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Abstract— We discuss a stochastic algorithm to design tuning
controllers for cryptographic True Random Number Gener-
ators, compliant to NIST recommendations, as an effective
low-complexity solution to counteract entropy variability in
integrated architectures implementing tunable entropy sources.
Taking as a reference the min-entropy concept, we discussed
the proposal from both the theoretical and hardware design
points of view, validating claims with proofs and experiments.
Depending on the target accuracy, the proposed architecture is
scalable, and its profitable use in TRNG design strongly depends
on the kind of core entropy sources taken into account. Further-
more, we show that the low-complexity entropy measurement
techniques exploited in this proposal can be used to design a
legitimate alternative to the Adaptive Proportion Health Test
recommended in the NIST 800.90B publication.

Index Terms— True random number generators, cryptography,
entropy sources, statistical testing.

I. INTRODUCTION

INTEGRATED True Random Number Generators (TRNGs)
are integrated circuits devised to generate sequences of

truly random bits. TRNGs apply in different Information
Technology (IT) fields, including Cryptography and Infor-
mation Security, in which they are extensively used, e.g.,
in the initialization of cryptographic protocols [1]–[3]. The
security of cryptographic algorithms using random numbers is
critically related to the degree of unpredictability of TRNGs,
that represent sensitive components subject to severe design
constraints. In this regard, the U.S. National Institute of
Standards and Technology (NIST) has produced a set of
publications providing guidelines and recommendations for
the design and verification of cryptographic TRNGs, widely
adopted and referred to in literature [2]–[4].
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The randomness of a cryptographic TRNG is origi-
nated from the core entropy source S, that is, typically,
a mixed-signal circuit around which different deterministic
encryption/compression post-processing digital algorithms are
carefully designed to make the final stream meet both ade-
quate entropy levels and statistical compliance with NIST
recommendations [1]–[3], [5]–[12]. In general, the lower is
the entropy of S, the less efficient the TRNG is, in terms of
throughput (information bit/s).

Circuit fabrication process variability, aging and minor
hardware failures, circuit sensitivity to temperature and supply
voltage variations are among the chief causes of entropy
static or dynamic degradation in integrated entropy sources
[13]–[20]. In most cases, to gain control of the entropy,
several researchers proposed to include the TRNG core in
a feedback loop, in which a monitoring task supervises
the TRNG operation, analyzes its generated stream, and
tunes the entropy core resorting to different technical solu-
tions (e.g., by adjusting voltage/current offsets, propaga-
tion delays, sampling/clock frequencies [13]–[29]). In these
TRNGs, adopting different strategies at the low-level design,
the proposed solutions rely on tunable core entropy sources.
In literature, depending on the solution, the tuning/controlling
algorithm has been designed combining theoretical analysis,
heuristic considerations, exhaustive numerical simulations and
experiments [13]–[27].

Depending on the design of the TRNG core, the technical
relation between entropy and tuning/controlling parame-
ters can be strongly dependent on the implementation.
This happens, e.g., in some fully digital TRNGs combin-
ing complex oscillators and metastable circuits, in which
process-voltage-temperature variations can play relevant roles
[13]–[17], [30]–[32]. In these solutions, finite parametric
spaces are inspected searching for an optimum setup, accord-
ing to different optimization criteria, that in the worst
case agree with exhaustive investigations of the entire para-
metric space [13], [14], [30], [33]. From a theoretical
point of view, this problem is equivalent to the selec-
tion of the best entropy source within a set of available
ones. Within this technical framework, the study of low-
complexity hardware techniques for entropy estimation is of
interest [1]–[3], [22], [26], [30].
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Referring to Fig. 1, in this work we discuss the design of
a generic low-complexity hardware tuning controller based
on the min-entropy concept given in the NIST publication
800-90B [2]. In detail, we discuss a design approach suit-
able for those integrated TRNGs in which the entropy
source can be varied according to a finite set of paramet-
ric values. Adopting a well-defined theoretical framework,
our proposal is based on estimation methods exploiting
low-complexity entropy measurement techniques, and has
a generic validity. In this context, the goal of the Tun-
ing Controller in Fig. 1 is to select the best Sbest among
the set {S1, . . . , SZ } of entropy sources corresponding to,
e.g., Z different parametric configurations of a same hard-
ware core entropy source. Which one is the best depends
on the adopted figures of merit, as made clearer in next
sections.

This work is organized as in the following. In Sec. II
and III we introduce the notation and fundamental theoretical
results that justify the technical solutions proposed in this
work. In detail, in Secs. III-A and III-B we present original
theoretical results that are used to design a stochastic algorithm
aiming to solve the Tuning Controller problem, presented in
Sec. III-C. The algorithm hardware design, implementation
and testing, with experiments, are discussed in Sec. IV. The
experiments were specifically designed to test the capability of
the Tuning Controller to select the best source Sbest, consider-
ing different algorithmic/hardware complexities and introduc-
ing adequate performance evaluation metrics. To take adequate
control of the test bench, in Sec. IV-A we first investigated
the operation of the Tuning Controller when applied to an
artificial Markov stochastic binary source, referring to precise
theoretical links between the entropy and tuning parameters.
In Sec. IV-B we also repeated the analysis considering
parametric entropy sources implemented in FPGA, based on
low-complexity Digital Nonlinear Oscillators (DNOs). Finally,
in Sec. IV-C we show with theoretical arguments that the
low-complexity entropy measurement techniques exploited
by the Tuning Controller in Fig. 1 can be used to design
a legitimate alternative to the Adaptive Proportion Health
Test recommended by NIST [2]. Conclusion and Reference
close the paper.

II. ENTROPY, MIN-ENTROPY, WORST-CASE

AND BEST-CASE ENTROPIES

The information generation rate of a generic ergodic source
S generating symbols taken from an alphabet of N symbols
A = {s1, . . . , sN } corresponds to the Average Shannon
Entropy (ASE), expressed in bit per symbol (i.e., information
bit per generated random symbol [bit/symb]), defined as

H(S) = lim
k→∞Hk(S) = lim

k→∞ −1

k

Nk −1∑
i=0

P(wi ) log2 P(wi ). (1)

In (1), the summation extends to the entire set of words wi ,
made of k-tuplets of symbols having positive generation prob-
ability. In the special case of i.i.d. symbols, eq. (1) agrees with
the well known Shannon entropy H(S) = − ∑N

i=1 pi log2 pi ,
being P = (p1, . . . , pN ) the symbols generation probabilities.

Fig. 1. The proposed architecture of a cryptography TRNG with tunable
entropy source.

In any case, the result of (1) ranges between 0 and log2 N
bit/symb.

With few exceptions, for most entropy sources the estima-
tion (or the measurement) of (1) is unfeasible, and in literature
a number of methods have been proposed to calculate approx-
imated estimations based on finite-time observations [2], [3].

Aiming to introduce an operational method to evaluate
entropy sources, the NIST publication 800-90B introduces the
min-entropy concept, defined as a conservative measurable
lower-bound for the source entropy [2]. In other words,
the min-entropy Hm(S) for a physical information source S
can be operationally understood as a measurable information
generation rate such that, with reasonably high probability,
the average amount of information per symbol, issued by the
source, is greater than Hm(S).

In specific theoretical cases, when the stochastic model of a
source is completely known, precise min-entropy expressions
can be given. For example, in [2] the average min-entropy
of an ergodic source generating i.i.d. symbols, taken from
an alphabet of N elements with generation probabilities
P = (p1, . . . , pN ), is defined as

Hm(S) = − log2 pH , [bit/symb], (2)

where pH = maxi pi ∈ P, i.e., pH is the maximum generation
probability among the N symbols. By the way, let us notice
that, in general, more than one symbol can have generation
probability pH .

As it can be appreciated from (2), Hm(S) is a monotonic
decreasing function with pH . Its maximum value, equal to
log2 N bit/symb, is obtained for pH = 1/N , i.e., in case
of uniform probability distributions. Furthermore, it is worth
noting that there is an infinite set of different sources with N
symbols sharing a same min-entropy level. For instance, all
the generation probabilities P having pH as maximum value
provide the same result in (2).

In practical cases, from the operational point of view, in [2]
the min-entropy is estimated with statistical estimators applied
to the raw data sequences collected from the entropy source
core, as in Fig. 1.

We conclude this section introducing the definition of worst-
case and best-case entropies.
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Definition 1: Given an arbitrary set � of entropy sources,
we define the worst-case average entropy and the best-case
average entropy in � as

HWC(�) = inf
S∈�

H(S), HBC(�) = sup
S∈�

H(S), (3)

respectively.
Given a source S ∈ �, the relations between the

min-entropy Hm(S), HWC(�) and HBC(�) depend on
both the operational (or theoretical) definition of Hm(S)
and the stochastic sources in �. As shown in the next
Section, in specific cases these relations can be expressed
theoretically.

III. A STOCHASTIC ALGORITHM TO DESIGN

TRNG TUNING CONTROLLERS

We discuss the concept design of a low-complexity stochas-
tic algorithm aiming to solve the Tuning Controller problem,
that is to select the best entropy source Sbest in a set of entropy
sources � = {S1, . . . , SZ }. To investigate the proposal within a
tractable theoretical framework, if not otherwise stated, in the
following subsections we focus on ergodic stochastic sources
S of i.i.d. symbols. We denote with M(N) ⊂ (0, 1)N ⊂ R

N

the set of the probability mass functions expressing different
generation probabilities for the N symbols in A. Accordingly,
if P = (p1, . . . , pN ) ∈ M(N), we have

∑N
i=1 pi = 1 and

0 < pi < 1. Furthermore, we denote with pH = maxi pi ≥ 1
N

the maximum generation probability of S.

A. Comparison of Entropy Sources: The Min-Entropy
Approach

Given a finite set � of entropy sources, we propose to
solve the Tuning Controller problem by comparing their min-
entropies, as defined in (2). From a mathematical point of
view, a partial order in � is given by the

Definition 2: Given two entropy sources S1, S2 ∈ �,

S1 ≤ S2 ⇔ Hm(S1) ≤ Hm(S2) ⇔ pH2 ≤ pH1, (4)

where pH1, pH2 are the maximum generation probabilities of
S1, S2, respectively.

As shown hereafter, the above defined ordering in � does
not assure to select the source with highest ASE, but it
provides a low-complexity sub-optimal effective solution to
a difficult problem. Interestingly, given any S̃ in �, we can
investigate the infinite set C̃ of sources sharing the same
maximum generation probability p̃H . Accordingly, from the
min-entropy point of view, the source S̃ can be considered
a representative of an equivalence class C̃, that is the subset
of all possible sources of i.i.d. symbols having min-entropy
Hm(S̃) = − log2 p̃H . As reported in the Appendix, we could
prove the following

Theorem 1: Let S̃ ∈ C̃. By defining F = 	1/ p̃H
 ∈ N and
the function h : (0, 1] → R as h(x) = −x log2 x, it results

Hm(S̃) ≤ HW C(C̃) ≤ H(S̃) ≤ HBC(C̃), (5)

Fig. 2. Numerical verification of Theor. 1 by means of numerical Monte Carlo
simulations, for different values of pH j , considering N = 8 (10.000 simula-
tion points).

where

HBC(C̃) = (N − 1) · h

(
1 − p̃H

N − 1

)
+ h( p̃H ). (6)

HW C(C̃) = F · h( p̃H ) + h(1 − F · p̃H ), (7)

In other words, referring to the introduced theoretical frame-
work, the knowledge of p̃H for the source S̃ provides precise
lower and upper bounds for its Average Shannon Entropy.
The above relations (5)-(7) can be inspected by means of
numerical Monte Carlo simulations, as shown in Fig. 2. As it
can be appreciated, the min-entropy provides a conservative
under-estimation of the Shannon entropy, with a relative error
that approaches zero for pH → 1/N . This represents a
fundamental result, from the considered application point of
view, since the better is the best source in �, the more reliable
is the min-entropy selection criteria.

B. Low-Complexity Maximum Generation Probability
Estimation

Directly from (2), the comparison among the different
sources is based on the measurements of the generation
probabilities pH for the most-probable symbols. To this aim,
hereafter we propose a specific estimator of pH , involving
low-complexity calculations.

Let us focus on the following problem: what is the number
T of generation trials that we reach if we stop the experiment
as soon as any element s j ∈ A has been generated m
times? In literature, this kind of problem is related to waiting-
time problems for occupancy in urns [34]. Accordingly,
each symbol s j ∈ A can be associated to an urn that is
randomly filled by indistinguishable balls with probabilities
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P = (p1, . . . , pN ) ∈ M(N). After K observations, the
occurrences T1, . . . ,TN of the symbols s1, . . . , sN (note that
T1 + . . . + TN = K ) have a well known joint multinomial
probability distribution

P
(
∩N

j=1T j = o j

)
= K !

N∏
j=1

p
o j
j

o j ! , (8)

and E{T j } = K p j . However, if the experiment (generation
trials) is stopped as soon as one predefined symbol reaches m
occurrences, let us assume T1, the remaining N − 1 variables
T2, . . . ,TN are distributed according to a negative multino-
mial distribution [34], [35], and their mean values are, for
j = 2, . . . , N , E{T j } = p j ·m

p1
.

In the next paragraphs, we adopt the following notation.
We denote with Ti the random variable describing the min-
imum number of generation steps necessary to obtain m
occurrences of the symbol si . Thus, we have Ti = ∑N

i=1 Ti and
Ti = m. It is worth noting that if m → ∞ also Ti → ∞, since
Ti can not be smaller than m (at least m steps are necessary to
generate m occurrences of any symbol, i.e., P(Ti < m) = 0).
Accordingly, 0 ≤ lim infm→∞ m

Ti
≤ lim supm→∞ m

Ti
≤ 1.

Regarding the ratio m
Ti

, the following proposition holds.
Proposition 1: Let si ∈ A be a symbol with generation

probability pi . If Ti is the minimum number of generation
trials such to have si generated m times, then the statistics
{ p̂i(m) = m

Ti
, m = 1, 2, . . .} is a consistent estimator of pi .

Proof: Since m > 0, let us focus on the sequence of
random variables Ym = 1

p̂i (m)
− 1

pi
= Ti

m − 1
pi

, for m =
1, 2, . . .. It suffices to show that μYm = E{Ym} = 0 and
that the variance of Ym vanishes with increasing m, i.e.,
limm→∞ σ 2

Ym
= 0.

The number of trials Ti can be written as Ti = m+η, where
the random variable η = ∑N

i=1,i �= j Ti has a negative binomial
distribution with mean value and variance [35]

μη = m(1 − pi)

pi
, σ 2

η = m(1 − pi )

p2
i

. (9)

As a result, since μTi = m + μη = m
pi

, we have

μYm = E{Ti }
m − 1

pH
= 0. On the other hand, recalling that

σ 2
η = E{η2} − μ2

η and using (9)

σ 2
Ym

= E{Y 2
m} = E

{
T 2

i

m2 + 1

p2
i

− 2Ti

m pi

}

= m2 + 2mμη + E{η2}
m2 − 1

p2
i

= 1 − pi

m p2
i

, (10)

i.e., limm→∞ σ 2
Ym

= 0.
As far as the distributions of the random variables

Ti = m + ηi is considered, we have the following
proposition.

Proposition 2: Let us consider the symbols si , s j ∈ A,
having generation probabilities pi and p j < pi , respectively.
Let the random variables Ti and Tj represents the minimum
number of generation steps to have the symbols si , s j , respec-
tively, counted m times. It results

lim
m→∞ P(Ti ≥ Tj ) = 0. (11)

Proof: By writing Ti = m + ηi and Tj = m + η j ,
the limit (11) is proved if we show that the random vari-
able S = (Ti − Tj )/m = (ηi − η j )/m satisfies the
limit limm→∞ P(S ≥ 0) = 0. Recalling (9), it results
μS = E{S} = (E{ηi } − E{η j })/m = (1 − pi)/pi − (1 −
p j )/p j = (p j − pi )/p j pi < 0. For the variance of S
we have that m2σ 2

S = σ 2
ηi

+ σ 2
η j

− 2Cov(ηi , η j ) = σ 2
ηi

+
σ 2

η j
− 2ρηi ,η j σηi ση j ≤ σ 2

ηi
+ σ 2

η j
+ 2σηi ση j = (σηi + ση j )

2,
where ρηi ,η j is the correlation coefficient for ηi and η j .
As a result,

σS ≤ σ0 = (σηi + ση j )

m
=

√
1 − pi

pi
√

m
+

√
1 − p j

p j
√

m
. (12)

By noting that P(S ≥ 0) = P(S − μS ≥ −μS) < P(|S −
μS| ≥ −μS) we can exploit the Chebyshev’s inequality stating
that, for any k > 1, P(|S−μS | ≥ kσ0) ≤ P(|S−μS | ≥ kσS) ≤
1/k2. Indeed, by setting

k = −μS

σ0
=

√
m(pi − p j )√

1 − pi + √
1 − p j

(13)

in the previous inequalities, we obtain

P(S ≥ 0) <

(√
1 − pi + √

1 − p j
)2

m(pi − p j )2 , (14)

that imples limm→∞ P(S ≥ 0) = 0.
The above proposition states that, for increasing values of

m, the random variables ηi associated to those symbols having
large generation probabilities, have increasing probabilities to
be among the first to reach m occurrences. This is important
when considering a counting experiment that is halted as soon
as any symbol in A reaches m occurrences. In this case, the
number of generation steps is equal to T = mini Ti = m +
mini ηi , where the random variables ηi have mean values and
variances given in (9).

As a direct result of the previous propositions, the ratio
m
T = m

mini Ti
converges in probability to pH , i.e., for any ε > 0

lim
m→∞ P

(∣∣∣m

T
− pH

∣∣∣ > ε
)

= 0. (15)

As an example, the convergence in probability is represented
in Fig. 3, which reports the mean value and standard deviation
of p̂H (m) = m

T estimated on the basis of the numerical
investigation of an arbitrary source generating N = 4 symbols
with probabilities P = (0.185, 0.279, 0.291, 0.245).

As it can be appreciated from the figure, the estimator
p̂H (m) is affected from a positive bias that vanishes as m
increases. As discussed hereafter, both the convergence rate
and the bias depend on the generation probability P.

The Fig. 4 reports the statistical distributions of the ran-
dom variables η1, η2, η3, η4 and mini ηi , estimated on the
basis of 10.000 randomized experiments (m = 64), for a
source of N = 4 symbols with generation probabilities
P = (0.185, 0.279, 0.291, 0.245). The red curves in the upper
plots reports the theoretical frequency distribution of negative
binomial random variables, with mean value and variances
given in (9). The larger is m, the smaller is the standard
deviation of ηi/m, and the more accurate is the estimator
p̂H (m) = m/T .
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Fig. 3. Convergence in probability of the estimator p̂H (m) = m
T ,

for a source of N = 4 symbols with generation probabilities P =
(0.185, 0.279, 0.291, 0.245), for different values of m. Mean value and
standard deviation (μ ± σ ) reported, 10.000 randomized experiments.

Fig. 4. Statistical distributions of the random variables η1, η2, η3, η4 and
mini ηi , estimated on the basis of 10.000 randomized experiments
(m = 64), for a source of N = 4 symbols with generation probabilities
P = (0.185, 0.279, 0.291, 0.245). The red curves in the upper plots report the
theoretical frequency distribution of negative binomial random variables, with
mean value and variances given in (9).

On the other hand, if the source has two or more symbols
with generation probability close to pH or, alternatively, if m
is not large enough to “separate” the distributions of the ηi

variables, the random variable T = mini Ti = m + mini ηi

has mean value lower than m + μηH . In detail, the statistical

distribution of the random variable mini ηi is related to a
cumulative distribution function �(z) = P(mini η ≤ z) = 1−
P(mini ηi > z) = 1 − P(η1 > z, . . . , ηN > z). Unfortunately,
the statistical dependency of the random variables ηi depends
on m, N and the probability mass function P. Accordingly,
deriving a generic exact expression for F is not trivial. For
increasing values of N and m, an heuristic approximated
result can be achieved assuming the random variables ηi

statistically independent, obtaining a cumulative probability
distribution

�(z) ≈ 1 −
N∏

i=1

P(ηi > z) = 1 −
N∏

i=1

(1 − �ηi (z)), (16)

where the product is considering the cumulative probability
distributions �ηi of the random variables ηi , that are negative
binomial with mean value and variance (9).

Furthermore, given m, the higher is pH the smaller will be
the average estimation time T . This latter aspect is relevant
to assessing the efficiency of the process, that is increasing
with sources having decreasing entropy (increasing values
of pH ). This point will be discussed more in detail the next
paragraphs.

C. A Stochastic Algorithm to Select Best Entropy Sources

Recalling the partial order in �, given in Def. 2, according
to the previous results, a low-complexity stochastic algorithm
to determine the best source in � is presented hereafter.

Since, for a given m, the estimation p̂H (m) = m
T , the higher

is T , the smaller is p̂H (m), the higher is the estimated min-
entropy. As a result, we can select the best source in � in two
steps:

1) For each Sj ∈ � measure the minimum number T (Sj )
of generation trials such to have any symbol generated
m times.

2) Select Sbest as the source with highest T .
It is clear from the previous discussion that the above

selection algorithm has the following strengths.
• For weak entropy sources, the expected estimation time

μT is reduced, and is lower than m N in the worst case
(pH = 1/N).

• As shown in Fig. 5, given m, when pH → 1/N the value
of Hm(S) → log2 N is systematically underestimated
(since mini ηi has mean value lower than μηH ), but
its variance reaches the minimum. In general, this is
favorable when selecting Sbest. The variance of p̂H (m)
(as well as the variance of the relative estimation errors
in Fig. 5) can be effectively reduced increasing m,
as previously discussed.

IV. DESIGN, HARDWARE IMPLEMENTATION

AND TESTING

The design of the best source selection algorithm depends
on both the statistical characteristics of the entropy sources
in � and the targeted reliability of the results (application
dependent).

For this reason, in this Section we discuss both the sys-
tem architecture and its hardware implementation taking into
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Fig. 5. Monte Carlo simulations (2500 simulation points) evaluating the
relative estimation error for p̂H (m) (subplot a.) and the corresponding min-
entropy Hm (subplot b.) for different pH values ranging between 1/8 and
1/2, considering m = 64 and N = 8.

account generalized parametric setting. To assess the validity
of the proposal and to inspect the operation of the controller,
in SubSec. IV-A and IV-B we present experimental results
based on two selected case studies. Finally, in SubSec. IV-C
we discuss the possible integration of the proposed algorithm
with the Adaptive Proportion Health Test included in the NIST
800.90B publication [2].

For sources of i.i.d. symbols, the design problem reduces
to the design of m, that is the unique parameter defining
the estimator p̂H (m). When the sources in � have entropies

Fig. 6. Architecture of the proposed Tuning Controller (Concept Design).

with significant variance, the estimator can provide satisfactory
results even for relatively small values of m. From an intuitive
point of view, it is easier to guess a decent source among
weak sources, rather than guessing the best source among very
similar ones. On the other hand, from the application point of
view, when the sources are similar, failing in the selection of
the best source is an issue of minor entity.

When considering physical binary sources (N = 2), in most
cases they are modeled as ergodic processes with vanishing
statistically dependency among bits. In these circumstances,
the measurement of the ASE can be approximated truncating
the series (1) to a convenient number k of terms, approximat-
ing the original source assuming to deal with a process of 2k

i.i.d. k-tuplets (words). As a result, in actual applications, the
general design of the Tuning Controller algorithm depends on
two parameters: m and k.

The block diagram of a digital architecture implementing
the proposed algorithm is shown in Fig. 6. The scope of
the Selection Logic block is to drive the parametric setup
of the entropy source, performing the best source selec-
tion. Proceeding in sequential order, the algorithm follows
the steps described in Sec. III. As soon as a new word
(k-tuple) is collected, it is counted. Since the counting process
must stop at m occurrences of any word, the system uses
2k binary counters, one per k-tuple, each one made of
q = �log2 m� bits. To simplify the architecture, m can be
chosen as a power of 2, i.e., 2q . In this way, at the end of
the counting phase, one of the counter overflow lines gets a
high value.

When this event occurs the T counter is compared with a
register storing the temporary maximum. In case this latter
register is updated, the Selection Logic stores the parametric
source address as a temporary best source. The counter T must
count up to N(m − 1) + 1 steps, and it has �log2(N(m −
1) + 1)� = �log2(2

k(2q − 1) + 1)� bits. As a result, the
overall complexity of the sequential logic devoted to the
counting phase is proportional to a resource consumption of
≈ (k + q) + q2k ≈ q2k = 2k log2 m flip-flops. It is clear
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Fig. 7. Distribution of the ASE H10(Sn) for the 128 binary Markov
chains used in the experiment described in Sec. IV-A. The average entropy
is ≈ 0.868 bit/sym.

from the analysis that the design parameter k is critical.
As shown in the following Subsections, in most practical
cases values of k between 3 and 5 allow to design reliable
solutions.

A. Experiments: Application to a Markov Stochastic Source

We have designed a test bench to simulate randomized
numerical experiments. For n = 1, . . . 128, we built 128 sets
�n of 16 binary Markov chains, characterized by the paramet-
ric state transition matrix

P =
(

1 − α α
1/2 1/2

)
, (17)

where 0 < α < 1 and the element pi j of P is the probability to
have the state transition i → j , for i, j ∈ {0, 1}. The Markov
chain was treated as a binary TRNG generating one bit at each
step, according to the current state. The goal of the test bench
was to assess the performance of the algorithm described in
Sec. III-C when used to guess the binary source Sbestn with
highest entropy in each set �n .

The designed Markov chains have vanishing statistical
dependency among generated symbols. Nevertheless, to estab-
lish a reference ordering criterion among sources, we could
effectively estimate the sources ASE levels truncating the limit
(1) at k = 10, i.e., referring to the term H10(S). Accordingly,
for each Markov chain we estimated its ASE on the basis of
1 million bits.

We inspected the operation of the stochastic algorithm
for different parametric setting, investigating the range
[1, 2, . . . , 10] for both design parameters k and q (recall,
2q = m ∈ {2, 4, 8, . . . , 1024}).

For each source we randomly set α in (17) according to a
Gaussian distribution with mean value and standard deviation
equal to 0.25 and 0.0625, respectively, obtaining different
levels of entropies, as shown in Fig. 7.

In Fig. 8 we reported the worst case selection error among
the 128 sets, defined as

	H10(k, q) = max
n

(
H10(Sbestn ) − H10(Sseln (k, q))

)
, (18)

Fig. 8. The worst case maximum selection error given in (18), for different
values of k and q.

where Sseln (k, q) is the source selected by the algorithm.
According to this definition, 	H10(k, q) = 0 bit/sym only
if the algorithm properly selects the source with highest
entropy in each of the 128 sets. As it can be appreciated, the
higher is the algorithm complexity (larger values of k, q), the
better is the result. Interestingly, worst case error drops below
0.1 bit/sym for q ≥ 7 and k ≥ 3, whereas it drops below
0.05 bit/sym for q ≥ 9 and k ≥ 4. The average error, not
reported in the figure, drops below 7e-3 bit/sym for q ≥ 7 and
k ≥ 3, and below 1e-3 bit/sym for q ≥ 9 and k ≥ 4. Recalling
the hardware architecture shown in Fig. 6, for the considered
case study an average selection error below 7e-3 bit/sym can
be obtained with only k = 23 = 8 registers (to count 3-bit
word occurrences), being the size of each register equal to
q = 7 bits. These results reveal the high sensitivity of the
selection process, making the proposal particularly efficient in
terms of resource consumption (i.e., computational costs and
chip area consumption).

B. Experiments: Application to FPGA Digital Nonlinear
Oscillators

We have evaluated the capability of the proposed algorithm
to select the best source among a set of sixteen based
on 7-nodes Galois Ring Oscillators [30], [33], [36], [37],
implemented in a Xilinx Artix 7 xc7a35 FPGA. The entropy
of such Digital Nonlinear Oscillators (DNOs) is sensitive
to the variability of the delays introduced by the FPGA
routing circuitry in the feedback loops [30], [33], [37], and
the 16 entropy sources were deliberately obtained varying
the routing paths. The nonlinear dynamical systems were
digitized (1bit digitization) according to a sampling frequency
of 100MHz, as discussed in [30], [33], and [37].

For a detailed investigation of the selection algorithm, each
source was characterized collecting sequences of 1 million
bits, that were used to estimate the Average Shannon Entropy
Hk(S) for different values of k. After preliminary design
investigations, we opted to implement the architecture shown
in Fig. 6 for k = 4 and q = 7. The hardware consumption
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Fig. 9. Statistical characterization of the 16 sources belonging to the set
described in Sec. IV-B, processed by the proposed selection algorithm method.
To assess the validity of the result, reference values of pH , H10(S) and
H10(S) were accurately estimated from sequences of 1 million bits.

TABLE I

FPGA XILINX ARTIX 7 XC735A HW RESOURCES
UTILIZATION FOR THE IMPLEMENTATION OF THE

ARCHITECTURE OF FIG. 6 (k = 4, q = 7)

of the design has been reported in Tab. I. Thanks to the sim-
plicity of the design, the authors successfully implemented the
architecture in the Artix 7 FPGA considering different clock
frequencies up to 400MHz (the maximum for the specific
FPGA speed-grade), obtaining an overall power consumption
lower than 150mW (entire chip).

We have repeated the selection process 400 times, and in
100% of cases (no exceptions) the algorithm selected the
source with highest entropy (source ID = 12), as shown
in Fig. 9. In this figure, we reported the values H10(S),
H10(S) and the estimation of pH obtained from the above
mentioned source characterization. As shown in the figure,
in the considered set of sources the one with maximum entropy
is the one with minimum pH . Recalling the results (5)-(7) of
Theorem 1, the capability of the algorithm to select the best
source in a set (or close to the best, in terms of entropy),
strongly depends on the distribution of the sources in the
plane pH ,Hk(S). For this reason, depending on the variability
of the entropy sources, larger design parameters k, q can be
taken into account for improved performance. As discussed at
the beginning of this Section, the algorithm design problem
is source-set dependent. In general, an adequate statistical
characterization inspecting the variability of the entropy of
the considered class of generators is necessary for a proper
design of the algorithm.

C. Integration With TRNG Health Test Design

The NIST 800.90B publication provides recommendations
about the design of cryptographic TRNG continuous health
tests based on the min-entropy concept [2]. The publication
defines two approved tests (the Adaptive Proportion and the

Fig. 10. The cumulative distribution function (19) assuming pH = 1
16 ·130%,

for different values of m. The grayed area represents the levels for which
P(mini ηi ≤ z0) < α = 2−20.

Repetition Count tests), allowing for the use of developer-
defined alternatives to them [2, Sec. 4.5]. In this sub-section
we show with theoretical arguments that the low-complexity
entropy measurement techniques exploited by the Tuning Con-
troller in Fig. 1 can be used to design a legitimate alternative to
the Adaptive Proportion Health Test recommended by NIST.
More in detail, the Adaptive Proportion Health Test included
in the NIST 800.90B publication cyclically checks if some
symbols are generated too frequently than expected, given a
reference min-entropy level. At the beginning of each testing
cycle, the test takes a sample from the noise source and
counts the occurrences B of that sample within an observation
window of W samples. If B is greater than or equal to a
cutoff value C , the test declares an error. For sources with
N > 2 symbols the value of W is set to 512, whereas the
threshold C is set such to have, for a given expected min-
entropy level, P(B ≥ C) < α, being 2−20 ≤ α ≤ 2−40

(Type I Error) [2].
Alternatively, the same result can be obtained exploiting

the counting phase of the Tuning Controller proposed in
this work. In detail, given a reference min-entropy level
(Hm(S) = − log2 pH ), the number of generation steps
T = m + mini ηi necessary to collect m occurrences of any
symbol should be greater than a given threshold T0, such that
P(T ≤ T0) < α.

Given pH we know from Theorem 1 that the worst
case entropy is obtained when F = 	1/pH
 symbols have
generation probability pH . In such case, the cumulative
distribution (16) for the random variable mini ηi can be
approximated as

�(z) ≈ 1 − (1 − �ηH )F , (19)

where �ηH is the cumulative probability distribution
of a negative binomial random variable with mean
value m(1 − pH )/pH .

Using (19), proper values of T0 can be chosen such to have
P(m+mini ηi ≤ T0) < α. For example, in Fig. 10 we reported
the numerical computation of (19) assuming pH = 1

16 ·130%.
The grayed area represents the levels for which P(mini ηi ≤
z0) < α = 2−20. In this example, if m = 256, z0 should be
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Fig. 11. Sensitivity of the cumulative distribution function (19) with respect
to pH variations, for m = 256 (pH0 = 1

16 · 130%).

set equal to 2006. As a result, the threshold for the hypothesis
testing results T0 = m + z0 = 2262 (Type I Error).

As shown in Fig. 11, even for relatively small values of
m, the threshold z0 exhibits a good sensitivity with respect
to pH variations. In this example a variation of −10% in
pH corresponds to a variation of −10% of z0 (z0 = 1806
for α = 2−20).

According to the above discussion, minor modifications
of the architecture shown in Fig. 6 allow to use the tuning
controller for both adjusting and monitoring the entropy
sources, easily integrating in the same block one of the health
tests recommended by NIST [2].

V. CONCLUSION

We have discussed a stochastic algorithm to design tuning
controllers for cryptographic True Random Number Gener-
ators, compliant to NIST recommendations, as an effective
low-complexity solution to counteract entropy variability in
integrated architectures implementing tunable entropy sources.
Taking as a reference the min-entropy concept introduced by
NIST, we discussed the proposal from both the theoretical
and hardware design points of view, validating claims with
proofs and experiments. Depending on the target accuracy, the
proposed solution is scalable, and its profitable use in TRNG
design strongly depends on the kind of core entropy sources
taken into account. Nevertheless, the results show the general
validity of the presented solution, that in the investigated
cases is capable to accomplish remarkable performance with
a reasonable amount of hardware resource consumption. The
scalability of the solution involves both hardware consump-
tion and monitoring latency that have a cost in the overall
TRNG design that must be properly evaluated when targeting
lightweight designs. The authors are currently investigating the
applicability of the proposed Tuning Controller to the design
of efficient TRNGs, focusing on a family of all-digital tunable
entropy sources based on DNOs, exhibiting chaotic dynamics.

APPENDIX

Proof of Theor. 1: Let us note that the function h :
(0, 1] → R is infinitely differentiable and strictly concave in
(0, 1]. Furthermore, we note that the sources in C̃ are related
by a bijection to the subset of probability mass functions

K = {P ∈ M(N) : maxi pi = p̃H } ⊂ M(N). For simplicity,
for any S ∈ C̃ we write the Shannon entropy H(S) as
H(P) : K → R with H(P) = ∑N

i=1 h(pi ), noting that any
permutation of the components of P provides the same entropy.

For any 1 ≤ j ≤ N we define K j as the subset of K such
that p j = p̃H . We note that: 1) K is the set of permutations
of K j ; 2) K j is a convex compact set; 3) and H(P) is strictly
concave on K j . As a result, the strict concavity of H implies
that it has an unique maximum in K j that occurs for the
probability mass function having p j = p̃H and the other
components have same value. Indeed, ab absurdum, if for some
i1, i2 �= j , pi1 �= pi2 , we would have different permutations
of P (that are also different points in K j ) providing the same
maximum value of entropy, contradicting the uniqueness of
the maximum. Since p j = p̃H and since if i1, i2 �= j it must
be pi1 = pi2 , for the normalization property of probability
mass functions we have i �= j ⇔ pi = 1− p̃H

N−1 . We can use
these values to calculate the maximum entropy in K j , that is
HBC(K j ) = ∑

i �= j h(pi ) + p j = (N − 1)h( 1− p̃H
N−1 ) + h( p̃H ).

Recalling that the elements of K are permutations of K j (thus
sharing same entropy levels), we have HBC(K j ) = HBC(C̃)
and (6) has been proved.

To prove (7), we note that 1 ≤ F ≤ N , recalling that 1
N ≤

p̃H < 1. Accordingly, HW C is the entropy of a probability
mass function in K j such that F = 	1/ p̃H
 components are
equal to p̃H , at most one is equal to 1−F p̃H and the remaining
ones (if any) are equal to zero. Since K j is compact, H has
a minimum in it. First, let us show that if P ∈ K j has two
components p̃H > pi1 = x ≥ pi2 = y > 0, for two arbitrary
indices i1 �= i2, then H(P) can not be a minimum. Indeed,
we can build a of probability mass function P�(δ) ∈ K j that,
depending on 0 ≤ δ < min{y, p̃H − x}, can differ from P by
the two components p̃H > p�

i1
= x + δ > p�

i2
= y − δ < 0.

Accordingly P�(0) = P.
The entropy of P�(δ) can be written as H(P�) = H0 +

h(x + δ) + h(y − δ) = f (δ). Is is immediate to verify that for
δ ≥ 0 d f

dδ (δ) = − log2
x+δ
x−δ ≤ 0, i.e., H(P�) decreases for δ

increasing. As a result, the minimum entropy in K j is obtained
for probability mass functions having N − 1 components
equal to 0 or p̃H and no more than one component between
0 and p̃H . On the other hand, the normalization property of
probability mass functions is satisfied if the components of
Pmin for some natural F satisfy the equation F p̃H +x = 1 with
0 ≤ x < p̃H . Accordingly, it exists 0 ≤ α < 1 such
that p̃H (F + α) = 1 ⇒ F + α = 1

p̃H
⇒ 	F + α
 =

F = 	1/ p̃H
. �

REFERENCES

[1] A. J. Acosta, T. Addabbo, and E. Tena-Sánchez, “Embedded electronic
circuits for cryptography, hardware security and true random number
generation: An overview,” Int. J. Circuit Theory Appl., vol. 45, no. 2,
pp. 145–169, Feb. 2017.

[2] Recommendation for the Entropy Sources Used for Random Bit Gen-
eration, document NIST Special Publication 800-90b, Jan. 2018, doi:
10.6028/NIST.SP.800-90B.

[3] A Statistical Test Suite for Random and Pseudorandom Number Genera-
tors for Cryptographic Applications, document NIST Special Publication
800-22 Rev.1a, Apr. 2010. [Online]. Available: https://nvlpubs.nist.
gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

http://dx.doi.org/10.6028/NIST.SP.800-90B


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[4] Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, document NIST Special Publication 800-90a
Rev.1, Jun. 2015, doi: 10.6028/NIST.SP.800-90Ar1.

[5] S. Taneja and M. Alioto, “Fully synthesizable unified true random
number generator and cryptographic core,” IEEE J. Solid-State Circuits,
vol. 56, no. 10, pp. 3049–3061, Oct. 2021.

[6] Y. Cao, X. Zhao, W. Zheng, Y. Zheng, and C.-H. Chang, “A new
energy-efficient and high throughput two-phase multi-bit per cycle ring
oscillator-based true random number generator,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 69, no. 1, pp. 272–283, Jan. 2022.

[7] X. Wang et al., “High-throughput portable true random number gener-
ator based on jitter-latch structure,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 68, no. 2, pp. 741–750, Feb. 2021.

[8] Y. Luo, W. Wang, S. Best, Y. Wang, and X. Xu, “A high-performance
and secure TRNG based on chaotic cellular automata topology,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 4970–4983,
Dec. 2020.

[9] Q. Zhao, W. Zheng, X. Zhao, Y. Cao, F. Zhang, and M.-K. Law, “A 108
F2/bit fully reconfigurable RRAM PUF based on truly random dynamic
entropy of jitter noise,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 11, pp. 3866–3879, Nov. 2020.

[10] P. Z. Wieczorek and K. Gołofit, “True random number generator based
on flip-flop resolve time instability boosted by random chaotic source,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 4, pp. 1279–1292,
Apr. 2018.

[11] Y. Liu, R. C. C. Cheung, and H. Wong, “A bias-bounded digital true
random number generator architecture,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 64, no. 1, pp. 133–144, Jan. 2017.

[12] P. Z. Wieczorek, “Lightweight TRNG based on multiphase timing of
bistables,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 7,
pp. 1043–1054, Jul. 2016.

[13] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadyay, “An improved
DCM-based tunable true random number generator for Xilinx FPGA,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 4, pp. 452–456,
Apr. 2017.

[14] K. Yang, D. Blaauw, and D. Sylvester, “An all-digital edge racing true
random number generator robust against PVT variations,” IEEE J. Solid-
State Circuits, vol. 51, no. 4, pp. 1022–1031, Apr. 2016.

[15] S. K. Mathew et al., “2.4 Gbps, 7 mW all-digital PVT-variation tolerant
true random number generator for 45 nm CMOS high-performance
microprocessors,” IEEE J. Solid-State Circuits, vol. 47, no. 11,
pp. 2807–2821, Nov. 2012.

[16] X. Xu et al., “An all-digital and jitter-quantizing true random number
generator in SRAM-based FPGAs,” in Proc. IEEE 27th Asian Test Symp.
(ATS), Oct. 2018, pp. 59–62.

[17] M. T. Rahman, K. Xiao, D. Forte, X. Zhang, J. Shi, and M. Tehranipoor,
“TI-TRNG: Technology independent true random number generator,” in
Proc. 51st Annu. Design Autom. Conf. Design Autom. Conf. (DAC),
Jun. 2014, pp. 1–6.

[18] V. B. Suresh and W. P. Burleson, “Entropy and energy bounds for
metastability based TRNG with lightweight post-processing,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 7, pp. 1785–1793,
Jul. 2015.

[19] T. Addabbo, A. Fort, M. Mugnaini, N. Petra, H. Takaloo, and V. Vignoli,
“Self-tunable chaotic true random bit generator in current-mode CMOS
circuit with nonlinear distortion analysis,” Int. J. Circuit Theory Appl.,
vol. 47, no. 12, pp. 1877–1892, Dec. 2019.

[20] T. Addabbo, A. Fort, D. Papini, S. Rocchi, and V. Vignoli, “Invariant
measures of tunable chaotic sources: Robustness analysis and efficient
estimation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 4,
pp. 806–819, Apr. 2009.

[21] S. Tupparwar and N. Mohankumar, “A hybrid true random number
generator using ring oscillator and digital clock manager,” in Proc. 6th
Int. Conf. Inventive Comput. Technol. (ICICT), Jan. 2021, pp. 290–294.

[22] L. B. Carreira, P. Danielson, A. A. Rahimi, M. Luppe, and S. Gupta,
“Low-latency reconfigurable entropy digital true random number gen-
erator with bias detection and correction,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 67, no. 5, pp. 1562–1575, May 2020.

[23] X. Li, P. Stanwicks, G. Provelengios, R. Tessier, and D. Holcomb, “Jitter-
based adaptive true random number generation for FPGAs in the cloud,”
in Proc. Int. Conf. Field-Programmable Technol. (ICFPT), Dec. 2020,
pp. 112–119.

[24] F. Tehranipoor, P. Wortman, N. Karimian, W. Yan, and J. A. Chandy,
“DVFT: A lightweight solution for power-supply noise-based TRNG
using dynamic voltage feedback tuning system,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 6, pp. 1084–1097, Jun. 2018.

[25] H. I. Kaysici and S. Ergun, “Random number generator based on
metastabilities of ring oscillators and irregular sampling,” in Proc.
27th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2020,
pp. 1–4.

[26] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, “A variability-
tolerant feedback technique for throughput maximization of TRBGs
with predefined entropy,” J. Circuits, Syst. Comput., vol. 19, no. 4,
pp. 879–895, Jun. 2010.

[27] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, “A feedback
strategy to improve the entropy of a chaos-based random bit generator,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 2, pp. 326–337,
Feb. 2006.

[28] D. Liu, Z. Liu, L. Li, and X. Zou, “A low-cost low-power ring oscillator-
based truly random number generator for encryption on smart cards,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 6, pp. 608–612,
Jun. 2016.

[29] A. Muthukumar, N. Sivasankari, and K. Rampriya, “Anti-aging true
random number generator for secured database storage,” in Proc. 4th
Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Jan. 2017, pp. 1–7.

[30] T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, V. Vignoli, and
M. G. Bosque, “Lightweight true random bit generators in PLDs:
Figures of merit and performance comparison,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[31] T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and
V. Vignoli, “A new class of chaotic sources in programmable logic
devices,” in Proc. IEEE Int. Workshop Metrol. Ind. 4.0 IoT, Jun. 2020,
pp. 6–10.

[32] T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and
V. Vignoli, “Chaos in fully digital circuits: A novel approach to the
design of entropy sources,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Oct. 2020, pp. 1–5.

[33] T. Addabbo, A. Fort, M. Mugnaini, V. Vignoli, and M. Garcia-Bosque,
“Digital nonlinear oscillators in PLDs: Pitfalls and open perspectives
for a novel class of true random number generators,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[34] N. L. Johnson and S. Kotz, Urn Models and Their Application: An
Approach to Modern Discrete Probability Theory. Hoboken, NJ, USA:
Wiley, 1977.

[35] N. L. Johnson, S. Kotz, and N. Balakrishnan, Discrete Multivariate
Distributions. Hoboken, NJ, USA: Wiley, 1997.

[36] J. D. J. Golic, “New methods for digital generation and postprocessing
of random data,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1217–1229,
Oct. 2006.

[37] T. Addabbo, A. Fort, R. Moretti, M. Mugnaini, H. Takaloo, and
V. Vignoli, “A new class of digital circuits for the design of entropy
sources in programmable logic,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 67, no. 7, pp. 2419–2430, Jul. 2020.

Tommaso Addabbo (Member, IEEE) received the
Ph.D. degree in information engineering from the
Department of Information Engineering and Mathe-
matics, University of Siena, Italy, in 2006. He is an
Associate Professor with the Department of Infor-
mation Engineering and Mathematics, University of
Siena. He has authored or coauthored more than
130 international journals or conference papers. His
research interests include the design and study of
nonlinear circuits and systems, embedded systems,
analog and mixed-signal circuits, front-end electron-

ics for sensing systems, and automated measurements. He is a member of the
IEEE NCAS TC.

Ada Fort (Member, IEEE) received the laurea
degree in electronic engineering and the Ph.D.
degree in nondestructive testing from the Univer-
sity of Florence, Italy, in 1989 and 1992, respec-
tively. She is currently an Associate Professor with
the Department of Information Engineering and
Mathematical Sciences, University of Siena, Italy.
Her research interests include the development of
measurement systems and automatic fault diagnosis
systems.

http://dx.doi.org/10.6028/NIST.SP.800-90Ar1


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADDABBO et al.: STOCHASTIC ALGORITHM TO DESIGN MIN-ENTROPY TUNING CONTROLLERS FOR TRNGs 11

Riccardo Moretti (Member, IEEE) received the
Ph.D. degree in information engineering and science
from the University of Siena, Italy, in 2020. He is
currently a Research Associate in electrical engineer-
ing with the University of Siena. His main research
interests include analysis of nonlinear circuits and
systems, stochastic aspects of chaotic dynamics and
analog circuits design, and design of electronic
embedded systems.

Marco Mugnaini (Member, IEEE) received the
laurea degree (cum laude) in electronics engineering
with a major in non-linear automatic controls and the
Ph.D. degree in reliability availability and logistics
from the University of Florence, Italy, in 1999 and
2003, respectively. Currently, he is the Manager of
the Electronics Training Laboratory and an Asso-
ciate Professor with the University of Siena, Italy.
He was a Faculty Member and a Professor with the
Electrical and Electronics Technology Department,
Higher Colleges of Technology, Abu Dhabi, UAE,

from 2012 to 2013. He was awarded as IEEE I&M Distinguished Lecturer
from 2017 to 2020.

Duccio Papini received the Ph.D. degree in
functional analysis from the International School
for Advanced Studies, Trieste, Italy, in 2000.
From 2001 to 2002, he was a Research Associate at
the University of Turin and the University of Siena.
From 2002 to 2014, he was an Assistant Profes-
sor at the Department of Information Engineering,
University of Siena. Since December 2014, he has
been an Associate Professor with the Department
of Mathematics, Computer Science and Physics,
University of Udine. His research interests include

differential equations, with an emphasis on topological methods for nonlinear
boundary value problems, properties of complex dynamics, and stability of
non-linear systems.

Valerio Vignoli (Member, IEEE) received the grad-
uate degree in electronic engineering and the Ph.D.
degree in non-destructive controls from the Univer-
sity of Florence, Italy, in 1989 and 1994, respec-
tively. Since 2020, he has been a Full Professor
of electronics with the Department of Information
Engineering and Mathematics, University of Siena.
He holds seven patents and has authored more than
240 journals or international conference papers. His
research interests include design, characterization,
and modeling of advanced sensors and development
of data acquisition and processing systems.


