymmetric localization [14, 15], which selects the
non-trivial framing f = 1 [14, 16].

As reviewed above, since the 1/6 BPS bosonic and the 1/2 BPS fermionic Wilson loops
differ by a BRST-exact term, the identity in (2.16) holds, which has to be understood at
framing f = 1. How this identity generalizes away from this value can be investigated, for
instance, by performing a perturbative evaluation of the two sides at generic framing.

Initially, perturbative results for both sides of (2.16) were obtained in ordinary per-
turbation theory, which corresponds to f = 0 [23–25]. A comparison with the prediction
from the matrix model (2.18) allowed to identify framing phases, up to two loops in the
coupling constant, as

⟨W bos⟩f=1 = e
iπN1

k ⟨W bos⟩f=0 , ⟨Ŵ bos⟩f=1 = e−
iπN2

k ⟨Ŵ bos⟩f=0 , (3.9)

⟨W1/2⟩f=1 = e
iπ(N1−N2)

k ⟨W1/2⟩f=0 .

At generic framing, an explicit perturbative computation was carried out in [18] for the
bosonic 1/6 BPS operator W bos. It led to

⟨W bos⟩f = e
iπN1

k
f− iπ3

2k3
N1N2

2 f⟨W bos⟩f=0 , (3.10)
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with an analogous expression for Ŵ bos. Such a result agrees with the matrix model prediction
for f = 1 and exhibits a non-trivial correction to the framing phase arising at three loops.8

This correction is entirely due to matter and in fact it is not present in the pure Chern-Simons
case (3.8).

A direct perturbative computation of the 1/2 BPS Wilson loop at generic framing is
instead still missing, and the generalization of the identity in the second line of (3.9) at
generic framing is not known. Filling up this gap is the subject of section 4.

Note that, while in pure Chern-Simons theories framing is simply a scheme dependence
effect, in Chern-Simons-matter theories it may acquire a physical meaning. For example, in
ABJ(M) theory it enters an exact prescription for computing the Bremsstrahlung function
B1/2 of the 1/2 BPS Wilson loop (see for instance [34] for a self-contained review). From
the general identity [17, 35]

B1/2 =
1

4π2∂ν log |⟨W (ν)
1/6⟩|

∣∣∣
ν=1

, (3.11)

where W (ν)
1/6 is the fermionic Wilson loop defined on a latitude (see eq. (2.10)), exploiting

the quantum cohomological equivalence for latitude operators at framing ν [17] and rely-
ing on the general structure of the bosonic Wilson loop expectation value, ⟨W bos⟩f=1 =
eiΦB(N1/k)|⟨W bos⟩f=1| (where ΦB is the f = 1 phase), one eventually finds

B1/2 =
1
8π tanΦB . (3.12)

Therefore, the framing f = 1 phase of the bosonic Wilson loop determines exactly the
Bremsstrahlung function for the fermionic one.

3.3 The cohomological anomaly

Explicit two-loop results found in [23–25] show that ⟨W1/2⟩f=0 ̸= ⟨W1/6⟩f=0, contrary to the
naïve expectation based on their Q-equivalence (2.15) at the classical level. This means that
in ordinary perturbation theory — corresponding to f = 0 — the cohomological equivalence
between bosonic and fermionic loops is lost or, in other words, that the perturbative vacuum
is not Q-invariant, as it easily follows from taking the expectation value of (2.15).

In the absence of a first-principle derivation of such a cohomological anomaly, we provide
here a qualitative argument which might hint at the mechanism behind its emergence.

The 1/6 BPS and the 1/2 BPS Wilson loops are superconformal invariant quantities,
with superconformal groups SU(1, 1|1) and SU(1, 1|3), respectively. However, in perturbation
theory the regularization required to tame short distance singularities breaks scale invariance
at intermediate steps of the computation. This means that the stress-energy tensor acquires
a non-vanishing trace, which in dimensional regularization, with d = 3− 2ϵ, is expected to be
proportional to ϵ. On the other hand, supersymmetry requires it to be part of a supermultiplet
which contains a γ-trace for the supersymmetry currents. Consequently, the conservation
of the supercharge Q is expected to be broken by ϵ-terms as well. Explicit perturbative

8Stopping the calculation at a given order in loops, the highest order framing contribution trivially
exponentiates. However, it is not clear that this exponentiation persists when we push the calculation beyond
that order.
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calculations done in dimensional regularization have shown that for circular Wilson loops
the Ward identity associated with Q-conservation acquires indeed an ϵ-evanescent term [25].
We briefly recap this result.

It is convenient to consider the difference between the connections of the two loops (2.3)
and (2.4)

L − L0 =

 −4πi
k |ẋ|C2C̄

2 −i
√

2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I −4πi
k |ẋ|C̄

2C2

 , (3.13)

and call LF the off-diagonal part of this expression. The diagonal terms are due to the
different scalar couplings of the two operators. Following [13], the gauge function

Λ = i

√
π

2ke
iτ/2

(
0 C2
C̄2 0

)
(3.14)

and the supercharge Q = (Q12+ + iS12+) + (Q34+ − iS34+) satisfying QΛ = LF are used
to derive the Ward identity

⟨LF(τ1)LF(τ2)⟩ = 4
[〈
Λ(τ1)Dτ2

(
e−iτ2Λ(τ2)

) 〉
−
〈
Λ(τ2)Dτ1

(
e−iτ1Λ(τ1)

) 〉]
. (3.15)

At lowest order in perturbation theory, (3.15) translates into a differential relation
between the tree-level fermion and scalar propagators attached to the contour. However,
when we use dimensional regularization with dimensional reduction (DRED), such a relation
is broken by an evanescent term as follows

⟨(ηψ̄)1(ψη̄)2⟩ = ∂τ2

(
ei

τ12
2 ⟨C2(τ1)C̄2(τ2)⟩

)
− ∂τ1

(
e−i

τ12
2 ⟨C2(τ1)C̄2(τ2)⟩

)
−ϵ

Γ
(
1
2 − ϵ

)
41−ϵπ

3
2−ϵ

[
sin2 τ12

2
] 1
2+ϵ

sin τ12
2

. (3.16)

These ϵ-terms are harmless for the symmetry of the theory: they disappear when the
regularization is removed, thus restoring superconformal invariance at the quantum level and
do not affect identity (2.15) at lowest order (their loop integral vanishes). Nonetheless, they do
leave a finite imprint in 1/ϵ-divergent diagrams, starting at two loops. This effect necessarily
concurs in determining a discrepancy between the expectation values of W1/2 and W1/6
computed perturbatively (though it is not the only anomalous contribution at two loops).

The cohomological anomaly for these Wilson loops can be canceled by suitably framing
them, as is done in pure Chern-Simons theories to remove the topological anomaly. Up to two
loops, this can be intuitively understood from the fact that, at this order, the cohomological
anomaly exponentiates — see identities (3.9)–(3.10) —, thereby producing a phase similar to
framing. The observation that cohomological equivalence is respected at framing one leads to
the conclusion that f = 1 is precisely the scheme in which the framing phase compensates for
the cohomological anomaly. However, in the presence of interacting matter, exponentiation
of cohomologically anomalous contributions is not expected to persist at higher orders. In
fact, exponentiation is typically ensured by summing over ladder contributions, but we know
that at three loops, diagrams of different topologies begin contributing [18]. Therefore, in
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Chern-Simons-matter theories, the compensation mechanism between cohomological anomaly
and framing is more involved. A deeper understanding can be obtained by exploring the
possibility of performing exhaustive perturbative calculations at non-vanishing framing, as
we do in section 4.

The quantum breaking of the cohomological equivalence resembles the breaking of
invariance under inversions from the line to the circle discussed in [36] for the 1/2 BPS
circular Wilson loop in N = 4 super Yang-Mills: while the 1/2 BPS operator defined on
an infinite straight line has expectation value equal to one, when defined on a circle its
expectation value is no longer trivial and is entirely determined by a conformal anomaly.

In the same spirit, we can state that in ABJ(M) the difference ⟨W1/2⟩ − ⟨W1/6⟩ on the
circle is entirely due to a cohomological anomaly.

To support this interpretation, we observe that in the case of operators defined on the
line,9 the off-diagonal structure of the superconnection is much simpler [13], namely

LF =
√

2π
k

(
0 ηψ̄1

+
ψ+
1 η̄ 0

)
, (3.17)

with η, η̄ satisfying the condition ηη̄ = 2i. The analogue of (3.14) for the operator supported
along the line is

Λ =
√
π

2k

(
0 −ηC2
η̄C̄2 0

)
, (3.18)

and the supercharge such that QΛ = LF is Q = Q+
12 +Q34+. In this case, the appropriate

version of the Ward identity (3.15) is

⟨LF(τ1)LF(τ2)⟩ = 2 [Λ(τ1)D0Λ(τ2)−D0Λ(τ1)Λ(τ2)] , (3.19)

which, at lowest order in perturbation theory and using DRED, translates into

⟨ηψ̄1
+(τ1)ψ+

1 (τ2)η̄⟩ = −i(∂τ2 − ∂τ1)⟨C2(τ1)C̄2(τ2)⟩ . (3.20)

In contrast with (3.16), the relation above is not broken by evanescent terms. This is an
indication that for the line the mismatch between the vacuum expectation value of W1/2 and
W1/6 should not occur. Indeed, for the line both operators have expectation value equal to one.

4 Perturbative analysis

The perturbative evaluation of the 1/2 BPS Wilson loop in ABJ(M) theory has been performed
up to two loops at zero framing in [23–25]. It is a highly non-trivial computation due to the
contribution of internal vertices and the fermionic couplings appearing in W1/2. This is to
be contrasted with the simplicity of the equivalent computation in N = 4 super Yang-Mills
in four dimensions [41], in which only ladder diagrams contribute, directly exponentiating
(in the planar limit) to the expected matrix model result.

9Wilson loops on open contours, such as straight lines, have gauge-dependent expectation values. Gauge
independence is restored in the infinite line limit, which can entail subtleties in the presence of ultraviolet
divergences, such as for semi-infinite lines at cusps [37–40], which we do not consider in our analysis.
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As we have motivated above, a direct comparison with the matrix model result (2.18)
requires however to consider framing f = 1, which is what we do in the following. In fact,
we keep framing completely generic at all steps of the computation and only at the end
we specialize to f = 1. To regularize divergences we employ dimensional regularization in
d = 3− 2ϵ dimensions. We adopt the conventions and Feynman rules used in [24], reported
in appendix B for the reader’s convenience.

The main difficulty in computing
〈
W1/2

〉
at generic framing comes from the fermionic

diagrams, whose framing-dependent contributions have to be isolated. To this scope, we
focus on the fermionic sector of the superconnection (2.4)

LF =

 0 −i
√

2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I 0

 ≡ (0 f̄

f 0

)
, (4.1)

and start by noting that whenever a free fermionic propagator connects two endpoints lying
on the Wilson loop contour, the combination η1γµη̄2 appears (with ηi ≡ η(xi) and η̄i ≡ η̄(xi)).
Using (2.6), this reads

η1γ
µη̄2 = 4iei

τ12
2 (s̄Π+(x1) γµ Π+(x2) s) , (4.2)

with τ12 ≡ τ1 − τ2. Manipulations of products of γ-matrices allow to recast it as

η1γ
µη̄2 = iei

τ12
2 [Gµ + Fµ] , (4.3)

where

Gµ ≡ ẋµ
1
|ẋ1|

+ ẋµ
2
|ẋ2|
− iϵµν3

(
ẋ1ν

|ẋ1|
− ẋ2ν

|ẋ2|

)
+ ẋ31ẋ

µ
2 + ẋ32ẋ

µ
1

|ẋ1||ẋ2|
+ δµ

3

(
1− ẋ1 · ẋ2
|ẋ1||ẋ2|

)
(4.4)

and

Fµ ≡− iϵµνρ ẋ1ν ẋ2ρ

|ẋ1| |ẋ2|
. (4.5)

Recalling the definition of framing in eq. (3.6), it is easy to see that framing dependence
arises from the Fµ term, due to its ϵµνρ structure. Note, in particular, that planar contours
have vanishing Fµ and only receive contributions from Gµ. This fact is going to be used
repeatedly in the analysis.

The bilinear (4.3) is part of an effective fermion propagator for the quantity f i
ĵ

(with
i = 1, . . . , N1 and ĵ = 1, . . . , N2 gauge theory indices) defined in (4.1), which we write as [25]

⟨f̄ î
j (x1)f k

l̂
(x2)⟩ = −

2π
k
δk

j δ
î
l̂
(G12 + F12) , (4.6)

where the G12 and F12 functions are defined as

G12 ≡
1
ϵ
∂τ1∂τ2G(τ1 − τ2)− ϵG(τ1 − τ2) , G(τ1 − τ2) ≡

Γ
(
1
2 − ϵ

)
41−ϵπ

3
2−ϵ

[
sin2 τ1−τ2

2
] 1
2+ϵ

sin τ1−τ2
2

,

F12 ≡
ei

τ12
2

4πi ϵµνρẋ
µ
1 ẋ

ν
2
(x1 − x2)ρ

|x1 − x2|3
, (4.7)
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The G12 function comes from the framing-independent terms in (4.4), specialized to
the circular contour (2.2). It is evaluated in dimensional regularization at d = 3− 2ϵ, since
intermediate steps of the calculation require a regulator. This function is manifestly real and
antisymmetric in its argument. The term in G12 proportional to ϵ is zero for ϵ→ 0, but it
contributes at two loops when multiplied by singular contributions going like 1/ϵ. This is an
explicit realization of the general mechanism discussed in section 3.3.

The F12 function comes instead from (4.5). We will see that it corresponds to a framing-
dependent term in the fermionic propagator. For this reason we keep it generic, not specializing
it to the circle, where it would vanish. This term possesses an imaginary component which
is symmetric under the exchange τ1 ↔ τ2, and a real part which is antisymmetric. We will
ascertain that the former sources a framing-dependent term in the fermionic propagator,
whereas the latter yields vanishing contributions in all the diagrams we consider. The analysis
of the F12 function will not require regularization, so in its definition we have set ϵ = 0.

A comment about the choice of fermionic couplings is now in order. The expression
for F12 in (4.7) rests on the definition (2.6), which ensures supersymmetry for the Wilson
loop on the circle. The framing procedure deforms the contour away from the circle, thereby
breaking supersymmetry, unless a proper change of the s, s̄ spinors (2.8) in the fermionic
couplings is implemented. For Hopf fibers slightly displaced from the great circle of S3, a BPS-
preserving deformation of fermionic couplings has been proposed in [42]. This choice mimics
the regularization implied by localization [14], thereby producing results at framing one.

Our perturbative analysis seeks to pinpoint and evaluate analytically framing depen-
dent contributions by identifying instances of the Gauss linking integral, which requires
working with generic contours. Therefore, we use fermion couplings (2.6), depending on
generic contours, rather than specifying a particular framing contour and adjusting couplings
accordingly to retain supersymmetry. However, any difference between such approaches is
order δ (the framing contour displacement parameter) and negligible in our perturbative
calculation. In fact, such corrections would appear in the numerators of the various contour
integrals. Since framing effects already require delicate cancellations of powers of δ between
numerators and denominators of integrals, these corrections are expected to vanish in the
δ → 0 limit. We explicitly verified this fact at one loop, where a simple variation of the
Gauss linking integral appears. Our hypothesis is that the same mechanism holds at two
loops for more complicated integrals as well.

We also corroborated the robustness of our procedure, by using the fermionic couplings
of [28], which enforce supersymmetry on generic contours on a two-sphere. This choice
produces the same results, however the analogous version of (4.7) is bulkier and it encumbers
explicit calculations, especially at two loops. Therefore we chose to stick to (2.6)–(2.8) and
consequently use (4.7).

4.1 First order in perturbation theory

At first order in perturbation theory, the only diagrams contributing to
〈
W1/2

〉
are i) the

single gauge field exchange and ii) the single fermion exchange. There is no analogue for the
scalars, which enter the Wilson loop in pairs and then start contributing at two loops.
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The one-loop gauge field exchange at generic framing has been computed in pure Chern-
Simons theory in [2]. For an unnormalized Wilson loop in the fundamental representation
of U(N) it is given by

⟨WCS⟩f =
iπ

k
N2 f. (4.8)

This result applies immediately to
〈
W bos

〉
in ABJ(M), as well as to

〈
Ŵ bos

〉
, modulo a sign

flip due to the opposite sign of the Chern-Simons level in the second node of the quiver. The
unnormalized result for the 1/2 BPS operator is then the sum of these two contributions
(we denote gauge fields with wavy lines throughout the paper)

= iπ

k
(N2

1 −N2
2 ) f . (4.9)

Normalizing as in (2.4) by STr(T ) = N1 + N2, we obtain〈
W1/2

〉
f

∣∣∣
i)
= iπ

k
(N1 −N2) f. (4.10)

For f = 1, this matches the result expected from the matrix model at this order, see the
second term in (2.18).

The contribution from a single fermion exchange is given by (fermions are denoted
by solid lines)

= −
∫
dτ1>2

[
⟨f̄1f2⟩+ ⟨f1f̄2⟩

]
, (4.11)

where f1,2 ≡ f(x1,2) (and similarly for the barred quantities) are the fermionic off-diagonal
elements in (4.1). We focus on the first contribution, the second one being simply its complex
conjugate. Inserting the fermionic propagator (4.6), it reads∫

dτ1>2 ⟨f̄1f2⟩ = −
2π
k
N1N2

∫
dτ1>2 (G12 + F12) , (4.12)

with G12 and F12 given in (4.7).
To investigate what happens to G12 at non-trivial framing, we use point-splitting reg-

ularization and take xµ
2 on the framed contour (3.5). As originally done in [43], to single

out possible framing-dependent integrals we expand the resulting expression in powers of
δ. At order O(δ0), we recover the zero-framing integral, which was shown to evaluate to
zero [23–25]. Higher order terms in the expansion disappear in the δ → 0 limit.

On the other hand, the term with F12 could yield, in principle, a framing-dependent
contribution. The corresponding integral is finite, thus we can set the regularization parameter
ϵ to zero. Apart from the extra phase ei

τ12
2 , the rest of the integrand is exactly the one

appearing in the Gauss linking number (3.6). As proven in appendix A, for any analytic
function h(τ) multiplying the Gauss integrand, the integral results into h(0) times the Gauss
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linking number. Since in the case at hand, h(τ) = ei τ
2 , with h(0) = 1, the result is nothing

but the Gauss linking number. Therefore,∫
dτ1>2 ⟨f̄1f2⟩ =

2πi
k
N1N2 f . (4.13)

Adding the complex conjugate contribution in (4.11), one finds that the single fermion
exchange at generic framing vanishes identically

= −2πi
k
N1N2 f+

2πi
k
N1N2 f = 0. (4.14)

In particular, it vanishes at f = 1, consistently with the matrix model prediction (2.18), which
at this order is entirely given by the gauge field exchange (4.10).

We conclude this section with a non-trivial check of the method that led to (4.14),
considering the 1/6 BPS fermionic latitude Wilson loop reviewed in section 2.1. In this case
cohomological equivalence holds at framing f = ν, with the expectation value of bosonic
operators being captured by a deformed matrix model [44] containing an explicit dependence
on the latitude parameter ν. This is an interesting example in which framing get analytically
continued to a non-integer value. The one-loop contribution from fermionic diagrams reads
in this case

= −
∫
dτ1>2

[
e−

iπν
2 ⟨f̄1f2⟩ − e

iπν
2 ⟨f1f̄2⟩

]
, (4.15)

where f and f̄ are now the fermionic off-diagonal elements with the couplings in (2.10). The
result at framing zero is known to be [17]∣∣∣∣∣∣∣

f=0

= 2πi
k
N1N2 ν cos

πν

2 . (4.16)

The framing part turns out to be the same as above even for the latitude contour (2.9),
thus giving

=

∣∣∣∣∣∣∣
f=0

− iπ

k
e−

iπν
2 N1N2 f−

iπ

k
e

iπν
2 N1N2 f

= 2πi
k
N1N2 (ν − f) cos πν2 .

(4.17)

where we have used the one-loop result at trivial framing known from [17].
This expression vanishes for f = ν, which is consistent with the statement above that

the matrix model computes the expectation value at framing ν. For this value of framing,
cohomological equivalence between fermionic and bosonic Wilson loops holds. In order for
this condition to be satisfied, the total contribution of fermionic diagrams at one loop should
vanish at framing ν, which is indeed the case.
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4.2 Second order in perturbation theory

At two loops, the results for the gauge field diagrams at generic framing can be directly
extracted from the pure Chern-Simons case [2]. In ABJ(M) theory there is one extra bosonic
diagram with the exchange of two scalars [10–12], which however is not affected by framing,
as it is simply the square of the scalar propagator.

In summary, the bosonic diagrams at generic framing for the unnormalized W bos op-
erator (2.1) are (we indicate scalars with dotted lines)

+ = π2

k2
N2

1N2 ,

= − π2

6k2 N1
(
N2

1 − 1
)
,

= − π2

2k2 N
3
1 f

2 .

(4.18)

The corresponding results for Ŵ bos are obtained by exchanging N1 and N2.
The non-trivial and novel part of the computation is instead represented by the diagrams

with fermions, given by

i) the one-loop correction of a single-fermion exchange;

ii) a mixed gauge-fermion exchange;

iii) a double-fermion exchange;

iv) a cubic gauge-fermion vertex diagram.

In what follows we compute them separately at generic framing.
The ordinary perturbative evaluation of the 1/2 BPS Wilson loop at framing zero

provides a vanishing result at one loop and a real result at two loops. On the other hand,
the comparison with the matrix model result at this order allows to identify the framing
phase, see (3.9), whose expansion still provides a real two-loop result at framing one. If we
reasonably assume that a calculation at generic framing should only modify the exponent
of the framing phase without spoiling the general structure of identity (3.9), we expect a
real result at two loops for any framing. Based on this argument, along the calculation we
are going to neglect imaginary contributions arising from two-loop diagrams, as they will
eventually cancel in the final result.

i) One-loop corrected single-fermion exchange. The first fermionic diagram is the
self-energy correction to the single fermion exchange. At zero framing this was shown to
be zero in [24]. It is easy to see that turning on framing does not change this conclusion.
In fact, framing contributions may only arise from non-planar terms. On the other hand,
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the structure of the corrected propagator, see (B.5) in the appendix, does not allow for
these terms to appear. We then obtain

= 0 . (4.19)

ii) Mixed gauge-fermion exchange diagram. This diagram does not appear in the
zero framing analysis, since the structure of the gauge propagator (see (B.4)) makes it
automatically vanish for planar contours. At non-vanishing framing, however, non-trivial
contributions may arise, which we now compute.

There are two mixed gauge-fermion exchange diagrams, corresponding to the Aµ and Âµ

propagators. They give rise to equal contributions, apart from the color factors, which are
N2

1N2 and N2
2N1, respectively. We focus on the former, which schematically reads

N2
1N2

(
⟨A1A2⟩⟨f̄3f4⟩+ ⟨A3A4⟩⟨f̄1f2⟩+ ⟨A1A4⟩⟨f̄2f3⟩ − ⟨A2A3⟩⟨f̄4f1⟩

)
, (4.20)

where the minus sign in front of the last term is due to the anticommutation of fermions.
Here Ai stands for Aµ(xi), and similarly for fi and f̄i.

Inserting the effective propagators (4.6) in (4.20), the computation splits into a ‘framing
squared’ part, given by the product of one gauge propagator and the framing term in the
fermionic one (the F -term in (4.6)) and a ‘linear framing’ part, given by the product of one
gauge propagator and the planar sector of the fermionic propagator (the G-term in (4.6)).
We argue that only the ‘framing squared’ part is relevant for our computation, since the
other contribution turns out to be imaginary. Therefore, generalizing the definition of the
framing-dependent term F12 in (4.7) to generic points

Fij = ei
τij
2

4πi ϵµνρẋ
µ
i ẋ

ν
j

(xi − xj)ρ

|xi − xj |3
, (4.21)

we focus on the computation of

N2
1N2 (⟨A1A2⟩F34 + ⟨A3A4⟩F12 + ⟨A1A4⟩F23 − ⟨A2A3⟩F41) . (4.22)

We manipulate this expression in order to write it as the product of the one-loop gauge
diagram times the one-loop fermionic one, up to framing-independent terms. To this end,
we sum and subtract the two cross contributions

N2
1N2 (⟨A1A3⟩F24 + ⟨A2A4⟩F13) , (4.23)

and an additional 2⟨A2A3⟩F41, in order to have the same sign for all the terms in (4.22).
Integrating over the four endpoints of the propagators, appropriately ordered, we are led
to evaluate

N2
1N2

[(∫
τ1>τ2

⟨A1A2⟩
)(∫

τ3>τ4
F34

)
−
∫

τ1>τ2>τ3>τ4
(⟨A1A3⟩F24 + ⟨A2A4⟩F13)− 2

∫
τ1>τ2>τ3>τ4

⟨A2A3⟩F41

]
. (4.24)
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x1

x2

Figure 1. The contour x1 is the original circle (2.2), while x2 is an helix with radius δ = 0.05 and
winding number f = 20.

Figure 2. Real and imaginary parts of the framing dependence of the second line of (4.24) for f = 1
as a function of δ. Both parts tend to zero as δ → 0, proving numerically that those expressions are in
fact framing-independent.

First, we show that all the terms in the second line of (4.24) are framing-independent, thus
they enter the result at zero framing and can be disregarded in the present analysis. At a first
sight, their independence on framing might be inferred from the fact that they all contain at
least one non-collapsible propagator, while it is believed that framing dependence only arises
from “collapsible” propagators, i.e. propagators connecting τi with τi+1 [3]. However, since
this argument is valid only in pure Chern-Simons theory and does not necessarily hold in the
presence of matter [18], we check framing independence explicitly via a numerical computation.

We proceed as follows. Without loss of generality, we let τ1 run on the circle (2.2) while
the three parameters τ2,3,4 run on small deformations of it

xµ
k=2,3,4 = (cos τk, sin τk, 0) + (k − 1) δ (cos(f τk) cos τk, cos(f τk) sin τk, sin(f τk)) . (4.25)

This consists of a toroidal helix of infinitesimal radius δ winding f times around the original
circular path, see figure 1. We evaluate numerically the framing of the second line of (4.24)
for f = 1 and different values of δ, see figure 2. It can be clearly seen from the plot that
framing disappears as δ is sent to zero, confirming our claim.
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Having established this fact, we can now compute the first line of (4.24) by reading it as
the product of the one-loop gauge diagram (4.9) and one-loop fermion diagram (4.13). From
the upper block of the superconnection we obtain a framing-dependent term which reads

π2

k2
N2

1N2 f
2 . (4.26)

Adding also the real contribution from the lower block of the superconnection, the final result
for the (unnormalized) mixed gauge-fermion exchange diagram is

= π2

k2
N1N2(N1 +N2) f2 . (4.27)

Recalling that this diagram does not contribute at zero framing (the gauge propagator makes
it vanish on planar contours), this is its entire real contribution.

iii) Double fermion exchange diagram. The double fermion exchange diagram comes
from the following terms

⟨f̄1f2f̄3f4⟩+ ⟨f1f̄2f3f̄4⟩ . (4.28)

For both one can perform contractions in two ways, producing different overall color factors

N1N
2
2

(
⟨f̄1f2⟩⟨f̄3f4⟩ − ⟨f̄4f1⟩⟨f̄2f3⟩

)
+N2

1N2
(
−⟨f̄1f4⟩⟨f̄3f2⟩+ ⟨f̄2f1⟩⟨f̄4f3⟩

)
. (4.29)

Focusing on the contribution proportional to N1N
2
2 and inserting the effective propaga-

tor (4.6) we find∫
τ1>τ2>τ3>τ4

⟨f̄1f2⟩⟨f̄3f4⟩ =
4π2

k2

∫
τ1>τ2>τ3>τ4

[
G12G34 +G12F34 + F12G34 + F12F34

]
, (4.30)

and similarly for ⟨f̄4f1⟩⟨f̄2f3⟩. The first term on the right hand side gives the previously
known zero framing contribution. Its detailed computation can be found in [25]. Including
also the N2

1N2 color structure, the zero framing (unnormalized) result reads∣∣∣∣∣∣∣
f=0

= 3π2

2k2 N1N2(N1 +N2) . (4.31)

The rest of (4.30) contains framing-dependent integrals. To evaluate them we proceed as
we did for the mixed gauge-fermion diagram.

In the evaluation of the second and third terms, we discard order ϵ contributions, since
G is constant in the ϵ→ 0 limit. For 1

ϵ -terms, two integrations can be trivially performed
exploiting the derivatives and, once combined with the ones coming from ⟨f̄4f1⟩⟨f̄2f3⟩, they
cancel each other.

In order to compute the last term of (4.30), and the equivalent one from ⟨f̄4f1⟩⟨f̄2f3⟩
as well, we symmetrize the integrand by adding and subtracting crossed terms. This allows
to factorize it as the square of the one-loop result plus extra terms. Precisely,∫

τ1>τ2>τ3>τ4
(F12F34 − F41F23) =

1
2

(∫
τ1>τ2
F12

)2
−
∫

τ1>τ2>τ3>τ4
(F13F24 + 2F41F23) . (4.32)
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Figure 3. Real and imaginary parts of the framing dependence of
∫
(F13F24 + 2F41F23) in (4.32) for

f = 1 and different values of δ. Both parts tend to zero as δ → 0, proving numerically that those
terms are in fact framing-independent.

Parameterizing the contour as in (4.25), one can check numerically that the two extra terms
on the right hand side of (4.32) are framing-independent and vanish in the δ → 0 limit, as
shown in figure 3. Therefore, the only non-trivial contribution in (4.32) comes from the
square of the one-loop result.

Including the contributions proportional to the N2
1N2 color factor and summing with (4.31),

we find

= π2

2k2 N1N2(N1 +N2) (3− f2) . (4.33)

iv) Gauge-fermion vertex diagram. Due to the presence of a bulk vertex, the evaluation
of the gauge-fermion vertex diagram is highly non-trivial, even at framing zero [23–25]. Its
contribution can be cast in the form (X12;3 + X13;2 + X23;1), where [25]

X12;3 ≡
∫
dτ1>2>3

[
δµ

ν η1γλη̄2 + δµ
λη1γν η̄2 − δλνη1γ

µη̄2 − iη1η̄2ϵµνλ

]
ϵµρσẋ

ρ
3Γνλσ , (4.34)

with the other two terms given by a permutation of the indices inside the integrand. Here
Γνλσ is the following bulk integral

Γνλσ =

Γ
(
1
2 − ϵ

)
4π

3
2−ϵ

3

∂xν
1
∂xλ

2
∂xσ

3

∫
d3−2ϵw

|x1w|1−2ϵ|x2w|1−2ϵ|x3w|1−2ϵ
. (4.35)

For our purposes it is sufficient to focus on X12;3, as the other terms can be treated
in a similar way. We proceed by first inserting the explicit expression (4.3) for the spinor
bilinear η1γη̄2 in (4.34). This gives rise to a complex integrand, whose real part leads precisely
to the zero framing result of [23–25]. Extra contributions due to the non-trivial framing
then arise necessarily from the imaginary part. However, as already mentioned, imaginary
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contributions should eventually cancel at two loops, therefore we can safely discard them. In
conclusion, this diagram does not contribute to framing and its real part simply coincides
with the framing zero result

= −2π2

k2
N1N2(N1 +N2) . (4.36)

Final result. Combining the results above and normalizing them by STr(T ) = N1 +N2,
we obtain the complete two-loop expectation value of the 1/2 BPS fermionic Wilson loop
in ABJ(M) theory, at generic framing f

〈
W1/2

〉
f
= 1+ iπ

k
(N1−N2) f−

π2

6k2
[(
N2

1 − 4N1N2 +N2
2 − 1

)
+ 3(N1 −N2)2 f2

]
+O

(
k−3

)
.

(4.37)
This is the main result of our analysis. At f = 0, it correctly reproduces known

perturbative results [23–25]. At f = 1, it coincides with the localization result (2.18) and
confirms the cohomological equivalence with the 1/6 BPS bosonic Wilson loop [15]. At this
order, it explicitly exhibits exponentiation of framing

〈
W1/2

〉
f
= e

iπ
k
(N1−N2)f

(
1− π2

6k2
(
N2

1 − 4N1N2 +N2
2 − 1

))
+O

(
k−3

)
. (4.38)

This result is valid in the non-planar limit, for any value of N1 and N2.

5 Multiple windings

The expectation value of BPS Wilson loops winding multiple times the circular contour
can be computed from localization [15], producing exact results valid at framing one. The
perturbative analysis performed above at generic framing can be generalized to accommodate
multiple windings, providing a more general result depending on two parameters, the winding
number m and the framing number f. The result at f = 1 matches localization, thus
confirming the cancellation of the cohomological anomaly.

Multiply wound Wilson loops in perturbation theory were addressed in [19]. Given
a path-ordered integral with m windings emerging from a certain diagram, the approach
consists in decomposing the integration contour in such a way to cook up a recursion relation.
This requires introducing auxiliary integrals, whose integration domains are not necessarily
path-ordered. Also these integrals are subject to recursion relations, thereby providing a
complete system of recursive equations. This system is then solved, yielding the multiple
winding result in terms of the initial conditions for the various integrals of the system. These
are singly wound integrals, not necessarily path-ordered.

In order to make contact to usual path ordered integrals, their integration domains can
be decomposed into a union of completely ordered sets at the price of some permutations of
the Wilson loop parameters. Such permutations can be undone by relabeling the integration
variables so as to attain the usual ordering 2π > τ1 > τ2 > · · · > 0. In such a process, the
symmetries of the specific integrands can be used to streamline the identification of the final
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integrals as combinations of those appearing in perturbation theory at single winding. A
simple example of such an algorithm is provided below, whereas more complex applications
for two-loop diagrams are showcased in appendix C. Finally, the process lands on relations
between diagrams at multiple and single windings.

While this approach was employed in [19] to successfully test localization results for
bosonic Wilson loops up to three loops, the analysis of fermionic operators did not correctly
take into account the antiperiodicity of fermionic integrands. We amend those results in
this section for the one-loop and two-loop fermionic diagrams.

Starting from the superconnection (2.4), the multiple winding operator is defined as

Wm
1/2 = STr

(
P
(
e−i

∫ 2πm

0 dτL
)(1 0

0 (−1)m

))
, (5.1)

where m is an integer counting the number of windings. We avoid normalizing the Wilson
loop at multiple windings by its tree level expectation value (N1 − (−1)mN2) since no
simplifications come about.

First order. At framing 0, the one-loop result for these operators vanishes for any m.
At framing 1 the result is known from localization and, as for the single winding case,
the cohomological equivalence implies that the fermionic diagram must vanish. For odd
windings this is trivially verified, since whatever fermionic contribution is originated from the
upper-left block of the superconnection will be precisely cancelled by its complex conjugate
from the lower-right ∣∣∣∣∣∣∣

m odd

= − iπ
k
N1N2 f (1 + (−1)m)

∣∣∣∣
m odd

= 0 . (5.2)

We denote multiple winding contours graphically with a double lined circle. For even windings
the contributions from the two blocks of the superconnection sum up. Hence, an explicit
evaluation of these terms is required.

At multiple windings, the fermionic exchange at one loop gives rise to an integral of
the schematic form

I1(m) =
∫ 2mπ

0
dτ1

∫ τ1

0
dτ2 f(τ1, τ2) , (5.3)

for some integrand f(τ1, τ2). Due to the fermionic couplings (2.6), such a function is
antiperiodic in both its variables: f(τ1+n12π, τ2+n22π) = (−1)n1+n2 f(τ1, τ2). Consequently,
the following recursion relations holdI1(m) = I1(m− 1)− (−1)m I12(m− 1) + I1(1)

I12(m) = I12(m− 1)− (−1)mI12(1)
, (5.4)

where the auxiliary integral I12(m) is defined as

I12(m) ≡
∫ 2π

0
dτ1

∫ 2πm

0
dτ2 f(τ1, τ2) . (5.5)
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The derivation of such relations is along the lines of [19] and rests ultimately on splitting
contours, with additional sign factors, emerging when shifting integration variables by
2π(m − 1) to send integrals to the first circle. The system of recursion relations is easily
solved by

I1(m) = 1
4 [(1− (−1)m − 2m)I12(1) + 4mI1(1)] . (5.6)

The final solution depends on the initial conditions I1(1) and I12(1). For the case of an
antisymmetric integrand f(τ1, τ2) = −f(τ2, τ1), I12(1) = 0, which implies

I1(m) = mI1(1), (5.7)

with a scaling linear in m. Such is the situation for the integral at zero framing. Since in
this case the singly wound result vanishes in dimensional regularization, no contribution
is generated at any windings.

At generic framing, the part of the fermion couplings sensitive to framing is symmetric
under the exchange x1 ←→ x2. Such a symmetry is spoiled when splitting contours under
the framing procedure, since x1 and x2 explicitly belong to distinct curves. However, it is
expected to be restored in the small displacement limit and we will assume that this is the
case. This implies that I12(1) = 2 I1(1), yielding

I1(m) = 1− (−1)m

2 I1(1). (5.8)

This result states that the framing-dependent contribution is expected to be the same as
for single winding at all odd windings and to vanish at even windings. We corroborated
such a finding with extensive numeric checks. This result entails that at even windings the
contributions of each separate block from the superconnection vanishes individually.

Summarizing, the fermionic contribution at one loop vanishes for all windings and
framing number

= 0. (5.9)

At odd windings this is due to opposite contributions from the two blocks. At even windings
the two blocks vanish separately. The final result is in full agreement with the localization
prediction, requiring fermionic contributions to vanish for all winding numbers.

Second order. At two loops, the same method applies to the relevant diagrams with more
technical complexity. The details of the calculation are presented in appendix C and we
only state the final results here. The punchline is that for multiple winding all the fermionic
contributions develop the same m2 scaling, combined with a color factor (N1 − (−1)mN2)
depending on the winding.

At framing one, this automatically implies that the same cancellation mechanisms
occurring for single winding also occur at multiple winding m. In particular, this enforces
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the cancellation of fermionic diagrams required for the cohomological equivalence to hold.
This means that the localization result is verified explicitly for multiple windings as well.

From the results of appendix C, we can supply a two-loop expression for the unnormalized
expectation value of the 1/2 BPS fermionic Wilson loops at generic framing f and winding
m (including non-planar terms)

〈
Wm

1/2

〉
f
=N1 − (−1)mN2 +

iπ

k
m2(N2

1 + (−1)mN2
2 )f

+ π2

6k2 m
2
[
N2

1 (3N2 −N1)− (−1)mN2
2 (3N1 −N2)

− f2 (N1 − (−1)mN2)
((

2m2 + 1
) (
N2

1 + (−1)mN1N2 +N2
2

)
− 3N1N2

)
+
(
1− f2

(
m2 − 1

))
(N1 − (−1)mN2)

]
+O

(
k−3

)
, (5.10)

In the relevant limits, m → 1, f → 1 or f → 0, the expression reproduces correctly the
known results from localization and the perturbative analysis of [23–25]. Framing does not
exponentiate, as is the case for multiple windings in Chern-Simons theory [45].

6 Conclusions

We have performed the perturbative evaluation — up to two loops — of the 1/2 BPS fermionic
Wilson loop of ABJ(M) theory at generic framing. This is necessary to directly match the
matrix model prediction (2.18), which is valid for f = 1, from perturbation theory. Previous
computations at framing zero [23–25] required the a posteriori introduction of a framing
phase to compensate for a mismatch. Our computation can then be seen as the first direct
test of localization for this operator. Specifically, we have computed the framing-dependent
contributions coming from fermionic diagrams, which are crucial to reproduce the localization
result. The contributions coming from the gauge field, which are expected to arise from the
similarity with the pure Chern-Simons case, are in fact not enough, by themselves, to achieve
the agreement. It is then interesting to note that in ABJ(M) framing percolates from the
Chern-Simons terms to the matter sector of the theory.

The evaluation of the 1/6 BPS bosonic operator at generic framing in [18] revealed that,
at three loops, the framing exponent acquires the non-trivial correction (3.10), implying
that in Chern-Simons-matter theories the framing factor is indeed a non-trivial function
with a smooth expansion in the coupling constants N1/k,N2/k. It would be interesting to
exploit the techniques developed in this paper to attempt a three-loop evaluation of the 1/2
BPS Wilson loop. A non-trivial contribution to framing is expected, which would correct
the identity in (3.9) at this order.

A natural generalization of this project is the perturbative evaluation at generic framing
of the interpolating Wilson loops introduced in [20]. Those operators preserve just one
supercharge of the theory and are therefore 1/24 BPS. They are obtained as a certain
Q-deformation of the 1/6 BPS bosonic Wilson loop (2.3) and are thus guaranteed to be in
the same cohomological class (and to be computed by the same matrix model insertion). Not
surprisingly however, the perturbative evaluation performed in [20] at framing zero yields
a result that depends on the interpolating parameters (the α(ᾱ) and β(β̄) in the formula
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below), even though these do not enter the insertion (2.14),〈
W1/24

〉
f=0

= 1− π2

6k2
[
N2

1 − 4N1N2 +N2
2 − 3N1N2(ᾱα− ββ̄ − 1)2

]
+O

(
k−3

)
. (6.1)

A phase can be introduced [20] to account for the different framing in the two prescriptions
and obtain agreement with the matrix model prediction. On the other hand, performing the
computation at framing f = 1 from the beginning, as done here for the 1/2 BPS fermionic
Wilson loop, is expected to eliminate the parameter dependence and give (2.18) without the
need for compensating phases. This is in fact what we observe in a preliminary analysis,
which is complicated by the need to take into account the renormalization of the parameters
under RG flow. We plan to report on these results soon [46].

Similarly, one could study the 1/6 BPS fermionic latitude (2.9)–(2.10) at generic framing
and verify the expected cohomological equivalence at f = ν. In section 4.1 we have done
this at first order in perturbation theory, obtaining (here we include the contribution of
the second node and normalize)

⟨W (ν)
1/6⟩f = 1 + 2πi

k

N1N2

N1e
− iπν

2 −N2e
iπν
2
(ν − f) cos πν2 +O

(
k−2

)
. (6.2)

The result is in agreement with the expectation that cohomological equivalence should hold
at f = ν and a vanishing first-order correction [44]. It would be interesting to push this
result to higher order in perturbation theory.

Finally, another challenging direction to pursue would be to understand what is the
physical meaning of framing in the defect CFT living on the Wilson loop, and what is, if
any, its holographic dual.
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A Gauss linking integral

In this appendix we prove that the Gauss linking integrand in (3.6), when multiplied by a
generic analytic function, still evaluates to framing f in the δ → 0 limit. This has been used
in the computation of the single fermion exchange in section 4.1.

We start with a brief review of the Gauss linking integral. In three-dimensional Euclidean
space, let Γ be a closed curve defined by coordinates xµ(τ), with 0 ≤ τ ≤ a. An infinitesimally
deformed curve Γf can be defined as

Γf : xµ → xµ + nµ(τ) δ , |n(τ)| = 1 , (A.1)

where δ is a small deformation parameter and nµ(τ) is a vector field orthonormal to Γ. For
non-intersecting curves, the Gauss linking integral

χ(Γ,Γf) =
1
4π

∫
Γ
dxµ

1

∫
Γf

dxν
2 ϵµνρ

(x1 − x2)ρ

|x1 − x2|3
, (A.2)
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provides a topologically invariant quantity that captures the number of coils of Γf around Γ.
For smooth deformations of Γ and Γf, (A.2) remains valid as long as the resulting contours
remain non-intersecting. This is the case, for instance, for the circle (2.2), the latitude (2.9)
and the toroidal helices (4.25) considered in the body of the paper.

The integral in (A.2) does not depend on δ. Therefore, one can safely take the limit of
coincident curves, thus obtaining what is called framing f. Precisely,

f ≡ lim
δ→0

χ(Γ,Γf) = χ(Γ) + 2
∫
Γ
dτ T , (A.3)

where χ(Γ) is the self-linking number of Γ, defined as

χ(Γ) = 1
4π

∫
Γ
dxµ

1

∫
Γ
dxν

2 ϵµνρ
(x1 − x2)ρ

|x1 − x2|3
, (A.4)

and T is the torsion associated to the curve Γ. The torsion appears as a consequence of the
non-commutativity of the δ → 0 limit with the integrations along the curves. In particular,
while f is topologically invariant, χ(Γ) itself is not, and requires the torsion to compensate
for its metric dependence. An explicit proof of (A.3) can be found in [43].

Now we prove that if the integrand appearing in (A.2) is multiplied by a generic analytic
function h(τ1 − τ2) ≡ h(τ12), in the δ → 0 limit it still evaluates to framing. Precisely, the
following identity holds (here xi ≡ x(τi))

lim
δ→0

1
4πh0

∫
Γ
dτ1

∫
Γf

dτ2 ẋ
µ
1 ẋ

ν
2 ϵµνρ

(x1 − x2)ρ

|x1 − x2|3
h(τ12) = f , (A.5)

where h0 is the zero mode of h in its series expansion.
In order to prove (A.5) we first insert the mode expansion of h(τ12), splitting the zero

mode from the rest

lim
δ→0

∫
Γf

dτ2

∫
Γ
dτ1 ẋ

µ
1 ẋ

ν
2 ϵµνρ

(x1 − x2)ρ

|x1 − x2|3
h(τ12) =

4πh0 f+ lim
δ→0

∑
m≥1

hm

∫
Γf

dτ2

∫
Γ
dτ1 ẋ

µ
1 ẋ

ν
2 ϵµνρ

(x1 − x2)ρ

|x1 − x2|3
(τ1 − τ2)m .

(A.6)

We then prove that the second line is zero, i.e. the Gauss linking integrand multiplied by
any positive power (τ1 − τ2)m vanishes in the δ → 0 limit.

To this end, we restrict to the case of circular contours. We consider Γ to be the unit
circle and Γf its framed version, as in figure 4. Going along the lines of [43], on Γf we fix
a point x∗ such that x(τ1 = τ) is the projection of x∗ onto the circle. We then pick up a
small neighbourhood of τ on Γ, AB ≡ (τ −H, τ +H) with H being a small number, and
split the τ1 integration along Γ as∫

Γ
dτ1 −→

∫
Γ−AB

dτ1 +
∫

AB
dτ1 . (A.7)

Integrals appearing in the second line of (A.6) can then be performed by fixing x2 = x∗

and focusing on the τ1 integration first, for which we use the splitting (A.7). Having removed
the τ neighbourhood, the integral along Γ−AB is well defined and finite, and goes to zero for
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Figure 4. Along the framed curve Γf, the point x∗ is fixed. Along the circle Γ, one defines its
projection x(τ) and the neighbouring points A = x(τ +H) and B = x(τ −H).

δ → 0, for any H ̸= 0 fixed.10 It is then sufficient to focus on the integral over AB, spanned
by τ −H < τ1 < τ +H, which contains the potentially singular point τ1 = τ .

For H small, we expand the integrand at low orders in (τ1 − τ) ≡ tδ (|tδ| < H). First,
we write

x∗ = x(τ) + n(τ) δ ≃ x1 + (n1 − ẋ1 t) δ + f1(tδ) δ + f2(tδ) , (A.8)

where f1, f2 encode the rest of the expansions of n(τ) and x(τ) respectively, with f1(tδ) ∼ O(tδ)
and f2(tδ) ∼ O(t2δ2). They are bounded functions in the interval |tδ| < H. Moreover, since
on the circle ẍµ = −xµ, f2 is a linear combination of xµ

1 and ẋµ
1 only.

Exploiting the expansion (A.8), the denominator in (A.6) approximates to

1
|x1 − x∗|3

= 1
δ3(t2 + 1)3/2

(
1 + 1

t2 + 1O(tδ) +
1

δ(t2 + 1)O(t
2δ2)

)
. (A.9)

Regarding the expansion of the numerator, for any m > 0 we have

(τ1 − τ)m ϵµνρ ẋ
µ
1 ẋ

∗ν (x1 − x∗)ρ = (tδ)m(− δ2 ϵµνρ ẋ
µ
1 (ṅν

1 − ẍν
1t)n

ρ
1 + δ2O(tδ) + δO(t2δ2)

)
,

(A.10)
where we have neglected terms which vanish due to the planarity of the contour.

Putting all together and changing integration variable from τ1 to t, we obtain∫ H
δ

−H
δ

dt (tδ)m
(
−ϵµνρ ẋ

µ
1 (ṅν

1 − ẍν
1t)n

ρ
1 +O(tδ) +

1
δ
O(t2δ2)

)
×( 1

(t2 + 1)3/2 + 1
(t2 + 1)5/2O(tδ) +

1
δ(t2 + 1)5/2O(t

2δ2)
)
.

(A.11)

Now we take the δ → 0 limit keeping H fixed. The range of integration becomes infinite, and
since t = τ1−τ

δ ∼ δ−1, the integrals might be singular in the large t region.
Recalling that O(. . . ) represents bounded functions in the |tδ| < H interval, and that

the coefficients of the t-expansion are also bounded in this interval, in the integrand we
can focus only on the t powers. Applying power counting term by term in (A.11) we are
left with integrals of the form

δp
∫ H

δ

−H
δ

dt
tq

(t2 + 1)3/2 ∼ O(δ
p−q+2) , δp

∫ H
δ

−H
δ

dt
tq

(t2 + 1)5/2 ∼ O(δ
p−q+4), (A.12)

for p, q integers. A detailed analysis reveals that all the t integrals appearing in (A.11) go
as δ to some positive power, for any m > 0 fixed. Therefore (A.11) goes to zero as δ → 0,

10This is true in general for any planar contour.
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for any m > 0. Consequently, the second line of (A.6) does not contribute in the limit,
and identity (A.5) holds on the circle.

The proof can be easily generalized to non-circular but closed, planar contours. In this
case extra contributions are present, which go as H × O(1) for δ → 0. They come from
integrating bounded functions of tδ on the (−H,H) interval. However, these contributions
are arbitrarily small and can be neglected when we eventually send H → 0 [43].

This general result is useful to determine the framed integral coming from the one-loop
fermion exchange in (4.11). In fact, writing explicitly one of the two contributions

⟨f̄1f2⟩ ∼
∫
Γ
dτ1

∫
Γf

dτ2 ẋ1
µẋ2

ν ϵµνρ
(x1 − x2)ρ

|x1 − x2|3
ei

τ12
2 , (A.13)

we note that the integrand is exactly of the form (A.6) with h(τ12) = ei
τ12
2 . Since in this case

h0 = 1, this contribution is proportional to 4πf, with the linking number f ∈ Z defined in (A.3).

B Conventions and Feynman rules

We work in three-dimensional Euclidean space with coordinates xµ = (x1, x2, x3). The
three-dimensional gamma matrices are defined as

(γµ) β
α = (σ1, σ2, σ3) β

α , (B.1)

with (σi) β
α (α, β = +,−) being the Pauli matrices, such that γµγν = δµν + iϵµνργρ, where

ϵ123 = ϵ123 = 1 is totally antisymmetric. Spinorial indices are lowered and raised as
(γµ)α

β = ϵαγ(γµ) δ
γ ϵβδ, with ϵ+− = −ϵ+− = −1. The Euclidean action of U(N1)k ×U(N2)−k

ABJ(M) theory is

SABJ(M) =
k

4π

∫
d3x ϵµνρ

{
− iTr

(
Aµ∂νAρ +

2i
3 AµAνAρ

)
+ iTr

(
Âµ∂νÂρ +

2i
3 ÂµÂνÂρ

)
+ Tr

[1
ξ
(∂µA

µ)2 − 1
ξ
(∂µÂ

µ)2 + ∂µc̄D
µc− ∂µ

¯̂cDµĉ

]}
+
∫
d3xTr

[
DµCID

µC̄I + iψ̄IγµDµψI

]
(B.2)

− 2πi
k

∫
d3xTr

[
C̄ICIψJ ψ̄

J − CIC̄
I ψ̄JψJ + 2CIC̄

J ψ̄IψJ

− 2C̄ICJψI ψ̄
J − ϵIJKLC̄

I ψ̄J C̄Kψ̄L + ϵIJKLCIψJCKψL

]
+ Sbos

int ,

with covariant derivatives defined as

DµCI = ∂µCI + iAµCI − iCIÂµ , DµC̄
I = ∂µC̄

I − iC̄IAµ + iÂµC̄
I ,

Dµψ̄
I = ∂µψ̄

I + iAµψ̄
I − iψ̄IÂµ , DµψI = ∂µψI − iψIAµ + iÂµψI .

(B.3)
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We work in Landau gauge for vector fields and in dimensional regularization with d = 3− 2ϵ.
The tree-level propagators are

⟨(Aµ) q
p (x)(Aν) s

r (y)⟩(0) = δs
pδ

q
r i

(2π
k

) Γ
(
3
2 − ϵ

)
2π

3
2−ϵ

ϵµνρ(x− y)ρ

|x− y|3−2ϵ
,

⟨(Âµ) q̂
p̂ (x)(Âν) ŝ

r̂ (y)⟩(0) = −δŝ
p̂δ

q̂
r̂ i

(2π
k

) Γ
(
3
2 − ϵ

)
2π

3
2−ϵ

ϵµνρ(x− y)ρ

|x− y|3−2ϵ
,

⟨(ψα
I )

j

î
(x)(ψ̄J

β )l̂
k(y)⟩(0) = −iδJ

I δ
l̂
iδ

j
k

Γ
(
3
2 − ϵ

)
2π

3
2−ϵ

(γµ)α
β(x− y)µ

|x− y|3−2ϵ

= iδJ
I δ

l̂
iδ

j
k(γµ)α

β∂µ

Γ
(
1
2 − ϵ

)
4π

3
2−ϵ

1
|x− y|1−2ϵ

 ,
⟨(CI)ĵ

i (x)(C̄
J)l

k̂
(y)⟩(0) = δJ

I δ
l
iδ

ĵ

k̂

Γ
(
1
2 − ϵ

)
4π

3
2−ϵ

1
|x− y|1−2ϵ

,

(B.4)

while the one-loop propagators are

⟨(Aµ) j
i (x)(Aν) l

k (y)⟩(1) = δl
iδ

j
k

(2π
k

)2
N1

Γ2
(
1
2 − ϵ

)
4π3−2ϵ

[
δµν

|x− y|2−4ϵ
− ∂µ∂ν

|x− y|2ϵ

4ϵ(1 + 2ϵ)

]
,

⟨(Âµ) ĵ

î
(x)(Âν) l̂

k̂
(y)⟩(1) = δ l̂

î
δĵ

k̂

(2π
k

)2
N2

Γ2
(
1
2 − ϵ

)
4π3−2ϵ

[
δµν

|x− y|2−4ϵ
− ∂µ∂ν

|x− y|2ϵ

4ϵ(1 + 2ϵ)

]
,

⟨(ψα
I )

j

î
(x)(ψ̄J

β )l̂
k(y)⟩(1) = iδJ

I δ
l̂
î
δĵ

k̂
δα

β

(2π
k

)
(N1 −N2)

Γ2
(
1
2 − ϵ

)
16π3−2ϵ

1
|x− y|2−4ϵ

.

(B.5)

The Latin indices are color indices. For instance, (Aµ) j
i ≡ Aa

µ(T a) j
i where T a are U(N1)

generators in the fundamental representation.

C Multiple winding at two loops

In this appendix we provide details on two-loop diagrams at multiple windings. As recalled
in section 5, multiple winding contributions from purely bosonic diagrams were correctly
determined at two loops in [19]. We report the results here for completeness

+ = π2

k2
m2N1N2 (N1 − (−1)mN2) ,

=− π2

6k2 m
2
(
2m2 + 1

) (
N3

1 − (−1)mN3
2

)
f2

− π2

6k2 m
2
(
m2 − 1

)
(N1 − (−1)mN2) f2,

=− π2

6k2 m
2
(
N3

1 − (−1)mN3
2 −N1 + (−1)mN2

)
. (C.1)
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The expectation value of the Wilson loop is not normalized for multiple windings. As a result
of the cohomological equivalence, such diagrams evaluated at framing f = 1 reproduce the
localization outcome, implying that the sum of the fermionic contributions should vanish
at f = 1 for any winding.

Due to the spinor couplings (2.6), because of the overall factors e±i τ
2 , the fermionic

integrands are antiperiodic for 2π shifts of the parameters associated to fermions, irrespective
of whether the contribution is framing-dependent or independent. This was not properly
taken into consideration in [19] and here we provide a correct analysis, finally leading to the
two-loop expectation value of the 1/2 BPS Wilson loop at generic framing and winding (5.10).
The various diagrams are analyzed separately.

Double fermion exchange. The double fermion exchange diagram exhibits an antiperiodic
integrand in each variable

F1(m) ≡
∫ 2πm

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4 f(τ1, τ2, τ3, τ4), (C.2)

where

f(τ1 + 2πn1, τ2 + 2πn2, τ3 + 2πn3, τ4 + 2πn4) = (−1)n1+n2+n3+n4f(τ1, τ2, τ3, τ4). (C.3)

A system of recursion relations can be constructed

F1(m) = F1(m− 1)− (−1)mF1,4(m− 1) + F1,3(m− 1)− (−1)mF1,2(m− 1) + F1(1)
F1,2(m) = F1,2(m− 1) + F1,2,4(m− 1)− (−1)mF1,2,3(m− 1)− (−1)mF1,2(1)
F1,3(m) = F1,3(m− 1)− (−1)mF1,3,4(m− 1) + F1,3(1)
F1,4(m) = F1,4(m− 1)− (−1)mF1,4(1)
F1,2,3(m) = F1,2,3(m− 1)− (−1)mF1,2,3,4(m− 1) + F1,2,3(1)
F1,2,4(m) = F1,2,4(m− 1)− (−1)mF1,2,4(1)
F1,3,4(m) = F1,3,4(m− 1)− (−1)mF1,3,4(1)
F1,2,3,4(m) = F1,2,3,4(m− 1)− (−1)mF1,2,3,4(1),

(C.4)
with the definitions

Fi1,i2,...,ik
(m) ≡

∫
D

n∏
l=1

dtl f({τj}). (C.5)

The integration domain is

D = 2π > τi1 > τi1+1 > · · · > τi2−1 > 0 ∪ 2π > τi2 > τi2+1 > · · · > τi3−1 > 0 ∪ . . .
∪ 2πm > τik

> τik+1 > · · · > tn > 0, (C.6)

namely, the indices i1, . . . , ik−1 indicate integrations up to 2π, the last index ik indicates
an integration up to 2πm and the remaining integrations are path-ordered. The solution
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of the recursion relations for F1(m) reads

F1(m) = mF1(1) +
1
4 (−2m− (−1)m + 1) F1,2(1) +

1
2(m− 1)mF1,3(1)+

+ 1
4 (−2m− (−1)m + 1) F1,4(1) +

1
8 (−2(m− 2)m+ (−1)m − 1) F1,2,3(1)

− 1
4 ((−1)m − 1) (m+ (−1)m) F1,2,4(1) +

1
8 (−2(m− 2)m+ (−1)m − 1) F1,3,4(1)

+ 1
16 (2m (m+ (−1)m − 3)− 3(−1)m + 3) F1,2,3,4(1). (C.7)

This expression is completely general, however it hampers an explicit comparison with single
winding contributions, because the domains of integration are not generically path-ordered.
In order to reconstruct the original single winding integrals, we can decompose the domains
into completely ordered sets and use the symmetries of the integrand (if any) to rename
parameters and identify the original contributions.

Let us start with the double fermion exchange from the upper-left block only. In that
case, f(τ1, τ2, τ3, τ4) = −⟨f̄1f4⟩⟨f̄3f2⟩+ ⟨f̄2f1⟩⟨f̄4f3⟩. Each fermionic contraction can be split
according to (4.6) into a part which is framing-independent and a part which is framing-
dependent, which would vanish for planar contours. The framing-independent part Gij is real
and antisymmetric under the exchange of the endpoints. The part Fij which would vanish
on the plane possesses a symmetric, imaginary part which contributes to framing at one
loop and a real, antisymmetric part which does not contribute to framing at one loop and
vanishes in the limit of small contour displacement. The real/imaginary and (anti)symmetry
properties just emerge from the overall ei

τ1−τ2
2 factors from the fermion couplings, multiplying

an imaginary and symmetric function. According to such a separation we obtain

f(τ1, τ2, τ3, τ4) =
(2π
k

)2
(−(G14 + F14)(G32 + F32) + (G21 + F21)(G43 + F43)) . (C.8)

We only retain the part of Fij giving rise to framing, in which case the function becomes
symmetric and imaginary. Expanding the contributions, we also use the antisymmetry of
Gkl and we discard, as in the main calculation, the mixed Fij × Gkl combinations, which
would give rise to imaginary two-loop contributions. We are left with

f(τ1, τ2, τ3, τ4) =
(2π
k

)2
(−(G14 + F14)(−G23 + F23) + (−G12 + F12)(−G34 + F34))

=
(2π
k

)2
(G14G23 +G12G34 − F14F23 + F12F34) . (C.9)

The various contributions possess different relative signs, hampering symmetrization and
factorization. Hence, we analyze them separately. We define:

G(ij|kl)(m) ≡
∫ 2πm

0
dτ1

∫ τ3

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4GijGkl,

F (ij|kl)(m) ≡
∫ 2πm

0
dτ1

∫ τ3

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4 FijFkl. (C.10)
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The recursion relations are the same, but the initial conditions change for the various
contributions. They are a bit lengthy and we will not write them here extensively. The
solution of the recursion relations for the various pieces reads

G(12|34)(m) = 1
2
( (

2m2 + (−1)m − 1
)
G(13|24)(1)

+ 2m2
(
G(12|34)(1) +G(14|23)(1)

)
+G(14|23)(1) ((−1)m − 1)

)
,

G(14|23)(m) = 1
2
(
(1− (−1)m)

(
G(13|24)(1) +G(14|23)(1)

)
− 2m2G(13|24)(1)

)
,

F (12|34)(m) = 1
2 (1− (−1)m)F (12|34)(1),

F (14|23)(m) = m2F (14|23)(1) + 1
2
(
1− (−1)m − 2m2

)
F (12|34)(1). (C.11)

For the purely antisymmetric part, corresponding to zero framing, we obtain

G(12|34)(m) +G(14|23)(m) = m2
(
G(12|34)(1) +G(14|23)(1)

)
. (C.12)

For the purely symmetric part, which sources framing, we obtain

F (12|34)(m)− F (14|23)(m) = m2
(
F (12|34)(1)− F (14|23)(1)

)
, (C.13)

meaning that the framing contribution at multiple winding is m2 times the contribution at
single winding. The relative sign difference is crucial to achieve this result. The conclusion is
that this block acquires an overall m2 factor altogether. Combining with the other block, the
total factor becomes N1N2m

2(N1 − (−1)mN2) times the single winding contribution

= π2

2k2 N1N2(N1 − (−1)mN2)(3− f2)m2, (C.14)

where the cartoon stands for the sum of all double fermion exchange diagrams.

Mixed fermion-gauge double exchange. We start from expression (4.22) for the N2
1N2

contribution. In the case of multiple windings we obtain

N2
1N2 (⟨A1A2⟩F34 + ⟨A3A4⟩F12 + ⟨A1A4⟩F23 + (−1)m⟨A2A3⟩F41) , (C.15)

where the last piece comes from the lower-right block of the superconnection and its additional
minus sign is due to a fermion commutation. As before, we have split the fermion contribution
into an antisymmetric and a symmetric part and only retained the latter, as the former
would give rise to an imaginary piece in the two-loop result. The symmetric part Fij gives
rise to the fermionic framing contribution.

We then construct the relevant recursion relations. Though their general structure is the
same for all contributions, the relative signs of their terms depend on the specific diagram,
since the fermion and gluon exchanges have different periodicity. We report here only their
general solutions. We define

M (ij|kl)(m) ≡
∫ 2πm

0
dτ1

∫ τ3

0
dτ2

∫ τ2

0
dτ3

∫ τ3

0
dτ4 Fij ⟨AkAl⟩. (C.16)
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The solution to their recursion relations reads

M (12|34)(m) = mM (12|34)(1) + 1
4 (1− 2m− (−1)m)

(
M

(12|34)
1,2 (1) +M

(12|34)
1,4 (1)

)
+ 1

8 ((−1)m − 2(m− 2)m− 1)
(
M

(12|34)
1,2,3 (1) +M

(12|34)
1,3,4 (1)

)
− 1

4 ((−1)m − 1) (m+ (−1)m) M (12|34)
1,2,4 (1) + 1

2(m− 1)mM
(12|34)
1,3 (1)

+ 1
16 (2m (m+ (−1)m − 3)− 3(−1)m + 3) M (12|34)

1,2,3,4 (1),

M (34|12)(m) = mM (34|12)(1) + 1
2(m− 1)m

(
M

(34|12)
1,2 (1) +M

(34|12)
1,3 (1)

)
+ 1

4 (−2m− (−1)m + 1) M (34|12)
1,4 (1) + 1

6(m− 2)(m− 1)mM
(34|12)
1,2,3 (1)

+ 1
8 ((−1)m − 2(m− 2)m− 1)

(
M

(34|12)
1,2,4 (1) +M

(34|12)
1,3,4 (1)

)
+ 1

48 (−2(m− 2)m(2m− 5)− 3(−1)m + 3) M (34|12)
1,2,3,4 (1),

M (14|23)(m) = mM (12|34)(1)− 1
4 ((−1)m − 1) (m+ (−1)m) M (14|23)

1,2,4 (1)

− 1
4 (2m+ (−1)m)

(
M

(14|23)
1,4 (1) +M

(14|23)
1,2 (1)

)
+ 1

2(m− 1)mM
(14|23)
1,3 (1)

+ 1
8 ((−1)m − 2(m− 2)m− 1)

(
M

(14|23)
1,3,4 (1) +M

(14|23)
1,2,3 (1)

)
+ 1

16 (2m (m+ (−1)m − 3)− 3(−1)m + 3) M (14|23)
1,2,3,4 (1),

M (23|14)(m) = mM (23|14)(1) + 1
2(m− 1)m

(
M

(23|14)
1,2 (1) +M

(23|14)
1,4 (1)

)
+ 1

8 (−2(m− 2)m+ (−1)m − 1)
(
M

(23|14)
1,2,3 (1) +M

(23|14)
1,3,4 (1)

)
+ 1

4 (1− 2m− (−1)m) M (23|14)
1,3 (1) + 1

6(m− 2)(m− 1)mM
(23|14)
1,2,4 (1)

+ 1
48 (−2(m− 2)m(2m− 5)− 3(−1)m + 3) M (23|14)

1,2,3,4 (1). (C.17)

The notation for the integrals follows (C.5). Again, these expressions are completely general,
but they obscure the reference to the original single winding integrals, which can be recovered
by splitting integration contours into completely ordered domains and using symmetries:

M (12|34)(m) = 1
2m(m− 1)M (34|12)(1) + 1

2(m+ 1)mM (12|34)(1)

+ 1
4
(
2m2 + (−1)m − 1

) (
M (23|14)(1) + 1

2M
(13|24)(1) + 1

2M
(24|13)(1)

)
,

M (34|12)(m) = 1
2m(m+ 1)M (34|12)(1) + 1

2(m− 1)mM (12|34)(1)

+ 1
4
(
2m2 + (−1)m − 1

) (
M (23|14)(1) + 1

2M
(13|24)(1) + 1

2M
(24|13)(1)

)
,

M (14|23)(m) = 1
4(−1)

m
(
−2m2 + (−1)m − 1

)
M (14|23)(1)− 1

4(−1)
m
(
2m2 + (−1)m − 1

)
×
(
M (12|34)(1) +M (34|12)(1) +M (23|14)(1) +M (13|24)(1) +M (24|13)(1)

)
,

– 34 –



J
H
E
P
1
2
(
2
0
2
4
)
0
5
3

M (23|14)(m) = 1
4
(
2m2 + (−1)m − 1

) (
M (12|34)(1) +M (34|12)(1)

)
+ 1

4
(
2m2 − (−1)m + 1

)
M (23|14)(1) + 1

4
(
−2m2 − (−1)m + 1

)
M (14|23)(1).

(C.18)

Considering the combination which enters the N2
1N2 contribution, we obtain for multiple

windings

N2
1N2

(
M (12|34)(m) +M (34|12)(m) +M (23|14)(m) + (−1)mM (14|23)(m)

)
= N2

1N2m
2
(
M (12|34)(1) +M (34|12)(1) +M (23|14)(1)−M (14|23)(1)

)
, (C.19)

meaning that the multiple winding contribution is precisely m2 times the contribution at
winding 1. The N1N

2
2 term differs by an overall −(−1)m factor. The sum over the two blocks

gives a factor N1N2(N1 − (−1)mN2)m2 times the upper-left m = 1 contribution

= π2

k2
N1N2(N1 − (−1)mN2)m2 f2 . (C.20)

One-loop corrected fermion exchange. The integral for such a diagram is framing-
independent, therefore we evaluate it on a circular contour, where the contribution from
each block is proportional to

I2(m) =
∫ 2πm

0
dτ1

∫ τ1

0
dτ2

cos τ1−τ2
2(

sin2 τ1−τ2
2
)α , (C.21)

with α = 1− 2ϵ. This is similar to the single fermion contribution, except that the integrand
is now symmetric. As derived in section 5 for the fermion framing contribution at one loop,
the solution of the recursion reads

I2(m) = 1− (−1)m

2 I2(1), (C.22)

so it vanishes at even loops. At odd loops it is equal to the single winding case, where
it is vanishing after summing over the upper-left and lower-right blocks. In conclusion,
this diagram vanishes identically for all windings, though via different mechanisms at odd
and even windings.

Vertex diagram. Each vertex contribution can be represented as an integrand of the
form ⟨f1f̄2A3⟩ → v(τ1, τ2|τ3). The first two entries represent the parameters of the fermion
insertions and the last the gluon. Therefore v is antiperiodic in its first two arguments
and periodic in the last one

v(τ1 + 2πn1, τ2 + 2πn2|τ3 + 2πn3) = (−1)n1+n2v(τ1, τ2|τ3). (C.23)

Performing the expansion of the Wilson loop we obtain symbolically for the N2
1N2 color

contribution
N2

1N2 (v(τ1, τ2|τ3) + v(τ2, τ3|τ1) + (−1)m v(τ3, τ1|τ2), ) (C.24)

– 35 –



J
H
E
P
1
2
(
2
0
2
4
)
0
5
3

the last piece coming from the lower-right block and the extra minus sign due to a fermion
commutation. The corresponding path-ordered integrals at generic winding read

V
(ij|k)
1 (m) ≡

∫ 2πm

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 v(τi, τj |τk). (C.25)

Recursion relations can be set for such integrals. For instance, for V (12|3)
1 (m) we obtain

V
(12|3)
1 (m) = V

(12|3)
1 (m− 1) + V

(12|3)
1,3 (m− 1)− (−1)mV

(12|3)
1,2 (m− 1) + V

(12|3)
1 (1)

V
(12|3)
1,2 (m) = V

(12|3)
1,2 (m− 1)− (−1)m(V (12|3)

1,2,3 (m− 1) + V
(12|3)
1,2 (1))

V
(12|3)
1,3 (m) = V

(12|3)
1,3 (m− 1) + V

(12|3)
1,3 (1)

V
(12|3)
1,2,3 (m) = V

(12|3)
1,2,3 (m− 1) + V

(12|3)
1,2,3 (1),

(C.26)
with analogous index definition as in (C.5). Then, the solution of the recursion relations
for the relevant contributions reads

V
(12|3)
1 (m) = mV

(12|3)
1 (1) + 1

2(m− 1)mV
(12|3)
1,3 (1)− 1

4 (2m+ (−1)m − 1) V (12|3)
1,2 (1)

+ 1
8 (−2(m− 2)m+ (−1)m − 1) V (12|3)

1,2,3 (1),

V
(23|1)
1 (m) = mV

(23|1)
1 (1) + 1

2(m− 1)mV
(23|1)
1,2 (1)− 1

4 (2m+ (−1)m − 1) V (23|1)
1,3 (1)

+ 1
8 (−2(m− 2)m+ (−1)m − 1) V (23|1)

1,2,3 (1),

V
(13|2)
1 (m) = mV

(13|2)
1 (1)− 1

4(−1)
m
(
V

(13|2)
1,3 (1) + V

(13|2)
1,2 (1) + (m− 1)V (13|2)

1,2,3 (1)
)

− 1
4(2m− 1)

(
V

(13|2)
1,3 (1) + V

(13|2)
1,2 (1)

)
+ 1

4(m− 1)V (13|2)
1,2,3 (1). (C.27)

The initial conditions depend crucially on whether the integrand is symmetric or antisymmetric
in the exchange of the first two arguments. As in the single winding calculation of section 4,
we only focus on the framing-independent part. Following [24, 25], the integrand at framing
0 is manifestly antisymmetric in the exchange of the fermion endpoints. After decomposing
into path-ordered contours and upon using this antisymmetry we find

V
(12|3)
1 (m) = 1

2m(m+ 1)V (12|3)
1 (1) + 1

2m(m− 1)V (23|1)
1 (1)

+ 1
4
(
2m2 + (−1)m − 1

)
V

(13|2)
1 (1),

V
(23|1)
1 (m) = 1

2m(m− 1)V (12|3)
1 (1) + 1

2m(m+ 1)V (23|1)
1 (1)

+ 1
4
(
2m2 + (−1)m − 1

)
V

(13|2)
1 (1),

V
(13|2)
1 (m) =− 1

2 ((−1)m − 1)V (13|2)
1 (1). (C.28)

When summed over the three pieces (C.24), taking only the antisymmetric part of v in
its first two entries, it gives

N2
1N2

(
V

(12|3)
1 (m) + V

(23|1)
1 (m)− (−1)m V

(13|2)
1 (m)

)
= N2

1N2m
2
(
V

(12|3)
1 (1) + V

(23|1)
1 (1) + V

(13|2)
1 (1)

)
, (C.29)
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therefore the multiple winding scaling for the framing 0 term is m2. Summing contributions
proportional to the color factor N1N

2
2 we obtain the full result

= −2π2

k2
N1N2(N1 − (−1)mN2)m2. (C.30)
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