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a b s t r a c t 

Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring 

forgetting . CL settings proposed in literature assume that every incoming example is paired with ground- 

truth annotations. However, this clashes with many real-world applications: gathering labeled data, which 

is in itself tedious and expensive, becomes infeasible when data flow as a stream. This work explores 

Continual Semi-Supervised Learning (CSSL): here, only a small fraction of labeled input examples are shown 

to the learner. We assess how current CL methods ( e.g. : EWC, LwF, iCaRL, ER, GDumb, DER) perform 

in this novel and challenging scenario, where overfitting entangles forgetting. Subsequently, we design 

a novel CSSL method that exploits metric learning and consistency regularization to leverage unlabeled 

examples while learning. We show that our proposal exhibits higher resilience to diminishing supervision 

and, even more surprisingly, relying only on 25% supervision suffices to outperform SOTA methods trained 

under full supervision. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Perceptual information flows as a continuous stream, in which 

 certain data distribution may occur once and not recur for a 

ong time. Unfortunately, this violates the i.i.d. assumption at the 

oundation of most Deep Learning algorithms and leads to the 

atastrophic forgetting [1] problem, where the acquired knowledge 

s rapidly overwritten by the new one. In practical scenarios, we 

ould prefer a system that learns incrementally from the raw and 

on-i.i.d. stream of data, possibly ready to provide answers at any 

oment. The design of such lifelong-learning algorithms is the aim 

f Continual Learning (CL) [2] . 

Works in this field typically test the proposed methods on a se- 

ies of image-classification tasks presented sequentially. The latter 

re built on top of image classification datasets ( e.g. : MNIST, CIFAR, 

tc.) by allowing the learner to see just a subset of classes at once. 

hile these experimental protocols validly highlight the effects of 

orgetting, they assume that all incoming data are labeled. 
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In some scenarios, this condition does not represent an issue 

nd can be easily met. This may be the case when ground-truth 

nnotations can be directly and automatically collected ( e.g. : a 

obot that explores the environment and learns to avoid collisions 

y receiving direct feedback from it [3] ). However, when the la- 

eling stage involves human intervention (as holds in a number of 

omputer vision tasks such as classification, object detection [4] , 

tc.), relying only on full supervision clashes with the pursuit of 

ifelong learning. Indeed, the adaptability of the learner to incom- 

ng tasks would be bottlenecked by the speed of the human anno- 

ator: updating the model continually would lose its appeal w.r.t. 

he trivial solution of re-training from scratch. Therefore, we advo- 

ate taking into account the rate at which annotations are available 

o the learner. 

To address this point, the adjustment of the prediction model 

an be simply limited to the fraction of examples that can be la- 

eled in real-time. Our experiments show that this results in an 

xpected degradation in terms of performance. Fortunately, the ef- 

orts recently made in semi-supervised learning [5,6] come to the 

escue: by revising these techniques to an incremental scenario, we 

an still benefit from the remaining part of the data represented 

y unlabeled observations. We argue that this is true to the life- 

ong nature of the application and also allows for exploiting the 

bundant source of information given by unlabeled data. 
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Fig. 1. Overview of the Continual Semi-Supervised Learning (CSSL) setting. Input batches include both labeled ( green ) and unlabeled ( red ) examples. 
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To sum up, our work incorporates the features described above 

n a new setting called Continual Semi-Supervised Learning 

CSSL) : a scenario where just one out of k examples is presented 

ith its ground-truth label. At training time, this corresponds to 

roviding a ground-truth label for any given example with uniform 

robability 1 
k 

(as shown in Fig. 1 for k = 2 ). 

Taking one more step, our proposal aims at filling the gap in- 

uced by partial annotations: Contrastive Continual Interpolation 

onsistency (CCIC), which imposes consistency among augmented 

nd interpolated examples while exploiting secondhand informa- 

ion peculiar to the Class-Incremental setting. Doing so, we grant 

erformance that matches and even surpasses that of the fully- 

upervised setting. We finally summarize our contributions: 

• We propose CSSL: a scenario in which the learner must learn 

continually by exploiting both supervised and unsupervised 

data at the same time; 
• We empirically review the performance of SOTA CL models at 

varying label-per-example rates, highlighting the subtle differ- 

ences between CL and CSSL; 
• Exploiting semi-supervised techniques, we introduce a novel 

CSSL method that successfully addresses the new setting and 

learns with limited labels; 
• Surprisingly, our evaluations show that full supervision does 

not necessarily upper-bound partial supervision in CL: 25% la- 

bels can be enough to outperform SOTA methods using all 

ground truth. 

. Related work 

.1. Continual learning protocols 

Continual Learning is an umbrella term encompassing several 

lightly yet meaningfully different experimental settings [7,8] . Van 

e Ven et al. produced a taxonomy [8] describing the following 

hree well-known scenarios. Task-Incremental Learning (Task-IL) 

rganizes the dataset in tasks comprising of disjoint sets of classes. 

he model must only learn (and remember) how to correctly 

lassify examples within their original tasks. Domain-Incremental 

earning (Domain-IL) presents all classes since the first task: dis- 

inct tasks are obtained by processing the examples with distinct 

ransformations ( e.g. : pixel permutations or image rotations) which 

hange the input distribution. Class-Incremental Learning (Class- 

L) operates on the same assumptions as Task-IL, but requires the 

earner to classify an example from any of the previously seen 

lasses with no hints about its original task. Unlike Task-IL, this 

eans that the model must learn the joint distribution from par- 

ial observations, making this the hardest scenario [8] . For such a 

eason, we focus on limited labels within the Class-IL formulation. 

Towards realistic setups. Several recent works point out that 

hese classic settings lack realism [9] and consequently define new 
10 
cenarios by imposing restrictions on what models are allowed 

o do while learning. Online Continual Learning forbids multi- 

le epochs on the training data on the grounds that real-world CL 

ystems would never see the same input twice [10–12] . Task-Free 

earning does not provide task identities either at inference or at 

raining time [9] . This is in contrast with the classic settings that 

ignal task boundaries to the learner while training, thus allowing 

t to prepare for the beginning of a new task. 

This work also aims at providing a more realistic setup: instead 

f focusing on model limitations, we acknowledge that requiring 

ully labeled data can hinder the extension of CL algorithms to 

eal-time and in-the-wild scenarios. 

Continual Learning with Unsupervised Data . Some attempts 

ave been recently made at improving CL methods by exploiting 

nlabeled data. Zhang et al. proposed the Deep Model Consolida- 

ion framework [13] ; in it, a new model is first specialized on each 

ew encountered task, then a unified learner is produced by dis- 

illing knowledge from both the new specialist and the previous 

ncremental model. Alternatively, Lechat et al. introduced Semi- 

upervised Incremental Learning [14] , which alternates unsuper- 

ised feature learning on both input and auxiliary data with super- 

ised classification. 

We remark that both these settings are significantly different 

rom our proposed CSSL as we do not separate the supervised and 

nsupervised training phases. On the contrary, we intertwine both 

inds of data in all drawn batches in varying proportions and re- 

uire that the model learns from both at the same time. Addi- 

ionally, we do not exploit auxiliary unsupervised external data to 

upplement the training set; instead, we reduce the original su- 

ervised data to a fraction, thus modeling supervision becoming 

vailable on the input stream at a much slower rate. 

.2. Continual learning methods 

Continual Learning methods have been chiefly categorized in 

hree families [2,7] . 

Architectural methods employ tailored architectures in which 

he number of parameters dynamically increases [15,16] or a part 

f them is devoted to a distinct task [17] . While being usually very 

ffective, they depend on the availability of task labels at predic- 

ion time to prepare the model for inference, which limits them to 

ask-IL. 

Regularization methods condition the evolution of the model 

o prevent it from forgetting previous tasks. This is attained ei- 

her by identifying important weights for each task and prevent- 

ng them from changing in later ones [18,19] or by distilling the 

nowledge from previous model snapshots to preserve the past re- 

ponses [20,21] . 

Rehearsal methods maintain a fixed-size working memory of 

reviously encountered exemplars and recall them to prevent for- 

etting [22] . This simple solution has been expanded upon in 
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1 Differently from MixMatch, we apply mixUp only on the input images (and not 

to the corresponding labels). 
any ways, e.g. by adopting advanced memory management poli- 

ies [9,23] , exploiting meta-learning algorithms [11] , combining re- 

lay with knowledge distillation [24,25] , or using the memory to 

rain the model in an offline fashion [26] . 

.3. Semi-supervised learning 

Semi-Supervised Learning studies how to improve supervised 

earning methods by leveraging additional unlabeled data. We ex- 

loit the latter in light of specific assumptions on how input and 

abels interact [5] . By assuming that close input data-points should 

orrespond to similar outputs, consistency regularization encour- 

ges the model to produce consistent predictions for the same 

ata-point. This principle can be applied either by comparing the 

redictions on the same exemplar by different learners [6,27] or 

he predictions on different augmentations of the same data-point 

y the same learner [28] . 

Recently, several works investigated the refinement of such reg- 

larization through adversarial training , producing either more 

hallenging perturbations [29] or additional unsupervised samples 

or regularization purposes [30] . 

Our proposal, which we introduce in Section 4.2 , combines 

ithin-task consistency regularization with the dual strategy of 

aximizing cross-task feature dissimilarity. The latter reinforces 

eep representation learning according to the high-level struc- 

ure of the target problem – specifically, cross-task class disjunc- 

ion. This can be seen as a form of Multi-Knowledge Representa- 

ion [31] through the application of descriptive knowledge; on the 

ther hand, our proposal remains open for further enrichment if 

dditional knowledge on the target task were available [32] . 

. Continual semi-supervised learning 

A supervised Continual Learning classification problem can be 

efined as a sequence S composed of T tasks. During each of the 

atter ( S = t ∈ { 1 , . . . , T } ), input samples x and their corresponding

round truth labels y are drawn from an i.i.d. distribution D t . Con- 

idering a function f with parameters θ , we indicate its responses 

logits) with h θ (x ) and the corresponding probability distribution 

ver the classes with f θ (x ) � softmax (h θ (x )) . The goal is to find

he optimal value for the parameters θ such that f performs best 

n average on all tasks without incurring catastrophic forgetting; 

ormally, we need to minimize the empirical risk over all tasks: 

rgmin 

θ

t c ∑ 

t=1 

L t , where L t � E (x,y ) ∼D t 

[
� (y, f θ (x )) 

]
. (1) 

In Continual Semi-Supervised Learning , we propose to dis- 

ribute the samples coming from D t into two sets: D 

s 
t , which 

ontains a limited amount of pairs of labeled samples and their 

round-truth labels ( x s , y s ) and D 

u 
t , containing the rest of the un-

upervised samples. We define this split according to a given pro- 

ortion p s = 

|D s t | 
(|D s t | + |D u t | ) that remains fixed across all tasks. The ob- 

ective of CSSL is optimizing Eq. 1 without having access to the 

round-truth supervision signal for D 

u 
t . Data from the stream con- 

ists of labeled pairs S ⊂ D 

s 
t and unlabeled items U ⊂ D 

u 
t . 

We are interested in shedding further light on CL models by un- 

erstanding i) how they perform under partial lack of supervision 

nd ii) how Semi-Supervised Learning approaches can be com- 

ined with them to exploit unsupervised data. Question i) is inves- 

igated experimentally in Sections 5.1 and 5.2 by evaluating meth- 

ds that simply drop unlabeled examples x u . Differently, question 

i) opens up many possible solutions that we address by proposing 

ontrastive Continual Interpolation Consistency (CCIC). 
11 
. Method 

We build our proposal upon two state-of-the-art approaches: 

n the one hand, we take advantage of Experience Replay 

ER) [11,22] to mitigate catastrophic forgetting; on the other, we 

xploit MixMatch [28] to learn useful representations also from 

nlabeled examples. In the following: i) to help the reader, we 

riefly recap the main traits of these algorithms (and let the orig- 

nal papers provide a deeper comprehension); ii) we discuss how 

hese two former approaches can be favorably complemented. 

.1. Technical background 

As a first step, we equip the learner with a small mem- 

ry buffer M (based on reservoir sampling) and interleave a 

atch of examples drawn from it with each batch of the current 

ask. Among all possible approaches, we opt for ER due to its 

ightweight design and effectiveness [11,23] . 

When dealing with lack of supervision, self-training represents a 

rivial strategy: here, the model itself produces the targets ( pseudo- 

abels ) for unlabeled examples [33,34] . Unfortunately, this tends 

o become unstable with only a few annotations at disposal: as 

hown in our experiments, this encourages the model to overfit 

he limited supervised data available [35] . 

Such an issue raises the need for a different objective, the lat- 

er being independent from the accuracy of the model on unla- 

eled examples. Consequently, we supplement our proposal with 

ixMatch [28] : the predictions of the network are not meant as 

raining targets, but rather as means for applying consistency reg- 

larization [6,29] . Briefly, a soft-label is assigned to each unsuper- 

ised element by averaging and then sharpening the pre-softmax 

redictions of several different augmentations. 

To promote consistent responses to considerable variations of 

he data-points, labeled and unlabeled samples are combined 

hrough the mixUp procedure [36] 1 Starting from the original sets 

and U (respectively, labeled and unlabeled examples from the 

urrent batch), we thus obtain two final augmented and mixed sets 

f examples S ∗ and U ∗: in order to compute the loss terms L S ∗ and

 U ∗ , we use the ground truth labels for the examples of the former 

et and the soft-labels generated through response-averaging for 

he ones of the latter. 

.2. Contrastive continual interpolation consistency 

Supposing that boundaries between tasks are provided, we can 

ssociate in-memory exemplars with the task they come from. In 

he following, we discuss how this allows an additional weak form 

f supervision for unsupervised examples even if we do not know 

heir classes exactly. 

Unsupervised mining . As tasks are disjoint, examples from dif- 

erent tasks necessarily belong to different classes: we account for 

hat by adding a contrastive loss term, which pushes their re- 

ponses away from each other ( Fig. 2 ). In details, we wish to maxi-

ize the Euclidean distance D θ (x, x ′ ) � 

∥∥h θ (x ) − h θ (x ′ ) 
∥∥2 

2 
between 

mbeddings of examples of different tasks. Hence, we minimize: 

 UM = E x ∼D u t c 
x N ∼M t<t c 

[
max (α − D θ (x, x N ) , 0) 

]
, (2) 

here t c is the index of the current task D t c , M t<t c indicates past

xamples from the memory buffer, and α is a constant margin be- 

ond which no more effort s should be put into enlarging the dis- 

ance between negative pairs. 
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Fig. 2. CCIC exploits task identifiers to enforce semantic constraints: for each an- 

chor (A), it asks the network to push away representations of different (N) tasks 

and move closer representations of the same one (P). 

a

t

x

t

L

t

t

t

a

w

u

w

w

w

e

d

s

c

i

u

o

g

b

5

S

H

t

1

i

f

 

t  

1

F

b

t

d

l

a

a

(

a

t

f

s

b

w

t  

t

f  

a

t

1

o

5

p

w

e

t

b

t

a

c

g

t

S

i

B

s

l

l

e

m

y

w  

S

c

d

c

t

o  

w  

m

5

 

l

l

Supervised mining . For each incoming labeled example, we 

lso encourage the network to move its representation close to 

hose belonging to the same class. We look for positive candidates 

 P within both the current batch and the memory buffer. In formal 

erms: 

 SM = E x ∼D s t c ∪M 

[
relu (β − D θ (x, x N ) + D θ (x, x P ) 

]
. (3) 

Overall objective . To sum up, the objective of CCIC combines 

he consistency regularization term delivered by MixMatch with 

he two additional ones Eqs. 2 and (3) applied in feature space; 

he overall optimization problem can be formalized as follows: 

rgmin θ L = L S + λL U + L SM + μL UM , (4) 

here λ and μ are hyperparameters setting the importance of the 

nsupervised examples. 

Exploiting distance metric learning during inference . Once 

e have introduced constraints in feature space Eqs. 2 and (3) , 

e can also exploit them by devising a different inference schema, 

hich further contributes to relieve forgetting. Similarly to [24] , we 

mploy the k-Nearest Neighbors algorithm as final classifier, thus 

ecoupling classification from feature extraction. This has been 

hown beneficial in Continual Learning, as it saves the final fully- 

onnected layer from continuously keeping up with the chang- 

ng features (and vice versa ). As kNN is non-parametric and builds 

pon the feature space solely, it fits in harmony with the rest 

f the model, controlling the damage caused by catastrophic for- 

etting. We fit the kNN classifier using the examples of memory 

uffer as training set. 

. Experiments 

We conduct our experiments on three standard datasets. 2 Split 

VHN : five subsequent binary tasks built on top of the Street View 

ouse Numbers (SVHN) dataset [37] ; Split CIFAR-10 : equivalent to 

he previous one, but using the CIFAR-10 dataset [38] . Split CIFAR- 

00 : a longer and more challenging evaluation in which the model 

s presented ten subsequent tasks, each comprising of 10 classes 

rom the CIFAR-100 dataset [38] . 

We vary the fraction of labeled data shown to the model ( p s )

o encompass different degrees of supervision ( 0 . 8 % , 5% , 25 % , and

00 % , i.e. , 400, 2500, 25000, and 50000 samples for CIFAR-10/100). 

or fairness, we keep the original balancing between classes in 
2 Code available at https://github.com/aimagelab/CSSL . 

C

v

12 
oth train and test sets; in presence of low rates, we make sure 

hat each class is represented by a proportional amount of labels. 

Architectures. As in [39] , experiments on Split SVHN are con- 

ucted on a small CNN, comprising of three ReLU layers inter- 

eaved by max-pooling. Instead, we rely on ResNet18 for CIFAR-10 

nd CIFAR-100, as done in [25] . 

Metrics. We report the performance in terms of average final 

ccuracy, as done in [9,10] . Accuracies are averaged across 5 runs 

we also report standard deviations). 

Implementation details. As discussed in Section 4 , our propos- 

ls rely on data augmentation to promote consistency regulariza- 

ion. We apply random cropping and horizontal flipping (except 

or Split SVHN); the same choice is applied to competitors to en- 

ure fairness. To perform hyperparameters selection (learning rate, 

atch size, optimization algorithm, and regularization coefficients), 

e perform a grid search on top of a validation set (corresponding 

o 10% of the training set), as done in [11,24,25] . For CCIC, we keep

he number of augmentations fixed to 3 and report chosen values 

or λ and μ in Tab. 2 . To guarantee fairness, we fix the batch size

nd memory minibatch size to 32 for all models. We train on each 

ask for 10 epochs on SVHN, for 50 on CIFAR-10, and 30 on CIFAR- 

00. All methods use SGD as an optimizer with the only exception 

f CCIC, which employs Adam. 

.1. Baselines 

Lower/Upper bounds . We bound the performance for our ex- 

eriments by including two reference measures. As a lower bound, 

e evaluate the performance of a model trained by Fine Tuning 

xclusively on the set of supervised examples, without any coun- 

ermeasure to catastrophic forgetting. We also provide an upper- 

ound (UB) given by a model trained jointly, i.e. , without dividing 

he dataset into tasks or discarding any ground-truth annotation. 

Drop-the-unlabeled . The most straightforward approach to 

dapt existing methods to our setting consists in simply dis- 

arding unlabeled examples from the current batch. In this re- 

ard, we compare our proposal with Learning Without Forget- 

ing (LwF) [20] , online Elastic Weight Consolidation (oEWC) [21] , 

ynaptic Intelligence (SI) [19] , Experience Replay (ER) [11] , 

CaRL [24] , Dark Experience Replay (DER) [25] and GDumb [26] . 

y so doing, we can verify whether our proposal is able to better 

ustain a training regime with reduced supervision. 

Pseudo-Labeling . Inspired by the line of works relying on self- 

abeling [33,34] , we here introduce a simple CSSL baseline that al- 

ows ER to profit from the unlabeled examples: given an unlabeled 

xample x u , it pins as a pseudo-label ˜ y u [34] the prediction of the 

odel itself. Formally, 

˜ 
 u = argmax c∈ C t h 

c 
θ (x u ) , (5) 

here C t is the set of classes of the current task. As discussed in

ection 4.1 , self training is likely to cause model instability (espe- 

ially at task boundaries, when the model starts to experience new 

ata): we mitigate this by applying a threshold η to discard low- 

onfidence outputs and their relative x u . Specifically, we estimate 

he confidence as the difference between the two highest values 

f h c 
θ
(x u ) . After this step, a pair (x u , ̃  y u ) is considered on a par

ith any supervised pair (x s , y s ) , and is therefore inserted into the

emory buffer. We refer to this baseline as PseudoER . 

.2. Experimental results 

As revealed by the results in Tab. 1 , CSSL proves to be a chal-

enging scenario. Unsurprisingly, its difficulty increases when fewer 

abels are provided to the learner. 

Regularization methods are generally regarded as weak in the 

lass-IL scenario [7,9] . This conforms with our empirical obser- 

ations, as LwF, oEWC and SI underperform across all datasets. 

https://github.com/loribonna/CSSL
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Table 1 

Average Accuracy of CL Methods and of Our Proposals on CSSL Benchmarks. 

Class-IL SVHN (UB: 86.18 ±1.8) CIFAR-10 (UB: 92.12 ±0.1) CIFAR-100 (UB: 67.7 ±0.9) 

Labels % 0 . 8 % 5% 25 % · 100% 0 . 8 % 5% 25 % · 100% 0 . 8 % 5% 25 % · 100% 

Fine Tuning 9.9 ±1.7 9.9 ±8.4 17.5 ±9.4 · 17.8 ±1.2 13.6 ±2.9 18.2 ±0.4 19.2 ±2.2 · 19.6 ±8.4 1.8 ±0.2 5.0 ±0.3 7.8 ±0.1 · 8.6 ±0.4 

LwF 9.9 ±0.3 9.9 ±1.9 14.8 ±3.6 · 16.9 ±0.1 13.1 ±2.2 17.7 ±3.2 19.4 ±1.7 · 19.6 ±10.3 1.6 ±0.1 4.5 ±0.1 8.0 ±0.1 · 8.4 ±0.5 

oEWC 9.9 ±0.2 9.9 ±0.7 14.7 ±0.5 · 17.9 ±0.2 13.7 ±1.2 17.6 ±1.2 19.1 ±0.8 · 19.6 ±7.5 1.4 ±0.1 4.7 ±0.1 7.8 ±0.4 · 7.8 ±0.1 

SI 9.9 ±1.2 10.2 ±5.9 17.1 ±7.7 · 18.2 ±0.2 12.4 ±0.4 15.9 ±1.0 19.2 ±1.3 · 19.5 ±3.3 1.3 ±0.2 3.4 ±0.2 7.5 ±0.5 · 8.1 ±1.2 

ER500 32.5 ±7.1 56.0 ±2.0 59.7 ±1.8 · 66.5 ±2.8 36.3 ±1.1 51.9 ±4.5 60.9 ±5.7 · 62.2 ±2.6 8.2 ±0.1 13.7 ±0.6 17.1 ±0.7 · 21.3 ±0.2 

iCaRL 5 00 8.9 ±0.4 10.0 ±1.5 19.9 ±1.2 · 23.1 ±2.4 24.7 ±2.3 35.8 ±3.2 51.4 ±8.4 · 61.0 ±0.4 3.6 ±0.1 11.3 ±0.3 27.6 ±0.4 · 37.8 ±0.3 

DER 5 00 11.9 ±1.7 54.6 ±2.6 56.9 ±5.8 · 70.8 ±3.7 29.1 ±0.4 35.3 ±8.3 50.0 ±2.3 · 67.1 ±1.6 1.7 ±0.1 5.1 ±0.9 13.0 ±5.3 · 28.8 ±7.2 

GDumb 5 00 34.6 ±5.1 41.8 ±8.3 59.2 ±8.5 · 59.9 ±9.7 39.6 ±9.6 40.9 ±11.8 44.8 ±5.4 · 47.9 ±1.6 8.6 ±0.1 9.9 ±0.4 10.1 ±0.4 · 11.0 ±1.8 

PseudoER 5 00 23.2 ±0.7 48.9 ±1.2 63.6 ±2.7 · – 37.8 ±1.6 44.9 ±2.3 56.3 ±1.6 · – 5.1 ±0.6 14.3 ±0.1 18.5 ±0.5 · - 

CCIC 5 00 55.3 ±3.2 70.1 ±3.9 75.9 ±1.5 · – 54.0 ±0.2 63.3 ±1.9 63.9 ±2.6 · – 11.5 ±0.7 19.5 ±0.2 20.3 ±0.3 · - 

ER 5 120 44.4 ±1.4 69.9 ±3.6 77.6 ±8.7 · 80.5 ±3.2 37.4 ±2.3 64.1 ±5.3 79.7 ±1.2 · 83.3 ±2.8 9.6 ±0.6 22.8 ±0.3 37.9 ±0.6 · 49.0 ±0.2 

iCaRL 5 120 9.3 ±0.2 11.5 ±0.5 19.5 ±3.7 · 23.9 ±4.5 20.7 ±3.3 35.5 ±5.6 56.3 ±2.2 · 61.9 ±1.5 4.3 ±0.1 12.2 ±0.3 30.9 ±1.0 · 41.2 ±0.4 

DER 5 120 23.1 ±1.0 67.8 ±5.2 74.7 ±2.4 · 75.3 ±7.6 32.9 ±0.9 47.6 ±2.2 73.9 ±4.5 · 84.5 ±2.1 1.6 ±0.1 4.7 ±0.6 11.9 ±3.4 · 38.6 ±3.6 

GDumb 5 120 46.5 ±8.0 74.4 ±2.3 74.6 ±3.8 · 78.3 ±2.3 40.8 ±12.7 71.2 ±2.6 81.4 ±0.8 · 82.5 ±0.5 9.6 ±1.1 23.3 ±0.1 33.2 ±2.2 · 42.9 ±1.7 

PseudoER 5 120 45.8 ±2.8 74.6 ±2.4 77.9 ±0.8 · – 62.2 ±2.1 72.9 ±2.0 80.4 ±0.1 · – 8.2 ±1.4 25.1 ±1.6 40.0 ±0.4 · - 

CCIC 5 120 59.3 ±5.3 81.0 ±2.3 83.9 ±0.2 · – 55.2 ±1.4 74.3 ±1.7 84.7 ±0.9 · – 12.0 ±0.3 29.5 ±0.4 44.3 ±0.1 · - 

Table 2 

Values of (λ, μ) for CCIC chosen after the grid-search. 

Lab. % |M| SVHN CIFAR-10 CIFAR-100 

0 . 8 % 500 (0 . 5 , 0 . 5) (0 . 5 , 0 . 5) (0 . 3 , 1 . 0) 

5120 (0 . 1 , 0 . 5) (0 . 5 , 0 . 5) (0 . 3 , 0 . 3) 

5% 500 (0 . 1 , 0 . 5) (0 . 3 , 0 . 5) (0 . 5 , 0 . 5) 

5120 (0 . 1 , 0 . 5) (0 . 5 , 0 . 5) (0 . 5 , 0 . 5) 

25 % 500 (0 . 5 , 0 . 5) (0 . 1 , 0 . 5) (0 . 5 , 0 . 7) 

5120 (0 . 5 , 0 . 5) (0 . 1 , 1 . 0) (0 . 5 , 0 . 5) 
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Table 3 

Unsupervised Mining Techniques for CCIC on CIFAR-100. 

Labels % ( |M| = 5120 ) 5% 25% 

Across-Task Mining (Eq. 2) 29.5 ±0.4 44.3 ±0.1 

Within-Task Mining 29.3 ±0.2 44.0 ±0.2 

Task-Agnostic Mining 29.1 ±0.7 43.9 ±0.8 
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ndeed, these methods rarely outperform our lower bound (Fine 

uning), indicating that they are not effective outside of Task-IL 

nd Domain-IL. This becomes especially evident in the low-label 

egime. 

Rehearsal methods overall show an expected decrease in per- 

ormance as supervision diminishes. This is especially severe for 

ER and iCaRL, as their accuracy drops on average by more than 

0% between 100% and 0 . 8% labels. As the model underfits the task

hen less supervision is provided, it produces less reliable targets 

hat cannot be successfully used for replay by these methods. In 

ontrast, ER is able to replay information successfully as it exploits 

ard targets; thus, it learns effectively even after initially underfit- 

ing the task. Indeed, its accuracy with 5% labels and buffer 5120 

s always higher than its fully-supervised accuracy with a smaller 

uffer. While ER is able to overcome the lack of labels when 

aired with an appropriate buffer, knowledge-distillation based ap- 

roaches remarkably encounter a major hindrance in this setting. 

We attribute the failure of iCaRL on SVHN to the low com- 

lexity of the backbone network. Indeed, a shallow backbone pro- 

ides for a latent space that is less suitable for its nearest-mean-of- 

xemplars classifier. Conversely, this method proves quite effective 

ven with a reduced memory buffer on CIFAR-100. In this bench- 

ark, the herding sampling of iCaRL ensures that all classes are 

airly represented even in a small memory buffer. 

Finally, GDumb does not suffer from lower supervision as long 

s its buffer can be filled completely: its operation is not dis- 

upted by unlabeled examples on the stream, as it ignores the lat- 

er entirely. While it outperforms other methods when few labels 

re available, CCIC surpasses it consistently. This suggests that the 

tream offers potential for further learning and should not be dis- 

issed. 

CSSL Methods . Our PseudoER baseline performs notably well 

n CIFAR-10, maintaining high accuracy as the amount of supervi- 

ion decreases. However, while CIFAR-10 is a complex benchmark, 
13
t only features two classes for each task, which makes it easy for 

seudo-labeling to produce reasonable responses (it is noted that 

 random guess would result in 50% accuracy). Conversely, Pseu- 

oER struggles to produce valid targets and exhibits a swift per- 

ormance drop on CIFAR-100 as the availability of labeled data de- 

reases. Similarly, we find the application of pseudo-labeling bene- 

cial for SVHN only as the space reserved for the buffer increases, 

emonstrating the pitfalls of this approach in the online setting. 

On the contrary, the compelling performance of CCIC indicates 

uccessful blending of supervised information and semi-supervised 

egularization. While ER encounters an average performance drop 

f 47% , going from 25% to 0 . 8% labels on CIFAR-10, CCIC only loses

6% on average. Surprisingly, we observe that – for the majority 

f evaluated benchmarks – 25% supervision is enough to approach 

he results of fully-supervised methods, even outperforming the 

tate-of-the-art in some circumstances (CIFAR-10 with buffer size 

120, SVHN with buffer size 500 and 5120). 

This hints that, when learning from a stream of data, striving 

o provide full supervision is not as essential as it might be ex- 

ected: differently from the offline scenario, a greater amount of 

abels might not produce a proportionate profit due to catastrophic 

orgetting . In this respect, our experiments suggest that pairing 

ew labeled examples with semi-supervised techniques represents 

 more efficient paradigm to achieve satisfying performance. 

Unsupervised Mining in CCIC. In its unsupervised mining loss 

erm L UM , CCIC takes examples of previous tasks in the memory 

uffer as negatives ( Across-Task Mining ) and requires their repre- 

entations to be pushed away from current data. In Tab. 3 , we com-

are this design choice with two alternative strategies: i) Within- 

ask Mining , where we let the model choose the negatives from 

he current task only; and ii)Task-Agnostic Mining , where the model 

an freely pick a negative example from either the memory or the 

urrent batch without any task-specific prior. As can be observed, 

ask-Agnostic Mining and Within-Task Mining lead to a small but 

onsistent decrease in performance, while L UM proves to be the 

ost rewarding strategy. 
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Table 4 

Average Accuracy of alternative CSSL proposals on 

CIFAR-10. 

Labels % 0.8% 5% 25% 

ER+EMA 500 21.4 ±0.5 26.3 ±1.0 43.3 ±1.2 

CCIC 500 54.0 ±0.2 63.3 ±2.1 63.9 ±2.6 

ER+EMA 5120 25.9 ±0.8 40.8 ±2.1 64.8 ±0.4 

CCIC 5120 55.2 ±1.2 74.3 ±1.7 84.7 ±0.9 
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Model-driven Consistency. In addition with combining a con- 

rastive form of consistency regularization with ER, we propose 

n additional temporal consistency baseline which requires the ac- 

ivations of the model to match a slower moving-average check- 

oint. Results in Tab. 4 show, however, that such approach under- 

erforms consistently, not even reaching the performance of ER. 

his suggests that, differently from fully-supervised scenarios [6] , 

xponential moving average approaches do not necessarily scale to 

L. 

. Conclusion 

Catastrophic forgetting prevents most current state-of-the-art 

odels from sequentially learning multiple tasks, forcing practi- 

ioners to heavy resource-demanding training processes. Moreover, 

any of the applications that might benefit from CL algorithms are 

ften characterized by label scarcity. For this reason, we investi- 

ate the possibility of leveraging unlabeled data-points to enhance 

he performance of Continual Learning models, a scenario that we 

ame Continual Semi-Supervised Learning (CSSL) . 

We further propose Constrastive Continual Interpolation Con- 

istency (CCIC) , an incremental approach that combines the ben- 

fits of rehearsal with consistency regularization and distance- 

ased constraints. Remarkably, our experiments suggest that well- 

esigned methods can effectively exploit the unlabeled examples 

o prevent forgetting. This indicates that the effort of annotating 

ll data may be unnecessary in a continual scenario. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgement 

This work was supported by the FF4EuroHPC: HPC Innovation 

or European SMEs, Project Call 1. Project FF4EuroHPC has received 

unding from the European High-Performance Computing Joint Un- 

ertaking (JU) under grant agreement No. 951745. 

eferences 

[1] M. McCloskey, N.J. Cohen, Catastrophic interference in connectionist networks: 
the sequential learning problem, Psychol. Learn. Motiv. (1989) . 

[2] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,
T. Tuytelaars, A continual learning survey: defying forgetting in classification 

tasks, IEEE TPAMI (2021) . 

[3] R. Aljundi, K. Kelchtermans, T. Tuytelaars, Task-free continual learning, CVPR, 
2019 . 

[4] W. Zhou, S. Chang, N. Sosa, H. Hamann, D. Cox, Lifelong object detection, 
arXiv:2009.01129 (2020). 

[5] C. Olivier, S. Bernhard, Z. Alexander, Semi-supervised learning, 2006. 
14 
[6] A. Tarvainen, H. Valpola, Mean teachers are better role models: weight-av- 
eraged consistency targets improve semi-supervised deep learning results, 

ANIPS, 2017 . 
[7] S. Farquhar, Y. Gal, Towards robust evaluations of continual learning, ICML 

Workshop, 2018 . 
[8] G.M. van de Ven, A.S. Tolias, Three continual learning scenarios, ANIPS Work- 

shop, 2018 . 
[9] R. Aljundi, M. Lin, B. Goujaud, Y. Bengio, Gradient based sample selection for 

online continual learning, ANIPS, 2019 . 

[10] D. Lopez-Paz, M. Ranzato, Gradient episodic memory for continual learning, 
ANIPS, 2017 . 

[11] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, G. Tesauro, Learning to
learn without forgetting by maximizing transfer and minimizing interference, 

ICLR, 2019 . 
12] A . Chaudhry, A . Gordo, P.K. Dokania, P. Torr, D. Lopez-Paz, Using hindsight to

anchor past knowledge in continual learning, in: AAAI Conf. Artif. Intell., 2021 . 

[13] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, C.-C.J. Kuo,
Class-incremental learning via deep model consolidation, WACV, 2020 . 

[14] A. Lechat, S. Herbin, F. Jurie, Semi-supervised class incremental learning, ICPR, 
2021 . 

[15] J. Serra, D. Suris, M. Miron, A. Karatzoglou, Overcoming catastrophic forgetting 
with hard attention to the task, ICML, 2018 . 

[16] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A .A . Rusu, A . Pritzel, D.

Wierstra, Pathnet: evolution channels gradient descent in super neural net- 
works, arXiv:1701.08734 (2017). 

[17] A. Mallya, S. Lazebnik, Packnet: adding multiple tasks to a single network by 
iterative pruning, CVPR, 2018 . 

[18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A .A . Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., Overcoming catas- 

trophic forgetting in neural networks, PNAS, 2017 . 

[19] F. Zenke, B. Poole, S. Ganguli, Continual learning through synaptic intelligence, 
ICML, 2017 . 

20] Z. Li, D. Hoiem, Learning without forgetting, IEEE TPAMI (2017) . 
21] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y.W. Teh, R. Pas- 

canu, R. Hadsell, Progress & compress: a scalable framework for continual 
learning, ICML, 2018 . 

22] R. Ratcliff, Connectionist models of recognition memory: constraints imposed 

by learning and forgetting functions, Psychol. Rev. (1990) . 
23] P. Buzzega, M. Boschini, A. Porrello, S. Calderara, Rethinking experience replay: 

a bag of tricks for continual learning, ICPR, 2020 . 
24] S. Rebuffi, A. Kolesnikov, G. Sperl, C. Lampert, icarl: Incremental classifier and 

representation learning, CVPR, 2017 . 
25] P. Buzzega, M. Boschini, A. Porrello, D. Abati, S. Calderara, Dark experience for 

general continual learning: a strong, simple baseline, ANIPS, 2020 . 

26] A. Prabhu, P.H. Torr, P.K. Dokania, Gdumb: A simple approach that questions 
our progress in continual learning, ECCV, 2020 . 

27] S. Laine, T. Aila, Temporal ensembling for semi-supervised learning, ICLR, 2017 . 
28] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, C.A. Raffel, Mix- 

match: A holistic approach to semi-supervised learning, ANIPS, 2019 . 
29] T. Miyato, S.-i. Maeda, M. Koyama, S. Ishii, Virtual adversarial training: a reg- 

ularization method for supervised and semi-supervised learning, IEEE TPAMI 
(2018) . 

30] Z. Zheng, L. Zheng, Y. Yang, Unlabeled samples generated by gan improve the 

person re-identification baseline in vitro, ICCV, 2017 . 
31] Y. Yang, Y. Zhuang, Y. Pan, Multiple knowledge representation for big data ar- 

tificial intelligence: framework, applications, and case studies, Front. Inf. Tech- 
nol. Electron. Eng. (2021) . 

32] Y. Pan, Multiple knowledge representation of artificial intelligence, Engineering 
(2020) . 

33] D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised 

methods, ACL, 1995 . 
34] D.-H. Lee, Pseudo-label: The simple and efficient semi-supervised learning 

method for deep neural networks, ICML Workshop, 2013 . 
35] A . Oliver, A . Odena, C.A . Raffel, E.D. Cubuk, I. Goodfellow, Realistic evaluation

of deep semi-supervised learning algorithms, ANIPS, 2018 . 
36] H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, mixup: beyond empirical risk 

minimization, ICLR, 2018 . 

37] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in
natural images with unsupervised feature learning, ANIPS, 2011 . 

38] A. Krizhevsky, et al., Learning Multiple Layers of Features From Tiny Images, 
Technical Report, 2009 . 

39] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, B.E. Bejnordi, 
Conditional channel gated networks for task-aware continual learning, CVPR, 

2020 . 

http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0001
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0002
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0003
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0006
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0007
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0008
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0009
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0010
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0011
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0012
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0013
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0014
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0015
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0017
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0018
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0019
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0020
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0021
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0022
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0023
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0024
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0025
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0026
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0027
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0028
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0029
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0030
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0031
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0032
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0033
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0034
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0035
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0036
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0037
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0038
http://refhub.elsevier.com/S0167-8655(22)00245-8/sbref0039

	Continual semi-supervised learning through contrastive interpolation consistency
	1 Introduction
	2 Related work
	2.1 Continual learning protocols
	2.2 Continual learning methods
	2.3 Semi-supervised learning

	3 Continual semi-supervised learning
	4 Method
	4.1 Technical background
	4.2 Contrastive continual interpolation consistency

	5 Experiments
	5.1 Baselines
	5.2 Experimental results

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


