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Abstract
This article investigates some statistical and probabilistic properties of general thresh-
old bilinear processes. Sufficient conditions for the existence of a causal, strictly and
weak stationary solution for the equation defining a self-exciting threshold superdiag-
onal bilinear (SET BL) process are derived. Then it is shown that under well-specified
hypotheses the higher-order moments of the SET BL process are finite. As a result,
the skewness and kurtosis indexes are explicitly computed. The exact autocorrelation
function is derived with an arbitrarily fixed number of regimes. Also, the covariance
functions of the process and its powers are evaluated and the second (respectively,
higher)-order structure is shown to be similar to that of a linear process. This implies
that the considered process admits an ARMA representation. Finally, necessary and
sufficient conditions for the invertibility and geometric ergodicity of a SET BL model
are established. Some examples illustrate the obtained theoretical results.
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1 Introduction

An R-valued univariate process (Xt )t∈Z defined on some probability space (�,�, P)

is said to be a self-exciting threshold superdiagonal bilinear process of type
(�; p, q, P, Q) and threshold delay parameter d , in short denoted by SET BLd

(
�;

p, q, P, Q
)
, if it is a solution of the following stochastic difference equation

Xt =
�∑

j=1

⎧
⎨

⎩
a( j)
0 +

p∑

i=1

a( j)
i Xt−i +

q∑

i=1

b( j)
i et−i +

Q∑

k=1

P∑

m=k

c( j)
mk Xt−m et−k

⎫
⎬

⎭

×I{Xt−d∈R j} + et , (1.1)

where d ≥ 1, R j =]r j−1, r j ] ⊂ R, j = 1, . . . , �, r j is the threshold value such

that −∞ = r0 < r1 < · · · < r� = +∞, hence
�∪

j=1
R j = R, and I{Xt−d∈R j} is the

indicator function of the set
{
Xt−d ∈ R j

}
. The coefficients

(
a( j)
i

)

0≤i≤p
,
(
b( j)
i

)

1≤i≤q

and
(
c( j)
mk

)

1≤m,k≤max(P,Q)
, j = 1, . . . , �, are constant. The innovation process (et )t∈Z

is an independent and identically distributed (i .i .d.) white noise with zero mean and
unit variance. Assume that the higher-order moments of the process (et )t∈Z are finite.

Note that the SET BLd model is characterized by a piecewise nonlinear structure
which follows a bilinear model in each regime R j , for all j = 1, . . . , �. This offers
remarkably rich dynamics and complex behaviour to model non-Gaussian data-sets
with structural changes or high-amplitude oscillations, which cannot be sufficiently
explained by the theory of standard linear models.

A study on threshold first-order bilinear models can be found in Cappuccio et al.
(1998) and Ferrante et al. (2003). These authors deal with the problems of the exis-
tence of ergodicity, regularity and geometric ergodicity for stationary solutions of the
threshold first-order bilinear model. These questions are very old since Tong (1983)
for the class of threshold models in nonlinear time series analysis, and Brockwell et al.
(1992) for ARMA models. Recent developments on the theory of threshold models
can be found in Tong (2011, 2012, 2015). The results proved in our paper extend the
work of the cited authors.

The SET BLd (�; p, q, P, Q) model encompasses many commonly used models
existing in the literature:

1. Standard superdiagonal bilinear BL(p, q, P, Q) models. They are obtained by
assuming � = 1 in (1.1). See, for example, Granger and Anderson (1978), Davis
and Resnick (1996), and Popovič and Bakouch (2020).

2. SET ARMAd (�; p, q) models. They are obtained by setting c( j)
mk = 0 for all m,

k and j in (1.1). See, for example, Tong (1983). Gibson and Nur (2011) investi-
gate the relative efficacy of two-regime threshold autoregressive (TAR) models,
applied to econometric dynamics, in the finance domain. A Bayesian analysis of
such models has been developed by Chen and Lee (1995). A portmanteau test to
detect self-exciting threshold autoregressive-type nonlinearity in time series data
has been proposed by Petruccelli and Davies (1986).
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The literature on SETARMA models has recently increased. Chan and Goracci
(2019) solve the long-standing problem regarding the irreducibility condition of a
first-order threshold autoregressive moving-average (TARMA) model, and derive
a set of necessary and sufficient conditions for the ergodicity of invertible first-
order TARMA processes. Li and Li (2011) derive the asymptotic null distribution
of a quasilikelihood ratio test statistic for an ARMA model against its threshold
extension, and propose a novel bootstrap approximation of that distribution based
on stochastic permutation (the null hypothesis is that of no threshold, and the
error term could be dependent). Multiple change point detection and validation
in autoregressive time series data have been investigated by Ma et al. (2020), and
Mohr and Selk (2020). Goracci et al. (2021) present supremum Lagrange multi-
plier tests to compare a linear ARMA specification against its threshold ARMA
extension. Then they prove the consistency of the tests, and derive their asymptotic
distribution both under the null hypothesis and contiguous local alternatives. Chan
et al. (2024) propose a Lagrange multiplier test for dynamic regulation within
TARMA setting, and provide a rigorous proof of tightness in the context of testing
for threshold nonlinearity against difference stationarity.

3. Some classes of SET (G)ARCHd (�; p, q) models. See Kristensen (2009) for
the description of (G)ARCH(p, q) models as special cases of standard bilinear
models. A class of threshold bilinear GARCH processes has been introduced by
Choi et al. (2012) to study different asymmetries in volatilities, accommodating
some existing asymmetric models.

Remark 1.1 The piecewise bilinear structure of the SET BLd model allows to apply
some well-known results, obtained by Granger and Anderson (1978) in the bilinear
setting.

Remark 1.2 The SET BLd (2; p, q, P, Q) model can be written as

Xt = X (1)
t I{Xt−d∈R1} + X (2)

t I{Xt−d∈R2}, (1.2)

where X ( j)
t is a standard superdiagonal bilinear BL (p, q, P, Q)model, j = 1, 2, and

the indicator function

I{Xt−d∈R1} =
{
1 if Xt−d ≤ r1
0 if Xt−d > r1

, (1.3)

is shortly denoted by It−d . It follows that I{Xt−d∈R2} = 1 − It−d . Of course, the
switching between the two regimes in model (1.2) is governed by the process in (1.3).

Remark 1.3 If the process in (1.3) is second-order stationary and ergodic, then we
have

E {It−d} = P (Xt−d ≤ r1) = p, Var (It−d) = p (1 − p) and

γI ( j) = Cov
(
It−d , It−d− j

) = p j − p2,
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where p j = E
{
It−d It−d− j

} = P
(
Xt−d ≤ r1, Xt−d− j ≤ r1

)
, for all j ≥ 0 with

p0 = p.
In this case, the process in (1.3) is called a Bernoulli process.

The aim of the paper is to investigate some statistical and probabilistic properties of
SET BLd (�; p, q, P, Q) models. For statistical purposes, it is desirable in practice
that the solution processes (Xt )t∈Z of equation (1.1) are stationary, ergodic, and satisfy
Xt = f (et , et−1, , . . .) almost surely (a.s.), where f is a measurable function from
R

∞ to R. Such solutions are called causal.
We now highlight our main contributions. First, using suitable Markovian state

space representations of theSETBLd(�; p, q, P, Q)model,wederive sufficient condi-
tions ensuring the existence of a unique, causal, strictly stationary and ergodic solution
of the proposed model. Then we prove that the higher-order moments of the SETBL
process and its powers are finite, under certain tractable matrix conditions. As a result,
the skewness and kurtosis indexes are explicitly computed. Second, since the second-
order structure gives a useful information to identify a time series process, we derive
the autocorrelation function and the covariance functions of the considered process. As
a consequence, we find that the second-order structure is similar to that of some linear
processes, hence the SETBLmodels admitARMArepresentations. This finding is use-
ful for the estimation of the model parameters via the GMM procedure. Furthermore,
the ARMA representation plays an important role in forecasting the initial process.
Third, we establish the necessary and sufficient conditions ensuring the existence of
geometrically ergodic solutions of the SETBL models and for the model invertibility.
Examples are proposed to illustrate the usefulness of the proposed methodology.

Some notations are used throughout the paper: I(n) denotes the n×n identitymatrix,
I� the indicator function of the set �, and O(k,�) the matrix of order k × � whose
entries are zeros. For simplicity, we set O(k) := O(k,k) and O(k) := O(k,1). Notation
plim means the convergence in probability. The spectral radius of a square matrix M is
denoted byρ (M). IfM = (mi j ) is am×nmatrix and X = (xi ) is am×1 vector, define
|M | := (

∣∣mi j
∣∣) and

∣∣X
∣∣ := (|xi |). Then it is easy to see that |.| is submultiplicative,

i.e., |M1M2| ≤ |M1| |M2| and
∣∣MX

∣∣ ≤ |M | ∣∣X ∣∣ for any appropriate vector X . It is
also subadditive, i.e.,

∣∣∑
i Mi

∣∣ ≤ ∑i |Mi |, where the inequality M ≤ N denotes the

element-wise relationmi j ≤ ni j for all i and j . If Mi =
(
m(i)

jk

)
is a sequence ofm×n

matrices, definemax
i

{|Mi |} them×nmatrixwhose ( j, k) element ismax
i

{∣∣∣m(i)
jk

∣∣∣
}
, i.e.,

max
i

{|Mi |} =
(
max
i

{∣∣∣m(i)
jk

∣
∣∣
})

. The symbol ⊗ denotes the usual Kronecker product

of matrices. Set M⊗r = M ⊗ M ⊗ · · · ⊗ M , r times, with M⊗r = M if r = 1.
The remainder of the paper is organized as follows. The next section provides

state-space representations of the SET BLd process generated by (1.1). Such repre-
sentationswill be used in Sect. 3 to derive sufficient conditions for the SET BLd model
in (1.1) to have a unique stationary (in strong and weak sense), causal and ergodic
solution. Section 4 is devoted to establish sufficient conditions for the finiteness of
higher-order moments of the considered process. Then the autocorrelation function of
a �-th regime SET BLd model is derived analytically. In Sect. 5 the L2−structure is
analyzed and the covariance function is derived,which allowsus to give an ARMA rep-
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resentation. Extending the L2−structure to Lm yields that the power process
(
Xm
t

)
t∈Z

also admits an ARMA representation (Sect. 6). Section 7 is devoted to establish nec-
essary and sufficient conditions for the invertibility and geometric ergodicity of the
SET BLd model. Section 8 concludes.

2 Markovian representations of the SETBLd model

In what follows, we shall assume, without loss of generality, that in (1.1) P = p and
d ≤ r , with r = p + q, since otherwise zeros of a( j)

i or b( j)
i or c( j)

mk can be filled in.
Define the r -dimensional state vector

Xt := (Xt , . . . , Xt−p+1, et , . . . , et−q+1
)′

and the r × r block matrices
(
A( j)
i , 0 ≤ i ≤ Q

)
, where

A( j)
0 =

(
M ( j)

0 B( j)

O(q,p) J

)
A( j)
i =

(
M ( j)

i O(p,q)

O(q,p) O(q)

)

M ( j)
0 =

⎛

⎜⎜
⎜
⎝

a( j)
1 · · · a( j)

p−1 a( j)
p

1 · · · 0 0
...

...
...

0 · · · 1 0

⎞

⎟⎟
⎟
⎠

∈ R
p×p

M ( j)
i =

⎛

⎜
⎜⎜
⎝

c( j)
i i · · · c( j)

pi 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...

0 · · · 0 0 · · · 0

⎞

⎟
⎟⎟
⎠

∈ R
p×p

and

B( j) =

⎛

⎜
⎜⎜
⎝

b( j)
1 · · · b( j)

p−1 b( j)
q

0 · · · 0 0
...

...
...

0 · · · 0 0

⎞

⎟
⎟⎟
⎠

∈ R
p×q J =

⎛

⎜
⎜⎜
⎝

0 · · · 0 0
1 · · · 0 0
...

...
...

0 · · · 1 0

⎞

⎟
⎟⎟
⎠

∈ R
q×q

for all i = 1, . . . , Q and j = 1, . . . , �.
Set Hr := (1, O ′

(r−1))
′ ∈ R

r and Fr := (H ′
p, H

′
q)

′ ∈ R
r . Then Eq. (1.1) can be

expressed in the following state-space representation

Xt = H ′
r X t

Xt =
�∑

j=1

⎛

⎝a( j)
0 Hr + A( j)

0 Xt−1 +
Q∑

k=1

A( j)
k Xt−k et−k

⎞

⎠ I{
Xt−1∈R(d)

j

} + Fr et
(2.1)
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for all t ∈ Z, where R(d)
j is the Cartesian product Rd−1 × R j × R

r−d , for all j =
1, . . . , �.

Now define

Y t := (X ′
t , X

′
t et , . . . , X

′
t−Q+1 et−Q+1)

′ ∈ R
K

and

et :=
(
F ′
r et , F ′

r e
2
t , O ′

(K−2r)

)′ ∈ R
K ,

where K = r(Q + 1). Then (2.1) can be transformed into the following Markovian
state-space representation

Xt = H ′
K Y t

Y t =
�∑

j=1

(
�( j)(et ) Y t−1 + η( j)

t
(et )
)
I{
Y t−1∈R(d)

j

} + et ,
(2.2)

where

�( j)(et ) = �
( j)
0 + et �

( j)
1 ∈ R

K×K

η( j)
t

(et ) = a( j)
0

(
H ′

r , et H
′
r , O ′

(K−2r)

)′ ∈ R
K

and

�
( j)
0 :=

⎛

⎜⎜⎜
⎜⎜
⎝

A( j)
0 . . . . . . . . . A( j)

Q
O(r) . . . . . . . . . O(r)

O(r) I(r) . . . . . . O(r)
...

. . .
. . .

. . .
...

O(r) . . . O(r) I(r) O(r)

⎞

⎟⎟⎟
⎟⎟
⎠

∈ R
K×K

�
( j)
1 :=

⎛

⎜
⎜⎜⎜⎜
⎝

O(r) . . . . . . O(r)

A( j)
0 . . . . . . A( j)

Q
O(r) . . . . . . O(r)

...
...

...
...

O(r) . . . . . . O(r)

⎞

⎟
⎟⎟⎟⎟
⎠

∈ R
K×K ,

for all j = 1, . . . , �. It is evident that any solution
(
Y t

)
of (2.2) is a Markov chain with

state spaceRK .Recall that aMarkov chain is said to be irreducible if each state can be
reached from any other state in a finite number of steps. For each Markov chain there
exists a unique decomposition of the state space into a sequence of disjoint subsets
in which the restriction of the chain results irreducible. So we can always assume
that the considered Markov chain is irreducible (possibly, restricting the state space).
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Irreducibility is a crucial point as it allows to deploy the theory developed by Tweedie
(see Tweedie (1974a, b, 1975, 1976)).

Representation (2.2) can be rewritten as follows

Xt = H
′
K Y t

Y t = 	t Y t−1 + ωt

(2.3)

where

	t =
�∑

j=1

�( j)(et ) I{Y t−1∈R(d)
j } ∈ R

K×K

ωt =
�∑

j=1

η( j)
t

(et ) I{Y t−1∈R(d)
j } + et ∈ R

K .

Compare with Eq. (2.1) from Bibi and Ghezal (2015b) for the class of Markov switch-
ing bilinear processes. A different Markovian representation for bilinear time series
models has been proposed by Pham (see Pham (1985, 1986)). Such a representation is
intriguing and constitutes an open issue, which will be allocated into a separate article
with further discussions and several statistical properties.

Since (et )t∈Z is stationary and ergodic, the process {(	t , ωt )}t∈Z is also stationary
and ergodic. Let || · || denote any operator norm on the sets ofmatrices and vectors. It is
clear that E

{
log+ ||	t ||

}
and E

{
log+ ||ωt ||

}
are finite. Here log+ x = max(log x, 0)

for every positive real number x . By Brandt (1986) (see also Bougerol and Picard
(1992)), the unique stationary solution of (2.3) is given by

Y t = ωt +
∞∑

k=1

	t 	t−1 · · · 	t−k+1 ωt−k (2.4)

whenever the top Lyapunov exponent γL(	), associated to the sequence (	t )t and
defined by

γL(	) = inf t>1

{
E

[
1

t
log ||	t 	t−1 · · · 	1||

]}
,

is strictly negative. Since all the norms are equivalent on a finite-dimensional vectorial
space, the choice of the norm is unimportant in the above definition.

In the general case the Lyapunov exponent seems difficult to compute but it is easily
estimated by Monte Carlo simulation using (2.3) as

γL(	) = lim
t→∞

1

t
log ||

t−1∏

i=0

	t−i || a.s.

Then we have
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Proposition 2.1 Consider the threshold bilinear model SET BL in (1.1) with Marko-
vian representation (2.2) or (2.3), and suppose that γL(	) < 0. Then the series (2.4)
converges a.s., for all t ∈ Z, and the process (Xt ), defined as the first component of
Y t , is the unique causal strictly stationary and ergodic solution of (1.1).

The proof of this result follows essentially the same arguments as in Francq and
Zakoïan (2001) for Markov switching (MS) ARMA models, and Bibi and Ghezal
(2015b) for MS bilinear models.

3 Existence of a causal strictly stationary SETBLd process

In this section we provide a further sufficient condition for the existence of a causal
strictly stationary and ergodic solution for the SET BLd process. Such a condition is
based on the computation of the spectral radius of a well-specified matrix, hence it is
easily tractable and programmable.

Let us consider the following assumptions:

[A.0] The probability distribution of (et ) is absolutely continuous with respect to
the Lebesgue measure λ.

[A.1] The conditional mean function e ( ·) : RK → R
K , defined by

e
(
y
)

= E
{
Y t

∣∣∣Y t−1 = y
}

=
�∑

j=1

�
( j)
0 y I{

y∈R(d)
j

}, (3.1)

for all y ∈ R
K , is continuous.

Assumption [A.0] guarantees λ-irreducibility. Assumption [A.1] has a counterpart in
the analysis of segmented regression models, as documented by Feder (1975). Stabil-
ity of the considered process will be deduced via appropriate contraction conditions
involving Lipschitz continuity.
We get the following lemma

Lemma 3.1 The conditional mean function e (·) : RK → R
K satisfies the Lipschitz

condition

|e(y) − e(z)| ≤ �0 |y − z|

where �0 = max
j

{
|�( j)

0 |
}

∈ R
K×K .

Proof Here we use some techniques from Brockwell et al. (1992). Assume that y ∈
R(d)
j and z ∈ R(d)

k with j ≤ k.
Then there exists a sequence of K × 1 vectors y

h−1
:= y, y

h
, . . . , y

k+1
:= z

on the boundaries of R(d)
h−1, R(d)

h , . . . , R(d)
k+1 such that

∣∣∣y − z
∣∣∣ =

∣∣∣y
h−1

− y
h

∣∣∣ +
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∣∣
∣y

h
− y

h+1

∣∣
∣+ · · · +

∣∣
∣y

k
− y

k+1

∣∣
∣ . So we have

∣
∣∣e
(
y
)

− e
(
z
)∣∣∣ ≤

k+1∑

i=h

∣
∣∣e(y

i−1
) − e(y

i
)

∣
∣∣ ≤

k+1∑

i=h

�∑

j=1

∣
∣∣�( j)

0 y
i−1

− �
( j)
0 y

i

∣
∣∣

≤
k+1∑

i=h

�∑

j=1

∣∣∣�( j)
0

∣∣∣
∣∣∣y

i−1
− y

i

∣∣∣

≤ max
j

{∣∣∣�( j)
0

∣
∣∣
} k+1∑

i=h

∣
∣∣y

i−1
− y

i

∣
∣∣ = �0

∣
∣∣y − z

∣
∣∣ .

This completes the proof. �

The next theorem provides sufficient conditions for the existence of strictly station-

ary, causal and ergodic solutions of model (1.1). Recall that the higher-order moments
of the innovations are assumed to be finite. The matrix condition in (3.2) below is
tractable and readily programmable, hence it is very simple to check. Assumptions
[A.0], [A.1] and Eq. (3.2) below are common to investigate stationarity in the context
of time series analysis. For example, conditions similar to (3.2) have been used by
Francq and Zakoïan (2001, 2005) to study stationarity of Markov switching ARMA
and GARCH models, respectively.

Theorem 3.1 Under Assumptions [A.0] and [A.1] , suppose that

ρ

(
E

{
max

j

{∣∣∣�( j)(et )
∣∣∣
}})

< 1. (3.2)

Then the SET BLd model in (1.1) with Markovian representation (2.2) or (2.3) has
a unique causal strictly stationary and ergodic solution

(
Y t

)
t∈Z which belongs to L1

and it is the limit (a.s.) of the sequence defined recursively by

Y n (t) :=

⎧
⎪⎨

⎪⎩

et if n = 0
�∑

j=1

(
�( j)(et ) Y n−1 (t − 1) + η( j)

t
(et )
)
I{
Yn−1(t−1)∈R(d)

j

} + et if n > 0 .

(3.3)

Proof For any n > 2, we have

∣
∣Yn (t) − Yn−1 (t)

∣
∣ ≤ max

j

{∣∣∣�( j)(et )
∣
∣∣
} ∣
∣Y n−1 (t − 1) − Yn−2 (t − 1)

∣
∣

...

≤
(
max

j

{∣∣∣�( j)(et )
∣∣∣
})n−2 ∣∣Y 2 (t − n + 2) − Y 1 (t − n + 2)

∣∣ .
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As E {|et |} < ∞,
(
Y n (t)

)
is a Cauchy sequence in L1 for each fixed t . Then there

exists an L1 limit, Y t say, which is also the a.s. limit of Y n (t) as n → ∞ because
E
{∣∣Yn (t) − Yn−1 (t)

∣∣} is geometrically bounded.Moreover,we show that the process(
Y t

)
is strictly stationary. Notice that the process

(
Y n (t)

)
is strictly stationary and

ergodic, for any fixed n. Then, for any bounded continuous function g, we have

E
{
g
(
Y t , . . . ,Y t+h

)} = lim
n

E
{
g
(
Yn (t) , . . . ,Y n (t + h)

)}

= lim
n

E
{
g
(
Yn (t + s) , . . . ,Y n (t + h + s)

)}

= E
{
g
(
Y t+s, . . . ,Y t+h+s

)}
.

Now we check that plim I{
Ynk

(t)∈R(d)
j

} = I{
Y t∈R(d)

j

} for all j ∈ {1, . . . , �} and some

subsequence (nk) of (n) . Note that, for any δ > 0 and a.s. convergent subsequence
(
Ynk (t)

)
of
(
Yn (t)

) :=
((

Y (1)
n (t) , . . . ,Y (K )

n (t)
)′)

, we have

lim sup
nk

P

(∣∣∣∣IR(d)
j

(
Y nk (t)

)− I
R(d)
j

(
Y t

)
∣∣∣∣ > δ

)

≤ lim sup
nk

P
({

Ynk (t) ∈ R(d)
j ,Y t /∈ R(d)

j

}
or
{
Ynk (t) /∈ R(d)

j ,Y t ∈ R(d)
j

})

≤ lim sup
nk

P
(
r j−1 ≤ Y (d)

nk (t) ≤ r j ,Y
(d)
t /∈]r j−1, r j ]

)

+ lim sup
nk

P
(
Y (d)
nk (t) ≤ r j−1, Xt−d ∈]r j−1, r j ]

)

+ lim sup
nk

P
(
Y (d)
nk (t) ≥ r j , Xt−d ∈]r j−1, r j ]

)

≤ 2P
(
Xt−d = r j−1

)+ P
(
Xt−d = r j

)
.

It now suffices to note that P
(
Xt = r j

) = 0, for all j ∈ {1, . . . , �} . The rest is
immediate. �

Remark 3.1 The process (Xt ), where Xt = H ′

K Y t , is also the unique causal strictly
stationary and ergodic solution of (1.1).

Remark 3.2 Ling et al. (2007) investigate the first-order threshold moving-average
model, denoted by TMA(1) and defined as

yt = φ + ψ I (yt−1 ≤ r) εt−1 + εt (t ∈ Z),

where φ, ψ and r are constant and εt is a sequence of independent and identically
distributed random variables, with mean zero and a density function f (x), for all x ∈
X ⊂ R. These authors provide a sufficient condition for the ergodicity of the TMA(1)
model, without the need to check irreducibility. Their main result (see Theorem 1 of
Ling et al. (2007)) states that if |ψ | supx∈X |x f (x)| < 1, then there exists a unique,
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strictly stationary and ergodic solution of theTMA(1)model. It is interesting to see that
the ergodicity of the TMA(1)model depends on the coefficientψ , while the interceptφ
is irrilevant. Since our SETBL model encompasses many nonlinear models, including
the TMA models, Theorem 3.1 implies the ergodicity of TMA(1) by using a similar
but different condition with respect to that proposed in the cited paper.

4 Higher-order moments of the SETBLd model

In this section we are interested in conditions ensuring the existence of higher-order
moments for a strictly stationary SET BLd process X = (Xt )t∈Z. In particular, the
exact form of the r -th moment of X is derived. The computation of higher-order
moments for some classes ofMarkov switching (MS) bilinearmodels has been given in
Bibi andGhezal (2015b) andBibi (2023).Matrix expressions in closed form for higher-
order moments and asymptotic Fisher information matrix of general MS VARMA
models have been provided in Cavicchioli (2017a, b), respectively.

Let μr ( j) be the moment of order r for the j-th bilinear regime process,

i.e., μr ( j) = E
{(

X ( j)
t

)r}
, μ̃r ( j) the r -th centered moment, vr ( j) =

E
{(

I ( j)
t−d − p j

)r}
, and γi j (k) the autocovariance of Xt at lag k for the i, j − th

bilinear regime processes, i.e., γi j (k) = Cov
(
X ( j)
t , X (i)

t−k

)
, for all k > 0. For conve-

nience, model (1.1) can also be written as follows

Xt =
�∑

j=1

X ( j)
t I ( j)

t−d , (4.1)

where X ( j)
t � SBL (p, q, P, Q) is the standard superdiagonal bilinear process in

regime j , for all j = 1, . . . , �, and

I ( j)
t−d :=

{
1 if Xt−d ∈ R j

0 if Xt−d /∈ R j
.

We get the following lemma

Lemma 4.1 According to representation (4.1), the processes
(
I ( j)
t−d

)

t
, for j =

1, . . . , �, satisfy the following properties:

(i) E
{
I ( j)
t−d

}
= P

(
Xt−d ∈ R j

) = p j .

(ii)
(
I ( j)
t−d

)m = I ( j)
t−d for all j = 1, . . . , � and m ≥ 1.

(iii)
(
I ( j)
t−d

)m (
I (k)
t−d

)n = 0 for all j �= k ∈ {1, . . . , �} and m, n ≥ 1.

(iv) I ( j)
t−d I

( j)
t−d−k =

{
1 if Xt−d and Xt−d−k ∈ R j

0 otherwise

with E
{
I ( j)
t−d I

(i)
t−d−k

}
= P

(
Xt−d ∈ R j , Xt−d−k ∈ Ri

) = pi j .
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The proof is straightforward, hence omitted.

Proposition 4.1 Let us consider model (4.1). Suppose that the local bilinear process
in each regime admits finite moments up to order r . Then the expected value of the
process

(
Xr
t

)
is given by

μr = E
{
Xr
t

} =
�∑

j=1

μr ( j) p j (4.2)

for all r ≥ 0.

Proof Using Lemma 4.1, we have

Xr
t =

⎛

⎝
�∑

j=1

X ( j)
t I ( j)

t−d

⎞

⎠

r

=
∑

0≤x j≤x j−1
1≤ j≤�−1

⎧
⎨

⎩

�−1∏

j=1

C
x j
x j−1

⎫
⎬

⎭

⎧
⎨

⎩

�∏

j=1

(
X ( j)
t I ( j)

t−d

)x�− j−x�− j+1

⎫
⎬

⎭
.

By convention, set x0 = r and x� = 0. Then the computation of the expected value of
Xr
t gives formula (4.2). �


Corollary 4.1 Let us consider model (4.1). Under the assumptions of Proposition 4.1,
we have

Var (Xt ) = E
{
(Xt − μ1)

2
}

=
�∑

j=1

(
μ̃2 ( j) p j − μ2

1 ( j) v2 ( j)
)

−2
∑∑

1≤i< j≤�

μ1 ( j) μ1 (i) p j pi . (4.3)

Proof The variance of (Xt ) can be expressed by the following expansion

Var (Xt ) =
�∑

j=1

Var
(
X ( j)
t I ( j)

t−d

)
+ 2

∑∑

1≤i< j≤�

Cov
(
X ( j)
t I ( j)

t−d , X
(i)
t I (i)

t−d

)
.

Now we can write Var
(
X ( j)
t I ( j)

t−d

)
= μ̃2 ( j) p j −μ2

1 ( j) v2 ( j), for all j = 1, . . . , �,

and

Cov
(
X ( j)
t I ( j)

t−d , X (i)
t I (i)

t−d

)
= −μ1 ( j) μ1 (i) p j pi ,

for 1 ≤ i < j ≤ �. Thus formula (4.3) for the variance of Xt follows. �
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Corollary 4.2 Let us consider model (4.1). Assume that E
{
e4t
}

< ∞. If E
{
X4
t

}
< ∞,

then the third and fourth central unconditional moments of Xt are given by

E
{
(Xt − μ1)

3
}

=
�∑

j=1

J1 ( j) − 6
∑∑

1≤i< j≤�

J2 (i, j) + 12
∑∑∑

1≤i< j<k≤�

J3 (i, j, k)

(4.4)

and

E
{
(Xt − μ1)

4
}

=
�∑

j=1

K1 ( j) + 8
∑∑

1≤i< j≤�

K2 (i, j)

+24
∑∑∑

1≤i< j<k≤�

K3 (i, j, k) − 72
∑∑∑∑

1≤i< j<k<m≤�

K4 (i, j, k,m) , (4.5)

where

J0 ( j) := μ̃2 ( j) + μ2
1 ( j)

(
1 − 2p j

)

J1 ( j) := μ̃3 ( j) p j + μ1 ( j) v2 ( j) (2μ̃2 ( j) + J0 ( j))
J2 (i, j) := μ1 ( j) p j pi J0 (i)
J3 (i, j, k) := μ1 (i) piμ1 ( j) p jμ1 (k) pk
K0 ( j) := μ4

1 ( j)
(
3v4 ( j) − 2v2 ( j) p2j

)

K1 ( j) := μ̃4 ( j) p j + K0 ( j) + 2
(
1 − p j

)
μ1 ( j) (2J1 ( j) + μ1 ( j) v2 ( j) J0 ( j))

K2 (i, j) := −μ1 ( j) p j
(
J1 (i) + μ3

1 (i) p3i
)

K3 (i, j, k) := ((1 − 2pi ) (1 − μ1 (i)) − pi ) J3 (i, j, k) + μ1 (k) pk J2 (i, j)
K4 (i, j, k,m) := J3 (i, j, k) μ1 (m) pm .

Proof The proof is similar to that of Corollary 4.1. �

Nowwederive expressions in closed-form to compute the kurtosis and the skewness

of the stationary threshold bilinear process Xt .

Corollary 4.3 Let us consider model (4.1). Under the assumptions of Corollary 4.2,
the kurtosis and the skewness of Xt exist and are given by substituting the formulas in
Corollaries 4.1 and 4.2 into the usual expressions

κ = E
{
(Xt − μ1)

4}

(
E
{
(Xt − μ1)

2})2
, τ = E

{
(Xt − μ1)

3}

(
E
{
(Xt − μ1)

2}) 32
.

Proof Equations (4.3), (4.4), (4.5) linked to the unconditional variance, third and
fourth central moments, respectively, are used to compute the skewness and the excess
kurtosis. �


To complete the section we present some generic examples of threshold bilinear
processes to illustrate the obtained theoretical results. In particular, some examples
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show that the sufficient condition (3.2) for strict stationarity is not necessary in general.
However, the pictures of the sample autocorrelation functions reveal that the consid-
ered processes are strictly stationary. In addition, we check the validity of the obtained
expressions in closed-form for the higher-order moments and kurtosis. The proposed
examples show that the values of the theoretical moments and kurtosis fit well with
those of the empirical ones. We also compare sample and theoretical autocorrelation
functions as goodness-of-fit criterion.

Example 4.1 Consider the SET BLd (2; 0, 0, 2, 1) model defined by

Xt =
{
c Xt−2 et−1 + et if Xt−d ≥ r1
a Xt−2 et−1 + et if Xt−d < r1

with et � N (0; 1) .

Then the regime moments collected in the following table

j = 1 j = 2
μ1 ( j) 0 0
μ2 ( j) 1

1−c2
1

1−a2

μ3 ( j) 0 0

μ4 ( j) 3 1+c2

(1−3c4)(1−c2)
3 1+a2

(1−3a4)(1−a2)

can be used to compute the skewness and the kurtosis of (Xt ). More precisely, the
skewness of Xt is τ = 0 and the kurtosis of Xt is given by

κ = 3

(
1 − 3a4

) (
1 − c4

) (
1 − a2

)2
p1 + (1 − 3c4

) (
1 − a4

) (
1 − c2

)2
p2

(
1 − 3c4

) (
1 − 3a4

) (
a2 p1 + c2 p2 − 1

)2 .

The exact autocorrelation function (ACF) of the process (Xt ) is derived. The ACF
coefficient ρ (k), defined by ρ (k) = Cov(Xt ,Xt−k )

Var(Xt )
with ρ (k) = ρ (−k) accordingly to

the symmetry of the autocovariance function, has the following expression:

ρ (k) = const +
�∑

i=1

�∑

j=1

γi j (k)

Var (Xt )
pi j ,

where Var (Xt ) is given in Eq. (4.3).
Set a = 0.7, c = 0.5, d = 1, r1 = 4, and p1 = 0.7. Then a typical realization of

such a process is depicted in Fig. 1 (on the left side). The second and fourth moments
of this process are given by μ2 = E(X2

t ) = 1.5216 and μ4 = E(X4
t ) = 13.7085,

respectively, and the kurtosis is κ = 5.9212. The sample autocorrelation function is
reported in Fig. 1 (on the right side). The matrix in the statement of Theorem 3.1 has
spectral radius equal to 1. However, the sample ACF reveals that the given time series
is strictly stationary. Thus the condition in Theorem 4.1 is sufficient but not necessary
to guarantee strict stationarity.
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Fig. 1 Example 4.1: original data (left) and sample autocorrelation (ACF) (right)

Fig. 2 Example 4.2: original data (left), sample ACF (middle), sample partial ACF (right)

Example 4.2 Consider the SET BLd (2; 1, 0, 1, 1) model defined by

Xt =
{
a Xt−1 + b Xt−1 et−1 + et if Xt−d ≥ r1
c Xt−1 + f Xt−1 et−1 + et if Xt−d < r1

with et � N (0; 1) .

Set a = 0.7, b = 0.5, c = 0.8, f = 0.3, d = 1, r1 = 4, and p1 = 0.7. We report in
Fig. 2 a typical realization of such a process (left), the sample ACF (middle) and the
sample partial ACF (right). The sample second and fourth moments of this process
are given byμ2 = 0.2251 andμ4 = 3.6210, respectively, the skewness is τ = 0.6404
and the kurtosis is κ = 3.7706.

Example 4.3 Consider the SET ARMAd (2; 1, 1) model defined by

Xt =
{
a Xt−1 + et if Xt−d ≥ r1
b Xt−1 + et−1 + et if Xt−d < r1

with et � N (0; 1) .
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Fig. 3 Example 4.3: original data (left) and theoretical autocorrelation function (ACF) (right)

Then the regime moments in the following table

j = 1 j = 2
μ1 ( j) 0 0
μ2 ( j) 1

1−a2
2

1−b
μ3 ( j) 0 0

μ4 ( j) 3

(1−a2)
2 4 (b−2)(1−b)3+(b+5)

(1−b)(1−b4)

can be used to compute the skewness and the kurtosis of (Xt ). More precisely, the
skewness of Xt is τ = 0 and the kurtosis of Xt is given by

κ = 3 (1 − b)
(
1 − b4

)
p1 + 4

(
1 − a2

)2 (
(b − 2) (1 − b)3 + (b + 5)

)
p2

(1 + b)
(
1 + b2

) (
(1 − b) p1 + 2

(
1 − a2

)
p2
)2 .

Furthermore, the autocorrelation of Xt is given by

ρ (k) = ak (1 − b) p1 + 2bk
(
1 − a2

)
p2 + (1 − b)

(
1 − a2

)
p2 I{k=1}

(1 − b) p1 + 2
(
1 − a2

)
p2

.

Set a = 0.1, b = 0.7, d = 1, r1 = 4, and p1 = 0.7. Then a typical realization of
such a process is depicted in Fig. 3 (left) together with the theoretical autocorrelation
function (right). The ACF declines to near zero rapidly at lag 20 with exponential
decay. This means that the given time series is strictly stationary. The second and
fourth moments of this process are given by μ2 = E(X2

t ) = 2.7071 and μ4 =
E(X4

t ) = 9.4589, respectively, and the kurtosis is κ = 4.3615.

Example 4.4 Consider the SETGARCHd (2; 1, 1) model defined as Xt = √
htet ,

where the volatility process ht (at time t) is as follows

ht =
{
a + c ht−1 e2t−1if Xt−d ≥ r1
a + b ht−1 if Xt−d < r1

with et � N (0; 1) .
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Fig. 4 Example 4.4: original data (left), sample autocorrelation function (in the middle) and the theoretical
autocorrelation function (right)

Then the regime moments in the following table

j = 1 j = 2
μ1 ( j) 0 0
μ2 ( j) a

1−c
a

1−b
μ3 ( j) 0 0

μ4 ( j) 3 a2(1+c)
(1−c)(1−3c2)

3 a2

(1−b)2

can be used to compute the skewness and the kurtosis of (Xt ). Indeed, the skewness
of Xt is τ = 0 and the kurtosis of Xt has the following expression

κ = 3

(
1 − c2

)
(1 − b)2 p1 + (1 − c)2

(
1 − 3c2

)
p2

(
1 − 3c2

)
(1 − bp1 − cp2)2

.

Furthermore, the autocorrelation of X2
t is given by

ρ (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

3

(1 + 3c) (1 − b)2 p1 + (1 − c)
(
1 − 3c2

)
p2

(1 + c) (1 − b)2 p1 + (1 − c)
(
1 − 3c2

)
p2

if k = 1

1

3

(
1 + 2ck − 3c2

)
(1 − b)2 p1 + (1 + 2bk

)
(1 − c)2

(
1 − 3c2

)
p2

(
1 − c2

)
(1 − b)2 p1 + (1 − c)2

(
1 − 3c2

)
p2

if k > 1

.

Set a = 1, b = 0.7, c = 0.5, d = 1, r1 = 4, and p1 = 0.7. Then a typical realization
of such a process is depicted in Fig. 4 (left) together with the sample ACF (middle)
and the theoretical ACF (right). The second and fourth moments of this process are
given by μ2 = E(X2

t ) = 2.4000 and μ4 = E(X4
t ) = 35.2000, respectively, and the

kurtosis is κ = 6.1111. This time series is strictly stationary.

5 Second-order stationarity and ARMA representation

(5.1) Computation of the second-order moments. Once second-order stationarity is
established, it can be useful to compute the second-order moment of the process
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(Xt )t∈Z. We shall consider the centered version of the state vector Y t , i.e.,

Ŷ t =
�∑

j=1

(
�( j)(et ) Ŷ t−1 + η̂( j)

t
(et )
)
I{
Ŷ t−1∈R(d)

j

} + êt , (5.1)

where Ŷ t := Y t − E
{
Y t

}
and η̂( j)

t
(et ) and êt are centered residual vectors.

Let

�̂
(2)
η : =

�∑

j=1

E

{(
η̂( j)
t

(et )
)⊗2

}
p j , �̂

(2)
e := �2E

{
ê⊗2
t

}
,

�̂ (h) := E
{
Ŷ t ⊗ Ŷ t−h

}
,

�̂
(2) : = �

�∑

j=1

E
{
η̂( j)
t

(et ) ⊗ êt + êt ⊗ η̂( j)
t

(et )
}
p j .

Proposition 5.1 Consider the SET BLd (�; p, q, p, Q) process in (1.1) or (2.2) with
centered state-space representation (5.1). Suppose that E{e4t } < ∞ and

ρ

(
max

j

{∣∣
∣�(2) ( j)

∣∣
∣
})

< 1,

where

�(2) ( j) :=
(
�

( j)
0

)⊗2 +
(
�

( j)
1

)⊗2
.

Then we have

�X (h) = vec Cov(Xt , Xt−h)

=
⎧
⎨

⎩

(
H⊗2
K

)′ (
I(K 2) − �(2)

)−1
(
�̂

(2)
e + �̂

(2)
η + �̂

(2)
)
if h = 0

(
H⊗2
K

)′
�h
0

(
I(K 2) − �(2)

)−1
(
�̂

(2)
e + �̂

(2)
η + �̂

(2)
)
if h > 0

where

�(2) :=
�∑

j=1

�(2)( j) p j and �0 :=
⎛

⎝
�∑

j=1

�
( j)
0 p j

⎞

⎠⊗ I(K ).

Proof Starting from (5.1), we have:
(a) If h = 0, then

�̂ (0) = E

⎧
⎪⎨

⎪⎩

⎛

⎝
�∑

j=1

(
�( j)(et ) Ŷ t−1 + η̂( j)

t
(et )
)
I{
Ŷ t−1∈R(d)

j

} + êt

⎞

⎠

⊗2
⎫
⎪⎬

⎪⎭
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= �̂
(2)
e + �̂

(2)
η + �̂

(2) + �(2) �̂ (0) ,

where �(2) is as above. Thus it follows that

�̂ (0) =
(
I(K 2) − �(2)

)−1 (
�̂

(2)
e + �̂

(2)
η + �̂

(2)
)

because I(K ) − �(2) is invertible as ρ(�(2)) < 1.
(b) If h > 0, then

�̂ (h) =
�∑

j=1

(
�

( j)
0 ⊗ I(K )

)
E
{
Ŷ t−1 ⊗ Ŷ t−1−(h−1)

}
p j .

Then we get

�̂ (h) = �0 �̂ (h − 1) = �h
0 �̂ (0) , (5.2)

where �0 is as above. Hence �X (h) =
(
H⊗2
K

)′
�̂ (h) =

(
H⊗2

K

)′
�h
0 �̂ (0). The

result follows. �

(5.2) ARMA representation. ARMA representations play an important role in

forecasting and model identification. For these reasons, certain nonlinear processes
are already represented as ARMA models. Indeed, Bibi (2003), Bibi and Ghezal
(2015b) showed that superdiagonal bilinear processes with time-varying coefficients
and Markov-switching bilinear processes admit weak ARMA representations. Weak
VARMA representations of multivariate Markov switching (MS) AR and MAmodels
and MS state-space models can be found in Cavicchioli (2014, 2016), respectively.

The following proposition establishes an ARMA representation for the SET BLd

(�; p, q, P, Q) model.

Proposition 5.2 Under the conditions of Proposition5.1, the SET BLd (�; p, q, P, Q)

process with state-space representation (5.1) is an ARMA process.

Proof Use the same approach as in Bibi andGhezal (2015b). It is important to note that
the ARMA representation naturally arises from the Markovian nature of the model.
This was demonstrated by Pham (1985), Theorem 4.4, for the class of bilinear pro-
cesses. �


6 Covariance structure of higher-powers of a SETBLd model

For the identification purpose it is necessary to look at higher-powers of the process in
order to distinguish between different ARMA representations. For this purpose, we
first establish the following lemma based on Lemma 3.1 in Bibi and Ghezal (2016),
which is proved for the class of Markov switching bilinear processes.
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Lemma 6.1 Consider the SET BLd (�; p, q, P, Q) model in (1.1) or (2.2) with cen-
tered state space representation (5.1). Let us define the following matrices B(k)

j (i, et ),
j = 0, . . ., k = 0, . . . ,m and i = 1, . . . , �, with appropriate dimension such that

∀k ∈ N : Ŷ⊗k
t =

�∑

x1,...,xk=1

k⊗
i=1

((
�(xi )(et ) Ŷ t−1 + η̂(xi )

t
(et )
)
I{
Ŷ t−1∈R(d)

xi

} + êt

)

(6.1)

and

(
�(xi )(et ) Ŷ t−1 + η̂(xi )

t
(et ) + êt

)⊗k =
k∑

j=0

B(k)
j (xi , et ) Ŷ

⊗ j
t−1,

where by convention B(k)
j (., .) = 0 if j > k or j < 0, and Ŷ

⊗0
t = B(0)

0 (., .) = 1.

Then B(k)
j (i, et ) are uniquely determined by the following recursive formulas

B(1)
0 (i, et ) = η̂(i)

t
(et ) + êt , B(1)

1 (i, et ) = �
(i)
0 + et�

(i)
1 = �(i)(et ),

B(k+1)
j (i, et ) = B(1)

0 (i, et ) ⊗ B(k)
j (i, et ) + B(1)

1 (i, et ) ⊗ B(k)
j−1 (i, et ) for k > 1.

Proof The proof follows by using an approach which is similar to that employed by
Bibi and Ghezal (2015b), Lemma 3.1, for the class of Markov-switching subdiagonal
bilinear processes. �


Now, set

�
(m)
Y = E

{
Ŷ

⊗m
t

}
, �

(k,m)
Y (h) = E

{
Ŷ

⊗k
t ⊗ Ŷ

⊗m
t−h

}
and B(m,i)

j = E
{
B(m)
j (i, et )

}
,

for all i = 1, . . . , �. Then the following relations hold:

�
(m)
Y =

�∑

i=1

m∑

j=0

B(m,i)
j �

( j)
Y pi and �

(k,m)
Y (h) =

�∑

i=1

k∑

j=0

B̃(k,i)
j �

(k− j,m)
Y (h − 1) pi ,

for all k > 1, where B̃(m,i)
j = B(m,i)

j ⊗ I(Km ). Moreover, we have

W (m)(h) =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

�
(m,m)
Y (h)

�
(m−1,m)
Y (h)

.

.

.

.

.

.

�
(0,m)
Y (h)

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

�∑

i=1
B̃(m,i)
0 pi

�∑

i=1
B̃(m,i)
1 pi . . .

�∑

i=1
B̃(m,i)
m pi

O
�∑

i=1
B̃(m−1,i)
0 pi . . .

�∑

i=1
B̃(m−1,i)
m−1 pi

.

.

.
. . . . . .

.

.

.

.

.

.
. . .

�∑

i=1
B̃(1,i)
0 pi

�∑

i=1
B̃(1,i)
1 pi

O . . . O I(Km )

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

W (m)(h − 1)

= � (m)W (m)(h−1),
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in which O is the null matrix with appropriate dimension.

Proposition 6.1 Consider the SET BLd (�; p, q, P, Q)model (1.1) or (2.2)with cen-

tered state−space representation (5.1). If E
{
e2(m+1)
t

}
< +∞ and

λ(2m) := ρ

(
max

j

{∣∣
∣�(2m) ( j)

∣∣
∣
})

< 1, (6.2)

with �(2m) ( j) := E

{(
�

( j)
0 + et�

( j)
1

)⊗2m
}
, then

(
Ŷ

⊗m
t

)

t∈Z is a second-order sta-

tionary process, and the following relations hold:

�
(m)
Y =

⎧
⎪⎨

⎪⎩

1 if m = 0
(

I(Km ) −
�∑

i=1
B(m,i)
m pi

)−1
m−1∑

j=0

(
�∑

i=1
B(m,i)
j pi

)

�
( j)
Y if m > 1

,

�
(k,m)
Y (1) =

k∑

j=0

(
�∑

i=1

B̃(k,i)
j pi

)

�
( j+m)
Y and

W (m)(h) = �(m) W (m)(h − 1) for any h > 1.

Remark 6.1 Proposition 6.1 allows to computeW (m)(h) recursively for all h ≥ 0. The
unconditional mean and the covariance structure of

(
X⊗m
t
)
t∈Z are given by

μ(m)

X
= E

{
X̂

⊗m
t

}
= F⊗m′�(m)

Y ,

�X (h) = E
{
X̂

⊗m
t ⊗ X̂

⊗m
t−h

}
− E

{
X̂

⊗m
t

}
⊗ E

{
X̂

⊗m
t−h

}

= F⊗2m′ �(m,m)
Y (h) − E

{
X̂

⊗m
t

}
⊗ F⊗m′ �(0,m)

Y (h)

= v′W (m)(h),

where v′ = (F⊗2m′...O
... . . .

...O
... − E

{
X̂

⊗m
t

}
⊗ F⊗m′).

Corollary 6.1 [The SETARMAd model] For the SETARMAd model, whose coefficients

c( j)
mk in (1.1) are all zeros, Condition (6.2) reduces to ρ

(
max

j

{∣∣∣∣
(
A( j)
0

)⊗2m
∣∣∣∣

})
<1.

Corollary 6.2 [The SETGARCHd model] For the SETGARCHd model, whose
volatility process can be regarded as a diagonal bilinear model without moving aver-
age part, Condition (6.2) reduces to

ρ

(
max

j

{
E

{∣∣∣∣
(
Ã( j)
0 + e2t Ã

( j)
1

)⊗2m
∣∣∣∣

}})
<1, where thematrices

(
Ã( j)
0

)

j
,
(
Ã( j)
1

)

j

are uniquely determined and easily obtained.

We are now in a position to state the following result
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Fig. 5 The SET BL process in Example 4.2, and its ARMA(2, 2) representation

Proposition 6.2 Let (Xt )t∈Z be the causal second-order stationary solution of the
SET BLd (�; p, q, P, Q) model with centered state-space representation (5.1). Then
under the conditions of Proposition 6.1, the power process

(
Xm
t

)
t∈Z is an ARMA

process.

Proof The proof follows essentially the same arguments as in Proposition 5.2. �

Remark 6.2 It is often necessary to look into higher-order cumulants in order to dis-
tinguish between linear and nonlinear models.

Example 6.1 The characteristics of the ARMA representations for the process Xm
t

driven by SET BLd (�; 1, 0, 1, 1) models are collected in the following table

Specification Representation

m = 1
Standard ARMA (1, 1)
SETGARCHd ARMA (2� − 1, 2� − 1)
SET BLd ARMA (� − 1, � − 1)

m > 1
Standard ARMA (m − 1,m − 1)
SETGARCHd ARMA ((m + 1) � − 1, (m + 1) � − 1)
SET BLd ARMA ((m + 1) � − 1, (m + 1) � − 1)

Example 6.2 Let us consider the SETBL process in Example 4.2. The process admits
an ARMA(2, 2) representation (1 − φ1L − φ2L2)Xt = (1 + θ1L + θ2L2)εt , whose
coefficient estimates are reported aside Fig. 5.

Example 6.3 The SETARMA process in Example 4.3 admits an ARMA(1, 1) repre-
sentation

(1 − φ L) Xt = (1 + θ L) εt ,
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Fig. 6 The SET ARMA process in Example 4.3, and its ARMA(1, 1) representation

whose coefficient estimates are reported in Fig. 6. Indeed, the AR andMA coefficients
φ and θ are solutions of the equations

1 + θ2 + 2φθ = μ2(1 − φ2), θ = [ρ(1) − φ]μ2

and

θ

1 + θ2
= cov(Xt − φXt−1, Xt−1 − φXt−2)

var(Xt − φXt−1)
= cov(εt + θεt−1, εt−1 + θεt−2)

var(εt + θεt−1)
.

Substituting the numerical values fromExample 4.3, we have to solve the second-order
equations

2.736φ2 − 9.0824φ + 4.0058 = 0 and
θ

1 + θ2
= 0.4895.

Choosing the solutions of module less than 1 yields φ = 0.5236 and θ = 0.8134.

7 Invertibility and geometric ergodicity of SETBLd processes

(7.1) Invertibility. The concept of invertibility plays a fundamental role in the analysis
of time series and statistical applications. Various definitions of this concept have
been proposed in the literature. Granger and Anderson (1978), Guégan and Pham
(1987), Pham and Tran (1981), Subba Rao and Gabr (1984), Liu (1990), and Bibi and
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Ghezal (2015a) have derived invertibility conditions for some particular stationary
(Markov Switching−)bilinear models.

The SETBLd(�; 0, 0, p, 1) process (Xt )t∈Z defined by the stochastic difference
equation

Xt =
�∑

j=1

p∑

m=1

c( j)
m1 Xt−m et−1 I{Xt−d∈R j} + et , (7.1)

is said to be invertible if for all t ∈ Z, the innovation process et isFt (X) −measurable.

Let �t := −
�∑

j=1

p∑

m=1
c( j)
m1 Xt−m I{Xt−d∈R j}. Then we get

et = Xt + �t et−1 = Xt +
m∑

k=1

⎧
⎨

⎩

k−1∏

j=0

�t− j

⎫
⎬

⎭
Xt−k +

⎧
⎨

⎩

m∏

j=0

�t− j

⎫
⎬

⎭
et−m−1. (7.2)

Assume that (Xt ) is strictly stationary and ergodic. By the ergodic theorem, if
E {log |Xt |} < ∞, then

1

m

(
m∑

t=0

log |�t | + log |Xt−m |
)

−→ E {log |�t |} a.s.

as m −→ ∞. If E {log |�t |} < 0, then

⎧
⎨

⎩

m∏

j=0

∣∣�t− j Xt−m
∣∣

⎫
⎬

⎭

1
m

−→ exp E {log |�t |} < 1 a.s.

as m −→ ∞. For any ω ∈ � such that the last inequality holds, there exists a natural

number nω such that

{
m∏

j=0

∣∣�t− j Xt−m
∣∣
} 1

m

(ω) ≤ δω < 1, for any m > nω. Thus,

{
m∑

k=1

{
k−1∏

j=0
�t− j

}

Xt−k

}

(ω) converges as m goes to infinity, that is,

m∑

k=1

⎧
⎨

⎩

k−1∏

j=0

�t− j

⎫
⎬

⎭
Xt−k −→

m−→∞
∑

k≥1

⎧
⎨

⎩

k−1∏

j=0

�t− j

⎫
⎬

⎭
Xt−k a.s. (7.3)

In the same manner, we can show that the second term in (7.2) converges to zero a.s.
In this case, we get
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et = Xt +
∑

k≥1

⎧
⎨

⎩

k−1∏

j=0

�t− j

⎫
⎬

⎭
Xt−k a.s., (7.4)

hence model (7.1) is invertible.
We are now in a position to state the following results.

Theorem 7.1 Let (Xt ) be the unique strictly stationary and ergodic solution of model
(7.1) with E {log |Xt |} < ∞. Then model (7.1) is invertible if

λ := E

⎧
⎨

⎩
log

⎛

⎝
�∏

j=1

∣∣∣∣∣

p∑

m=1

c( j)
m1Xt−m

∣∣∣∣∣

FX(r j)−FX(r j−1)
⎞

⎠

⎫
⎬

⎭
< 1,

where FX (x) is the distribution of Xt . Furthermore, model (7.1) is not invertible if
λ > 1.

The above arguments can be generalized to the case of a SET BLd (�; 0, 0, p, q)

model as follows.
Let us consider the SET BLd (�; 0, 0, p, q) model defined by

Xt =
�∑

j=1

p∑

m=1

q∑

k=1

c( j)
mk Xt−m et−k I{Xt−d∈R j} + et , (7.5)

Let et := (et , et−1, . . . , et−q+1
)′ ∈ R

q . Then we get

et = Hq Xt + �t et−1 = Hq Xt

+
m∑

k=1

⎧
⎨

⎩

k−1∏

j=0

�t− j

⎫
⎬

⎭
Hq Xt−k +

⎧
⎨

⎩

m∏

j=0

�t− j

⎫
⎬

⎭
et−m−1, (7.6)

with (�t )t defined as

�t :=

⎛

⎜⎜
⎜⎜⎜
⎝

−
�∑

j=1

p∑

m=1
c( j)
m1Xt−m I{Xt−d∈R j} · · · · · · −

�∑

j=1

p∑

m=1
c( j)
mq Xt−m I{Xt−d∈R j}

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

⎞

⎟⎟
⎟⎟⎟
⎠

q×q

.

Similarly as above, we can show that the second term in (7.6) converges to zero a.s.
In this case, we get

et = Xt +
∑

k≥1

H ′
q

⎧
⎨

⎩

k−1∏

j=0

�t− j

⎫
⎬

⎭
Hq Xt−k a.s., (7.7)
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hence model (7.5) is invertible. Finally, we obtain the following result.

Theorem 7.2 Let (Xt ) be the unique strictly stationary and ergodic solution of model
(7.5) with E {log |Xt |} < ∞. Then model (7.5) is invertible if

λ := E {log |�t |} < 0,

and it is not invertible if λ > 0.

(7.2) Geometric ergodicity. The final result concerns the geometric ergodicity
of the process

(
Y t

)
driven by the SET BLd model in (2.2). The geometric ergod-

icity of a threshold first-order bilinear process has been studied by Cappuccio
et al. (1998). In our article we study the geometric ergodicity of general thresh-
old bilinear models. Let Y 0 be an arbitrarily specified random vector in R

K . The
process

(
Y t

)
is a Markov chain with a state space R

K and with n−step transition

probability P(n)
(
y,C

)
= P

(
Y n ∈ C |Y 0 = y

)
and invariant probability measure

π (C) = ∫
P
(
y,C

)
π
(
dy
)
for any Borelean set C ∈ BRK . The chain is said to be

φ-irreducible if, for some non trivial measure φ on
(
R

K ,BRK

)
such that ∀C ∈ BRK ,

φ (C) > 0 �⇒ ∃n > 0, P(n)
(
y,C

)
> 0 for every y. It is called a Feller Markov

chain if the function E
{
g(Y t )|Y t−1 = y

}
is continuous for every bounded and con-

tinuous function g defined on R
K . The chain is said to be geometrically ergodic if

there exist some probability measure π on BRK and a positive real number c ∈]0, 1]
such that c−n

∥
∥∥P(n)

(
y, .
)

− π (.)

∥
∥∥
V

→ 0 as n → +∞, where ‖.‖V denotes the total

variation norm.
Let us make the following assumption

[A.2] The marginal distribution of et is absolutely continuous with respect to the
Lebesgue measure λ on R. The support of et , defined by its strictly positive density
fe, contains an open set around zero.

Proposition 7.1 Under Assumptions [A0] − [A2], the Markov chain
(
Y t

)
is a

λ−irreducible, aperiodic and strong Feller chain. Moreover, if
(
Y t

)
is starting with

the stationary distribution, then its first component process is strictly stationary and
geometrically ergodic.

The proof of this result follows using the same arguments from Theorem 4.1 in
Bibi and Ghezal (2015b) for the class of Markov switching bilinear models.

8 Conclusion

In this paperwe analyse some statistical and probabilistic properties of the self-exciting
threshold superdiagonal bilinear (SETBL) time series model, which are useful in
statistics and econometrics.Using a suitableMarkovian representationof such amodel,
we derive sufficient conditions to have a unique, strictly stationary, causal and ergodic
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solution. Under neat matrix conditions, we prove that the higher-order moments of
the SETBL process and its powers are finite. Then we obtain matrix expressions in
closed-form for the computations of such moments. As a result, the skewness and
kurtosis indexes are explicitly computed. These theoretical results are useful for the
diagnostic analysis of the process and for model identification. Furthermore, we derive
the autocorrelation function and the covariance functions of the SETBL process, and
provide its ARMA representations. Such representations play an important role in
forecasting and to estimate model parameters via GMMmethod. Finally, we examine
necessary and sufficient conditions for the invertibility and geometric ergodicity of
the proposed model. Several examples illustrate the obtained theoretical results.

In the paper we concentrate on superdiagonal bilinear models as the crucial step
of our method is to represent them by a Markovian state-space form. As pointed
out by one of the referees, the general model may be also represented by an elegant
�-Markovian form. This is an interesting problem, which can be solved by a direct
modification of the proposed techniques. In this setting, and particularly to compute
explicitly the higher-order moments, we need to consider the additional assumption
that the innovation et and the sequence {(Y τ−1, sτ )}τ≤t are independent, where Y t is
the Markov chain with state space RK from Sect. 2 and st denotes the corresponding
state function. After that, all the main results of the paper mantain their validity for
the general model.
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