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WO DISTINCT POOLS OF LARGE-CONDUCTANCE
ALCIUM-ACTIVATED POTASSIUM CHANNELS IN THE SOMATIC

LASMA MEMBRANE OF CENTRAL PRINCIPAL NEURONS
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ayr Strasse 1a, 6020 Innsbruck, Austria

Centre of Molecular Biology and Neuroscience (CMBN) and Depart-
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103 Blindern, 0317 Oslo, Norway

bstract—Although nerve cell membranes are often as-
umed to be uniform with respect to electrical properties,
here is increasing evidence for compartmentalization into
ubdomains with heterogeneous impacts on the overall cell
unction. Such microdomains are characterized by specific
ets of proteins determining their functional properties. Re-
ently, clustering of large-conductance calcium-activated po-
assium (BKCa) channels was shown at sites of subsurface

embrane cisterns in cerebellar Purkinje cells (PC), where
hey likely participate in building a subcellular signaling unit,
he ’PLasmERosome’. By applying SDS-digested freeze-frac-
ure replica labeling (SDS-FRL) and postembedding immuno-
old electron microscopy, we have now studied the spatial
rganization of somatic BKCa channels in neocortical layer 5
yramidal neurons, principal neurons of the central and ba-
olateral amygdaloid nuclei, hippocampal pyramidal neurons
nd dentate gyrus (DG) granule cells to establish whether
here is a common organizational principle in the distribution
f BKCa channels in central principal neurons. In all cell types
nalyzed, somatic BKCa channels were found to be non-ho-
ogenously distributed in the plasma membrane, forming

wo pools of channels with one pool consisting of clustered
hannels and the other of scattered channels in the extrasyn-
ptic membrane. Quantitative analysis by means of SDS-FRL
evealed that about two-thirds of BKCa channels belong to the
cattered pool and about one-third to the clustered pool in
rincipal cell somata. Overall densities of channels in both
ools differed in the different cell types analyzed, although
eing considerably lower compared to cerebellar PC.
ostembedding immunogold labeling revealed association of
lustered channels with subsurface membrane cisterns and
onfirmed extrasynaptic localization of scattered channels.
his study indicates a common organizational principle for
omatic BKCa channels in central principal neurons with the
ormation of a clustered and a scattered pool of channels,

Corresponding author. Tel: �43-512-9003-71208; fax: �43-512-
003-73200.
-mail address: walter.kaufmann@i-med.ac.at (W. A. Kaufmann).
bbreviations: BKCa, large-conductance calcium-activated potassium
hannel; BL, basolateral nucleus of the amygdala; BSA, bovine serum
lbumin; CaV, voltage-gated calcium channel; CICR, calcium induced
alcium release; DG, dentate gyrus; ER, endoplasmic reticulum; fAHP,
ast afterhyperpolarization; GC, granule cell; IMP, intramembrane par-
icle; KV, voltage-gated potassium channel; PB, phosphate buffer; PC,
urkinje cell; RT, room temperature; SDS, sodium lauryl sulphate;
DS-FRL, SDS-digested freeze-fracture replica labeling; SSC, sub-
c
urface cistern; SSCx, somato-sensory cortex; TBS, tris-buffered sa-
ine.

306-4522/10 © 2010 IBRO. Published by Elsevier Ltd.
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nd a cell-type specific density of this channel type. © 2010
BRO. Published by Elsevier Ltd.

ey words: BKCa channel, SDS-FRL, postembedding immu-
ogold electron microscopy, plasmerosome, microdomain,
ubsurface cistern.

arge-conductance Ca2� activated potassium channels
also called BKCa, KCa1.1, Maxi-K, or Slo1) are widely
istributed in the mammalian brain and play diverse phys-

ological roles in neurons ranging from action potential
epolarization to control of cell excitability and neurotrans-
itter release (Storm, 1987a; Lancaster and Nicoll, 1987;
hao et al., 1999; Hu et al., 2001a; Gu et al., 2007; Hou et
l., 2009). They are localized primarily to principal neurons
here they are targeted to specific subcellular domains

Knaus et al., 1996; Hu et al., 2001a; Sailer et al., 2006;
isonou et al., 2006). Recently we found that BKCa chan-

els are distributed non-homogenously in the somato-den-
ritic plasma membrane of cerebellar Purkinje cells (PC),
orming two distinct pools: one pool consisting of channels
hat are scattered in the extrasynaptic membrane at low
ensity, and the other consisting of channels that cluster in
embrane areas overlying subsurface membrane cisterns

SSC; Kaufmann et al., 2009). These two pools of BKCa

hannels might differ in function and routes of Ca2� acti-
ation.

BKCa channels (KCa1) form together with the Slack and
lick channels (KCa4) as well as Slo3 channels (KCa5) the
tructurally related SLO family of high-conductance Ca2�

nd Na� activated potassium channels. Small-conduc-
ance (KCa2, or SK) and intermediate-conductance Ca2�

ctivated potassium channels (KCa3, or IK) are more dis-
antly related to this family (Wei et al., 2005; Salkoff et al.,
006). BKCa channels are homotetramers of principal (al-
ha) subunits, which are products of the KCNMA1 or Slo1
ene (first cloned in Drosophila melanogaster; Adelman et
l., 1992). The principal subunits, constituting the pore of
he channel, can co-assemble with 1–3 auxiliary beta sub-
nits (KCNMB1-4; Salkoff et al., 2006), which modify the
unctional properties of the channel in different tissues
Brenner et al., 2000; Sah and Faber, 2002). Alpha sub-
nits show a relatively short extracellular, amino terminal
omain (N-terminus) and a large intracellular, carboxyl
erminal domain (C-terminus) where the Ca2� binding do-
ain (“calcium bowl”) is located (Sah and Faber, 2002;
alkoff et al., 2006). BKCa channels are distinguished from
ther potassium channels by their unusually high single-

Open access under CC BY-NC-ND license. 
hannel conductance (averaging over 250 pS) and being
-ND license. 
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ated both by membrane depolarization and changes in
ytosolic free [Ca2�] (Salkoff et al., 2006). Increasing
Ca2�]i shifts the activation curve from highly positive po-
entials into the physiological voltage range (Cui et al.,
997; Latorre and Brauchi, 2006; Fakler and Adelman,
008). Yet, BKCa channels have a low affinity for Ca2�,

ypically requiring more than 10 �M [Ca2�]i for activation
ithin physiological membrane potentials (Fakler and
delman, 2008). The sensitivity of BKCa channels to
a2� makes it an important negative-feedback system

or Ca2� entry in many cell types, thus regulating transmit-
er release and other Ca2�-dependent processes (Storm,
987a, 1990; Hu et al., 2001a).

Activation of BKCa channels in neurons generates a
acroscopic current, which has been called IC or ICT. This

urrent contributes to action potential repolarization (Lan-
aster and Nicoll, 1987; Storm, 1987a; Robitaille et al.,
993; Faber and Sah, 2002), mediates an early compo-
ent of the fast afterhyperpolarization (fAHP; Storm,
987a; Faber and Sah, 2003), shapes dendritic Ca2�

pikes (Golding et al., 1999) and regulates neurotransmit-
er release at least under certain conditions (Lingle et al.,
996; Hu et al., 2001a; Raffaelli et al., 2004). The diverse
unctional properties mediated by BKCa channels (Hou et
l., 2009) might be correlated with their differential local-

zation to various subcellar sites and non-homogenous
istribution within specific subdomains, as observed in
erebellar PC (Kaufmann et al., 2009). In the present
tudy, we aimed at establishing whether the dual distribu-
ion pattern of BKCa channels found in PC is a general
rganizational principle for somatic BKCa channels, com-
on to different types of neurons within different brain
reas, rather than being specific to a certain cell type.
ence, we examined BKCa channel distribution in hip-
ocampal CA3 pyramidal neurons, neocortical layer 5 py-
amidal neurons, principal neurons of the central and ba-
olateral amygdaloid nuclei, as well as granule cells of the
ippocampal dentate gyrus (DG). All these cell types were
hown to express functional BKCa channels (Brenner et al.,
005; Shao et al., 1999; Benhassine and Berger, 2005;
ausbier et al., 2006; Meis and Pape, 1997) yet their
recise subcellular localization has remained unidentified.
y means of SDS-digested freeze-fracture replica labeling

SDS-FRL), we performed detailed quantitative analysis of
KCa channels in the somatic plasma membrane of these
ell types (except for principal neurons of the central amyg-
aloid nucleus) for comparison with respective data in PC
Kaufmann et al., 2009). We also analyzed the subcellular
ocalization of BKCa channels in DG granule cells by

eans of thin-section electron microscopy for comparison
ith PC, since these two cell types show similar membrane
pecializations like SSC (Le Beux, 1972), but are highly
ifferent with respect to the sizes and characteristics of
heir somata and dendritic trees (Paxinos, 1995), function
excitatory versus inhibitory), and BKCa channel-related
hysiological properties (Edgerton and Reinhart, 2003;

ausbier et al., 2004; Brenner et al., 2005). A
EXPERIMENTAL PROCEDURES

aterials

araformaldehyde, osmium tetroxide, uranyl acetate and piolo-
orm were obtained from Agar Scientific Ltd. (Stansted, UK). EM
rade glutaraldehyde was purchased from Polysciences Inc.
Warrington, PA, USA). Thiopental was from Sandoz (Kundl, Aus-
ria). Lead (II) citrate was from Merck KGaA (Darmstadt, Ger-
any), picric acid from Fluka GmbH (Buchs, Switzerland). Glyc-
rin and sodium lauryl sulfate (SDS) were from Carl Roth GmbH
Karlsruhe, Germany). Normal goat serum was from Bender (Vi-
nna, Austria), bovine serum albumin (BSA) from Serva (Heidel-
erg, Germany). Gold-conjugated immunoglobulins were from
ritish BioCell Int. (Cardiff, UK). Eukitt was from Kindler (Freiburg,
ermany). Platinum and carbon rods were from Bal-Tec (Balzers,
iechtenstein). Lowicryl HM20 resin and all remaining chemicals
ere from Sigma-Aldrich (Vienna, Austria).

ntibody production and specification

KCa channel antibodies were produced and kindly provided by
ans-Guenther Knaus (Department Medical Genetics, Molecular
nd Clinical Pharmacology, Innsbruck Medical University, Aus-
ria). In brief, antibodies were affinity purified from immune sera
aised in rabbit using immunogenic peptides designed from the
ouse Slo1 sequence, containing residues 913–926 [anti-BK�

913–926)] (Knaus et al., 1995) and residues 1118–1132 [anti-
K� (1118–1132)] (Wanner et al., 1999). Both sequences show
00% homology between rat and mouse. Antibodies were char-
cterized by enzyme-linked immunosorbent assay, immunopre-
ipitation and immunoblotting. The antibodies recognized single
ands of approximately 125 kDa in immunoblot analysis of rat and
ouse whole-brain membranes (Knaus et al., 1996; Sausbier et
l., 2004). Specificity of these antibodies was tested and con-
rmed by immunocytochemistry in light microscopy (Grunnet and
aufmann, 2004; Sailer et al., 2006) and in electron microscopy

Hu et al., 2001a; Kaufmann et al., 2009). In the present study,
oth antibodies were used for SDS-FRL as well as post-embed-
ing immunogold cytochemistry and yielded identical results.
pecificity of immunolabeling was confirmed on tissue samples

rom BKCa channel null mice, kindly provided from Peter Ruth
Institute of Pharmacy, University of Tuebingen, Germany).

Anti-mSlo maxi-K� channel. A monoclonal anti-BKCa chan-
el antibody was obtained from the UC Davis/NIH NeuroMab
acility, supported by NIH grant U24NS050606 and maintained by

he Department of Neurobiology, Physiology and Behavior, Col-
ege of Biological Sciences, University of California, Davis, CA
5616, USA (Cat.No. 75-022). The antibody was produced
gainst a fusion protein corresponding to amino acids 690–1196
f mouse Slo1 (clone L6/60) and recognized a single band of
pproximately 125 kDa in immunoblot analysis of rat hippocampal
embrane preparations. In the present study, the antibody was
pplied successfully in post-embedding immunogold labeling
ielding same results as anti-BK� (913–926) and anti-BK� (1118–
132). Specificity of immunolabeling was tested and confirmed on
issue samples from BKCa channel null mice.

nimals and tissue preparation

mmunochemical studies were performed on samples from adult
ale Sprague–Dawley rats (250–300 g; Department Laboratory
nimals and Genetics, Medical University, Vienna, Austria), adult
ale C57Bl/6 mice (10–12 weeks; Medical University, Vienna,
ustria) and adult male BKCa channel null mice (10–12 weeks;
ausbier et al., 2004). All experimental protocols were approved
y the Animal Experimentation Ethics Board, in compliance with
oth, the European Convention for the Protection of Vertebrate

nimals used for Experimental and Other Scientific Purposes
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ETS no. 123) and the European Communities Council Directive
f November 24, 1986 (86/609/EEC). The authors further attest

hat all efforts were made to minimize the number of animals used
nd their suffering. Animals were deeply anesthetized by intra-
eritoneal injection of thiopental (12 mg/100 g body weight) and
erfused transcardially with phosphate buffered saline (PBS; 25
M, 0.9% NaCl, pH 7.4) followed by chilled fixative (buffer con-
itions are given below for the different techniques used). After
xation, brains were removed from the skull immediately, washed
n phosphate buffer (PB; 0.1 M, pH 7.4) and stored in 0.1 M PB
ontaining 0.05% sodium azide at 4 °C.

DS-digested freeze-fracture replica labeling
SDS-FRL)

DS-FRL was performed with some modifications to the original
ethod (Fujimoto, 1995; Masugi-Tokita et al., 2007). The exper-

mental animals (n�15: five Sprague–Dawley rats, five C57Bl/6
ice, and five BKCa channel null mice) were perfusion fixed with
B (0.1 M, pH 7.4) containing 1% formaldehyde and 15% of a
aturated solution of picric acid. The brains were removed from
he skull immediately and forebrains were cut into 140 �m coronal
ections with a Vibroslicer (VT1000S; Leica Microsystems, Vienna
ustria). Samples were dissected from respective brain areas and
ryoprotected with 30% glycerol in 0.1 M PB overnight at 4 °C.
amples were then frozen by use of a high-pressure freezing
achine (HPM 010; Bal–Tec, Balzers, Liechtenstein) and frac-

ured by a double replica method in a freeze-etching device (BAF
60; Bal–Tec). Fractured faces were replicated by evaporation of
arbon (rotating) by means of an electron beam gun positioned at
90° angle to a thickness of 5 nm and shadowed unidirectionally
ith platinum-carbon at a 60° angle (thickness 2 nm). Finally, a 15
m thick layer of carbon was applied from a 90° angle (rotating).
issue was solubilized in a solution containing 2.5% SDS and
0% sucrose made up in 15 mM Tris buffer, pH 8.3, on a shaking
latform for 18 h at 80 °C. Replicas were kept in the same solution
t room temperature until they were processed further.

On day of immunolabeling, replicas were washed in Tris-
uffered saline (TBS; 50 mM, 0.9% NaCl, pH 7.4) containing
.05% BSA and incubated in a blocking solution containing 5%
SA in 50 mM TBS for 1 h at room temperature (RT). Subse-
uently, the replicas were incubated in the primary antibody di-

uted in the same solution as described above, overnight at 7 °C.
ilution of antibodies used was: anti-BK� (913–926) 1.8 �g/ml;
nti-BK� (1118–1132) 2 �g/ml. After several washes in TBS, the
eplicas were reacted with gold-conjugated goat anti-rabbit sec-
ndary antibodies made up in 50 mM TBS (1:30) containing 5%
SA overnight at 7 °C. They were then washed in double-distilled
ater, mounted on formvar-coated 100-line copper grids and an-
lyzed in a Philips CM120 TEM equipped with a Morada CCD
amera (Soft Imaging Systems, Münster, Germany). Whole im-
ges were level adjusted, sharpened, and cropped in Photoshop
Adobe) without changing any specific features within. The spec-
ficity of the immunolabeling was controlled and confirmed apply-
ng the respective pre-immune serum, applying the immune serum
readsorbed with the synthetic immunogenic peptides (concen-
ration 10 �M), and applying the immune serum on samples from
KCa channel null mice, respectively.

Sampling and analysis of SDS-FRL data. Five to seven
eplicas were used for quantification of BKCa channel immunola-
eling per respective brain area, which were: somatosensory
ortex, field CA3 of hippocampus, DG, and basolateral nucleus of
he amygdala (BL). Within these areas, aspects of principal cells
ere selected at random and electron micrographs were taken at
magnification of �43,000–�125,000. The magnification was

erified by use of a calibration grid. Clusters of more than nine
ntramembrane particles (IMP) labeled with more than three im-
unogold particles were considered BKCa immunoreactive clus- t
ers. The outline of clusters was demarcated by hand, and immu-
ogold particles within 20 nm from the cluster edge were included

n the analysis since particles can be as distant from the respec-
ive epitope (Matsubara et al., 1996). Quantification was per-
ormed by means of AnalySIS (Soft Imaging Systems), and data
ere expressed as mean�SD. Statistical analysis was carried out

n Prism (GraphPad Software, Inc.). Group comparisons were
erformed by 1way ANOVA followed by post hoc Bonferroni’s
ultiple comparison tests (��0.05).

For estimating the total number of immunoparticles labeling
KCa channels per DG granule cell soma, as well as the ratio of
KCa channels in the scattered and the clustered pool of chan-
els, the surface of an average granule cell soma was calculated
onsidering it as a spheroid (prolate ellipsoid) with a height�18
m and width�10 �m; these values were based on specifications

rom Amaral and Witter (1995).

ostembedding immunogold labeling

he experimental animals (n�15: five Sprague–Dawley rats, five
57Bl/6 mice, and five BKCa channel null mice) were perfusion
xed with PB (0.1 M, pH 7.4) containing 4% formaldehyde and
.05% glutaraldehyde. The brains were taken out and respective
issue blocks were dissected, freeze-substituted and embedded at
ow temperature in Lowicryl HM20 resin (Takumi et al., 1999).
ltrathin sections (70–80 nm) were cut on a Leica ultramicrotome

Ultracut S; Leica, Vienna, Austria), mounted on formvar-coated
ickel mesh grids, and processed for immunogold cytochemistry
Matsubara et al., 1996). Sections were etched with 1% H2O2 in
BS for 20 min at RT, followed by incubation in 50 mM glycine in
BS containing 0.1% Triton X-100 (TBS-T; pH 7.4) for 10 min at
T. After application of 2% BSA, 2% normal goat serum and 0.2%
ilk powder in TBS-T for 20 min to block non-specific binding

ites, sections were incubated with primary antibodies diluted in
BS-T containing 2% BSA overnight at 7 °C. Concentration of
ntibodies used were: affinity purified anti-BK� (913–926) 1.8
g/ml; anti-BK� (1118–1132) 2.4 �g/ml; anti-mSlo maxi-K� chan-
el 2.2 �g/ml. After rinsing in TBS-T (four times 10 min each),
old-conjugated goat anti-rabbit or goat anti-mouse antibodies,
espectively, were applied (diluted 1:30 in TBS-T containing 2%
SA and 0.05% polyethylene glycol; for 90 min at RT). The
ections were then rinsed in double-distilled water and air-dried.
he sections were stained with Uranyl Acetate and Lead Citrate
nd examined in a TECNAI G2 as well as a Philips CM120 TEM,
oth equipped with a Morada CCD camera. Whole images were

evel adjusted, sharpened, and cropped in Photoshop (Adobe)
ithout changing any specific features within. Specificity of immu-
olabeling was controlled and confirmed by applying the respec-
ive pre-immune serum, applying antibodies preadsorbed with
xcess immunogenic peptides (concentration 10 �M), and apply-

ng antibodies on sections from samples of BKCa channel null
ice.

Sampling and analysis of postembedding immunogold data.
ive samples were taken at random from the DG granule cell layer
f the rat dorsal hippocampus (approximate anteroposterior level
3.4 mm; Paxinos and Watson, 1998), and four sections were
nalyzed per sample. Electron micrographs were taken at a mag-
ification of �43,000. The magnification was verified by use of a
alibration grid, nonspecific immunolabeling was determined in
readsorption experiments. To establish the subcellular distribu-
ion profile of immunogold particles, the distance of particles per-
endicular to the inner leaflet of the somatic plasma membrane
as analyzed within a range of 25 nm toward the extracellular side

indicated with negative values) and 200 nm toward the cell inte-
ior (n�500). Quantification was performed by means of AnalySIS
Soft Imaging Systems), and data were expressed as mean�SD.
or the comparison of the BK channel distributions in areas of
Ca

he plasma membrane with and without underlying SSC, the sub-
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ellular particle distribution was established for each of the areas
erpendicular to the inner leaflet of the plasma membrane within
range of 25 nm toward the extracellular side (indicated with

egative values) and 80 nm toward the cell interior (n�200 parti-
les each).

RESULTS

wo pools of somatic BKCa channels in principal
eurons of the central nervous system: clustered
nd scattered channels

he somatic localization and spatial distribution of BKCa

hannels were studied by means of SDS-FRL in a subset
f central principal neurons, namely in hippocampal pyra-
idal cells, DG granule cells, neocortical layer 5 pyramidal

ells and principal cells of the central as well as basolateral
uclei of the amygdala. The SDS-FRL technique allows

ocalization and density analysis of integral membrane
roteins beyond limitations of thin-section electron micros-
opy. Freeze-fracturing and replication of membrane leaf-
ets, with subsequent solubilization of unfractured tissue
onstituents facilitate the view of large areas of the plasma
embrane which are also accessible to antibody binding
ithout diffusion restrictions.

We found that BKCa channels form two distinct pools in
he somatic plasma membrane of all cell types analyzed,
lthough at different densities. All cell types showed both
cattered channels and clusters of channels. Such a dual
istribution pattern was seen specifically in layer 5 pyra-
idal neurons of the somatosensory cortex (SSCx; Fig.
A, B), hippocampal CA3 pyramidal neurons (Fig. 1C, D),
rincipal neurons of the basolateral (BL; Fig. 1E) as well as
entral amygdaloid nuclei (Fig. 1F), and hippocampal DG
ranule cells (Fig. 2A–H). These findings indicate that a
eparation into two distinct pools of channels, which we
ound for the first time in cerebellar PC (Kaufmann et al.,
009), is likely to represent a common organizational pat-
ern for BKCa channels in the soma of central principal
eurons.

ifferent densities of clustered and scattered BKCa

hannels

etailed quantitative analysis of BKCa channel densities
as performed in DG granule cells, CA3 pyramidal neu-

ons, layer 5 pyramidal neurons of the SSCx, and principal
eurons of the BL (Table 1). With respect to the abun-
ance of clustered channels, large differences were ob-
erved in immunoparticle densities within clusters ranging
rom 102�14 particles per �m2 membrane in BL principal
eurons to 175�24 particles per �m2 membrane in CA3
yramidal neurons (total number of clusters analyzed in
ach cell type�40). The average number of particles per
luster was similar in DG granule cells, SSCx pyramidal
eurons and BL principal neurons with about eight parti-
les per cluster. Compared to these cell types, the average
umber of particles per cluster was significantly higher in
A3 pyramidal neurons (P�0.001) with about 12 particles
er cluster. The density of clusters per area of somatic

lasma membrane was similar in all four cell types with a
bout one cluster per 13 �m2 membrane (total membrane
rea analyzed in each cell type�600 �m2). Significant
ifference in cluster density was only observed for DG
ranule cells compared to CA3 pyramidal neurons
5.8�1.8 versus 9.2�3.7 clusters per 100 �m2 membrane,
espectively; P�0.01). Also the average size of clusters
�0.07 �m2) was similar in the four cell types, and no
ignificant difference in cluster size was observed.

For the second pool of immunoparticles labeling BKCa

hannels scattered in the somatic plasma membrane (Fig.
E, G), the density was considerably lower compared to
hat within clusters, and differed largely in the cell types
nalyzed (Table 1). In DG granule cells and CA3 pyramidal
eurons, about one immunoparticle was detected per 1.0
m2 of plasma membrane, whereas in SSCx pyramidal
eurons and BL principal neurons, a significantly minor
ensity was seen with about 1 particle per 1.4 �m2 plasma
embrane (P�0.001; total membrane area analyzed in
ach cell type�250 �m2; background levels established in
KCa channel null mice�0.26�0.03 particles per �m2

embrane).
We then compared the density of somatic BKCa chan-

els in the four cell types to that established for cerebellar
C (Kaufmann et al., 2009). With respect to the clustered
ool, the average size of clusters, particle density within
lusters, and average number of particles per cluster were
ll significantly larger in PC (P�0.001). Noteworthy, the
ensity of clusters per unit membrane area was instead
omparable between most cell types, with the only excep-
ion of DG granule cells, which showed a considerably
ower density of clusters compared to PC and CA3 pyra-

idal neurons (Table 1). With respect to the scattered
ool, the density of immunoparticles was significantly
igher in PC compared to all other cell types (ratio of
article density in PC to other cell types �6:1; Table 1).

To estimate the ratio of scattered to clustered BKCa

hannels in the soma of a central principal model neuron,
e calculated the total number of immunoparticles labeling
KCa channels for both pools in DG granule cells, since

his cell type exhibits cell bodies of relatively homogeneous
imensions with a smooth surface membrane (Laatsch
nd Cowan, 1966; Amaral and Witter, 1995). In this cell

ype, we detected about one cluster of immunoparticles
er 17 �m2 of somatic plasma membrane (5.8�1.8 clus-

ers per 100 �m2 membrane). Considering the total sur-
ace area of an average granule cell soma as 648 �m2

see Experimental Procedures), this yields approximately
8 clusters per soma. Since 8.5 particles were detected
er average cluster, this results in about 323 particles per
G granule cell soma in the clustered pool. The density of
cattered particles was 0.98�0.21 particles per �m2 so-
atic plasma membrane. This yields about 635 particles
er granule cell soma in the scattered pool, that is almost
wice as many particles as in the clustered pool. Thus,
resuming a similar labeling efficacy for both pools of
hannels, about two-thirds of BKCa channels in an average
rincipal cell soma would belong to the scattered pool and

bout one-third to the clustered pool.
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lustered BKCa channels are associated with plasma
embrane domains overlying SSC

ince we observed that clustered BKCa channels were
lways associated with SSC in cerebellar PC using thin

ig. 1. Localization of BKCa channels in the somatic plasma membrane
abeling in rat brain. (A) A high-power photograph of an aspect of the so
ortex reveals a cluster of immunolabeled BKCa channels associated
m gold particles and directed against epitopes at an intracellular C-ter

abeling is detected in the P-face of the plasma membrane. The E-fac
KCa channels are detected in the P-face of the somatic plasma memb
ith clusters of IMPs, is also observed in the somatic plasma m

mmunolabeling is higher as in the neocortical pyramidal neuron, shown
f the CA3 pyramidal neuron too. (E) Clustered and scattered BKCa cha
embrane P-face of a principal neuron of the basolateral amygdaloid

cattered channels (arrowheads) is observed in the plasma membrane
ree of any immunolabeling. Scale bar�200 nm in (A, E); 300 nm in (
ection electron microscopy (Kaufmann et al., 2009), we w
hus analyzed (i) the cyto-architecture beneath domains of
he plasma membrane enriched in BKCa channels in DG
ranule cells, and studied (ii) possible localization of BKCa

hannels to intracellular organelles. We have chosen DG
ranule cells for this analysis since SSC are distinct and

l principal neurons revealed with SDS-digested freeze-fracture replica
sma membrane of a layer V pyramidal neuron of the somato-sensory
ster of intramembrane particles (IMPs). Antibodies conjugated to 10
ain of the � subunit (anti-BK�, residues 913–926) were applied, thus

of any immunolabeling. (B) In the same pyramidal neuron, scattered
cated with an arrowhead. (C) Clustering of BKCa channels, associated
P-face of a hippocampal CA3 pyramidal neuron. The density of
) Scattered immunoparticles (arrowheads) are observed in the P-face
latter are indicated with an arrowhead) were also found in the plasma

(F) The same distribution pattern of BKCa channels with clustered and
f a principal neuron of the central amygdaloid nucleus. The E-face is
m in (C, F); 250 nm in (D).
of centra
matic pla

with a clu
minal dom
e is free
rane indi
embrane

in (A). (D
nnels (the
nucleus.

P-face o
ell described in this cell type (Laatsch and Cowan, 1966;
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olde and Themann, 1982). We applied post-embedding
mmunogold labeling on freeze-substituted and Lowicryl
mbedded ultra-thin sections (van Lookeren Campagne et
l., 1991). This method holds the advantage of high spatial
esolution in the subcellular dimension, although at cost of
abeling sensitivity.

Consistent with our findings in SDS-FRL, also post-
mbedding immunogold labeling revealed two pools of
KCa channels in the plasma membrane of DG granule
ells: one pool of scattered channels and a second pool of
lustered channels in the somatic plasma membrane (Fig.
A–H). Clustering of BKCa channels was exclusively ob-
erved in areas of the plasma membrane overlying SSC
Fig. 3B, F). In DG granule cells, SSC are usually formed
y a 0.5–1.0 �m long outer cistern of the endoplasmic
eticulum (ER), free of ribosomes. These cisterns run in

ig. 2. Clustered and scattered BKCa channels in the somatic plasm
eplica labeling in rat (A–E) and mouse brain (F–H). (A) A low-power
roximal portion of the principal dendrite and the axon hillock. (B) A hig
hows the distribution of BKCa channels in the P-face of the somatic p
gainst epitopes at the intracellular C-terminal end of the � subunit w
lasma membrane are associated with clusters of IMPs (aspects of th
E) Some immunoparticles labeling BKCa channels are scattered in th
lasma membrane is free of any immunolabeling. (F, G) The same dis
ranule cell somata in mouse (C57Bl/6; BK�/�), with a clustered (F
ntibody specificity is controlled and confirmed in replicas of BKCa ch
m in (C); 150 nm in (E, G); 100 nm in (F).
arallel to the inner leaflet of the plasma membrane at a p
egular distance of about 9–13 nm and usually widen at
heir lateral edges. One (Fig. 3B) or two inner cisterns of
ough ER can be closely apposed at a distance of 30–40
m from the superficial cistern and from each other (Le
eux, 1972; Kolde and Themann, 1982).

Outside these clusters, scattered immunoparticles la-
eling BKCa channels were regularly observed in the ex-

rasynaptic plasma membrane (Fig. 3D, G). Postsynaptic
embrane specializations of axo-somatic synapses (sym-
etric, Gray’s type II synapses; Laatsch and Cowan,
966) were free of BKCa channel immunolabeling (Fig.
E). Specificity of immunolabeling was tested and con-
rmed in sections of BKCa channel null mice (Fig. 3H). For
stablishing the abundance of scattered channels, the lin-
ar density of immunoparticles was established along the
omatic plasma membrane. Portions of the somatic

ane of DG granule cells detected with SDS-digested freeze-fracture
aph shows a large aspect of a granule cell soma, including the very
hotograph of an aspect of the granule cell somatic plasma membrane

embrane. Antibodies conjugated to 10 nm gold particles and directed
ed. (C, D) Clusters of immunoparticles labeling BKCa channels in the

membrane at higher magnification, indicated by a boxed area in B).
membrane P-face (indicated with an arrowhead). The E-face of the

pattern of BKCa channels is observed in the plasma membrane of DG
cattered (G) pool of channels in the plasma membrane P-face. (H)

l mice (BK�/�). Scale bar�2.75 �m in (A); 350 nm in (B, D, H); 175
a membr
photogr

h-power p
lasma m
ere appli
e plasma
e plasma
tribution
) and a s
lasma membrane were randomly selected (aside from
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reas overlying SSC) and all particles within a range
f �20 nm to the inner leaflet of the plasma membrane
ere sampled. Post-embedding immunogold labeling

echniques are based on indirect immunodetection of an-
igens and hence, the localization of immunoparticles does
ot directly represent the localization of the epitope. Specifi-
ally, gold particles may be as far as 20 nm from its epitope
ecause of the size of the interposed immunoglobulins, the
ab’ fragments, and the size of the gold particles themselves

Matsubara et al., 1996). This analysis revealed a density of
.35�0.08 particles per �m extrasynaptic plasma membrane
total length analyzed�60 �m). The density of particles within
ostsynaptic specializations of axo-somatic synapses was
.19�0.05 particles per �m membrane (number of synapses
nalyzed�40). The densities in post-synaptic specializations
re close to background levels established in samples of
KCa channel null mice (0.15�0.04 particles per �m mem-
rane; total length analyzed�80 �m), indicating a lack of
KCa channel localization in postsynaptic membrane special-

zations of the soma.

KCa channels are mainly integrated in the plasma
embrane

n order to analyze possible localization of BKCa channels
o intracellular organelles in addition to the plasma mem-
rane, we established a vertical frequency profile of immu-
ogold particles along an axis perpendicular to the somatic
lasma membrane. The inner leaflet of the plasma mem-
rane was used as reference line, and the vertical distri-
ution of gold particles was analyzed within a range of 25
m toward the extracellular side and 200 nm toward the
ell interior. Portions of DG granule cell somata were ran-
omly selected, and all gold particles within the given
ange were analyzed and binned in 5 nm intervals. This
lot revealed a peak corresponding with the plasma mem-
rane, indicating that the majority of the immunosignal
riginated from plasma membrane labeling (Fig. 4A). Of all
articles analyzed (n�500), 71.4% were localized within a

able 1. Density of clustered and scattered immunoparticles labeling
A3 pyramidal neurons (CA3), layer V pyramidal neurons of the somat
ompared to cerebellar Purkinje cells (PC¥; values for PC were publi

verage size of a cluster (in �m2; n�40)

article density within a cluster (in particles per �m2; n�40)

umber of particles per cluster (in particles per cluster; n�40)

ensity of clusters (in clusters per 100 �m2; area�600 �m2)

ensity of scattered particles (in particles per �m2; area�250 �m2)

ackground levels (in particles per �m2; area�250 �m2)

n.d., not determined.
Group comparisons were performed by 1 way ANOVA followed by p

ersus BL; �, GC versus PC; ‡, CA3 versus SSCx; #, CA3 versus BL;
�0.01, two symbols; P�0.001, three symbols.
ange of �20 nm from the inner leaflet of the plasma c
embrane. However, the distribution profile was not ex-
ctly Gaussian, but appeared slightly skewed toward the
ell interior. This inward skew seems too large to being
ully explained by the localization of the epitope in the
ytoplasmic domain of the alpha subunit. It indicates that
mall subpopulations of BKCa channels may be localized
o intracellular organelles, in addition to the main popula-
ion of channels in the plasma membrane.

To establish whether a BKCa channel subpopulation
ould be localized to junctional ER components like SSC,
e re-analyzed the vertical frequency profile of immuno-
old particles with respect to (i) areas of the plasma mem-
rane with SSC lying beneath it and (ii) areas of the
lasma membrane outside SSC without any visible ER
eneath it. Gold particles were sampled within a range of
0 nm toward the extracellular side and 75 nm toward the
ell interior (n�200 particles, each) along an axis perpen-
icular to the inner leaflet of the plasma membrane used
s reference line. In areas of the plasma membrane out-
ide SSC, the particle distribution appeared approximately
aussian with the peak coinciding with the plasma mem-
rane. This re-affirms that BKCa channels are primarily

ocalized in the plasma membrane (Fig. 4B). Conversely,
n areas of the plasma membrane with underlying SSC, the
istribution profile showed a peak coinciding with the
lasma membrane and a small shoulder at a distance of
bout 10–20 nm toward the cell interior. This may indicate
small subpopulation of BKCa channels being localized in
SC, in addition to the main population of channels in the
lasma membrane (Fig. 4B).

DISCUSSION

wo pools of somatic BKCa channels in principal
eurons of the central nervous system

ur ultra-structural investigations revealed two pools of
KCa channels in the somata of central principal neurons–
ne pool consisting of clustered and another of scattered

nnels in the soma of dentate gyrus granule cells (GC), hippocampal
cortex (SSCx) and principal neurons of the basolateral amygdala (BL)
aufmann et al., 2009)

CA3 SSCx BL PC¥

.013 0.071�0.011
���

0.070�0.019
���

0.073�0.014
���

0.151�0.036

4
,���

175�24
‡‡‡,###,���

114�29
���

102�15
���

341�31

.6
��

12.4�2.3
‡‡‡,###,���

7.8�2.2
���

7.4�2.6
���

46.8�4.9

.8
�

9.2�3.7 7.5�2.1 8.1�3.0 9.5�2.2

.21
,���

1.03�0.26
‡‡‡,###,���

0.67�0.12
���

0.74�0.17
���

5.68�0.43

.03 n.d. n.d. n.d. 0.32�0.18

onferroni’s (��0.05): †, GC versus CA3; ‡, GC versus SSCx; #, GC
ersus PC; #, SSCx versus BL; �, SSCx versus PC; �, BL versus PC;
BKCa cha
osensory
shed by K

GC

0.069�0
���

124�1
†††,###

8.5�1
†††,�

5.8�1
††,�

0.98�0
‡‡‡,##

0.26�0

ost hoc B
�, CA3 v
hannels in the extrasynaptic plasma membrane. This
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haracteristic distribution pattern of somatic BKCa chan-
els was observed in all types of neurons examined, spe-
ifically in cortical layer 5 pyramidal neurons, hippocampal

ig. 3. Localization of BKCa channels in dentate gyrus granule cel
mmunogold labeling. Antibodies conjugated to 10 nm gold particle

icrograph shows an aspect of a granule cell soma and the very proxi
hannels are clustered in areas of the somatic plasma membrane with
ith an arrowhead). (C) Specificity of immunolabeling in rat tissue is te
reas of the plasma membrane with underlying subsurface cisterns, im
bundance (arrowheads). (E) The postsynaptic membrane specializ

mmunolabeling (margins of the postsynaptic membrane specialization
n areas of the plasma membrane with underlying subsurface cisterns i
reas, scattered immunoparticles are localized in the extrasynapti

mmunolabeling is tested and confirmed in sections of BKCa channel n
lasma membrane; Pre-IS, pre-immune serum; rER, rough endoplasm
, G); 250 nm in (C, E, H); 500 nm in (F).
A3 pyramidal neurons, principal neurons of the central as (
ell as basolateral amygdaloid nuclei, and DG granule
ells. Recently, we reported a similar non-homogeneous
istribution for BK channels in the soma of cerebellar PC

of rat (A–E) and mouse brain (F–H) revealed by post-embedding
pplied on Lowicryl embedded ultra-thin sections. (A) A low-power

on of the raising principal dendrite. (B) Immunoparticles labeling BKCa

g subsurface cisterns (boxed area in A; immunoparticles are indicated
confirmed by applying the respective pre-immune serum. (D) Outside
rticles are scattered in the extrasynaptic plasma membrane with low
ymmetric, presumably inhibitory synapses, is free of BKCa channel
ated with open arrows). (F) As in the rat, clustering of BKCa channels
the granule cell soma of mouse (C57Bl/6; BK�/�). (G) Outside these

membrane with low abundance (arrowheads). (H) Specificity of
(BK�/�). A, axonal profile; AT, axon terminal; GS, glial sheath; PM,
um; SSC, subsurface cistern. Scale bar�1.5 �m in (A); 200 nm in (B,
l somata
s were a
mal porti
underlyin
sted and

munopa
ation of s

are indic
s seen in
c plasma
ull mice
ic reticul
Ca

Kaufmann et al., 2009). Thus, the formation of a clustered
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nd a scattered pool of BKCa channels seem to represent
common organizational principle for somatic BKCa chan-
els in principal neurons of different parts of the mamma-

ian brain. The two pools of channels are likely indepen-
ent from each other, although switching between both
ools may play a role as it was shown for neurotransmitter
eceptors migrating between synaptic and extrasynaptic
embranes (Triller and Choquet, 2005).

ifferent densities of clustered and scattered BKCa

hannels in different cell types

espite the common organizational principle in somatic
KCa channels with a clustered and a scattered pool, we

ound striking differences between different cell types re-
arding the densities of BKCa channels, and such differ-
nces were found for both channel pools. Noteworthy,
erebellar PC seem to constitute a class of their own with
espect to BKCa channel densities (Kaufmann et al., 2009).
heir massive BKCa channel clusters stand out against

hose of all the other cell types, both in terms of size and
hannel density within a cluster. In PC, the number of
mmunoparticles labeling BKCa channels per cluster is on
verage 3.8–6.3 times than that of the other cell types.
he difference in density of scattered immunoparticles is
ven more evident, and 5.5–8.5 times higher in PC than in
ny of the other cells.

Why do cerebellar PC have so much higher BKCa

hannel densities than the others? PC have a larger cell
ody (Amaral and Witter, 1995), are neurochemically dif-

erent since being GABAergic (Paxinos, 1995), and the

ig. 4. Subcellular distribution profile of gold particles labeling BKCa ch
o the inner leaflet of the somatic plasma membrane of rat dentate
nalyzed within a range of 25 nm toward the extracellular side (indica
s the center of the inner membrane leaflet. The distribution profile is
ell interior. (B) The subcellular particle distribution was reanalyzed
ubsurface membrane cisterns and in areas of the plasma membrane
ange of 20 nm toward the extracellular side (indicated with negative
ero is defined as the center of the inner membrane leaflet. The partic
solid line; n�200 particles, binning�5 nm) shows a Gaussian-shaped
embrane with underlying subsurface cisterns, the particle distributio
f the plasma membrane and a small shoulder at an interval of about
uration of their action potential is far briefer than in any of c
he other cell types examined (Hu and Storm, 2001b;
dgerton and Reinhart, 2003; Sausbier et al., 2004; Bren-
er et al., 2005). The most striking difference in all mea-
ured properties, however, is between cerebellar PC and
G granule cells. The large difference in channel density
ight be represented functionally by the considerable dif-

erence in action potential duration, or more specifically, in
he different speed of spike repolarization. The action po-
ential in PC is much briefer than in DG granule cells, the
pike duration at half amplitude being only �0.2 ms
ersus �0.7–1.2 ms (at �32–34 °C), respectively (Geiger
nd Jonas, 2000; Hu and Storm, 2001b; Edgerton and
einhart, 2003; Sausbier et al., 2004; Brenner et al.,
005). Despite BKCa channels may play just a minor role in
pike repolarization in either of these cell types (Geiger
nd Jonas, 2000; Hu and Storm, 2001b; Womack and
hodakhah, 2002; Edgerton and Reinhart, 2003; Sausbier
t al., 2004; Brenner et al., 2005), it can be surmised that
igher channel densities are needed to generate faster
pikes, because a larger current is required to charge the
embrane capacitance more rapidly. Specifically, rapid

pike repolarization requires high densities of repolarizing
otassium channels. Since PC spikes repolarize extremely
apidly, likewise many other GABAergic neurons, they may
eed a large BKCa current and hence a high channel
ensity for contributing appreciably to spike repolarization.
owever, spike repolarization might depend primarily on

he activity of voltage-gated potassium (KV) channels.
Somatic BKCa channels seem to be needed mainly for

enerating a fAHP that contributes to recovery of sodium

nti-BK� (913–926); 10 nm gold] assessed along an axis perpendicular
nule cells. (A) The distribution profile (n�500, binning�5 nm) was

negative values) and 200 nm toward the cell interior. Zero is defined
ver the plasma membrane with the mode slightly skewed toward the
pared in areas of the somatic plasma membrane with underlying

visible endoplasmic reticulum (ER) lying beneath it. Particles within a
nd 75 nm toward the intracellular side were included in this analysis.
ution in areas of the plasma membrane without visible ER beneath it
on profile peaking over the plasma membrane. In areas of the plasma
d line; n�200, binning�5 nm) displays a prominent peak at the level
m toward the cytoplasmic side.
annels [a
gyrus gra
ted with
peaking o

and com
without

values) a
le distrib
distributi
hannels from inactivation during interspike intervals thus
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llowing high-frequency firing (Sausbier et al., 2004). In
rder to activate a sufficient BKCa channel current to pro-
uce an efficient fAHP, a larger number of BKCa channels

s needed in a cell with brief spikes (i.e. cerebellar PC) than
n a cell with more long-lasting spikes (i.e. DG granule
ells), since a briefer spike will activate a smaller fraction of
vailable channels, again assuming that other factors are
qual. Although this may be a main reason for the large
ifference in the overall density of somatic BKCa channels,

t is unlikely that all other factors are in fact equal. Obvi-
usly, the opening kinetics of the BKCa channels them-
elves, the nature of the specific Ca2� source and the
peed as well as efficiency in the coupling with the Ca2�

ource are important factors that may differ between the
wo cell types. Since cerebellar PC are also substantially
arger than DG granule cells, their far larger surface area
nd, hence, larger membrane capacitance requires a

arger BKCa channel current and thus a larger total number
f channels, if similar functions are to be performed. How-
ver, as long as we consider isopotential cells, these size

actors cannot fully explain differences in channel densities
y themselves, because both the channel number and
embrane capacitance are proportional to the surface
rea. Nevertheless, the fact that each cerebellar PC is
quipped with a massive dendritic tree, which dwarfs that
f the DG granule cells, might be relevant. Thus, the
endrites, unless they have the same channel density as

he soma, and the channels all activate almost simulta-
eously, may represent a large sink that may require a

arger somatic channel density in cerebellar PC for achiev-
ng a similar impact compared to the less branched DG
ranule cells. In addition, there are likely to be several
ther, cell type-specific differences, including generation of
endritic Ca2� spikes that can be regulated by BKCa chan-
els (Rancz and Häusser, 2006).

articipation of BKCa channels in the formation of
PLasmERosomes’

s in Purkinje cells, BKCa channels were clustered in the
lasma membrane at sites of SSC in DG granule cells.
uch cisterns are specialized subcompartments of the ER,
hich contributes crucially to spatial Ca2� buffering and
ignaling in neurons (Verkhratsky, 2005). Increasing evi-
ence suggests that neuronal ER does not represent a
niform Ca2� pool but rather a spatially heterogeneous
ystem encompassing multiple Ca2� subdomains (calcio-
omes). These specialized ER domains are supposed to
nload and refill Ca2� independently (Blaustein and
olovina, 2001), and SSC are likely to represent such kind
f calciosomes in central principal neurons. Areas of the
lasma membrane overlying calciosomes also form spe-
ialized microdomains that contain unique sets of mem-
rane proteins (Moore et al., 1993; Putney and Ribeiro,
000). These domains are proposed to function as a co-
rdinated unit, a “PLasmERosome”, together with the un-
erlying calciosome (Blaustein and Golovina, 2001). The
resent study demonstrating BKCa channel clustering in
reas of the plasma membrane overlying SSC provides

trong morphological evidence that BKCa channels partic- s
pate in building such PLasmERosome in central principal
eurons.

The presence of PLasmERosomes may be correlated
ith some of the distinctive physiological properties of the
euronal surface (Blaustein and Golovina, 2001). They
eem to be important for regulating the membrane poten-
ial (Satin and Adams, 1987; Akita and Kuba, 2000), and
ay also play a role in shaping of action potentials and
odulation of firing rate (Mikoshiba, 2007). They may even

epresent a signal initiation site through modulation of
unctional ER Ca2� content by altering the activity of local
a� pump isoforms, local Ca2� release events (Ca2�

parks) or calcium induced Ca2� release (CICR; Blaustein
nd Golovina, 2001).

on-homogenous distribution of BKCa channels

on-homogenous distribution of potassium channels in
entral neurons was reported previously for members of
he voltage-gated potassium channel family, in particular

V2.1 channels (Lim et al., 2000), KV4.2 channels (Alonso
nd Widmer, 1997; Jinno et al., 2005), and KV4.3 channels
Kollo et al., 2006, 2008). Although extrasynaptic channel
lusters have been proposed to participate in novel forms
f intercellular communication, the functional roles of such
lusters are still far from being understood. Obviously, ion
hannel clustering induces local changes in the electro-
hysiological properties of the neuronal surface mem-
rane. Although nerve cell membranes are often assumed
o be uniform with respect to electrical properties like ex-
itability, capacitance and resistance, there is mounting
vidence for spatial compartmentalization and heteroge-
eity in signaling within neuronal subdomains (Berridge,
006; Dai et al., 2009).

Regarding differential spatiotemporal Ca2� activation,
he scattered and the clustered pool of BKCa channels may
lay different roles in the processing and shaping of elec-
rical signals. Whereas the scattered pool of channels may
e involved primarily in rapid, transient events such as
pike repolarization (Storm, 1987a; Shao et al., 1999; Gu
t al., 2007), the clustered pool may convey slower and
ore long-lasting effects (slower activating and slower
ecaying) that are triggered by CICR. Depolarization-de-
endent Ca2� influx through voltage-gated Ca2� (CaV)
hannels may induce CICR from SSC during high-fre-
uency activity, thus activating BKCa channels in the
lasma membrane (Llano et al., 1994; Akita and Kuba,
000). Clustered BKCa channels may also be activated via
pontaneous CICR and hence may represent a spike-

ndependent signal initiation site (Bardo et al., 2006). Any-
ay, CICR-triggered BKCa channel activation likely hap-
ens in a rather slow manner occurring only after repolar-

zation of a spike unlike the more direct activation of BKCa

hannels upon Ca2� influx through CaV channels (Storm,
987b; Brenner et al., 2000; Fakler and Adelman, 2008).
KCa channels are thus opened already during or shortly
fter a spike in many neurons (Storm, 1987a,b; Lancaster
nd Nicoll, 1987; Hu and Storm, 2001b; Edgerton and
einhart, 2003; Sausbier et al., 2004). With respect to the

cattered BKCa channels, we observed no ER component
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ithin less than 80 nm distance, which would be required
or serving as an effective Ca2� source. It seems most
ikely that scattered BKCa channels are activated within
aV-BKCa complexes. Within the six major groups of CaV

hannels known, L-type (CaV1.2), P/Q-type (CaV2.1) and
-type (CaV2.2) channels can all reliably activate BKCa

hannels within milliseconds if present at nanometer dis-
ances. A proteomic approach combining affinity purifica-
ion with mass spectrometry showed that these CaV chan-
el types indeed form macro-molecular complexes with
KCa channels (Fakler and Adelman, 2008). Hence, scat-

ered BKCa channels could be activated during the brief
epolarization phase of an action potential, thus providing a
apid K� conductance contributing to spike repolarization and

fAHP component (Storm, 1987a,b; Shao et al., 1999; Hu
nd Storm, 2001b; Sausbier et al., 2004; Gu et al., 2007).

The two pools of channels could also differ in their
ediation of local and spatially directed chemical signals.
eing part of macromolecular signaling complexes, BKCa

hannel activity can be modulated by a wide spectrum of
hysiologically relevant factors such as phosphorylation,
xidation, steroid hormones, and gases (NO, CO; Hou et
l., 2009). Thus, the different pools of channels might be

inked to different subcellular signaling pathways.

CONCLUSION

n conclusion, this study provides the first ultrastructural
ocalization of BKCa channels in the somatic plasma mem-
rane of various central principal neurons, and demon-
trates a common organizational principle in the distribu-
ion of these channels. In all neuronal cell types we exam-
ned, BKCa channels form two, probably independent
ools: one consisting of clustered and one of scattered
hannels in extrasynaptic membrane areas. These two
ools differ most likely in their routes of Ca2� activation,
ith clustered BKCa channels being in position for activa-

ion via Ca2� release from internal stores, and scattered
hannels being activated via an ER independent mecha-
ism. The pool of clustered BKCa channels may thus rep-
esent a key element of somatic PLasmERosomes with
otent contributions to spatial signaling within central prin-
ipal neurons.
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