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Abstract. The present study aims to investigate the effect of human-
robot collaboration on brain activity. To this end, we analyze differences
in the electroencephalogram (EEG) power spectrum (Theta, Alpha and
Beta frequency bands), and state-of-the-art indices, between some par-
ticipants who performed different experiments, including a experiment
of human-robot collaboration. In particular, tests included low cogni-
tive load tasks, such as listening to classical music and watching a re-
laxing video; tasks with medium cognitive load through a collaborative
robotics experiment, developed using the Niryo Ned robot, structured
in three subtasks with increasing difficulty; and a high cognitive load
task consisting of a sudoku game with tight time constraint. The EEG
was recorded using the Neuroelectrics Enobio20 helmet. In addition to
recording EEG signals, electrodermal activity (EDA) was recorded by
means of a BITalino (R)Evolution Board in order to compare the results
obtained from the two biosignals and evaluate the indices deriving from
the spectral powers of the rhythms. Most of the workload indices, present
in the literature, used for the analysis of this work have proved, on the
basis of the analysis carried out, to be very good indices of the cognitive
load.
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1 Introduction

Mental workload (MWL) is defined as the amount of mental or cognitive re-
sources needed to satisfy the current demands of a given task; it is also called
psychological load and can be understood as the amount of brain activity in a
unit of time, the occupancy rate of brain resources, the pressure or psychological
information processing capacity of a person at work [1]. When perceived by a
threatening stimulus, a cascade of physiological processes occurs that mobilize
the body and the system to address the impending threat and ensure effec-
tive adaptation. Biosignals [2] that can be reliably measured in relation to such
stressors include physiological (electroencephalogram (EEG), electrocardiogram
(ECG), electrodermal activity (EDA), electromyogram (EMG)) and physical
(respiratory rate, speech, skin temperature, pupil size, eye activity) measure-
ments. A key goal in psychological and physiological research is to establish
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reliable biosignal indices that reveal the physiological mechanisms underlying
the stress response. Studies have shown that an excessive mental workload can
cause quickness, reduced flexibility, increase in errors and frustrated emotions
and results in errors in the analysis of information acquisition and in decision-
making [3]. Additionally, a too low mental workload can cause a waste of human
resources and lead to a decline in job performance. Therefore, it is very impor-
tant to analyze this disciplinary area in order to define human mental load states
accurately.

MWL is traditionally assessed with questionnaires such as NASA Task Load
Index (NASA-TLX) [4] or the Subjective Workload Assessment (SWAT) tech-
nique [5]. Since these methods only provide a subjective assessment of an opera-
tor’s workload, the current trend is to supplement these assessments with phys-
iological measurements using devices that measure bio-signals such as EEG. To
properly evaluate MWL with such devices, it is necessary to be able to recognize
the workload level of the input signal, and this can be achieved with the use
of various machine learning techniques. About the EEG signals, with the devel-
opment of technology, some studies have shown the effects of the Delta, Theta,
Alpha and Gamma bands on mental workload [14]. It is generally believed that
psychological stress, active thinking and attention cause EEG activity to shift
to higher frequency bands and suppress Alpha wave activity [6]. Obviously, this
topic offers many extremely interesting research areas, which include the analysis
of a user’s cognitive load, sleep disorders, epilepsy and brain-computer interfaces
(BCI). Specifically, a BCI allows a subject to communicate and control the out-
side world without using the brain’s normal activity through peripheral nerves
and muscles. Messages are conveyed by spontaneous EEG activity or evoked by
muscle contractions that are otherwise used for communication through speech
and writing. People with severe neuromuscular disorders, or sometimes those
completely paralyzed, benefit greatly from a BCI that offers them basic com-
munication skills through which they can express themselves, for example, by
checking a spelling program or operating a neuroprosthesis [7].

An equally important role in the analyzes is played by the analysis of EDA
activity [8] that represents the measure of skin conductivity and is the physi-
ological measurement of the flow of electricity through the skin. It is used to
provide information regarding changes in the sympathetic nervous system, an
indicator of cognitive fatigue and emotions. EDA recordings can be obtained
using a bipolar montage from the palmar sites of the hand (such as two fingers)
or from the feet where the highest density of sweat glands is observed.

The contribution of this paper lies in a study that compares two types of
biosignals, EEG and EDA, with the aim of measuring the workload of partic-
ipants during different types of tests, including a collaborative robotics exper-
iment using the Nyrio Ned robot. The EEG signals were recorded using the
Enobio20 helmet and were processed with an automatic algorithm that allows
pre-processing operations (data removal, downsampling, rereference, filter appli-
cation, bad channels removal) and application of independent component anal-
ysis (ICA) algorithm for artifact removal. In particular, to facilitate the identifi-
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cation of ocular artifacts, two Sticktrode electrodes were used for the acquisition
of electroculographic (EOG) signals. EDA activity was recorded by means of
a BITalino (R)Evolution using a bipolar montage from the palmar sites of the
hand. In this way it is possible to evaluate the degree of accuracy of the indices
found in the literature for the assessment of mental fatigue during human-robot
collaboration tasks.

2 Materials and Methods

2.1 Partecipants

A total of three male university students (age = 22 ± 1 years old) were analyzed.
Participants gave written and informed consent to participate in the study. The
only exclusion criterion from the following study relates to the fact that users
were not to be subjected to diseases or drugs affecting the nervous system.

2.2 Experimental procedure

Before starting the study, participants were instructed on the procedures and
protocol requirements during the different trials. All participants underwent a
period of familiarization with the equipment required for the test as they had
no experience with robots. The experimental room was calm and the light and
temperature were continuously regulated. Participants conducted four different
types of experiments: (A) listening to music, (B) watching a video, (C) perform-
ing human-robot collaborative assembly, and (D) solving sudoku game. In the
first test, the user had to remain relaxed with his eyes closed listening to clas-
sical music with earphones, as shown in Fig. 1. In the second test, the user had
to remain relaxed while watching a video on a computer. The third test, which
consists of a collaborative robotics experiment, was organized in three tasks
(C.1,C.2,C.3) of increasing difficulty. During these tests, the users had to assem-
ble different figures by using “Duplo” bricks, supplied to them in a dedicated
unloading box located inside the workstation through pick & place operations.
Bricks were provided to the user in sequential or random order, depending on
the task, by a robot, namely Niryo Ned robot [9], and a conveyor equipped with
a proximity sensor. In particular: regarding C.1, the user has to assemble one
figure, the blocks of which are passed to him in order of construction and can
see the photo of the figure at any time. About C.2, the user has to assemble two
figures, whose blocks are passed to him in order of construction and in random
order, moreover he can see the photo of the figures once only. Regarding C.3,
the user must assemble three figures, whose blocks are passed in order of con-
struction and in random order and by means of a conveyor, moreover they can
constantly see a drawing with different types of figures inside. The setup for this
test is shown in Fig. 2. In particular, the six constructions shown in Fig. 3 were
used during these tests, for a total of 44 pieces. In the fourth test, the user had to
stay focused on playing a Sudoku puzzle of medium difficulty with a time limit.



4 Andrea Ruo et al.

Fig. 1. Experiment setup when subjects were listening to music.

Between each experimental test (A, B, C, D) there was a pause of 3 minutes
in order to prepare the experimental setup for the following test. This does not
apply to the sub-tasks C.1, C.2, C.3 which have been carried out in sequence.

Considering successive improvements due to pilot testing, the enrolled partic-
ipants performed the following tests: Subject 1 did A, C, D; Subject 2 executed
A, B, C; Subject 3 performed C.

During all the tests the participants were subjected to the acquisition of
the EDA activity. At the end of the experiment, the participants had to fill
in a questionnaire to collect their personal evaluation regarding their state of
relaxation and concentration during the various tests.

2.3 Instruments

The EEG data was evaluated using the Neuroelectrics Enobio20 device [10], a
wireless electrode system, using a referential montage. The device is shown in the
middle panel in Fig. 4. EEG was recorded from 19 scalp locations, according to
the international 10-20 system: 17 EEG electrodes were Enobio NG Geltrode us-
ing electrode gel and 2 EOG electrodes were Enobio Stricktrodes. With reference
to Fig. 5, the considered electrodes included frontal (Fz, F3, F4, F7, and F8),
central (Cz, C3, and C4), temporal (T3, T4, T5, and T6), parietal (Pz, P3 and
P4) and occipital (O1 and O2) locations, and two EOG electrodes (EOG1 and
EOG2). Data were collected thorugh the software Neuroelectrics® Instrument
Controller (NIC2) [11], which allows a computer to interact with Neuroelectrics
devices. The electrodes placed in the mastoids served as a reference while record-
ing on NIC2. A sampling rate of 500 Hz was used. The EEGLAB 2021.1 toolbox
(MATLAB 2021.a) was used for preprocessing and data analysis. Raw data were
filtered with a 50 Hz notch filter and a band pass filter with bandwidth 0.1–30
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Fig. 2. Setup for the human-robot collaboration test.

Hz. Artifacts were corrected using independent component analysis (ICA). Spec-
tral analyses were performed for the difficulty level of each test using MATLAB.
The data were grouped into Theta (4–8 Hz), Alpha (8–12 Hz), and Beta (13–29
Hz) frequency bands.

As regards EDA recordings, we used BITalino (R)Evolution device, which
is shown in Fig. 6. It is a kit of components for the detection of physiological
data and is composed of a series of sensors designed to collect a large number of
biological signals, from the measurement of muscle to heart activity, from small
electrical signals coming from the skin to the detection of body movements.
A microcontroller receives these analog signals and converts them into digital
signals. EDA recordings were processed considering the approach in [13], using
the software Weka [12].

Regarding the collaborative robotics experiment, the robot Niryo Ned, shown
in Fig. 7, was used. It has the following characteristics: (a) Number of axis: 6;
(b) Weight: 6.5 kg;(c) Payload: 300 g; (d) Max Reach: 440 mm; (e) Precision:
0.5 mm; (f) Communications: Ethernet 1 Gb/s, WIFI 2.4GHz & 5GHz - 802.11
g/g/n/ac, Bluetooth 5.0 BLE, USB.

2.4 Statistical Analysis

After carrying out ICA, the dataset was divided into epochs of 5 seconds, for a
trade off between computational burden and reliability of results. In each epoch
the spectral powers (µV/Hz) of the Alpha, Beta, Theta bands of the channels
were calculated, considering the channels reported in Table 1. Moreover, we
computed the state-of-the-art indices reported in Table 2 [14], [15], [16], [17].
In the literature it has been found that: i) Theta variation determines fatigue
and mental workload; ii) Alpha variation decreases with arithmetic tasks and
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Fig. 3. Figures to be assembled in the human-robot collaboration test.

increases with creative thinking; iii) Beta variation refers to visual attention
and short-term memory; iv) BAT determines involvement in tasks and mental
effort; v) TA refers to increased mental load; vi) TA ASS provides the same
measurement of TA, with the difference that it is obtained from the ratio of two
absolute measurements that are obtained from certain channels on the scalp.

Table 1. Spectral powers for the different frequency bands.

Rhythm Power Cortical Area Channels

Theta variation Frontal e Temporal F7, F3, F4, F8, Fz, T7, T8

Absolute theta variation Frontal Fz

Alpha variation Parietal e Occipital P7, P3, P4, P8, Pz, O1, O2

Absolute Alpha variation Parietal Pz

Beta variation Frontal F7, F3, F4, F8, Fz

3 Results

After data processing, plots of each recording were created for each subject.
Figures 8, 9 and 10 show spectral powers and synthetic indices for Subject 1
in the different phases of the test (with reference to Subsec. 2.2, music, three
collaborative tasks with the robot and Sudoku test).
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Fig. 4. Enobio20 device.

Fig. 5. Channel locations according to the international 10-20 system.
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Fig. 6. BITalino (R)Evolution Kit.

Table 2. Indices for comparison among frequency bands.

Indices Definition

BAT Beta
(Alpha+Theta)

TA Theta
Alpha

TA ASS ThetaAss
AlphaAss

In addition, minimum, average and maximum values of each parameter of
interest (see Tables 1 and 2) were computed. These are reported in Fig. 11.

Finally, as regards EDA activity, Fig. 12 plots recordings of Subject 1. It is
noteworthy that an increase in the amplitude of the processed signal indicates
an increase in stress and cognitive load on the user. Hence, Fig. 12 shows that
Subject 1, according to the EDA activity, was more stressed during the tests at
high workload (D, C.1, C.3) and less concentrated while listening to music (A).

4 Discussion

Comparing the results obtained from the comparison of the two biosignals with
the replies to questionnaire, it was possible to carry out an analysis of the indi-
cators present in the literature for the analysis of EEG signals. In particular, the
green tag in Fig. 11 has been attributed to the very good indices and the yellow
tag to the sufficiently good indices. With reference to Subsec. 2.4, it was found
that: (a) MAX THETA represents a very very good index for mental fatigue
assessment. It is present when there is mental fatigue and high concentration
and cognitive load. (b) MAX ALPHA represents a very good index. It is present
with high values when subjects had closed eyes, otherwise high values were found
during creative thinking due to mental effort. (c) MAX BETA is a sufficiently
good index. It is related to visual awareness and is present when there is an
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Fig. 7. Niryo Ned robot.

increase in working memory. There were discrepancies in all participants with
respect to the questionnaires. (d) MEAN THETA ASS is a very good index. It
is related to the average concentration of the tests. (e) MEAN ALPHA ASS is
a very good index. It is present with high values when subjects had closed eyes
or during creative thinking due to mental effort. (f) MAX BAT is a sufficiently
good index. It is related to mental effort. It has a discrepancy in Subject 2 as it
should have a higher value in Task 2. (g) MAX TA is a very good index. It is
related to the high cognitive load. (h) MIN TA is a very good index. It is related
to low cognitive load. (i) MEAN TA ASS represents a sufficiently good index.
It is related to the average stress during the tests, but did not prove reliable in
our tests

On the basis of the considerations set out above, as regards Subject 1, it is
possible to conclude that: (a) From the spectral power of the Theta rhythm,
calculated in F7 - F3 - F4 - F8 - Fz - T7 - T8, it can be deduced that C.2
was by far the test that required the least mental effort; (b) From the spectral
power of the Alpha rhythm, calculated in P7 - P3 - P4 - P8 - Pz - O1 - O2,
it can be deduced that, during C.3 and D, an increase in creative thinking was
found, probably due to to a mental effort; (c) The BAT index confirms a state
of high concentration during D; (d) The TA index confirms a high workload
during C.1, C.3, D and a reduced workload during A as the user is particularly
relaxed. These results can be considered in agreement with those obtained from
the analysis of the electrodermal activity, where C.1, C.3, D were found to be
the experiments with greater amplitude value than the C.2, A.
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Fig. 8. Spectral powers and synthetic indices for Subject 1 while listening to relaxing
music (A).

5 Conclusion

In conclusion, within this paper, two different types of biosignals, EEG signals
and EDA activity, were analyzed by means of experiments designed specifically
to cause different cognitive loads to the participants. In particular, a collabora-
tive robotics experiment was developed to analyze in more detail the degree of
stress and concentration on test subjects during engagement tasks with a robot.
Recorded data were processed by means of EEGLAB for the EEG signals and
Weka for the EDA activity and analyzed to in terms of spectral powers of the
rhythms (Alpha, Beta, Theta) and the indices of workload present in the lit-
erature. Results have shown that spectral powers and state-of-the-art synthetic
indices can be reliable indicators of workload during activities of everyday life
and collaborative robotics experiments. In particular, in the participants, an in-
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Fig. 9. Spectral powers and synthetic indices for Subject 1 while performing three tasks
of human-robot collaboration (C).

crease in the Theta rhythm was found during the more complex tasks in the
frontal and temporal area, and a greater creative thinking. Moreover, we found
an increase in the Alpha rhythm in the parietal and occipital area during the
more difficult tasks, likely caused by creative ideation and divergent thinking,
as the subject was looking for alternative solutions.

6 Future works

This study represents a preliminary investigation and the achieved results need to
be consolidated over a larger number of subjects. Additionally, a possible future
development may be to measure cognitive load by calculating the average blink
rate using EEGLAB’s Blinker Tool. This tool allows the automated extraction
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Fig. 10. Spectral powers and synthetic indices for Subject 1 while performing a Sudoku
test (D).

of ocular indices from EEG, thus allowing large-scale [18] analysis. Therefore,
it could be potentially interesting to analyze the users workload by means of
another parameter deriving from the EOG signals. A second possibility of future
development of this work may be to use the TPC/IP socket, made available by
NIC2, to transmit data to any TCP/IP compatible application in real time.
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(a)

(b)

Fig. 11. Minimum, mean and maximum value of spectral powers and synthetic indices
for each test participant, in each phase of the experimental procedure.
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Fig. 12. EDA activity for Subject 1.
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