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A B S T R A C T

Although high-resolution digital surface model (DSM) data derived from lidar surveys can describe land
surface macrostructures like trees and buildings, digital terrain model (DTM) data obtained by filtering out
these macrostructures are commonly used in flood inundation models. In the present study, it is shown for
the first time that DSM data can be used directly in flood inundation models by employing automatically-
extracted ridges as breaklines for the generation of geomorphologically-informed meshes (GIMs). Even under
the simplifying assumption of impermeable macrostructures, especially when GIM refinement is applied, the
use of DSM data in preference to DTM data leads to significant improvement in flood predictions. By comparing
simulations and observations for a real flood inundation, it is found that the direct use of 1-m DSM data in
place of the related DTM data leads to a 42% improvement in predicted flood area, a 36% improvement in
predicted flood areal position, and a 25% improvement in predicted times of travel.
1. Introduction

Flood inundations cause billions of dollars of damage and loss of
life worldwide (Orlandini et al., 2015; Parker, 2017). To mitigate the
adverse impacts of flood inundations, it is essential to understand
and predict how inundating flows interact with the Earth’s land sur-
face (Merz et al., 2010; Bedient et al., 2013, p. 560; Sanders et al.,
2020; Wang et al., 2023). The Earth’s land surface is comprised of
rocks, soil, vegetation, water bodies, snow, ice, infrastructures, and
urban fabrics (Leopold et al., 1964, p. 3; Harvey, 2022, p. 2). Detailed
characterizations of the land surface are needed to describe overland
and channel flows in drainage basins, river flows, and floodwater prop-
agation over natural and developed flood plains occurring when flow
capacity of streams is exceeded or when levees and dams fail (Bates and
De Roo, 2000; Horritt and Bates, 2001; Camporese et al., 2010; Dottori
et al., 2013; Costabile and Macchione, 2015; Moretti and Orlandini,
2023). Specifically, land surface topography plays an essential role in
flood plain inundation modeling (Longley, 2005, p. 4; Yu and Lane,
2006a; Sanders, 2007; Costabile and Macchione, 2015; Medeiros et al.,
2022; Moretti and Orlandini, 2023). Land surface topography affects all
variables describing surface flows including flow depth, water-surface
slope, mean flow velocity and flow discharge (Casas et al., 2006; Az-
izian and Brocca, 2020). It is relevant to describe both magnitude and
timing of these variables in order to determine the interactions between
inundating flows with both natural and human-made structures in land
planning and emergency management (Yu and Lane, 2006b; Sanders
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and Mrše, 2007; Tsubaki and Fujita, 2010; Schubert and Sanders,
2012).

Surface flow propagation along fluvial systems and flood plains is
commonly described by solving numerically one- or two-dimensional
De Saint-Venant unsteady flow governing equations combined with
Darcy-Weisbach or Manning-type constitutive equations for resistance
to flow (Katul et al., 2002, 2011; Kim et al., 2012). Constitutive
equations are essential to quantify friction slope as a function of flow
discharge, hydraulic geometry variables, and resistance coefficients
(Chow et al., 1988, p. 33; National Academies of Sciences, Engineering,
and Medicine, 2024). For the purpose of describing surface flow prop-
agation, the term microtopography can be used to denote land surface
features (topographic microstructures) that are not described as part
of channel or flood plain hydraulic geometry but rather contributes
to resistance coefficients as land surface roughness. Although the term
microtopography is often used to denote land surface features having
height less than 15 m, the limit between micro and macrotopogra-
phy (or topographic micro and macrostructures) is clearly smaller
for the specific purpose of the present study. High-resolution digital
surface model (DSM) data derived from lidar surveys can describe
topographic macrostructures like trees and buildings. However, digital
terrain model (DTM) data obtained by filtering out these macrostruc-
tures are still commonly used in flood inundation models (Sanders,
2007). In existing studies, the effects of natural and human-made topo-
graphic macrostructures on surface flow propagation are not described
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explicitly from DSM data as part of the land surface hydraulic geometry
but rather reconstructed in some way from DTM data or incorporated
as part of the land surface roughness contributing to resistance coeffi-
cients (Pappenberger et al., 2006; Schubert et al., 2008; Chow, 1959,
p. 98; Mays, 2010, p. 113; Brandimarte and Woldeyes, 2013). In order
to improve the description of the land surface, Yu and Lane (2006a)
suggest that a subgrid refinement of regular computational grids is
needed. Liang et al. (2007) proposed to describe buildings in flood
inundation models as sponges so that they can absorb floodwater and
exercise their effects of floodwater dynamics. Sanders et al. (2008)
proposed an integral form of unsteady flow (shallow-water) equations
by introducing the concept of anisotropic porosity for urban flood
modeling. Sanders et al. (2008) also suggest that the classical unsteady
flow equations are suitable to describe surface flow propagation when
unstructured meshes are sufficiently detailed to describe land surface
macrostructures explicitly. Kim et al. (2015) investigate the errors of
models based on the concept of anisotropic porosity which arise from
the occurrence of obstacles unevenly distributed in the direction of
transverse and longitudinal flows. Alternatively, Guinot et al. (2017)
present models where the porosity and flow are described as separate
variables for both control volumes and boundaries.

In addition, Tsubaki and Fujita (2010) suggest a classification of
land surface macrostructures based on high-resolution DTM data by
using wall boundaries for buildings and roughness coefficients for veg-
etation. Sanders and Mrše (2007), Schubert et al. (2008), and Schubert
and Sanders (2012) test four methods for the description of buildings
in urban areas, where a building roughness is used, or buildings are
represented by altering the original topographic data, or holes in the
computational domain are simply used to represent impervious parcels
to the flow, or a building porosity is used to estimate a cell-based
porosity, and edge-based porosity, and a cell-based frontal area. It is
found that some description of land surface macrostructures is essential
to reproduce local flow velocities (Schubert and Sanders, 2012). None
of the four proposed methods, however, provide an explicit description
of land surface macrostructures. Garousi-Nejad et al. (2019) proposed
an empirical method based on the height above neighbor drainage
(HAND) concept, where synthetic flow rating curves are estimated
from high-resolution topographic data and used for mapping, model-
ing, and predicting flood inundations of urban areas. As pointed out
by Ghanghas et al. (2022), however, synthetic flow rating curves are
based on the assumption of steady flow and do not reproduce the
same effects resulting form the solution of unsteady flow equations
with explicit description of land surface micro and macrotopography.
Li et al. (2022) find a significant uncertainty associated with models
based on the HAND concept. Hocini et al. (2021), Chaudhuri et al.
(2021), and Aristizabal et al. (2023) propose alternative solutions to
reduce these uncertainties.

A special effort is made to incorporate the information content of
high-resolution topographic data into 2D hydrodynamic models (Marks
and Bates, 2000; Mason et al., 2003; Begnudelli and Sanders, 2007;
Schubert et al., 2008; Garousi-Nejad et al., 2019). Existing studies
highlight that uncertainty in the elevation of macrostructures such as
vegetation, buildings, levees, and other human-made structures signif-
icantly affect simulation results (e.g., Hocini et al., 2021). Bates et al.
(2003) explicitly express the need for methods to identify and connect
linear topographic features in high-resolution topographic data. Espe-
cially in lowlands, delineating blockage and overtopping elements such
as levees and flood walls is found to be essential to obtain reliable flood
hazard assessments (Kahl et al., 2022). The LANDMARK algorithm
developed by Moretti and Orlandini (2023) is particularly useful to
describe flow barriers in flood inundation modeling. This algorithm
automatically extracts ridge networks from high-resolution topographic
data in a geomorphologically-meaningful manner without altering the
original topographic data. Selected elements of the ridge network can
be used as breaklines to generate geomorphologically-informed meshes
2

(GIMs) having a greater potential than geomorphologically-uniformed t
meshes (GUMs) to preserve the detail of high-resolution topographic
data only where it is relevant to flood inundation modeling (Moretti
and Orlandini, 2023). The capability of LANDMARK to describe ex-
plicitly land surface macrostructures from DSM data, however, has not
been tested so far. In facts, there is significant potential for improving
existing 2D flood inundation models by applying novel terrain analysis
methods to DSM data. Three research questions arise. First, can high-
resolution DSM data be used to describe explicitly trees and buildings
in 2D flood inundation models? Second, can advanced terrain analysis
methods provide suitable GIMs for the explicit description of trees
and buildings in 2D flood inundation models? Third, what is the
improvement brought by the use of DSM data in preference to DTM
data in terms of predicted flood area, flow depth, and times of travel
of inundations?

In the present study, these three research questions are addressed
by using high-resolution DSM data, advanced terrain analysis methods,
and suitable flood inundation models. Land surface macrotopography
is loosely defined as topographic variability on a scale that can be
described by high-resolution topographic data and existing terrain
analysis methods. Macrotopography is assumed to describe land surface
macrostructures like trees and buildings having a prominence greater
than or equal to 0.25 m. Microtopography encompasses topographic
structures having a prominence less than 0.25 m and land surface
roughness. Under this light, the modeling strategy investigated in the
present study make use of all the information content of high-resolution
DSM data to describe explicitly the land surface macrostructures, by
leaving to flow resistance coefficients the role to describe the effects of
all topographic microstructures that are not captured by topographic
data. The LANDMARK algorithm developed by Moretti and Orlandini
(2023) is used to extract automatically the ridge network from DSM
data. Unstructured meshes that adapt to selected ridges (GIMs) are
then generated within the HEC-RAS 2D flood inundation model to
describe explicitly topographic macrostructures as part of the land
surface hydraulic geometry. With respect to the existing methods, DSM
data are used in preference to DTM data, and GIM refinement is applied
in preference to GUM refinement. Innovative terrain analysis methods
coupled with the HEC-RAS 2D flood inundation model are described in
Section 2 by referring to a real flood inundation occurred in northern
Italy in 2020. The simulation of this flood inundation is compared
with observations in Section 3. Results are discussed in Section 4 and
conclusions are synthesized in Section 5.

2. Materials and methods

2.1. Study area and flood inundation event

The geographical area of the Po River valley located in north-
ern Italy on the right-hand side of the Panaro River near the town
of Modena is considered to be a representative example of a low-
land terrain markedly shaped by natural and human-made topographic
structures. Part of the considered area is shown in Fig. 1. In the morning
of 6 December 2020, the right-hand side levee of the Panaro River
located between the towns of Gaggio and Bagazzano (44◦39′6.4′′N,
0◦59′01.2′′E) failed and the surrounding areas were inundated (Figs. 1a
nd 1b). The levee failure occurred during a flood event generated
y rainfall, rainfall-on-snow, and snowmelt in the 890-km2 drainage
asin contributing to the flood control reservoir located in San Cesario.
ore precisely, from 4 December 2020, 199 mm of precipitation fell on

anaro River drainage basin and the progressive increase in tempera-
ure caused a snowmelt of about 20 mm. The water-surface elevation
f the San Cesario flood control reservoir rose rapidly reaching the
aximum of 39.96 m asl (above sea level) on 6 December 2020 at
:45. The flood hydrograph released by the flood control reservoir
aused the levee failure on 6 December 2020 at 6:30 (supporting
nformation, Figs. S1–S3). About 8×106 m3 of floodwater spilled out of

he riverbed by spreading over the surrounding rural and urban areas.
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Fig. 1. Planimetric view of the study area and of the considered flood inundation event. (a) Simulated flood areas are represented by blue shades. Observed flood areas are those
bounded by the red dotted line. The levee failure occurred on 6 December 2020 is shown in inset b (courtesy of ‘‘Agenzia Interregionale per il fiume Po’’). Land surface topography
is described by a 1-m digital surface model (DSM). Inset c is also used in Fig. 3. Inset d including the town of Nonantola is used in Fig. 4.
Due to the natural slope of the land, the floodwater spread in a North-
East direction and reached the town of Nonantola in a few hours. The
failed levee was repaired within 24 h by limiting the flood area to
18.07 km2.

2.2. Data sources

The high-resolution topographic data used in the present study were
generated from point clouds obtained through lidar surveys. A first
lidar survey was carried out by the Italian ‘‘Ministero dell’Ambiente,
della Tutela del Territorio e del Mare’’ (Rome, Italy) in 2008 for most
of the study area (Fig. 1). A second lidar survey was carried out by
the ‘‘Agenzia Interregionale per il fiume Po’’ (Parma, Italy) in 2015
for the Panaro River extending upstream to the flood control reservoir
located in San Cesario. A third lidar survey was carried out by the
‘‘Agenzia Interregionale per il fiume Po’’ (Parma, Italy) in 2017 for the
lowland lying on the right-hand side of the Panaro River. From point
clouds, DSM and DTM data are generated as sketched in Fig. 2 for rural
(Fig. 2a) and urban (Fig. 2b) areas. A DSM is an elevation model that
captures both the environment natural (Fig. 2a) and artificial (Fig. 2b)
3

features. A DSM describes the elevation of the top reflective surfaces.
A DTM is bare earth elevation model. A DTM is often obtained from
the DSM by filtering out topographic macrostructures like trees and
buildings (Petrie and Kennie, 1987; Guth, 2006). A 1-m DSM and the
corresponding DTM obtained by filtering out trees and buildings are
available for the study area (Fig. 1). The elevation profile within the
selected computational domain spans from 2.9 to 52.3 m asl, with an
average elevation of 25.7 m asl. The point density in the surveys is
greater than 1.5 points/m2. The corresponding DTM exhibits a vertical
accuracy not greater than 15 cm and a planimetric accuracy not greater
than 30 cm (Di Martire et al., 2017).

The Italian Fire Department conducted a thorough survey to de-
lineate the extents of inundated zones (Fig. 1). The acquired data
were used to evaluate flood inundation models. River stage and flow
data were available for the considered flood event. Stage hydrographs
immediately upstream and downstream the San Cesario flood control
reservoir were used to determine the released flow hydrograph dur-
ing the flood event from experimental reservoir outflow characteristic
relationships. This flow hydrograph gives the upstream (Neumann)
boundary condition for the flood wave propagating along the Pa-
naro River (supporting information, Fig. S1). Other stage hydrographs
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Fig. 2. Explicit description of land surface macrostructures as given by a digital surface model (DSM) in (a) rural and (b) urban areas. Point clouds are often obtained from a
lidar survey. The digital terrain model (DTM) is often obtained from the DSM by filtering out macrotopographic structures like trees and buildings.
and related uniform flow rating curves were used for the stations of
Navicello, Bomporto, and Bondeno to give the downstream boundary
condition for the flood wave and to corroborate results obtained from
a riverflow propagation model (supporting information, Figs. S2 and
S3). A (Cauchy) downstream boundary condition was assigned in the
present study by using the uniform flow rating curve at the station
of Bondeno. The validated flood wave propagation model was used to
estimate the flow hydrograph released by the levee to the surrounding
rural and urban areas.

2.3. Land surface characterization

The 1-m DSM is used to describe land surface macrostructures over
an area of 847.88 km2. This area is shown in part in Fig. 1. The
areal extension of vegetation canopies is 44.92 km2 (5.3%), the areal
extension of buildings is 102.64 km2 (12.1%), and the areal extension
of the remaining land surface is 700.32 km2 (82.6%). The land surface
area that is not covered by vegetation canopies or buildings is covered
by short vegetation (601.11 km2, 70.9%) or infrastructures (99.21 km2,
11.7%). The vegetation canopy height, as determined from the dif-
ference between DSM and DTM data, ranges from 1.87 to 30.31 m
and has an average value of 14.09 m. The short vegetation height, as
determined from the difference between DSM and DTM data, ranges
from 0.00 to 0.38 m and has an average value of 0.04 m. Land surface
macrostructures such as trees and buildings are not filtered out, but
rather incorporated in flood inundation models as part of the flood
plain hydraulic geometry. An attempt to describe explicitly land surface
macrostructures from DSM data is made under the simplifying assump-
tion that macrostructures are impermeable. No attempts are made,
for instance, to reproduce storage and flow across vegetation canopies
and buildings. When land surface macrostructures described by DSM
data are filtered out and the obtained DTM data are used in flood
inundation models, trees and buildings are considered to be completely
permeable by floodwater and flow resistance coefficients are used to
also represent the blocking effects due to these macrostructures. In
facts, vegetation canopies and buildings are not completely permeable
nor impermeable, and specific efforts are needed to determine the
4

hydraulic permeability of these macrostructures. The present study
just compares with observations flood simulations where land surface
macrostructures are described explicitly from DSM data as impermeable
obstacles and flood simulations where land surface macrostructures
are filtered out and DTM data are used in combination with flow
resistance coefficients also representing the blocking effects due to
macrostructures. The assumption of permeable macrostructures will be
explored in future studies as a next logical step.

To obtain accurate and efficient simulations of flood inundations,
ridges (lines of intersection at the top between opposite slopes) iden-
tifying in particular land surface macrostructures are extracted from
DSM data, and unstructured computational meshes adapting to the ex-
tracted ridges are used. These meshes are denoted in the present study
as GIMs (geomorphologically-informed meshes), as opposed to GUMs
(geomorphologically-uninformed meshes) where mesh elements do not
necessarily adapt to extracted ridges. GIM generation and refinement is
therefore supported by the extraction of ridge networks at the desired
level of detail. GUM generation and refinement, instead, is just based
on the definition of the planar domain and of refinement regions within
this planar domain. Ridge networks are extracted from DSM data in a
fully-automated manner by using the LANDMARK algorithm described
in Moretti and Orlandini (2023). High-resolution topographic data are
not altered. Neither coarsening nor depression filling is applied. Depres-
sions and nested systems of endorheic and exorheic basins are rather
handled by the LANDMARK algorithm. In this way, trees and buildings
are incorporated in the land surface characterization as they result from
the lidar survey of the highest reflective surface. The impact of DSM
data is evaluated by also considering the related DTM data obtained
by filtering out trees and buildings. In both cases, the obtained ridge
networks are used as bases for the determination of GIMs as shown in
Fig. 3. The use of DSM data is reported in Figs. 3a and 3b, whereas
the use of DTM data is reported in Figs. 3c and 3d. Ridge networks
at different levels of detail are extracted by setting a critical dispersal
area for ridge network representation 𝑆𝑐 (Moretti and Orlandini, 2023).
A further threshold is introduced then to select along the extracted
ridge networks only those ridges that display a prominence with respect

to the average elevation of the terrain in the dispersal area greater
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than or equal to a threshold value 𝑃𝑡 (Moretti and Orlandini, 2023). In
Fig. 3, the level of detail with which the ridge network is represented
is selected by setting 𝑆𝑐 equal to 10 m2 (Figs. 3a and 3c) and 5×105 m2

Figs. 3b and 3d), and 𝑃𝑡 always equal to 0.25 m. The extracted ridges
re used as breaklines to identify relevant surface flow barriers, and
nstructured meshes are generated in such a way that mesh cell edges
dapt perfectly to these breaklines so that the profile of land surface
acrostructures given by DSM data is perfectly assimilated along mesh

ell edges.
GIMs are obtained by using the domain boundary and the ridge

etwork as breaklines. A breakline is a line used to connect data
epresenting a distinct land surface feature, like a domain boundary,

ridgeline, or a flowline of a ditch or stream. The mesh generator
ncluded in the Hydrologic Engineering Center’s (HEC) River Analysis
ystem (RAS) developed by the US Army Corps of Engineers is used
n the present study (Hydrologic Engineering Center, 2016, 2022).
reaklines are incorporated by the HEC-RAS mesh generator in accor-
ance with an assigned point spacing. When a breakline is defined, the
EC-RAS mesh generator seeks a Voronoi tessellation that follows the
reakline by placing polygon edges coincident with the breakline seg-
ents. This ensures that the features in the land surface are accurately
epicted in the computational mesh by forcing cell faces to have the
levation values of the ridges observed in DSM data. Far from assigned
reaklines the Voronoi tessellation is unconstrained and therefore gives
regular mesh. Results obtained from the HEC-RAS mesh generator

re generally satisfactory and can be made as accurate as desired
y applying some mesh refinement in points when Voronoi polygons
dges are not found to adapt perfectly to the assigned breaklines. The
roblem of determining the optimal Voronoi tessellation that adapts to
ssigned ridge networks is beyond the scope of the present study, but
ertainly deserves to be addressed in a future specific research effort.
t is remarked that ridges and breaklines can in principle be identified
nd incorporated in HEC-RAS 2D independently from LANDMARK, but
n practice this process becomes a prohibitive task without LANDMARK
s the level of mesh refinement increases.

Six different scenarios of GIMs generated from DSM data are con-
idered as shown in Fig. 4. GIMs are obtained by setting 𝑆𝑐 equal to 10,
02, 103, 104, 105, and 106 m2 and 𝑃𝑡 always equal to 0.25 m (Fig. 4a, 4b,

4c, 4d, 4e, and 4f, respectively). Unstructured computational meshes
are composed of elements having size ranging from about 5 m × 5 m
to 200 m × 200 m. The number of cells depends on the number of
assigned breaklines. In the case of the most detailed unstructured mesh
(𝑆𝑐 = 10 m2, 𝑃𝑡 = 0.25 m, Fig. 4a), 2642 breaklines and 173,268
mesh elements are obtained. With a 5-m regular grid the number of
grid cells would be about 34 × 106, which is up to 200,000 times
higher than in unstructured meshes, with clear implications on model
efficiency. In addition, mesh elements of the unstructured mesh better
adapt to extracted ridges than cells of a regular grid having fixed
orientation. The modeling strategy adopted in the present study distills
in a geomorphologically-meaningful manner the detail offered by DSM
data in such a way that the topographic detail is maximum where it is
needed and it is relaxed where it is not essential. Unstructured meshes
are evaluated in the present study by combining the use of DSM and
DTM data as well as GIM and GUM refinement as reported in

Table 1. In both the cases in which DSM and DTM data are used,
the parent GUM is set equal to the parent GIM obtained by setting
𝑆𝑐 = 106 m2 and 𝑃𝑡 = 0.25 m (case 1 in Table 1). From these parent
cases, GIM and GUM refinements are applied by resulting in refined
meshes exhibiting the numbers of cells reported in Table 1 (cases 2–
6). The use of the obtained unstructured meshes in flood inundation
modeling is described in Section 2.4.

2.4. Flood plain inundation modeling

Flood plain inundation modeling with explicit description of land
surface macrostructures is investigated in the present study by com-
5

bining the HEC-RAS 2D flood inundation model and the LANDMARK
Table 1
Number of cells in geomorphologically-informed meshes (GIMs) and
geomorphologically-uninformed meshes (GUMs) generated from DSM and DTM
data.

Case 𝑆𝑐 (m2)a Number of cells

DSM data DTM data

GIM GUM GIM GUM

1 106 162,521 162,521 157,899 157,899
2 105 163,793 163,419 158,991 159,101
3 104 166,589 166,870 159,789 159,533
4 103 170,183 170,269 161,562 161,753
5 102 171,438 171,309 162,768 162,714
6 101 173,268 173,423 164,091 163,872

a The specification of 𝑆𝑐 is relevant to the generation of GIMs (cases 1–6) and of the
parent GUMs (case 1, which are set equal to the related parent GIMs). 𝑃𝑡 = 0.25 m in all
cases. LANDMARK and related parameters 𝑆𝑐 and 𝑃𝑡 are not used in GUM refinement
(cases 2–6), which is applied by assigning refinement regions to the parent GUMs
(case 1).

algorithm for the extraction of ridge networks from high-resolution
DSM data (Hydrologic Engineering Center, 2016; Moretti and Orlan-
dini, 2023). The HEC-RAS 2D flood inundation model solves numer-
ically the 2D unsteady flow equations also known as shallow-water
equations (Hydrologic Engineering Center, 2020b, chapter 6, p. 3). The
HEC-RAS 2D ‘‘full momentum’’ solver (Eulerian–Lagrangian Method) is
used in the present study. Key ridges, encompassing levees, roads, rail-
way embankments, and land surface macrostructures are automatically
identified from 1-m DSM data using the LANDMARK algorithm (Sec-
tion 2.3). Ridges extracted by the LANDMARK algorithm are configured
as breaklines in HEC-RAS 2D and act as barriers to flow along the mesh
element faces. Land surface macrostructures described by the 1-m DSM
are fully assimilated by HEC-RAS 2D along the faces of mesh elements
only. Macrostructures that are not aligned with the mesh element faces
solely influence the distribution of surface water storage within the
mesh elements. The impact of land surface macrostructures on surface
water storage within the mesh elements is described approximately
when macrostructures are filtered out or assumed to be impermeable,
and needs to be investigated in future studies by using permeable
macrostructures. Resistance to flow is described in HEC-RAS 2D flood
inundation models by assigning a value of the Manning resistance
coefficient 𝑛 to each land use class identified in the study area and
by eventually performing some calibration. Eight land use classes are
identified in the study area and initial values of 𝑛 are assigned to
each class by following the recommendations given in the HEC-RAS 2D
manual (Hydrologic Engineering Center, 2020a, p. 21). The final values
of 𝑛 obtained for each land use class after calibration are reported in
Table 2. Different distributions of the Manning resistance coefficient
𝑛 are used in combination with DSM and DTM data to differentiate
the case where land surface macrostructures are described explicitly
and 𝑛 is only used to represent the effects of microstructures from the
case where land surface macrostructures are filtered out and 𝑛 is used
to represent the effects of both micro and macrostructures (supporting
information, Fig. S4). Manning’s 𝑛 are assigned by HEC-RAS 2D to each
mesh cell face by using the value of the underlying land use class in
the face midpoint. Examples of extracted breaklines and obtained flood
inundation maps at the single-house scale are shown in Fig. 5 for the
DSM-based model with the finest GIM (𝑆𝑐 = 10 m2, 173,268 cells,
Figs. 5a and 5b) and the DTM-based model with the finest GIM (𝑆𝑐 =
10 m2, 164,091 cells, Figs. 5c and 5d). The more realistic flow paths
and waterlogging shown in Fig. 5b is directly connected to the ability
of DSM data and GIM refinement to identify the geometry of buildings.
Ridges used as breaklines in Fig. 5 are parts of open tree networks as
expected from the LANDMARK algorithm.

Conventional performance metrics such as false alarm ratio (FAR),
critical success index (CSI), and probability of detection (POD), as well
as error functions such as mean error (ME), mean absolute error (MAE),
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Fig. 3. Geomorphologically-informed meshes (GIMs) in the inset c of Fig. 1 obtained from (a and b) digital surface model (DSM) data and (c and d) digital terrain model (DTM)
data. Ridges are extracted using LANDMARK by setting 𝑆𝑐 equal to (a and c) 10 m2 and (b and d) 5×105 m2 and 𝑃𝑡 always equal to 0.25 m. Extracted ridges are used as breaklines
in HEC-RAS 2D and GIMs are generated in such a way that mesh cell edges adapt perfectly to breaklines.
Table 2
Land uses and related Manning’s resistance coefficients.

Land use Manning’s 𝑛 (s m−1∕3)

DSM-based model DTM-based model

Panaro River 0.038 0.038
Flood Plains 0.082 0.082
Poor Vegetated Rural Area 0.060 0.065
High Vegetated Rural Area 0.060 0.080
Industrial Urban Area 0.060 0.140
Downtown Urban Area 0.060 0.160
Oldtown Urban Area 0.060 0.180
Drainage Network 0.025 0.025

root mean square error (RMSE), volume conservation error 𝑒𝑉 , type-1
error, and type-2 error are used to evaluate flood inundation models. By
considering simulated and observed flood areas as shown, for instance,
in Fig. 6 for event described in Section 2.1, three different areas can
be distinguished: (1) area denoted as true positive TP, which marks the
flood area that is simulated and observed; (2) area denoted as FP, which
marks the flood area that is simulated but not observed; and (3) area de-
noted as false negative FN, which marks the flood area that is observed
but not simulated. It is specified that the observed flood area (FN+TP)
is assumed to include the footprint of topographic macrostructures like
trees and buildings as these structures are normally flooded internally.
Areas TP, FP, and FN make it possible to define the quantities FAR, CSI,
and POD as

FAR = FP , (1)
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TP + FP
CSI = TP
TP + FN + FP

, (2)

and

POD = TP
TP + FN

, (3)

respectively. The FAR given by Eq. (1) is a verification measure of
categorical forecast performance equal to the number of false alarms
(FP) divided by the total number of event forecasts (TP + FP). The CSI
given by Eq. (2), also called the threat score, is a verification measure of
categorical forecast performance equal to the total number of correct
forecasts (hits, TP) divided by the total number of forecasts plus the
number of misses (hits + misses + false alarms, TP + FN + FP). The
POD given by Eq. (3) is a verification measure of categorical forecast
performance equal to the total number of correct event forecasts (hits,
TP) divided by the total number of events observed (TP + FN). The
perfect forecast gives a FAR equal to 0, a CSI equal to 1, and a POD
equal to 1. Type-1 error 𝐸1 accounts for the absolute difference between
observed and simulated flood areas independently of their positions,
and is expressed as

𝐸1 =
|FN − FP|
FN + TP

. (4)

Type-2 error 𝐸2 accounts for the nonoverlapping area, and is expressed
as

𝐸2 =
FN + FP
FN + TP

. (5)

Type-1 error given by Eq. (4) is an indicator of the difference between
simulated and observed flood areas regardless of the relative position
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Fig. 4. Geomorphologically-informed meshes (GIMs) in the inset d of Fig. 1 obtained from digital surface model (DSM) data and different detail in the description of the land
surface. Ridges are extracted by using LANDMARK with 𝑆𝑐 equal to (a) 10, (b) 102, (c) 103, (d) 104, (e) 105, and (f) 106 m2 and 𝑃𝑡 always equal to 0.25 m. Detail increases as 𝑆𝑐
decreases.
of these areas (Moretti and Orlandini, 2008). On the other hand, type-2
error given by Eq. (5) also accounts for the different areal position of
simulated and observed flood areas (Moretti and Orlandini, 2008). As
FN ≥ 0, TP ≥ 0, and FP ≥ 0, the occurrence 𝐸1 equal to 0 implies that
simulated and observed flood areas have the same magnitude but not
necessarily the same areal position, whereas 𝐸2 equal to 0 implies that
simulated and observed flood areas have the same magnitude and areal
position, namely a perfect overlap between the simulated and observed
flood areas.

Flood inundation models with GIM and GUM refinements exhibiting
similar number of cells are compared in Fig. 7 in terms of (a) FAR, (b)
CSI, and (c) POD. From the parent case of a GIM with 162,521 cells
obtained by setting 𝑆𝑐 = 106 m2 (case 1 in Table 1), refined GIM are
obtained by decreasing the values of 𝑆𝑐 (cases 2–6 in Table 1). The
related numbers of cells are 163,793, 166,589, 170,183, 171,438, and
173,268, respectively. Correspondingly, refined GUM are obtained from
7

the same parent case to obtain approximately the same numbers of
cells (163,419, 166,870, 170,269, 171,309, and 173,423, respectively,
in Table 1). For the numerical analysis of flood inundation models, FAR,
CSI, and POD are computed with respect to the most detailed solution
obtained for a GIM with 𝑆𝑐 = 10 m2 (173,268 cells), and not with
respect to observations are indicated in Fig. 6. FAR, CSI, and POD are
found to display comparable values with GUM refinement, indicating
that the HEC-RAS 2D ‘‘full momentum’’ solver is numerically stable
with respect to mesh refinement. Flood inundation model performance
are found to increase with GIM refinement as a result of the improved
ability of GIMs to describe the land surface topography as given by
DSM data. Simulation results change with mesh refinement as a result
of the change in the topographic characterization of a complex land
surface. The analysis reported in Fig. 7 indicates at the same time the
independence of simulations from GUM refinement (as expected from
the HEC-RAS 2D ‘‘full momentum’’ solver) and the improvement of
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Fig. 5. Extracted ridges used as breaklines (a and c) and flood inundation maps (b and d) at a single-house scale for (a and b) the DSM-based model with the finest GIM
(𝑆𝑐 = 10 m2, 173,268 cells) and (c and d) the DTM-based model with the finest GIM (𝑆𝑐 = 10 m2, 164,091 cells).
results with GIM refinement (as expected from the LANDMARK ability
to accurately describe the land surface). Mesh refinement has little
impact on simulation results if it is not supported by the introduction
of geomorphologically-informed breaklines at the subgrid scale.

The numerical convergence of the HEC-RAS 2D ‘‘full momentum’’
solver with respect to changes in time step is documented in Fig. 8.
Flood inundation models with the finest GIM (173,268 cells in Fig. 2)
and different time steps (𝛥𝑡 = 1, 5, 10, 30, 60 s) are compared in Fig. 8 in
terms of (a) FAR, (b) CSI, and (c) POD. For the numerical analysis of
flood inundation models, FAR, CSI, and POD are computed with respect
to the most detailed solution obtained for 𝛥𝑡 = 1 s, and not with respect
to observations are indicated in Fig. 6. Although the obtained FAR, CSI,
and POD display increasing or decreasing trend, the range of plotted
quantities indicate that flood inundation models exhibit comparable
performances across the considered time steps. ME, MAE, RMSE, and
𝑒𝑉 are computed with respect to the most detailed solution obtained
for 𝛥𝑡 = 1 s. The obtained value of ME, MAE, and RMSE are satisfac-
tory (supporting information, Fig. S5). Volume conservation error 𝑒𝑉
exhibits values on the order of 10−4 for 𝛥𝑡 ≤ 30 s, and on the order of
10−2 for 𝛥𝑡 = 60 s, which is anyway acceptable (supporting information,
Fig. S6). The numerical experiments reported above indicate that the
developed HEC-RAS 2D flood inundation models ensure stable results
with respect to (geomorphologically-uninformed) mesh refinement and
time step selection.
8

3. Results

HEC-RAS 2D flood inundation models with explicit description of
land surface macrostructures based on DSM data and GIM generation
are evaluated by comparing simulations and observations for the real
flood inundation event described in Section 2.1. Results obtained from
the proposed modeling strategy are compared to those obtained by
using DTM data where trees and buildings are filtered out. In addition,
GIM refinement is compared to GUM refinement. All cases reported
in Table 1 are considered. Flood inundation models are evaluated
in terms of flood areas, water-surface elevation, and flood times of
travel. Simulations start from 5 December 2020 at 00:00 and end on
8 December 2020 at 24:00. A computational time interval of 1 min is
used. The breach begins on 6 December 2020 at 6:30 and has a duration
of about 5 h by reaching a maximum length of about 70 m. During
these 5 h, a linear progression of the breach is assumed. The breach was
subsequently repaired in 24 h. For simulating a 4-day flood event with
the most detailed unstructured mesh (𝑆𝑐 = 10 m2, 173,268 cells, and
2,642 breaklines) with a laptop having an Intel® CoreTM i9–11900H
@ 4.9 GHz CPU and 64 GB RAM, a wall-clock time of 29 min 8 s is
needed.

Simulated and observed flood areas are compared in terms of FAR,
CSI, and POD across GIMs and GUMs exhibiting variable numbers of
cells for both DSM-based and DTM-based flood inundation models as
reported in Fig. 9. Even under the simplifying assumption of imper-
meable macrostructures, especially when GIM refinement is applied,
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Fig. 6. Comparison between simulated and observed flood areas. True positive (TP), false positive (FP), and false negative (FN) are filled in green, red, and blue respectively, for
(a) finest simulation based on DSM data and 𝑆𝑐 = 10 m2, (b) coarsest simulation based on DSM data and 𝑆𝑐 = 106 m2, (c) finest simulation based on DTM data and 𝑆𝑐 = 10 m2,
and (d) coarsest simulation based on DTM data and 𝑆𝑐 = 106 m2.
the use of DSM data in preference to DTM data leads to significant
improvement in flood predictions. Simulated and observed flood areas
are also compared in terms of type-1 and type-2 errors in Figs. 10.
Figs. 10a and 10b show the values of 𝐸1 and 𝐸2, respectively, for
each of the six simulated scenarios shown in Figs. 4a–4f and for the
six corresponding scenarios in which DTM data are used in place
of DSM data, where in all cases the critical dispersal area for ridge
network representation 𝑆𝑐 varies. One can note that using DSM data in
preference to DTM data for the generation of the unstructured meshes
leads to significant decreases in type-1 error 𝐸1 (42% for 𝑆𝑐 = 10 m2

in Fig. 10a) and in type-2 error 𝐸2 (36% for 𝑆𝑐 = 10 m2 in Fig. 10b)
for 𝑆𝑐 < 104 m2, whereas it leads to an increase of 𝐸1 and 𝐸2 (6% for
𝑆𝑐 = 106 m2 in Figs. 10a and 10b) for 𝑆𝑐 ≥ 104 m2.

Fig. 11 shows the spatial distribution of time of travel for the six
scenarios introduced in Fig. 4. When the unstructured meshes having a
fine resolution are used (𝑆𝑐 = 10, 102, and 103 m2 in Figs. 11a, 11b and
11c, respectively), surface water spreads slowly, causing the northern
area of Nonantola to be flooded in a time of travel of about 7 h after
the levee failure. In contrast, when unstructured meshes having coarse
resolution are used (𝑆𝑐 = 104, 105, and 106 m2 in Figs. 11d, 11e, and
11f, respectively), flood inundation times of travel as small as 2 h are
obtained, especially in the transition between the center of Nonantola
and the northern rural area. In addition, observed and simulated times
of arrival for the real flood inundation event considered in this study
indicate that the use of DSM data in preference to DTM data leads to
significant improvement in the prediction of times of travel (supporting
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information, Fig. S7 and Tab. S1). Fig. 12 shows the location of three
transects (A, B, and C) crossing both rural and urban areas around the
town of Nonantola. Profiles of DSM data along these three transects are
reported in the insect of Fig. 12. Transects A, B, and C in Fig. 12 display
different relative positions of rural and urban areas along the direction
of propagation of the flood inundation. Land surface profile along the
transect A displays a sparsely urbanized terrain followed by a rural
terrain. Land surface profile along the transect B displays a densely
urbanized terrain followed by a rural terrain. Land surface profile along
the transect C displays a rural terrain followed by a sparsely urbanized
terrain. The simulated water-surface elevations along the three selected
transects (A, B, and C) shown in Fig. 12 by considering DSM-based and
DTM-based unstructured meshes are compared in Fig. 13 by dividing
each transect into three portions.

4. Discussion

Two innovations are explored in the present study. First, DSM data
are used in preference to DTM data to explicitly describe land surface
macrostructures like trees and buildings. Second, the detail offered
by high-resolution DSM data is distilled in a fully-automated and
geomorphologically-meaningful manner by applying the LANDMARK
algorithm for the extraction of relevant ridges (those displaying 𝑃 ≥
𝑃𝑡, where in the present study 𝑃𝑡 = 0.25 m) at different levels of
detail in the representation of the ridge network (as determined by
𝑆 ≥ 𝑆 ). The extracted ridges are used as breaklines in the HEC-RAS
𝑐
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Fig. 7. Comparison between flood inundation models with geomorphologically-
informed mesh (GIM) and geomorphologically-uninformed mesh (GUM) refinements
having similar number of cells in terms of (a) false alarm ratio FAR, (b) critical success
index CSI, and (c) probability of detection POD. FAR, CSI, and POD are computed
with respect to the most detailed solution obtained for a GIM with 𝑆𝑐 = 10 m2

(173,268 cells).

2D flood inundation model so that the topography observed in high-
resolution DSM data is fully assimilated along the cell edges of the
generated unstructured meshes with clear benefits to model accuracy.
The impact of the resulting GIMs on flood inundation modeling is
evaluated by comparing simulated and observed flood areas, over four
modeling strategies obtained by combining DSM and DTM data as well
as GIM and GUM refinements. It is remarked that the innovation in
the combined use of LANDMARK and HEC-RAS 2D is not just a simple
use of observed ridges as breaklines, which can even be performed
manually, but rather the ability of LANDMARK to fully penetrate high-
resolution topographic data for extracting ridges at any desired level
of detailed through the selection of appropriate parameters 𝑆𝑐 and 𝑃𝑡,
which is a prohibitive task without LANDMARK. The analysis carried
out applies to any flood inundation model that makes the same smart
use of high-resolution topographic data as HEC-RAS 2D.

The ability of a flood inundation model based on 1-m DSM data to
reconstruct a real flood inundation event is shown in Fig. 1. The zoom
made into inset c shows how trees and buildings are captured by high-
resolution DSM data. As illustrated in Fig. 2, compared to the more
10
Fig. 8. Evaluation of flood inundation models with the finest geomorphologically-
informed mesh (GIM, 173,268 cells) in terms of (a) false alarm ratio FAR, (b) critical
success index CSI, and (c) probability of detection POD, for different time steps
(𝛥𝑡 = 1, 5, 10, 30, 60 s). FAR, CSI, and POD are computed with respect to the most
detailed solution obtained for 𝛥𝑡 = 1 s.

traditional use of DTM data, DSM data describe explicitly land surface
macrostructures like trees, embankments, and buildings, which can be
extracted as ridges by the LANDMARK algorithm and incorporated in
HEC-RAS 2D as breaklines. As shown in Fig. 3, breaklines obtained
from DSM data and the LANDMARK algorithm with 𝑆𝑐 = 10 m2 and
𝑃𝑡 = 0.25 m are sufficiently detailed to capture the topography of
trees and buildings (Fig. 3a), whereas breaklines obtained by setting
𝑆𝑐 = 5 × 105 m2 and 𝑃𝑡 = 0.25 m do not entirely capture topographic
macrostructures observed in DSM data (Fig. 3b). Breaklines obtained
from DTM data and the LANDMARK algorithm with 𝑆𝑐 = 10 m2 and
𝑃𝑡 = 0.25 m capture the planar position of trees and buildings that
were filtered out but left some track on DTM data (Fig. 3c), whereas
breaklines obtained by setting 𝑆𝑐 = 5 × 105 m2 and 𝑃𝑡 = 0.25 m do not
capture topographic macrostructures observed in DSM data (Fig. 3d).

The use of DSM data and GIMs in flood inundation modeling,
as compared to the use of DTM data and GUMs, is evaluated by
considering cases exhibiting different levels of detail (numbers of cells)
as shown in Fig. 4 for DSM data and GIMs and reported in Table 1
for all possible combinations. Flood inundation maps shown, for in-
stance, in Fig. 5 reveal that the combined use of DSM data, GIMs
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Fig. 9. Comparison between flood inundation models with geomorphologically-informed mesh (GIM) and geomorphologically-uninformed mesh (GUM) refinements having similar
number of cells in terms of (a) false alarm ratio FAR, (b) critical success index CSI, and (c) probability of detection POD. DSM-based models are considered in plots (a–c) and
DTM-based models are considered in plots (d–f). FAR, CSI, and POD are computed by considering simulated and observed flood areas.

Fig. 10. Type-1 and type-2 errors (Eqs. (4) and (5), respectively) in the prediction of flood areas obtained by comparing surface flow simulations based on digital terrain model
(DTM) or digital surface model (DSM) data and observations, for different levels of detail in the description of the land surface. Detail increases as 𝑆𝑐 decreases.
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Fig. 11. Time of travel of the flood inundation in the inset d of Fig. 1 as obtained from digital surface model (DSM) data and different detail in the description of the land
surface. Ridges are extracted by using LANDMARK with 𝑆𝑐 equal to (a) 10, (b) 102, (c) 103, (d) 104, (e) 105, and (f) 106 m2 and 𝑃𝑡 always equal to 0.25 m. Detail increases as 𝑆𝑐
decreases.
obtained from LANDMARK, and HEC-RAS 2D makes it possible the
explicit description of land surface macrostructures in flood inundation
modeling by producing accurate inundation maps at the single-house
scale. A comprehensive analysis is obtained by comparing simulated
and observed flood areas in all the cases reported in Table 1 in terms
of FAR, CSI, and POD, on the basis of TP, FP, and FN determinations
illustrated, for instance, in Fig. 6. The results of the analysis are shown
in Fig. 9. Starting from parent case 1 in Table 1 (𝑆𝑐 = 106 m2, 162,521
and 157,899 cells for DSM and DTM data, respectively), where the
GIM and the GUM are exactly the same, GIM refinement is found to
improve performance metrics significantly more than GUM refinement.
Differences in performance metrics are especially relevant when the
level of detail (number of cells) increases and DSM data are used.
FAR is found to decrease significantly when DSM data are used and
GIM refinement is applied (Fig. 9a). This significant decrease is not
observed when DTM data or GUM refinement are used (Figs. 9a and
9d). The obtained results indicate that FP flood areas are significantly
12
reduced by the combined use of DSM data and GIM refinement. CSI
is found to increase significantly when DSM data are used and GIM
refinement is applied (Fig. 9b). This significant increase is not observed
when DTM data or GUM refinement are used (Figs. 9b and 9e). The
obtained results indicate that FN and FP flood areas are significantly
reduced by the combined use of DSM data and GIM refinement. POD
is found to provide relatively stable results in all cases (Figs. 9c and
9f). The obtained results indicate that FN flood areas play a relatively
minor role in the observed flood inundation event. The impact of GIM
refinement over GUM refinement is relatively less important when DTM
data are used because the capabilities of LANDMARK remain relatively
unexpressed where macrostructures are filtered out. In light of the
results reported in Fig. 9, it seems that the simplifying assumption
of impermeable macrostructures does not cause important artifacts in
the description of ground surfaces with short vegetation or flow across
sparse trees like those observed in the study area (Section 2.3).
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Fig. 12. Transects A, B, and C in the inset d of Fig. 1 along which the maximum water-surface elevation obtained by using digital terrain model (DTM) and digital surface model
(DSM) data are compared (Fig. 13).

Fig. 13. Comparison between simulated maximum water-surface elevation along transects reported in Fig. 12 as obtained by using digital terrain model (DTM) or digital surface
model (DSM) data and unstructured meshes based on LANDMARK with 𝑆𝑐 equal to 10 m2 and 𝑃𝑡 equal to 0.25 m. Results obtained along transect A, B, and C in Fig. 12 are
reported in plots (a, b, c), (d, e, f), and (g, h, i), respectively.
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The comparison between type-1 and type-2 errors in predicted flood
areas indicates the detail with which the ridge network needs to be
extracted, the breaklines need to be identified, and the unstructured
mesh for 2D flood inundation modeling needs to be generated. Having
set 𝑃𝑡 = 0.25 m in all cases, the detail in the representation of ridges is
indicated in Fig. 10 by 𝑆𝑐 . The lower is 𝑆𝑐 , the higher is the detail of
he extracted ridge network. The use of DSM data in preference to DTM
ata is found to reduce significantly both 𝐸1 and 𝐸2 when detailed ridge
etworks, breaklines, and unstructured computational meshes are used
𝑆𝑐 ≤ 103 m2, Figs. 4a–4c, 5a, and 5b). More specifically, one can note
hat using DSM data in preference to DTM data leads to a reduction
f 42% in 𝐸1 for 𝑆𝑐 = 10 m2 (Fig. 10a) and to a reduction of 36%
n 𝐸2 for 𝑆𝑐 = 10 m2 (Fig. 10b). Instead, 𝐸1 and 𝐸2 are smaller with
TM data than with DSM data when the detail of ridges, breaklines,
nd unstructured computational meshes is inadequate to represent
acrostructures observed in DSM data (𝑆𝑐 ≥ 104 m2, Figs. 4e, 4f, 5a,

nd 5b). These results suggest that a profitable use of DSM data in
reference to DTM data can only be achieved by using high-resolution
SM data (1-m DSM data in the present study), advanced terrain
nalysis methods (the LANDMARK algorithm in the present study),
nd flood inundation models (HEC-RAS 2D in the present study) that
ake advantages of high-resolution topographic data along the edges of
omputational mesh elements. With DSM data and/or terrain analysis
ethods that are inadequate to describe trees and buildings, the use of

elatively smoother DTM data where topographic macrostructures are
iltered out remains the best modeling strategy.

Negative lag times (ranging from −2.75 to −1.50 h in Tab. S1) and
elative errors (ranging from −29% to −28% in Tab. S1) are systemat-
cally obtained when DTM data are used and this indicates that simu-
ated flood inundations come in advance with respect to observed flood
nundations as expected from neglecting the impact of land surface
acrostructures on flood inundation dynamics (supporting informa-

ion, Tab. S1). The explicit description of land surface macrostructures
ased on the use of DSM data reduces significantly lag times between
imulated and observed times of arrival (equal to 0.25 h in Tab. S1)
nd the related relative errors (ranging from −5% to −3% in Tab. S1).
he detail of the unstructured mesh based on DSM data significantly

mpacts the time of travel of the flood inundation (Fig. 11). In facts,
he flood inundation reaches the South of Nonantola (inset in Fig. 11)
bout 5 h after the levee failure in the DSM-based flood inundation
odel with the finest computational mesh (𝑆𝑐 = 10 m2, Fig. 11a),
hereas it reaches the South of Nonantola about 2 h after the levee

ailure in the DSM-based flood inundation model with the coarsest
omputational mesh (𝑆𝑐 = 106 m2, Fig. 11f). As shown in the insets of
ig. 11, the impact of topographic macrostructures on times of travel is
specially relevant where natural or human-made barriers exist. Based
n observed and simulated times of arrival for the real flood inundation
vent considered in this study the use of DSM data in preference to DTM
ata leads to a 25% improvement in the prediction of times of travel
supporting information, Fig. S7 and Tab. S1).

The comparison between water-surface elevations reported in
ig. 13 with reference to the transects A, B, and C shown in Fig. 12
eveals the conditions under which the use of DSM data in preference
o DTM data is especially relevant. Along transect A, simulated water-
urface elevations with DSM data are up to 0.40 m higher than those
imulated with DTM data when urban areas are considered (Fig. 13a),
hereas simulated water-surface elevations with DSM data are up
.20 m lower than those simulated with DTM data when surface flow is
eleased by urban areas to rural areas (Fig. 13c). A transition between
he two different surface flow conditions occurs between urban and
ural settings (Fig. 13b). Along transect B, a similar pattern is observed
ith higher water-surface elevations of about 0.43 m occurring in the
rban area (Fig. 13d), lower water-surface elevations of about 0.23 m
n the rural area (Fig. 13f), and a transition between the two different
atterns at the interface between urban and rural areas (Fig. 13e).
14

long transect C, water-surface elevations simulated with DSM and a
TM data are comparable because the terrain is everywhere rural
long the transect and no significant macrotopographic structures are
bserved in DSM data (Figs. 13g, 13h, and 13i). The water profiles
hown in Fig. 13 confirm that topographic macrostructures affect sig-
ificantly surface flow depth by reducing flow velocity and increasing
ater-surface elevation. The use of DSM data seems therefore to be
specially relevant to describe flood inundations in urban areas and at
he interface between rural and urban areas.

. Conclusions

This study showed that high-resolution digital surface model (DSM)
ata can be used to describe explicitly land surface macrostructures
ike trees and buildings in 2D flood inundation models (Section 2,
igs. 1, 3, and 5). Accuracy and computational efficiency are ensured by
sing the HEC-RAS 2D flood inundation model in combination with the
ANDMARK terrain analysis algorithm (Sections 2.3 and 2.4, Figs. 6,
, and 8). The impacts of geomorphologically-informed mesh (GIM)
nd geomorphologically-uninformed mesh (GUM) refinements in DSM
nd DTM data are evaluated by comparing simulated and observed
lood areas over all the cases reported in Table 1. The obtained results
ndicate that, even under the simplifying assumption of impermeable
acrostructures, especially when GIM refinement is applied, the use of
SM data in preference to DTM data leads to significant improvement

n flood predictions (Fig. 9). The use of DSM data may not bring
ignificant improvement over the traditional use of DTM data when
nstructured meshes are insufficiently detailed to describe land surface
acrostructures (Figs. 9 and 10).

For the real flood inundation event occurred in northern Italy in
020, it is found that the explicit description of land surface macrostruc-
ures based on the combined use of a 1-m DSM, the LANDMARK
errain analysis algorithm, and the HEC-RAS 2D flood inundation model
ields a 42% improvement in the prediction of flood area, a 36%
mprovement in the prediction of flood areal position, and a 25%
mprovement in the prediction of flood inundation time of travel with
espect to the use of DTM data and resistance coefficients representing
oth land surface micro and macrostructures (Figs. 10 and 11). The
irect use of DSM data in flood inundation models is particularly
elevant within urban areas and at the interface between rural and
rban areas (Figs. 12 and 13). The results obtained in this study clearly
ndicate the potential of using DSM data in combination with GIM
efinement in flood inundation modeling, and are expected to apply
o all those flood inundation models that make the same smart use of
igh-resolution topographic data as HEC-RAS 2D. The use of permeable
acrostructures will be explored in future studies as a next logical step.
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