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A B S T R A C T

This study presents a comprehensive metabolomic analysis of Parmigiano Reggiano samples to differentiate
between those designated as Mountain Quality Certification (QC) and conventional Protected Designation of
Origin (PDO). Despite following the same production protocol, these cheese varieties differ in the cows’ feeding
regimes and milk stable locations, with mountain-certified samples adhering to specific requirements regarding
milk origin and feed composition. An untargeted approach with Liquid Chromatography-High Resolution Mass
Spectrometry (LC-HRMS) was proposed to characterize the cheese metabolome. High-resolution LC-MS data can
generate gigabyte-sized files, making data compression essential for manageable multivariate analysis and noise
reduction. This study employs the Region of Interest-Multivariate Curve Resolution (ROI-MCR) protocol to
achieve effective data compression and chromatographic resolution, thereby extracting the most informative
features. This method was compared with a classical approach for feature extraction from chromatographic data,
namely Compound Discoverer (CD) software. The features extracted by both methods were analysed through
Principal Component Analysis (PCA) and ASCA (ANOVA Simultaneous Component Analysis). The comparison of
ROI-MCR and CD approaches demonstrated that while both methods yielded similar overall conclusions, ROI-
MCR provided a more streamlined and manageable dataset, facilitating easier interpretation of the metabolic
differences. Both approaches indicated that amino acids, fatty acids, and bacterial activity-related compounds
played significant roles in distinguishing between the two sample types.

1. Introduction

In 2012 the EU Regulation introduced the “Mountain Product” label
to support agricultural activity and food production in disadvantaged
areas [1]. The mountain denomination can be a value driver for food
produced in mountain areas, making them immediately recognizable to
consumers [2,3]. In fact, these products are often attributed specific
valence, which typically results in a greater willingness to buy, poten-
tially providing mountain producers with an adequate income and
generally contributing to the permanence of agricultural activity and the
overall vitality of mountain regions. Therefore, there is a growing in-
terest and an increasing need to evaluate analytical methods capable of

objectively identifying the identity characteristics of mountain products
to ensure their origin and traceability. However, studies specifically
focusing on the mountain denomination are not so numerous [4–9].
Among mountain products, Parmigiano Reggiano, recognized as a Pro-
tected Designation of Origin (PDO) product, is one of the most famous
due to its distinctive flavor. While often thought of as a single product,
the PDO denomination embraces products that differ for ripening time,
cow variety, and may have additional denomination, such as organic or
mountain label. In particular, the “Prodotto di Montagna − Progetto
Territorio” represents a quality denomination for PR cheese that, in
addition to the PDO, also respects the mountain denomination [10] and
must comply with additional rules established by the producers’
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consortium [11]. In fact, all milk must come from stables in mountain
areas and the cheese must be produced and matured in mountain dairies
for up to 12 months. Then, at least 60 % of the cows’ feed must originate
from mountain regions. Eventually, the final product has to undergo a
quality inspection at 24 months using the “hammer” test by the Con-
sortium’s experts and it must pass a rigorous sensory evaluation.

The main analytical approaches employed to characterize the
mountain dairy products have been targeted [4], such as the study of the
fatty acids profile, terpenes and volatile compounds in general (by liquid
or gas chromatography-mass spectrometry), or the determination of
stable isotope ratio of light elements, which varies with altitude.
Fingerprinting techniques, such as UV–vis, mid, and near infrared
spectroscopies have been mainly used to distinguish dairy products
produced by animals undertaking different feeding regimes [4]. More
recently untargeted metabolomic approaches have been applied [3,5,9],
either based on nuclear magnetic resonance [5] or liquid
chromatography-high resolution mavss spectrometry [3,6].

Untargeted metabolomic analysis presents several challenges from
the data analysis point of view. First of all, the dimensionality of the data
is huge (in the order of gigabytes) and several sources of noise can affect
the data, so data reduction/compression is necessary, but this step
should not negatively affect information retrieval, e.g. loosing low in-
tensity peaks or lowering spectral resolution [12]. Also, the initial LC-
HRMS data, which contain scans of unequally spaced masses, must be
reconducted to matrices where the rows represent each scan (i.e.,
retention times) and the columns represent consistent mass values
across all samples. The main approaches generally used to this aim are
search for Region of Interest (ROI selection) [13] and binning. Then,
features extraction, either by peak detection [14] or peak resolution
strategies [15], allow obtaining a data sets holdings peaks areas for all
potential detected/resolved metabolites. While aiming at the same re-
sults these strategies are quite different since the aim of peak resolution
is identifying the pure components which are responsible for the
occurrence of the features obtaining a pure spectrum (m/z) and elution
profile by resolving coeluted peaks. In feature detection, peak alignment
is necessary in order to search for corresponding peaks across distinct
chromatographic runs and compare them between samples, and this
step may introduce issues [12]. In the present study, we carried out an
untargeted metabolomic analysis, based on liquid chromatography-high
resolution mass spectrometry (LC-HRMS), of Parmigiano Reggiano
cheese (PR), characterised by the Protected Designation of Origin (PDO)
[16], referred to as conventional-PDO in the text. In particular, we
aimed to characterise the mountain denomination of Parmigiano
Reggiano “Prodotto di Montagna − Progetto Territorio” (Mountain-CQ
in the text). In this study, we focused on comparing, on our case of study,
a ROI strategy with a peak resolution approach, by applying Multivar-
iate Curve Resolution (MCR), i.e. ROI-MCR protocol [17], with a com-
mercial software Compound Discoverer [18] which adopts binning and
a peak detection strategy. The different parameters settings and data
analysis workflow are illustrated. Once features are retrieved the same
preprocessing, data analysis and putative identification of salient fea-
tures has been conducted for both data sets.

2. Materials and methods

2.1. Chemical reagents

Acetonitrile (ACN) and methanol (MeOH), ultra-pure water and
formic acid LC-MS grade were purchased from Thermo Fischer Scientific
(Waltham, Massachusetts, USA).

2.2. Sample collection

A total of 40 samples of Parmigiano Reggiano evenly distributed
between the two designations examined, i.e. EU mountain label certi-
fication, meeting as well the additional criteria of “Prodotto di

Montagna – Progetto Territorio” (labeled as “Mountain-CQ”), and con-
ventional Parmigiano Reggiano PDO, (labeled as “conventional-PDO”),
respectively, were used for this study.

To obtain the mountain certification, in addition to complying with
the PDO protocol [1], the following requirements must be met (i) 100 %
of the milk must come from mountain areas; (ii) more than 60 % of the
cows’ feed must come from mountain areas. In addition to the mountain
designation itself, the specific requirements for ’Prodotto di Montagna −

Progetto Territorio’ [11] are as follows (iii) milk production and
maturing for up to 12 months; (iv) qualitative selection at 24 months
through an evaluation by the Consortium’s experts using the “hammer”
method; and (v) successful completion of a sensory evaluation.

The samples were collected directly at the dairies and then stored
and prepared (see 2.3.1) at the laboratory of the producers’ consortium
(“Consorzio del Formaggio Parmigiano Reggiano”). Table S1
(Supplementary Materials) provides detailed information on each sam-
ple, including the ripening date, the ripening months, and the dairy
province. The geographical distribution of the dairies from which the
samples were taken is shown in Fig. S1, Supplementary Materials.
Dairies producing conventional PDO are highlighted in green, while
those adhering to the certified production “Prodotto di Montagna –
Progetto Territorio” are highlighted in red.

2.3. Sample preparation and extraction procedure

The Parmigiano Reggiano samples analyzed consisted of cheese tips,
each weighing about one kilogram and stored under vacuum. Initially,
these cheese tips were stored in a cold store at temperatures of 4–6 ◦C.
To ensure identical pretreatment of all samples prior to analysis, they
were heated to a constant temperature of 20 ◦C before grinding. The
cheese was then cut into approximately two-centimeter pieces to ach-
ieve a uniform size before grinding with a Grindomix GM200 (Retsch,
Hann, Germany). After grinding, the grated sample was manually mixed
and homogenized in a stainless-steel tube. The contents were then
transferred to plastic bags and vacuum sealed for sample preparation.
Each bag contained approximately 100 g of sample, sufficient for all
analyses. These plastic bags were stored in a freezer at − 20 ◦C and
transported from the consortium headquarters to our laboratory freezer
in a Styrofoam container filled with dry ice to maintain a constant
temperature during transportation. Approximately 500 mg of the sam-
ple were taken from the plastic containers and transferred to a glass
centrifuge tube. Then, using a calibrated pipette, 5 mL of the extractant
— a mixture of 2:2:1 acetonitrile:methanol:water with 1 % formic acid
— were added to the tube. The mixture was sonicated for 10 min after
being shaken for one minute with a mechanical vortex (Falc In-
struments, Italy) at a speed of 3000 rpm. Prior to LC-MS analysis, sam-
ples were filtered with PTFE filters (0.22 µm) and centrifuged at 5000
rpm for 10 min.

2.4. Ultra-high performance liquid chromatography-high resolution mass
spectrometry analysis

Samples were analysed using the Thermo Fisher Scientific Vanquish
Core (Thermo-Fisher Scientific, Waltham, MA, USA) as the UHPLC in-
strument coupled to a heated electrospray ionization system and a mass
spectrometer, the Exploris 120 Orbitrap (UHPLC-HESI-Orbitrap). The
UHPLC Vanquish Core instrument is equipped with a vacuum degassing
system, a binary pump, an autosampler and a thermostable column
compartment. The Poroshell 120 SB-C18, (3 × 100 mm, 2.7 µm particle
size, Agilent, Milan, Italy) was used for chromatographic separation. The
chromatographic separation was performed with water (A) and aceto-
nitrile (B) with 0.1 % (v/v) formic acid. The elution conditions were set
as follows: a linear gradient from 5 to 95 % B (0–20 min), maintaining
this composition for 3 min, then a rapid change from 95 to 98 % B to
wash the column, an isocratic elution with 98 % B (23.1–30 min) and a
final re-equilibration step with 5 % B (30.1–36.0 min). The column was
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thermostated at 30 ◦C. The following HESI source characteristics were
used: Sheath gas 70 arbitrary units (au), auxiliary gas 5 au, sweep gas
0.5 au, ion transfer tube temperature 390 ◦C, evaporator temperature
150 ◦C and electrospray voltage 4.2 kV (positive mode) and 3.8 kV
(negative mode). Analyses were acquired by using the Xcalibur software
version 4.4 (Thermo-Fisher Scientific, Waltham, MA, USA) in full-scan
(FS) and data-dependent (dd-MS2) modes with a fast positive–-
negative polarity change and a resolving power of 60,000 full width at
half maximum (FWHM) at m/z values of 200 for FS mode and 30,000 for
dd-MS2 mode. The isolation window for filtering the precursor ions was
set to m/z values of 1.2, and a progressive step collision energy was used
to fragment the precursor ions. Only positive mode ions data was
considered for further data elaboration.

Extracts were analyzed on three different days and loaded into the
autosampler in a random order w.r.t. to Mountain CQ and conventional
PDO samples; six instrumental blanks were also recorded, two for each
day. In addition, the extraction of one sample per category was repeated
four times and performed in random order, so that a total of 48 speci-
mens were acquired. In this way, the reproducibility of both the
extraction and the chromatographic analysis could be monitored during
the analysis days.

2.5. Data analysis

2.5.1. ROI-MCR protocol
The data from a high-resolution LC-MS instrument can result in file

sizes reaching gigabytes. Compressing the data is thus a fundamental
step prior to multivariate data analysis, both to avoid resorting to high
performance computing systems and to reduce data noise. Different
methodologies have been proposed to this purpose [19]. In this work,
Region of Interest (ROI) search combined with Multivariate Curve
Resolution – Alternative Least Square (MCR-ALS) [15,20], i.e. ROI-MCR,
were exploited to achieve data compression and chromatographic res-
olution, so to extract the informative features. Initially, 6 blanks and 46
samples were analyzed together using the ROI GUI [21].

Prior to MCR-ROI, the chromatograms were cut along retention
times (Rt), retaining only the first 820 datapoints of each chromatogram,
since the last Rt region is due to the recondition of the column (Fig. S2,
Supplementary Materials).

The Region of Interest approach requires the definition of three input
parameters: a threshold for signal-to-noise ratio, an m/z tolerance de-
viation to assign a signal to the same attributed m/z value, and the
minimum number of consecutive signals at a particular m/z value to
define a chromatographic peak). The parameter values were established
through a comprehensive analysis of literature Refs. [21–24] and con-
ducting several trials on the dataset. Regarding the signal-to-noise-ratio
threshold, a range of values, spanning from 0.1 % to 1 % of the
maximum ion peak intensity, was systematically examined. Setting the
threshold too low led to the retrieval of numerous impurities and noisy
peaks, while a threshold set too high resulted in the exclusion of minor
characteristic metabolites. In this study, it was determined that a
threshold of 0.5 % of the maximum ion peak intensity proved to be the
optimal choice. The m/z error is usually set to 0.005 Da for Orbitrap
analysis so the choice was based on literature works [22,24]. The min-
imum number of occurrences was tailored to the chromatographic
characteristics of the instrument. Specifically, for high-performance
liquid chromatography (HPLC), a range of 7 to 12 points is recom-
mended, while in the case of ultra-high-performance liquid chroma-
tography (UHPLC), 2 to 10 points appear to be optimal. A detailed
examination of the chromatograms uncovered the presence of narrow
and short-lived peaks. Consequently, the minimum number of occur-
rences was set at 2 per sample to appropriately capture these features.
The m/z values meeting these criteria are depicted in an augmented
matrix featuring elution times for each sample on rows and ROI in-
tensities on columns (MSroi matrix). Every ROI has then been examined
carefully to make sure that it depicts a chromatographic peak and is not

present in any of the blanks (see Fig. S3, Supplementary Materials).
Following this inspection, 114 ROIs were retained, forming an MSroi
matrix (data matrix size: 42692 x 114). MCR-ALS has then been applied
considering in the column wise augmented data set only the samples
without the blanks, yielding a new MSroi matrix (37766 x 114).

2.5.1.1. Multivariate Curve Resolution-Alternating least Suares (MCR-
ALS). MCR-ALS [20] resolves elution profiles and spectra of distinct
sample constituents by decomposing the initial measurement data ac-
cording to Eq. (1) (a graphical representation of the decomposition
performed by MCR-ALS is shown in Fig. 1).

D = CST +E (1)

where D (I x J) is the final MSroi matrix obtained from the ROI analysis
(as described in 2.5.1). D is a column-wise augmented matrix, where the
MSroi blocks collected from the chromatograms performed on all sam-
ples are placed one on top of each other. The range of m/z channels
adopted in the augmented matrix D includes the total amount of rele-
vant m/z values found in the chromatograms analysed. In the column-
wise augmented matrix D, the columns hold the elution profiles at a
given m/z channel (j = 1,… J) for all samples and the rows hold the ROIs
signals at each chromatographic retention point (i = 1,… I), as shown in
Fig. 1. The two factor matrices, C and ST, contain the elution profiles of
the N (n = 1,…, N) resolved components (single chemical constituents)
for all chromatograms and their related pure mass spectra, respectively.
Matrix E (I x J) holds the residuals, i.e. the unmodelled part of D. To
reduce the rotational ambiguity non-negativity constraints on both C
and S were enforced. Initial pure mass spectra profile estimates (S) were
derived by a SIMPLISMA-based method [25]. A 51-components model
was deemed optimal based on lack of fit assessments [22] (lof = 3.0011,
R2 = 99.9044), and inspection of elution and m/z profiles of each
component. The 51 resolved components are reported in Table S2
(Supplementary Materials) with their putative identification, m/z value,
and retention time. The peak areas for each of the 51 components for
each sample are calculated by integrating the elution profiles in each C
column (a single component) obtained by taking the rows corresponding
to the related sample. Thus a 48 x 51 feature matrix has been obtained.

2.5.1.2. Putative metabolites identification. Metabolites associated with
the ROI-MCR components were putatively identified by using the library
present in the Compound Discoverer software [18], i.e. inserting the m/z
and retention time for each resolved feature in the search. Furthermore,
the fragmentation spectrum of the main mass peak (MS/MS data) were
matched with online databases such as HMDB, BMDB, FoodDB, MCDB.
Finally, manual MS/MS spectra interpretation was aided by mzCloud
(https://www.mzcloud.org/). As an example, the putative identification
of phenylalanine is reported in Fig. S4, Supplementary Materials. The
metabolites reported in this work have an identification confidence
equal to level 3 (tentative candidate) [26].

2.5.2. Compound Discoverer procedure
Compound Discoverer (CD) software [18], version 3.2 by Thermo

Fisher Scientific, was also employed for comparative purposes. Fig. 2
illustrates the steps undertaken by the CD software in untargeted anal-
ysis modality from raw chromatogram to features extraction. Although
the specifics of each node in the data analysis pipeline and its algorithms
are not always transparent due to confidentiality issues, the process is
outlined through a simplified block diagram, with operations executed
sequentially. Each node is customizable, allowing parameter adjust-
ments based on the LC-MS chromatogram characteristics.

The analysis begins (first node) by loading the chromatograms of all
the analyzed samples in the format produced by the instrument and
readable with Xcalibur (Thermo Fisher Scientific). These files contain all
the information about how the runs were acquired and the mass spectra
recorded (both MS1 and MS/MS).
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The next node “Select Spectra” allows the m/z spectra to be filtered
based on scan number, polarity, degree of fragmentation, peak intensity.
Moreover, it is possible to retrieve spectra within a specific mass range.
In the case of the threshold, it is important to note that this does not refer
to the single ion intensity, as in the case of ROI, but to the sum of the
intensities at the centroid of all m/z signals in a scan. In this case, the
threshold was set equal to 0 to import all scans with intensities above the
signal-to-noise ratio (set equal to 1.5).

The subsequent node “Align Retention time” allows the alignment of
the chromatograms using the ChromAlig algorithm [27]. Briefly, this is a
two steps algorithm: in the first step chromatographic profiles, or more
precisely chromatographic surfaces (unfolding the Rt x m/z surface for a
sample to a 1D vector), are pre-aligned determining a time offset that
maximizes the overlap between two chromatographic profiles (maxi-
mizing correlation in Fourier domain), usually the first sample is taken
as reference; in the second step, for computational efficiency masses are
binned to integer values and times in bin of 0.1 sec, then the algorithm
calculate the correlation matrix of the full mass scans between the two
pre-aligned chromatographic profiles (i.e. each sample is confronted
with the reference one) from which the optimal alignment path is
calculated by dynamic warping. However, to reduce the computational
complexity only a portion of the correlation matrix is used in this step,
since the chromatograms were pre-aligned in the first step. In the

present study, the maximum input file shift was set equal to 1 min, and
the mass tolerance for feature matching was set equal to 5.0 ppm.

The “Detect Unknown Compounds” node is used to detect the
chromatographic peaks within the extracted ion chromatograms (XICs).
Here there are several parameters that can be customized as desired by
the user. Below are reported the parameters setting used in this study:

• mass tolerance for trace XICs was set equal to 5 ppm;
• minimum base peak height in the XIC traces was set equal to 106

FHWM;
• minimum number of consecutive elution times to define a peak was

set equal to 2, as in the MCR-ROI analysis;
• in addition, there is a whole set of parameters that filter the chro-

matographic peaks based on their quality [18]. The vendor recom-
mends keeping the default values for these parameters, which was
done in this work.

• finally, this node also allows the user to specify the adducts that may
be present in the samples. The following adducts were chosen for this
analysis: [M + H] +, [M + NH4]+1, [M + Na]+1.

The “Group Unknown Compounds” node allows combining the un-
known compounds (all the compounds detected so far) in all input files
based on their molecular weight and retention time. A mass tolerance of
5 ppm and a retention time tolerance of 0.2 min were used. At this point,
for the detected peaks, the integration of areas is accomplished. Areas
are determined based on the most common adduct ion in the input files.
It may happen that a chromatographic peak revealed by the “Detect
Unknown Compounds” node is present in some input files and missing in
others. In this case, the “Fill the Gaps” node is used, “the missing” peak
can be “re-detected” by lowering the intensity threshold; in the case it is
still not detected a “simulated peak” can be used. This is obtained by
fitting a Gaussian peak for the expected m/z range, however if the filled
area is lower than the detection limit, the detection limit value is used to
fill the gap (i.e. the gap is filled by noise).

The “Mark Background Compounds” node is used to highlight
compounds that are also found in the blanks so that they will not be
considered in the final output. In addition, this node chooses the most
representative MS1 scan to be used in the next node “Predict
Compositions”.

The “Predict Compositions” node is used to predict the formulas of

Fig. 1. Graphical representation of the MCR’s decomposition (Eq. (1) of the multiset (D) obtained by the ROI analysis. The pure spectra profiles allow the putative
identification of the compounds, meanwhile the pure concentration profiles allow determining the relative concentration of the compounds in each sample.

Fig. 2. Schematic block diagram of pipeline implemented in Com-
pound Discoverer.
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unknown compounds using a mass tolerance of 5.0 ppm. The “Search
ChemSpider” node is used to search the mass spectra database for un-
known compounds with a certain tolerance (5.0 ppm). In this work,
Bovine Metabolome Database (BMDB, https://bovinedb.ca/), FoodDB
(https://foodb.ca/), Human Metabolome Database (HMDB, https://h
mdb.ca/), and Milk Composition Database (MCDB, https://mcdb.ca/)
were selected.

The “mzCloud” node compares MS fragmentation spectra derived
from the raw spectra with those of the reference databases within the
software (mzCloud https://www.mzcloud.org/)). In the output, the
identified compounds are organized by molecular weight, retention
time, and measured areas per sample.

2.5.3. Principal component analysis of features matrix
Principal Component Analysis (PCA) [28] was applied both to the

feature matrices holding the peak areas of the resolved components
elution profile (MCR-ROI analysis) of dimension 48 x 51, and the feature
matrix holding the peaks areas obtained by the CD procedure of
dimension 48 x 1684.

Prior to PCA both data sets were preprocessed by applying first,
normalization along rows (each row holds the peaks areas of the
resolved features for a single sample) dividing by the sum of the absolute
area values (1-norm) to remove size/bulk effect and then columns
autoscaling.

2.5.4. ANOVA Simultaneous component analysis (ASCA)
The ASCA method [29] was applied to the feature matrices (peak

areas) obtained by both ROI-MCR and CD, to assess the potential sig-
nificance of the factors: denomination (mountain/conventional),
ripening month (<27 / ≥27), and their interaction.

The ASCA algorithm performs an ANOVA, splitting the data vari-
ability into the contributions of individual factors and interactions:

Xc = X − 1mT = Xa +Xb +Xab +Xres (2)

Here, X denotes the scaled data matrix, mT is the mean profile of the
samples, Xa and Xb represent matrices associated with the main effects
(in this case, associated with denomination and ripening), Xab corre-
spond to the interaction effect and Xres contains the residuals. Each
matrix was subsequently analyzed by a distinct PCA model, and Eq. (2)
can be re-expressed as:

Xc = TaPTb +TbPTb +TabPTab +Xres (3)

where T contains the scores and P the loadings of each PCA model, with
the maximum number of principal components for each model being
equal to the number of levels minus one.

The significance of each design factor or interaction effect was
evaluated using permutation tests involving 1000 randomizations [30].

2.6. Software

Xcalibur 3.0 was used as LC-MS spectra acquisition software, while
raw data were processed using Compound Discoverer, both from
Thermo Fisher (Thermo Fisher Scientific, Waltham, MA, USA). The ROI-
MCR and MCR-ALS (2.0) software were downloaded from the official
developers’ website (https://mcrals.wordpress.com/theory/mcr-als/)
and are implemented in the MATLAB environment (Mathworks, Natick,
Massachusetts, USA). They have been used in their GUI (Graphical User
Interface) version, which allows us to work with a user-friendly inter-
face: command-line versions can also be downloaded for both [20,21].
PLS_Toolbox software (version 9.1, Eigenvector Research Inc.,
Wenatchee, WA) was used for PCA analysis. ASCA was performed using
routines developed by Dr. F. Marini from the University of Roma La
Sapienza (Italy), which were kindly made available.

3. Results

3.1. Preprocessing of extracted features

Fifty-one components were extracted from the analysis by ROI-MCR.
These were inspected one by one to ensure that they correctly described
a feature (a chromatographic peak). A putative assignment was then
made based on the m/z and retention time describing the feature by
comparison with the Compound Discoverer output. In addition, the MS/
MS spectra were manually interpreted using mzCloud. The feature as-
signments with the corresponding m/z and retention times are listed in
Table S2. The peak area matrix (48 x 51) was subjected to preprocessing
before applying PCA. The preprocessing step is crucial to obtain valid
and reliable results. In this work, as described in 2.5.1.2, two pre-
processing steps were applied: Normalization along the rows and
autoscaling along the columns. A look at the correlation matrix between
the raw extracted features, i.e. peaks area values, (Fig. S5A, Supple-
mentary Materials) shows that there is a strong correlation between
most of the variables (correlation = 1 red, anti-correlation = -1 blue.
Fig. S5A). This phenomenon is referred to as the “size effect” or dilution
effect [31]. The “size effect” may be due to several issues: unwanted
systematic errors/bias and experimental variance, or specifically the
reduction of systematic variation or bias in the data due to instrument or
sampling issues (e.g. sources of experimental variation, inhomogeneity
of samples, differences in sample preparation, ion suppression). To
eliminate this effect, normalization was applied. It can be observed that
normalization significantly reduced the correlation among the variables
(Fig. S5B, Supplementary Materials) being effective in removing the
dilution effect. Subsequent autoscaling was applied to allow all metab-
olites to potentially contribute equally to the model.

The same effect has been observed for CD procedure extracted fea-
tures (Fig. S6, Supplementary Materials).

3.2. Principal component analysis on ROI-MCR features

Principal component analysis (PCA) is used as an exploratory
multivariate technique to inspect the data as such and to determine
whether Parmigiano Mountain QC labelled samples can potentially be
distinguished from conventional PDO ones. A PCA model with 4 prin-
cipal components explaining 53 % of the variance was inspected. Fig. 3A
shows the scores plot of the first component (PC1) versus the second
component (PC2). Further components were examined but they were
not informative about distinction by category (Fig. S7, Supplementary
Materials). The PCA plots were inspected also with respect to ripening
months and producers, but no grouping or specific trends were high-
lighted. The replicates of both classes (blue triangle for the Mountain CQ
replicates, light blue triangles towards the bottom for the conventional
PDO replicates) are quite tightly close in PC1 and more dispersed along
PC2. It is important to note that these samples are replicates of the
method, i.e. it is reasonable to have them not strictly overlayed. In
addition, colouring the scores plots by preparation days and acquisition
days the absence of systematic unwanted variation due to experimental
conditions was confirmed.

In Fig. 3A, it is possible to distinguish along PC1 between samples
labelled “Prodotto di Montagna – Progetto Territorio” (red diamonds)
and conventional PDO samples (green squares). The labelled samples
are situated in regions of PCA space associated with the opposite
designation. These samples were studied in detail to determine the
factors contributing to their behaviour. Among the Mountain-CQ sam-
ples that fall within the conventional sample space, sample 26 is from a
dairy at 219 m above sea level, while the others are at higher elevations.
Looking at the individual characteristics, samples 27 and 29 they have a
higher content of feature labelled according to its calculated MW
143.0946, which is proposed to be stachydrine (but its mzCloud best
match score is less than 80) than the others. Stachydrine has been re-
ported as characteristic of alfalfa [32], which is one of the most
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commonly used forage in Parmigiano Reggiano production, differences
in its content may be due to different proportions of forage in the cow
diet depending also on time spent on pasture. Samples 31 and 14 have a
higher content of glutamil-leucine and a lower content of arginine than
the others of their category.

Noteworthy, most of them were also mislocated in a model obtained
by PCA of NMR spectra [5]. On the other hand, conventional-PDO
samples mislocated are characterized by higher content of valine,
asparagine and proline.

The loadings plot (Fig. 3B) shows which analytes are most respon-
sible for the distinction between the two classes. Analytes that could not
be identified with Compound Discoverer are indicated with the exact
mass (i.e. 86.0964). In general, the metabolic pattern is mainly

characterized by amino acids, short-chain carboxylic acids and their
derivatives, as also reported in the literature [3,6]. Loadings cluster
mostly at positive values, indicating a probably greater richness of the
metabolic pattern of the conventional samples. Specifically, the analytes
with more negative loadings and thus indicating a higher amount in
Mountain QC denomination samples are Leucine-isoleucine, arginine
and threonine. Arginine and threonine were reported to characterize
mountain CQ samples in a previous NMR metabolomics study [5]. In
addition, arginine was reported to be related to the degradation of casein
during ripening [33]. Conventional samples are mainly characterized by
high contents of glutamic acid derivatives (pyroglutamic acid, glutamyl-
valine, glutamyl-glutamic acid) and “stachydrine” which is linked to
bacterial activity [34]. Free pyroglutamic acid is related to the ripening

Fig. 3. PCA on the areas resolved by ROI-MCR. A) PC1 vs PC2 scores plot. B) Loadings plot of the PCA on the areas resolved by ROI-MCR. Encircled in red the
components that showed a significant loading value for the difference between Mountain-CQ and conventional-PDO according to ASCA analysis. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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time of Parmigiano Reggiano [33]. However, in our study, the ripening
age varies only moderately and is not related to this difference (as shown
in Fig. S8, Supplementary Materials, which is coloured according to the
ripening months). All glutamyl peptides, such as glutamyl-valine, are
products or by-products of the glutathione cycle (GSH) in organisms
[35]. Glutamic acid, valine, asparagine and proline at negative PC1
loadings, are mainly indicating higher concentrations of these com-
pounds in the conventional PDO samples numbered 22, 39 and 13, as
remarked previously. Valine proved to be a biomarker for non-
fermented diary [36]. Asparagine and proline are mainly formed by
proteolysis during cheese ripening and are fundamental for cheese
flavour [37].

3.2.1. ASCA analysis
In order to support the category distinction observed in PCA, we used

the ASCA method on areas obtained by ROI-MCR by considering two
factors: the denomination (Mountain-CQ and Conventional) and the
ripening time considered at two levels: <27 months and >=27 months,
and their interaction. We did not expect a significant difference due to
ripening because all the products are aged more than 24 months and the
aging range is quite narrow; nonetheless, decoupling this effect could
allow a clearer evaluation of the denomination distinction and assess-
ment of the most significant features to explain it.

The results are displayed in Table 1, which includes the explained
variance and p-values for each factor and their interaction. In this table
are also reported the results related to ASCA applied on the CD extracted
features, which will be discussed in section 3.3.1. As expected, only the
factor “denomination” resulted statistically significant (p < 0.001),
whereas factor “ripening time” and the interaction showed a p-value
higher than 0.05.

Fig. 4 displays the scores plot of Simultaneous Component Analysis
(SCA) for the effect matrix corresponding to the factor “denomination”,
including projected residuals. The denomination effect has two levels,
therefore, the SCA model is represented by a single component (SC1),
which explains 100 % of the variance. The scores plot confirmed a sig-
nificant difference between the two levels of the factor “denomination.”
Nearly all “Mountain” samples have negative scores, while all conven-
tional samples have positive scores, emphasizing the substantial differ-
ence between these two levels.

The variables, i.e. the compounds, mainly responsible to this differ-
ence are highlighted in bold in Table S2, and encircled in red in Fig. 3B,
confirming valine, leucine, isoleucine, tryptophan, as mainly charac-
terizing Mountain-CQ samples, while phenylalanine and glutamic acid
derivatives as characteristic of conventional-PDO. Also using only the
subset of significant variables, according to ASCA analysis (highlighted
in bold in Table S2) a better separation of the two denominations in
scores space was obtained (Fig. S9, Supplementary Materials).

3.3. PCA on Compound Discoverer extracted features

Principal component analysis was also applied to all compounds
detected by Compound Discoverer (CD), considering the values of the
peak areas measured for all samples (giving a 48 x 1684 features ma-
trix). The same pre-processing procedures as described in Section 3.1
were applied. Metabolites detected by the software were named and

colored according to chemical classes (see legend of Fig. 5), whereas
unidentified compounds were labeled as ND. Only the metabolites pu-
tatively identified (reported in Table S3, Supplementary Material)
through the reference databases were used for the subsequent simplified
graphical representation of the loadings.

In the scores plot (Fig. 5A), the Mountain CQ replicates are distrib-
uted in a restricted space, while there seems to be more variability
among the conventional PDO replicates. The denomination separation is
mainly observable along the first component, with the Mountain CQ
samples attaining negative values on PC1, and the conventional PDO
samples positive values. The mountain CQ samples are more clustered
than the conventional PDO samples, and only two samples are quite far
from all others blending with the conventional PDO samples (i.e. num-
ber 29 and 31, also mislocated in PCA based on ROI-MCR features). On
the other hand, seven lowland samples are mislocated w.r.t. to their
category showing negative scores: 17, 22, 15, 40, 28 and 13 (samples 15,
17 and 22 also mislocated in the PCA model based on ROI-MCR
features).

The databases HMDB, FoodDB (https://foodb.ca/) and Classy Fire
(https://classyfire.wishartlab.com/) were used to categorize the many
analytes found into the different chemical classes, listed in the legend of
Fig. 5B. Inspection of the loadings plot (Fig. 5B) shows that many of the
analytes have PC1′s loadings value close to zero, suggesting that most of
the metabolomic pattern is shared by the two classes. The region
occupied by the Mountain-CQ samples (negative scores) is characterized
by a high number of unidentified compounds (red diamonds) and amino
acids (yellow circles, loadings at negative PC1 values). Conversely, the
positive PC1 direction associated with the conventional PDO samples, is
characterized by a greater amount of putatively identified compounds.
The main metabolites putatively identified are essential amino acids
(phenylalanine, methionine, and leucine), non-essential amino acids
(proline, glutamic acid, tyrosine and arginine) and other compounds
such as short-chain fatty acids, which are important intermediates in
certain metabolic pathways. According to the literature [38], the com-
bination of extraction solvents used can precipitate proteins and
simultaneously extract a wide range of metabolites ranging from highly
polar compounds, such as polycarboxylic acids and phosphorylated
species, to hydrophobic compounds, such as phospholipids and fatty
acids/amides. Given the large number of metabolites detected by CD a
different visualization was used to simplify the interpretation of the
loadings, as follow: first only metabolites with loadings value above a
given threshold (more extreme in the PC1 vs PC2 plot) were selected,
then a spider plot [39], was used to represent them (Fig. 6). The spider
plot itself does not consider the sign of the loading values; therefore, it
was split in two sub-plots identifying the most influential compounds,

Table 1
Explained variance and probability values for main factors and their second
order interaction for both datasets.

Dataset ROI-MCR CD

Parameter Explained Variance
(%)

p-value Explained Variance
(%)

p-value

Denomination 24.01 <0.001 6.72 <0.001
Ripening time 0.94 0.7 0.86 0.95
Interaction 2.49 0.11 2.93 0.1

Fig. 4. SCA on the effect matrix “denomination”. Scores plot (SC1) with pro-
jected residuals related to ROI-MCR dataset.
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attaining negative (Fig. 6A) and positive (Fig. 6B) PC1 loadings,
respectively. The classes of amino acids, lipids and heterocyclic com-
pounds are the most represented in both cases. For Mountain-CQ sam-
ples (Fig. 6A) amino acids are most relevant, especially isoleucine,
arginine, threonine, serine together with some dipeptides and

tripeptides, as already observed in the ROI-MCR analysis (Section 3.2).
In terms of lipid composition, medium-chain saturated fatty acids are
more present in conventional PDO samples (Fig. 6B, see Table 2 for the
correspondence between numbers and analytes), together with some
benzenoids, as well as a number of heterocyclic compounds.

Fig. 5. PCA of the peak areas of the Compound Discoverer’s output. A) Scores plot of PC1 vs PC2. B) Loadings plot of PC1 vs PC2. The dotted green lines represent the
threshold used for the following spider plot visualization. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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3.3.1. ASCA analysis
ASCA was applied to the CD extracted features in the same way as

described in section 3.2.1 ASCA analysis for ROI-MCR dataset. Results of
the permutation test are shown in Table 1, where it can be observed that,
also in this case, “denomination” resulted the only statistically signifi-
cant factor (p < 0.001), with a higher variance explained (6.72 %) than
the other main effect and interaction (lower than 3 %), as confirmed by
the scores plot of the effect for the factor “denomination”, including
projected residuals (Fig. 7).

However, the difference between the “denomination” effect and the
others was more pronounced in the ROI-MCR dataset, compared to CD
dataset. The number of mountain and conventional samples that are
confounded is higher than the one obtained by the ROI-MCR dataset.
The compounds primarily responsible for this difference are highlighted
in bold in Table S3 (Supplementary Material) and confirmed as relevant
the same metabolites highlighted by the spider plots. Also when using
only the subset of significant variables, according to ASCA analysis
(highlighted in bold in Table S3), contrary to ROI-MCR, the separation
of the two denominations in scores space did not improve much
(Fig. S10, Supplementary Materials).

3.4. Summary of results

Exploratory data analysis showed that is possible to distinguish

Mountain-CQ from conventional-PDO based on their metabolic profiles.
Most of the mislocated samples in PCA are the same by using MCR-ROI
resolved components or CD detected compounds, but the latter tends to
mislocate more conventional-PDO ones. ASCA analysis showed that the
denomination effect is larger and the samples distinction clearer by
using MCR-ROI results.

Table 3 reports only the metabolites that were putatively identified
and were detected by both approaches. There is substantial agreement
on the positioning of these in the loadings plot except for Pyroglutamic
acid. Putative identification (which means that a full match in m/z cloud
library with a best match score higher than 80 was attained) was
possible for twenty of the fifty-one MCR components and ten were sig-
nificant (according to ASCA analysis) to distinguish Mountain CQ from
conventional-PDO categories; however, only four were also found sig-
nificant for the CD dataset. Phenylalanine, Histamine, Glutamyl-valine,
Pyroglutamic, Glutamyl-glutamic and pipecolic acids are characterizing
the conventional-PDO while a higher content of the essential amino
acids Valine, Isoleucine, Threonine and Tryptophan characterize
Mountain-CQ product.

The observed differences can be attributable to the distinct microbial
composition of the natural whey starters used in the mountains and
plains. These differences may be influenced by several factors, including
temperature, milk composition, and especially the milk microbiome.
Cows grazing on pasture come into contact with fresh vegetation, which

Fig. 6. Spider plot on PC1 loadings. The rays form equal angles to each other; each ray represents one of the variables, and the distance from the center is pro-
portional to the value of the loadings. A) Spider plot obtained from negative PC1 loadings (with values less than − 0.03). B) Spider plot obtained from positive PC1
loadings (with values greater than 0.047). The correspondence between the number reported in Figure 6B and the analytes found with Compound Discoverer are
listed in Table 2.
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likely contributes to a more diverse microbiome [40,41].

3.5. Comparative discussion of the two approaches

Applying both Compound Discoverer and ROI-MCR to the same
dataset allowed for a thorough examination of their strengths and
weaknesses, laying the groundwork for an initial comparison. From the

methodological point of view, as reported in [11], the most relevant
differences are: (i) chromatographic alignment is not needed in the
MCR-ROI protocol as well as no binning is applied either in the m/z or
retention time; (ii) some initial settings are common to both approaches,
i.e. signal-to-noise ratio, maximum peak intensity and m/z error, but
overall, less parameters have to be set with respect to the CD pipeline
where there are additional settings, e.g. in the “Alignment” and “Detect
Unknown Compounds” nodes; (iii) the ROI selection step in ROI-MCR
allows higher compression of the full scan data, which indeed is high-
ly sparse, while in the CD pipeline there is not an analogous compression
step. The number of peaks detected (hence of final features retained) is
governed by the several parameters present in the “Detect Unknown
Compounds” node and fill the gap option (i.e. Jaggedness quality factor,
Modality quality factor, Zig-Zag quality factor, etc. [18]. Generally, a

Fig. 6. (continued).

Table 2
Correspondence between the number reported in Fig. 6B and the analytes found
in with Compound Discoverer.

Number
in Fig. 6B

Correspondent analyte Number
in Fig. 6B

Correspondent analyte

1 C9H17NO3S 20 Pinolenic acid
2 C21H22N4O3 21 C17H32O2
3 N-Acetyl-DL-glutamic

acid
22 C19H28O5S

4 C9H11NO2 23 C9H13N3O5
5 L-Methionine 24 Ethyl myristate
6 Histamine 25 C10H20O3
7 Hexanoylglicyne 26 C19H34O4
8 C7H13NO2 27 2-(8-Hydroxy-4a,8-

dimethyldecahydro-2-
napthalenyl) acrylic acid

9 C10H19NO3 28 C12H10N2
10 C22H43NO3 29 C21H25N5O2
11 C14H18N2O5 30 C11H19N3O
12 2-Hydroxyphenylalanine 31 C18H20N2O3
13 2-Aminooctanedioc acid 32 C21H23FN4O2
14 2-Aminoadipic acid 33 C10H15N3O3
15 2-(acetylamino)-4-

(methylthio)butanoic
acid

34 C19H20N4O2

16 C5H11NO2 35 C13H17NO3
17 C10H14N2O4 36 C19H20N4O2
18 C25H41NO3 37 C16H24O5S
19 Uracil ​ ​

Fig. 7. SCA on the effect matrix “denomination”. Scores plot (SC1) with pro-
jected residuals related to CD dataset.
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quite higher number of features is retained; (iv) MCR is a spectral
unmixing method, so the peaks area integration is operated on “pure”
elution profile bypassing the overlapped peaks issue. The fact of working
with resolved chromatographic peaks also results on profiles less
affected by noise. In the CD pipeline (in the “Detect Unknown Com-
pounds” node) to overcome this issue peaks area integration is based on
a single ion (most common adduct). Nonetheless, the preceding peak
detection step may be affected by peaks overlapping.

Summarizing, while both methods demand a certain level of user
expertise, Compound Discoverer is notably more intricate, necessitating
a deeper understanding of numerous nodes and parameters. In contrast,
ROI-MCR requires defining only three parameters per Region of Interest
(ROI) and specifying the number of components per Multivariate Curve
Resolution (MCR). Another significant distinction lies in the trans-
parency of the methodologies. ROI-MCR is based on an open-source
routine, accessible to all, whereas Compound Discoverer is proprietary
software, limiting access to detailed information for legal confidentiality
reasons. Consequently, adjusting parameters in ROI-MCR is more
straightforward, offering clarity regarding their functions. In Compound
Discoverer, user intervention is often restricted, with default parameter
values frequently retained. Analysing outputs is also more challenging
due to the abundance of features obtained. Conversely, ROI-MCR facil-
itates individual feature analysis, aiding in decision-making regarding
their retention based on peak quality.

A notable advantage of Compound Discoverer is its ability to inter-
face with databases automatically, enabling preliminary and putative
identifications. It excels in comprehensive, untargeted characteriza-
tions, accommodating even low-intensity analytes. On the other hand,
the ROI-MCR approach focuses on feature extraction and resolution,
which was requiring a manual comparison of mass spectra with

databases for feature identification, however very recently an automatic
match with some databases has been developed [42]. Conversely, if the
objective is to extract and differentiate features efficiently, ROI-MCR
proves to be swifter and more effective, yielding datasets with a
manageable number of compounds suitable for sample differentiation
based on various indicators. While Compound Discoverer outputs
extensive compound lists, ROI-MCR generates datasets with a more
manageable size, streamlining analysis and interpretation processes.

In the present study, we pose attention in setting the same initial
parameters, for the one that are common/have the same meaning and in
general to make comparable choices. Also, we use the same database for
putative identification and interpreted only metabolites whit high match
score in the mas spectra library. Indeed, both methods yielded highly
similar results, underscoring the robustness of their outcomes.

As already remarked the CD extracted features were much higher
(1684), however these include a number of features that refer to the
same metabolite, after manual pruning 1257 were selected, and as re-
ported in Table S3, only for 169 there was a full match with the mzCloud
library and 97 were putatively identified.

At variance, with as little as 51 features, conventional samples and
mountain-CQ samples could be distinguished using the ROI-MCR
approach. This greatly accelerates and simplifies the process of deter-
mining potential biomarkers. To this aim ASCA is a more suited method
than analysis based on p-values from multiple statistical comparison
test; 26 and 41 compounds resulted significant for the MCR-ROI and CD
dataset, respectively (the putatively identified are in common and dis-
cussed in 3.4).

4. Conclusion

In this work, the metabolomic pattern of Parmigiano Reggiano
samples was analysed in an untargeted manner by LC-HRMS, the results
highlighted possible distinctive compositional traits for Mountain-CQ
PR product when confronted with conventional PDO PR one. This is a
promising result for the valorisation of the mountain label, also
considering that these are very close product that share the same pro-
duction protocol except for being produced in the mountain area (100 %
of the milk and at least 60 % of the cow feed).

The untargeted LC-HRMS analysis allows a thorough characterisa-
tion of the cheese metabolome, nonetheless its main drawback is a
complex and high-dimensional output, which represents a computa-
tional challenge, and, depending on the methodologies used, may lead
to a very large number of detected analytes whose significance cannot be
assessed solely on the basis of univariate significance tests, albeit
mightily corrected for multiple comparisons, to this aim ASCA proved
suitable. In this paper, two approaches were compared: ROI-MCR pro-
tocol and Compound Discoverer pipeline. The latter is more prone to
furnish a huge list of metabolites, not implementing any unmixing/
resolution.

The convergence of the results that we obtained by the two meth-
odologies (which strengthen them) is not always granted in metab-
olomic analysis. It is worth noticing, that particular care was posed in
using similar thresholds and considering only features that gave a
reasonable matching score with the mzCloud library.

Moreover, the results of LC-MS analysis are in accordance with the
previous findings obtained by NMR analysis on the same dataset [5], and
some are also in common with finding reported in few recent studies
which reported metabolomic analysis of PR [3,6]. However, it is worth
noticing that samples considered there spanned a wide ripening period
(a range of three years) and/or contained also a percentage of rind. Here
a balanced number of Mountain-CQ and Conventional-PDO PR samples
were considered, spanning in a representative way the whole production
area and showing a very contained ripening age difference. Obviously,
analysis of standards will be required to increase confidence in the
identification of the analytes. In addition, given the presence of analytes
characterizing the mountain samples that have not yet been identified, it

Table 3
Metabolites putatively identified, common to MCR-ROI and CD. A positive PCA
loadings sign indicates metabolites that are more abundant/characteristic of
conventional-PDO w.r.t. to Mountain-CQ, and vice versa for negative loadings
sign (the higher the number of + or – the more extreme in the loadings plot the
variables are). The last column reports if they were significant for differentiation
according to the ASCA permutation test.

MCR
component
n◦

Putative
identification

PCA
Loadings
sign (MCR)

PCA
Loadings
sign (CD)

Significant
ASCA

1 Proline − − - ​
2 Phenylalanine + + ✓ (MCR-

ROI)
4 Valine − - − - ✓ (MCR-

ROI)
5 Methionine + ++ ✓ (CD)
6 Lysine 0 − 0 ​
7 Isoleucine − – − – ✓ (MCR-

ROI, CD)
8 Tyrosine − − ​
10 Pyroglutamic

acid
++ − ✓ (MCR-

ROI)
12 Glutamic acid − 0 − - ​
14 Arginine − - − - ​
15 Glutamyl valine ++ ++ ✓ (MCR-

ROI)
17 Histamine + ++ ✓ (MCR-

ROI, CD)
19 Choline − − - ​
20 Glutamyl

glutamic acid
++ + ✓ (MCR-

ROI)
22 Pipecolic acid + 0 ✓ (MCR-

ROI)
30 Histidine − 0 − - ​
32 Treonine − – − – ✓ (MCR-

ROI, CD)
41 Asparagine − - − - ​
46 Tryptophan − - 0 ✓ (MCR-

ROI, CD)
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will certainly be possible in the future to perform more targeted ex-
periments on the analytes of interest, for example, with the use of an
inclusion list that allows MS experiments to focus on specific m/z.
Finally, works is in progress to expand the dataset so to reach a sufficient
number of samples to perform supervised classification.
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