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Abstract

While radar technology has been around for decades, the size and cost of radar devices
has limited its use to niche applications. In recent years, however, radio frequency
integrated circuits (RFIC) working at 24 or 77 GHz have become available to the
consumer market, empowering engineers to build smaller and cheaper radars. At the
same time, a deep interest in autonomous driving vehicles has arisen, pushing integrated
circuit (IC) manufacturers to release a vast amount of multiple-input multiple-output
(MIMO) radar frontends specifically designed for the automotive industry. The aim of
this thesis is to explore the possibilities offered by such devices, as well as those brought
by the availability of wider antenna arrays, and to design novel techniques for analyzing
the data that these devices produce. First, a novel deterministic algorithm for frequency
and complex amplitude estimation is presented and compared against state-of-the-art
algorithms; its use in target range, azimuth and elevation estimation is illustrated.
Then, machine learning (ML) techniques are applied to radar data in order to perform
both human activity recognition and target tracking. Next, human heart rate and
breath rate monitoring techniques exploiting MIMO radars are investigated. All the
numerical results provided in this thesis are based on both synthetically generated data
and various measurements acquired through commercial radars in different scenarios.
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1. Introduction

This chapter provides an introduction to the world of colocated MIMO radar systems.
After illustrating some basic information about their characteristics and outlining their
evolution in the last two decades, the architecture of a colocated MIMO radar system
is described. Finally, the received signal model is briefly analysed, and essential in-
formation about various detection and estimation algorithms that can be employed in
colocated radar systems is provided.

In the second chapter of this thesis a collection of novel algorithms for range and
angle estimation of multiple targets is presented, together with some simulated and
experimental results. Their application to the automotive industry is obvious: the
detection of extended objects that leads to the generation of pointclouds; moreover, in
this scenario, the detection of weak targets that may be shadowed by objects with a
greater radar cross section is of paramount importance in autonomous driving.

The third chapter is devoted to describing the application of machine learning and
deep learning techniques to radar systems: in particular, in an autonomous driving
perspective, it is once again important to detect whether or not a target is a static
object, a pedestrian, a runner or a cyclist in order to allow a vehicle to react accordingly.

In the fourth and last chapter, radar application to vital sign monitoring, i.e. to
heart rate and breath rate estimation, is explored. The most important use case for
this technology is in the hospitals, but a certain interest in performing in-cabin sensing
to assess the health status of car occupants also exists; radars are particularly suited
for this task because they do not require the application of sensors to the body of their
users.

1.1 Basic principles and classification

The initial excitement about the use of antenna arrays at both transmit and receive
sides (i.e., briefly, about MIMO) in wireless systems has been sparked by the pioneering
work of J. H. Winters [1], G. J. Foschini [2], Foschini and M. J. Gans [3], and E.
Telatar [4]; these researchers predicted huge capacity gains in wireless communications
affected by multipath fading [5]. A few years later, the exploitation of antenna arrays
has been also investigated in the radar field for the potential improvements it could
provide in terms of signal-to-noise ratio (SNR), resolution and detection capability. In
fact, in principle, the availability of multiple transmit/receive antennas allows to (e.g.,
see [6–8])

1) increase the SNR characterizing target echoes and make it more stable;
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8 CHAPTER 1. INTRODUCTION

2) implement spatial filtering (i.e., beamforming) for directional signal transmis-
sion/reception and, consequently, achieve a large field of view (FOV);

3) increase the overall number of degrees of freedom and, consequently, the maxi-
mum number of targets that can be detected at a given range;

4) improve the angular resolution with respect to traditional radar systems;
5) exploit spatial diversity, so that uncorrelated aspects of a given target can be

perceived.
Generally speaking, MIMO radar systems can be divided in statistical MIMO radars

[9, 10] and colocated MIMO radars [11], on the basis of the distance between their
transmit and receive arrays [8]. In fact, the transmit and receive antennas of the radar
systems belonging to the first class are widely separated; on the contrary, in radar
systems of the second class, transmit antennas are close to the receive ones and, in
particular, are usually placed on the same shield. Colocated MIMO radars can be
further classified as: a) mono-static radars, where transmit and receive arrays share
their antenna elements; b) pseudo-bistatic radars, where transmit and receive arrays are
made of distinct antenna elements, placed at different positions. It is important to keep
in mind that, in statistical MIMO radars, spatial diversity originates from the fact that
distinct receive antennas, being well separated, can observe uncorrelated parts of the
same target. In colocated MIMO radars, instead, a large spatial aperture is achieved
by radiating orthogonal waveforms. Based on the way these waveforms are generated,
colocated MIMO radars can be divided in: a) time division multiplexing (TDM) radars
[12], b) frequency division multiplexing (FDM) radars [13] and c) orthogonal frequency
division multiplexing (OFDM) radars [14]. On the one hand, in TDM (FDM) radars,
orthogonality is achieved by transmitting through distinct antennas over disjoint time
(frequency) intervals; on the other hand, in OFDM radars, any transmit antenna can be
used to radiate multiple orthogonal waveforms at the same time. A further classification
of colocated MIMO radars, commonly adopted in the automotive field, is based on the
maximum measurable range. According to this classification, these systems are divided
in (see Table 1.1, where, for each type of radar, the achievable range, the transmission
frequency and the typical applications are listed):

1. Short range radars (SRRs) - These are able to measure a maximum range of
about 30 m and offer the highest angular resolution.

2. Medium range radars (MRRs) - These are characterized by a maximum range of
about 100 m, offer a quite large azimuthal FOV and achieve a reasonable angular
resolution.

3. Long range radars (LRRs) - These are characterized by the largest maximum
range (250 m) and the thinnest FOV.

In the last paragraph of this section, the architecture of a pseudo-bistatic colocated
MIMO radar operating in TDM mode is described in some detail. Our interest in this
specific architecture is motivated by its wide use in various civilian applications, and
by its capability of detecting multiple targets and accurately estimating their position.
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Radar type Max range (m) Freq. (GHz) Typical applications

Short range 30 5-77 Park assist, pre-crash

Blind spot detection
Mid range 100 24-77 Rear collision avoidance

Cross traffic alert

Long range 250 40-77 Adaptive cruise control

Table 1.1: Classification of colocated MIMO radars on the basis of their
maximum measurable distance.

1.2 A brief history of the colocated MIMO radar technol-
ogy

The birth of radio detection and ranging (briefly, radar) systems dates back to 1904,
when the German inventor Christian Hulsmayer built a simple ship detection device
for avoiding collisions in fog [15]. However, the first practical radar system was devel-
oped by the British physicist Sir Robert Watson-Watt in 1935, and was employed by
the British army in World War II to detect air and sea aggressors [16]. Another fun-
damental step in the evolution of radar technology is represented by the early studies
on optimal filtering ; the rigorous formulation of this problem and its solution are due
to the American scholar Norbert Wiener and date back to the 40’ [17]. Since then,
many advancements have been made in military and civilian radar systems, thanks
to the development of signal processing techniques and to the evolution in electronic
technology. The most significant advances in signal processing methods applicable to
radar systems equipped with antenna arrays have involved both the transmit side and
the receive side, and can be summarised as follows.

As far as the transmit side is concerned, substantial research efforts have been
devoted to the study of analog beamforming (ABF) and digital beamforming (DBF)
methods for controlling phased arrays; both types of methods allow to obtain electronic
beam steering, i.e. to steer the main lobe of the array radiation pattern without any
movement of the antennas forming it. It is worth stressing that phased arrays have
been around for more than fifty years [18], and that a radar equipped with a phased
array is much simpler than a MIMO radar. In fact, a radar system endowed with a
phased array generates a single waveform feeding each transmit antenna with a different
phase (or, equivalently, with a different delay); consequently, the waveforms radiated
by distinct antennas are highly correlated. Moreover, analog beamforming represents
the earliest method for electronic beam steering; in this case, each of the signal feeding
a transmit antenna is first amplified and then delayed through a phase shifter in a radio
frequency (RF) stage; an important drawback of this method is represented by the fact
that the shape of the resulting beam is fixed. On the other hand, DBF is based on
the idea of implementing beam steering in the (digital) baseband portion of the radar
hardware by multiplying each signal by a complex gain [19]. This procedure allows
to digitally customize the radiated beam, adapting its direction to channel conditions.



10 CHAPTER 1. INTRODUCTION

This technique, also known as adaptive beamforming [20], plays an important role in the
presence of severe path loss. However, it should be always kept in mind that any radar
transmitter exploiting beamforming requires some time (in practice, multiple dwells)
to scan the area of interest. On the contrary, if a MIMO radar is employed, the entire
observed area is illuminated in a single dwell and beamforming is obtained through the
use of different orthogonal waveforms [21].

Another important research area concerning the transmit side of radar systems
equipped with antenna arrays concerns the design of the radiated waveforms [8]. De-
spite the fact that significant theoretical results have been achieved in the field of
optimal design of waveforms (e.g., see [22]), few modulation techniques have been em-
ployed in commercial MIMO radars until now. These include the frequency modulated
continuous wave (FMCW) technique [23] (also known as chirp signal modulation) and
the stepped frequency continuous wave (SFCW) technique [24]. In the last years, con-
siderable attention has been also paid to the use of the OFDM technique [25, 26] and
to the phase modulated continuous wave (PMCW) technique [27].

Early research work regarding the receive side of radar systems endowed with an-
tenna arrays has focused on the development of beamforming methods [28]. One of the
most important contributions to this area is represented by the so called Capon beam-
former, which can provide good resolution and interference rejection capability [29,30].
Other fundamental contributions about the processing of multiple signals acquired by
a radar systems through its antenna array concern the estimation of the direction of
arrival (DOA) of the electromagnetic waves impinging on the array itself. Here, we
limit ourselves to mention the MUSIC [31] and the estimation of signal parameters via
rotational invariance (ESPRIT) techniques [32,33].

The development of signal processing methods for MIMO radars started after the
end of 2003; in fact, in that period, the concept of MIMO radar, defined as a device able
to probe a wireless channel by transmitting multiple signals and receiving their echoes
with similar multiplicity, was proposed for the first time [7]. Since the beginning, it
was clear that MIMO technology could have represented an important tool to improve
the SNR of received signals and to increase radar aperture [6, 8, 21, 34]. Since then,
the exploitation of known DOA estimation strategies, developed in the previous years
for antenna arrays (like MUSIC and ESPRIT), has been widely investigated for this
new type of radars [35–37]. However, the availability of MIMO radars able to radiate
wideband signals by a large number of antennas and to acquire their echoes through an
even larger number of antennas have raised various problems, whose solution requires
substantial research efforts. In fact, on the one hand, these devices allow to acquire a
rich set of information about the surrounding propagation environment; on the other
hand, they require storing and processing large datasets. This has motivated the in-
vestigation of compressed sensing (CS) and statistical sparsity-based techniques, since
these can be exploited to perform signal detection and parameter estimation on the
basis of a much smaller dataset than that available in the case in which the received
waveforms undergo Nyquist sampling [38,39]; various examples of CS-based estimation
algorithms can be found in ref. [40].

As far as the advancement in electronic technology is concerned, in the remaining
part of this paragraph we focus on some important results achieved in the develop-
ment of compact integrated radar devices employed in the automotive field, since this
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is one of the first commercial markets in which MIMO radars have been playing a
fundamental role. The first generation of commercial ultra-wideband (UWB) automo-
tive radar sensors operating in the 77 GHz band has become available in 1999. These
devices were not endowed with antenna arrays and their implementation was based on
discrete electronic components (in particular, gallium-arsenide Gunn diodes mounted
inside a waveguide cavity were employed in the generation of RF waveforms). How-
ever, electronic technology progressed quickly in this field and, after few years, MMICs
employing high-performance silicon-germanium (SiGe) transistors became available for
the implementation of fully integrated radars. Pioneering work in the development and
manufacturing of such a technology has been accomplished by the Infineon company,
that has started its production in 2004 [41]. It is also worth mentioning that, in the
same year, a description of the first fully integrated 24-GHz eight-element phased ar-
ray receiver in SiGe and of the first fully integrated 24-GHz four-element phased array
transmitter with integrated power amplifiers in complementary metal-oxide semicon-
ductor (CMOS) has appeared [42]; these devices were able to accomplish beamforming
and could be used for communication, ranging, positioning, and sensing applications.
Other examples of phased arrays operating in X and Ku-band have been described
later in ref. [43]. The first FMCW MIMO radar transceiver operating at 77 GHz has
been implemented in SiGe technology in 2008 [44], whereas the production of the first
MIMO FMCW radar, operating according to a TDM strategy and equipped with an
array of colocated antennas, started in 2009 [45,46]. As far as we know, the last device
represents the first compact MIMO radar system based on a MMIC in SiGe, operat-
ing at 77 GHz and radiating ultra-wideband signals. In this system, wide-band and
high-frequency patch antennas are built on a RF substrate [47], while the base-band
MIMO signal processing is accomplished off-chip by a field programmable gate array
(FPGA) board. Moreover, the analog-to-digital converters (ADCs) at the receive side
are implemented in CMOS technology and embedded in the transceiver chip; this has
been made possible by the SiGe Bi-CMOS process, which has allowed to integrate mul-
tiple functions on a single chip and at low cost. In the last decade, radar designers
working on the development of new integrated radar devices have investigated the use
of the more scalable CMOS RF technology [48]. An important trend in the technolog-
ical evolution of MIMO radar systems is also represented by the attempt of exploiting
the same hardware for both radar and communications [49]. Some milestones achieved
in the evolution of the signal processing methods and of the technology employed in
colocated radar systems during the last two decades are summarized in Fig. 1.1.

1.3 Architecture of a colocated TDM MIMO radar

In the remaining part of this chapter, we always refer to a colocated and bistatic
MIMO radar system; its architecture is illustrated in Fig. 1.2. Moreover, we first
assume that: a) the considered radar system is equipped with a two-dimensional (2D)
array, consisting of NT transmit (TX) and NR receive (RX) antennas; b) it employs a
TDM strategy; c) it exploits all the available transmit diversity (i.e., all the available
TX antennas). Consequently, if a time slot of T0 s is assigned to each TX antenna,
transmission from all the TX antennas is accomplished over an interval lasting TF ≜
NTT0 s; this interval represents the duration of a single transmission frame.
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In the following, we consider the voltage controlled oscillator (VCO) of the radar
transmitter to be fed by a periodic ramp generator ; this produces a chirp FM signal,
whose instantaneous frequency evolves periodically, as illustrated in Fig. 1.3; it is then
radiated by its transmit array after power amplification.

In this figure, the parameters T , TR and T0 represent the chirp interval, the reset
time and the pulse period (or pulse repetition interval), respectively [50], whereas the
parameters f0 and B are the start frequency and the bandwidth, respectively, of the
transmitted signal. For this reason, if we focus on the time interval (0, T ) and assume
that, in that interval, the p-th TX antenna is employed by the considered radar system
(with p ∈ {0 , 1, ..., NT − 1}), the radiated signal can be expressed as

sRF (t) = ARFℜ{s (t)} , (1.1)

where ARF is its amplitude,

s (t) ≜ exp [jθ (t)] , (1.2)

θ (t) ≜ 2π
(
f0t+

µ

2
t2
)

(1.3)
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Figure 1.3: Representation of the instantaneous frequency of the RF sig-
nal generated by the VCO in a FMCW radar system.

and
µ =

B

T
(1.4)

is the chirp rate, i.e. the steepness of the generated frequency chirp.
Let r(q)RF (t) denote the signal available at the output of the q-th receive antenna,

with q = 0, 1, ..., NR − 1 (see Fig. 1.2); this signal feeds a low noise amplifier (LNA),
whose output undergoes downconversion, filtering and analog-to-digital conversion at
a frequency fs = 1/Ts, where Ts denotes the sampling period of the employed ADC.
This will lead us to also state that

T = NTs (1.5)

If we assume that the radiated signal sRF (t) (1.1) is reflected by L static point
targets, the useful component of r(q)RF (t) consists of the superposition of L echoes, each
originating from a distinct target. In this case, if the propagation environment under-
goes slow variations, a simple mathematical model can be developed to represent the
sequence of samples generated by the ADC in a single chirp interval. In deriving this
model, the couple of the involved physical TX and RX antennas (namely, the p-th TX
antenna and the q-th RX antenna) of the considered bistatic radar is often replaced by
a single virtual antenna of an equivalent monostatic radar. In particular, the abscissa
xv and the ordinate yv of the v-th virtual antenna element associated with the p-th
TX antenna and the q-th RX antenna are computed as1

xv =
xp + xq

2
(1.6)

and
yv =

yp + yq
2

, (1.7)

1This is not the only rule adopted in the technical literature to compute the coordinates of the v-th
virtual antenna element. For instance, in ref. [21, Par. 4.3.1, pp. 159-161], the abscissa (ordinate)
of this element is evaluated as 2xv (2yv), where xv and yv are expressed by eqs. (1.6) and (1.7),
respectively. Keep in mind, however, that, if the last rule is adopted, all the following formulas
involving such coordinates must be changed accordingly.
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respectively, with v = 0, 1, ..., NV − 1; here, (xp, yp) ((xq, yq)) are the coordinates2 of
the TX (RX antenna) and

NV ≜ NT ·NR (1.8)

represents the overall size of the resulting virtual array. Based on these assumptions,
the n-th received signal sample acquired through the v-th virtual antenna element (with
v = 0, 1, ..., NV − 1) can be expressed (e.g., see [51, Par. 4.6, eq. (4.27)])

x(v)r,n =

L−1∑
l=0

al cos
(
2πnF

(v)
l + ψ

(v)
l

)
+ w(v)

r,n

=

L−1∑
l=0

[
C

(v)
l exp

(
j2πnF

(v)
l

)
+

+(C
(v)
l )∗ exp

(
−j2πnF (v)

l

)]
+ w(v)

r,n, (1.9)

where
C

(v)
l ≜

1

2
al exp

(
jψ

(v)
l

)
(1.10)

represents the complex amplitude of the real tone appearing in the right hand side
(RHS) of (1.9), or, if the radar system is able to receive both in phase and quadrature
components of the signal,

x(v)c,n =
L−1∑
l=0

A
(v)
l exp

(
j2πnF

(v)
l

)
+ w(v)

c,n, (1.11)

must be adopted in place of its real counterpart (1.9) for any n; here,

A
(v)
l ≜ al exp

(
jψ

(v)
l

)
(1.12)

for any v and l with n = 0, 1, ..., N − 1; here, N is the overall number of samples
acquired over a chirp period, al is the amplitude of the l-th component of the useful
signal (this amplitude depends on both the range Rl and the reflectivity of the l-th
target, but is assumed to be independent of v for simplicity),

F
(v)
l ≜ f

(v)
l Ts (1.13)

is the normalized version of the frequency

f
(v)
l ≜ µ τ

(v)
l , (1.14)

characterizing the l-th target detected on the v-th virtual receive antenna,

τ
(v)
l =

2

c
[Rl + xv cos (θl) sin (ϕl) + yv sin (θl)] (1.15)

is the delay of the echo generated by the l-th target and observed on the v-th virtual
channel, Rl, ϕl and θl denote the range of the l-th target, its azimuth and its elevation,
respectively,

ψ
(v)
l

∼= 2πf0τ
(v)
l , (1.16)

2A reference system lying on the physical antenna array is assumed.



1.3. ARCHITECTURE OF A COLOCATED TDM MIMO RADAR 15

and w
(v)
z,n is the n-th sample of the additive white Gaussian noise (AWGN) sequence

affecting the received signal (the noise variance is denoted σ2w in the following and is
assumed to be independent of v)3. The samples {x(v)n ; n = 0, 1, ..., N − 1} can be
collected in the N -dimensional vector

x(v)
z ≜

[
x
(v)
z,0, x

(v)
z,1, ..., x

(v)
z,N−1

]T
, (1.17)

which is processed by the next stages of the radar receiver for target detection and
estimation. As it can be easily inferred from eq. (1.9), in a FMCW radar system,
the problem of target detection and range estimation on the v-th virtual channel is
equivalent to the classic problem of estimating the frequencies of multiple overlapped
sinusoids (multiple overlapped complex exponentials) in the presence of AWGN [52].
In fact, if an estimate f̂ (v)l of the frequency f

(v)
l (1.14) and an estimate F̂ (v)

l of the
normalised frequency F (v)

l (1.13) are available for the v-th virtual channel, an estimate
of the range Rl can be computed as (see eqs. (1.14) and (1.15))

R̂
(v)
l =

1

2

f̂
(v)
l

µ
c (1.18)

for any v and l. Information about the angular coordinates (namely, the azimuth and
the elevation) of the l-th target, instead, can be acquired through the estimation of
the set of NV phases {ψv,l; v = 0, 1, ..., NV − 1} observed over the available virtual
antennas. In fact, since (see eqs. (1.15) and (1.16))

ψ
(v)
l

∼= 4π
f0
c
[Rl + xv cos (θl) sin (ϕl) + yv sin (θl)] (1.19)

where
λ ≜

c

f0
(1.20)

is the wavelength associated with the frequency f0, the sequence {ψ(v)
l ; v = 0, 1, ...,

NV −1} exhibits a periodic behavior characterized by the normalised horizontal spatial
frequency

FH,l ≜ 2
dH
λ

cos (θl) sin (ϕl) , (1.21)

if the considered virtual elements form an horizontal uniform linear array (ULA),
whose adjacent elements are spaced dH m apart. Dually, if a vertical ULA is assumed,
the periodic variations observed in the same sequence of phases are characterized by
thenormalised vertical spatial frequency

FV,l ≜ 2
dV
λ

sin (θl) , (1.22)

where dV denotes the distance between adjacent elements of the vertical virtual array.
Consequently, angle finding can be easily accomplished by DBF, i.e. by performing FFT
processing on the estimated phases taken across multiple elements of the virtual array

3In the following, when the letter z will be used in a subscript, it will be implicitly assumed, unless
differently stated, that it can be equal to r or c.
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in a single frame interval [53,54]. Note, however, that other angle estimation methods,
achieving a better resolution than FFT processing are also available; here, we limit to
mention the so called subspace-based methods (such as MUSIC and ESPRIT), sparse
sensing-based methods [55,56] and the iterative adaptive approach (IAA) developed in
ref. [57]. Subspace-based methods require computing an accurate estimate of the array
covariance matrix; consequently, the measurements acquired over multiple snapshots
must be processed. Moreover, they do not allow to estimate the amplitude of the echo
associated with each detected target and require prior knowledge of the size of the
useful signal subspace (i.e., of the number of detectable targets). On the contrary,
sparse sensing-based methods and IAA can generate angle estimates on the basis of a
single snapshot of the received signal; however, this result is obtained at the price of a
significant computational effort.

The received signal model (1.9) holds if all the observed targets are static. Let
us focus now on a FMCW radar system operating in the presence of L moving point
targets and having the following characteristics: a) it is equipped with a single TX
antenna and a single RX antenna (i.e., NT = NR = 1); b) its reset time TR is equal
to 0, so that T0 = T (see Fig. 1.3); c) its transmission frame consists of Nc chirps,
so that the duration TF of the transmission frame is equal to NcT0 = NcT s; d) N
distinct ADC samples are acquired in each chirp interval at the receive side. Then, it
is not difficult to prove that, if the ranges of all the targets are much larger than their
displacements observed during the considered transmission frame, the n-th sample of
the signal acquired in the k-th chirp interval (with k = 0, 1, ..., Nc−1) can be expressed
in a similar way as eq. (1.9), namely as (e.g., see [50, eq.(5)])

r(k)n
∼=

L−1∑
l=0

al cos(2πn (Fl + FD,l) + ψ
(k)
l ) + w(k)

n , (1.23)

where Fl = µ τl Ts (see eqs. (1.13) and (1.14)), τl = 2Rl/c is the delay of the echo
generated by the l-th target and observed in the first chirp interval (in this interval,
the target range is assumed to be equal to Rl),

FD,l =
2 vl
λ
Ts (1.24)

is the normalised Doppler frequency, vl is the radial velocity4 of the l-th target,

ψ
(k)
l

∼=
4π

λ
R

(k)
l , (1.25)

R
(k)
l = Rl + vl kT (1.26)

is the target range observed in the k-th chirp interval and w
(k)
n is the n-th sample of

the AWGN sequence affecting the received signal in the same chirp interval.
The rate of change observed in the sequence of phases {ψ(k)

l ; k = 0, 1, ..., Nc − 1}
is proportional to vl, since (see eqs. (1.25) and (1.26))

ψ
(k+1)
l − ψ

(k)
l

∼=
4π

λ

(
R

(k+1)
l −R

(k)
l

)
= 4π

T

λ
vl (1.27)

4This speed is positive (negative) if the target is approaching (is moving away) from the radar.
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with k = 0, 1, ..., Nc− 1. Therefore, target velocity can be easily assessed by means of
FFT processing after computing an estimate of the above mentioned phases.

In the technical literature, range and speed information of the moving targets de-
tected in a given propagation environment are usually condensed in a 2D plot, called
range-Doppler map [50, 58]. In a FMCW radar system equipped with a single TX
antenna and a single RX antenna, this map is generated as follows. Let r(k) denote
the N -dimensional (column) vector consisting of the real measurements acquired in the
k-th chirp of a transmission frame, with k = 0, 1, ..., Nc − 1 , where Nc is the overall
number of chirps forming the frame itself. The Nc vectors {r(k); k = 0, 1, ..., Nc − 1}
are collected in the matrix

R = [r(0) r(1) · · · r(Nc−1)] , (1.28)

having size N ×Nc. This matrix undergoes zero-padding, that turns it into a matrix
RZP of size N0 × N

′
0. The last matrix feeds a N0 × N

′
0-th order FFT, that generates

the range-Doppler (complex) matrix

D = [dp,q] ≜ FFT
N0×N

′
0
[R] , (1.29)

where FFTX×Y [·] denotes 2D FFT operator of size X × Y ; note that the index p (q)
labelling the elements of the matrix D refers to the range (Doppler) domain. Repre-
senting, on a Cartesian plane, the absolute value of the elements of the matrix D yields
the above mentioned range-Doppler map.

In the last fifteen years, substantial attention has been also paid to the problem of
estimating the micro-movements of detected targets; such movements usually originate
from mechanical vibrations or rotations (overlapping to a bulk translation) and may
generate a frequency modulation in the received signal; the last phenomenon is known
as micro-Doppler. The recent interest in micro-Doppler is motivated by the fact that it
can be exploited to establish the dynamic properties of targets [59] and, consequently,
can be used to classify them or identify specific properties related to their motion. In
a FMCW radar system equipped with a single TX antenna and a single RX antenna,
the micro-Doppler phenomenon can be analysed as follows. Let us assume that Nf

consecutive frames (each consisting of Nc chirps) are transmitted by the considered
radar system and that the range-Doppler matrix D (1.29) is evaluated for each frame
(the matrix referring to the m-th frame is denoted Dm = [d

(m)
p,q ], with m = 0, 1, ...,

Nf − 1). Relevant information about the micro-Doppler fluctuations, also known as
the micro-Doppler signatures, characterizing a certain range interval can be acquired
through the real matrix E = [Em,q], having size Nf × N

′
0 and whose element on its

m-th row and q-th column is evaluated as

Em,q ≜
pmax∑
p=pmin

|d(m)
p,q |2 (1.30)

with m = 0, 1, ..., Nf − 1 and q = 0, 1, ..., N ′
0 − 1; here, pmin (pmax) denotes

the value of the index p associated with the minimum (maximum) range of interest.
Representing the elements of the matrix E on a Cartesian plane produces the so called
spectrogram [59], that shows the time evolution of the Doppler phenomenon.
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Additional information about the dynamical properties of a moving target can be
acquired through another diagram, known as cadence velocity diagram (CVD). This
diagram allows us to identify the most relevant frequency components associated with
a given motion (e.g., if a walking pedestrian is considered, the speed of his arms can be
extracted from the associated CVD). Moreover, its generation is based on the complex
matrix G = [Gl,q], having size N ′

f × N
′
0 and computed as the N ′

f × N
′
0-th order FFT

of the matrix EZP = [E
(ZP )
m,q ], that results from zero padding of the matrix E defined

above; therefore, we have that

Gl,q ≜
1

Nf

N
′
f−1∑
m=0

E(ZP )
m,q exp

(
−j2π m

N
′
f

f̄l TF

)
(1.31)

with l = 0, 1, ..., N ′
f − 1 and q = 0, 1, ..., N ′

0 − 1; here, TF is the duration of a

single transmission frame, E(ZP )
m,q = Em,q for m = 0, 1, ..., Nf − 1 and E

(ZP )
m,q = 0 for

m > Nf − 1 , and

f̄l ≜
l

TF
(1.32)

is the l-th cadence frequency. The CVD results from representing, on a Cartesian plane,
the absolute value of the elements of the matrix G.

Finally, it is important to note that, in the development of detection and estima-
tion algorithms for colocated MIMO radar systems operating at millimeter waves, the
following technical issues need to be taken carefully into account:

1. These radar systems often operate at short ranges and in the presence of extended
targets. Each radar image is a cloud of point targets whose mutual spacing can
be very small [60]. For this reason, the accuracy of these images depends, first
of all, on the frequency resolution (delay resolution) achieved by the detection
and estimation algorithm employed on each virtual antenna in a FMCW radar
system. In fact, this makes the radar receiver able to separate point targets
characterized by similar ranges.

2. Distinct radar echoes can be characterized by substantially different signal-to-
noise ratios (SNRs), because of relevant differences among the amplitudes of the
L overlapped oscillations forming the useful component of the received signal (see
(1.9) and (1.11)).

3. The number N of samples acquired over each virtual channel usually ranges from
few hundreds to few thousands.

The last two issues explain why significant attention must be paid to the accuracy
achieved by the adopted detection and estimation algorithms at low SNRs and/or for
relatively small values of N , since this can appreciably influence the quality of the
generated radar image.



2. Range & Angle Serial Cancellation Al-
gorithm

2.1 Introduction

It is well known that achieved by any colocated MIMO radar system depends not only
on some important characteristics of its hardware (e.g., the operating frequency, the
number of transmit and receive antennas, the configuration of the transmit and receive
arrays, etc.), but also on the techniques employed in the generation of its radiated
waveforms and in the processing of the measurements acquired through its receive array.
As far as the last issue is concerned, it is worth stressing that optimal (i.e., maximum
likelihood, ML) techniques for the estimation of the overall number of targets and of
their spatial coordinates cannot be employed in practice, since they require solving
complicated multidimensional optimization problems and, consequently, entail a huge
computational effort, even in the presence of a small number of targets [50]. This
has motivated the development of various sub-optimal estimation techniques able to
achieve good estimation accuracy at a manageable computational cost. A well known
sub-optimal technique employed in real world radar systems is the one described in
ref. [61] for frequency modulated continuous wave (FMCW) radar systems; this requires:

a) the computation of a multidimensional Fast Fourier Transform (FFT) of the
matrix collecting the time-domain samples of the signals acquired through the receive
array of the employed radar device;

b) the search for the peaks of the resulting amplitude spectrum over a range-
azimuth-elevation domain or a range-azimuth domain in three-dimensional (3D) and
two-dimensional (2D) imaging, respectively. Despite the practical importance of this
technique, the computational effort it requires is still significant, since it involves mul-
tidimensional spectral analysis of the acquired signals. Moreover, it suffers from the
following relevant drawback: it can miss targets whose electromagnetic echoes are
weaker than those generated by other spatially close targets; this is due to the fact the
spectral contribution due to weak echoes is usually hidden by the leakage originating
from stronger echoes. This drawback may substantially affect the overall quality of
radar imaging in the presence of extended targets, since such targets can be usually
modelled as a cluster of point targets characterized by different radar cross sections [60].

Alternative sub-optimal techniques available in the technical literature are based
on the idea of turning a complicated multidimensional optimization problem into a
series of simpler and interconnected optimization sub-problems, each of which involves
a search for the local maxima of a specific cost function over a limited one-dimensional

19
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(1D) or 2D parameter space. Examples of this approach are offered by [62] and [63], and
by [64], where range-azimuth estimators for FMCW MIMO radars are derived. More
specifically, on the one hand, target delays are first estimated by applying the multiple
signal classification (MUSIC) algorithm to a temporal auto-correlation matrix or by
identifying the beat frequencies in the downconverted received signal through spectral
analysis (in particular, through the FFT algorithm) in [62] and in [63], respectively;
then, the acquired information are exploited to estimate the direction of arrival (DOA)
of the echoes originating from detected targets. On the other hand, a different approach
is proposed in [64], where various iterative deterministic methods applicable to a 2D
propagation scenario are derived. These methods have the following relevant features:
1) they process a single snapshot of the received signal (acquired over the whole antenna
array); 2) they estimate a new target in each iteration; 3) they do not require prior
knowledge of the overall number of targets; 4) they involve 1D or 2D maximizations
only; 5) they achieve a good accuracy at a reasonable computational cost; 6) the
computational effort they require can be easily controlled by setting a threshold on the
maximum number of targets to be detected.

In the following, three new detection and estimation algorithms for 2D and 3D radar
imaging are developed. They represent different versions of the same algorithm, called
range & angle serial cancellation algorithm (RASCA), and can be interpreted as em-
bodiments of a general approach to target detection and estimation. In addition, they
share some important features with the detection and estimation techniques developed
in [63] and [64]. In fact, similarly as the techniques illustrated in [64], they are determin-
istic, process a single snapshot, operate in an iterative fashion and are computationally
efficient; the last feature can be related to the fact they require the evaluation of 1D
FFTs only and the search for the global maximum of proper cost functions over 1D (fre-
quency, azimuth or elevation) domains. Moreover, similarly as [63], they first extract
the range of each detected target from the spectra of the received signals and, then, fuse
the information originating from such spectra to extract DOA information. In addition,
they exploit the iterative estimation techniques developed in [65] and based on a serial
cancellation approach for evaluating the parameters of multiple overlapped sinusoids
or multiple overlapped complex exponentials in the presence of additive noise. The de-
vised algorithms are able to accurately detect and estimate multiple close targets, and
to solve the problem of merged measurements or unresolved measurements [8, 66–68],
in the sense that targets generating merged measurements in the range domain are
resolved in the estimation of their angular coordinates. The general approach to target
detection and estimation on which our algorithms are based is illustrated in Section
2.2, whereas the algorithms themselves are described in Sections 2.3, which are devoted
to FMCW radars. Various important details about these algorithms are provided in
Section 2.4, whereas some technical limitations encountered in their implementation in
real world radar systems are discussed in Section 2.5. A description of other FFT-based
and MUSIC-based detection and estimation algorithms with which our algorithms are
compared is provided in Section 2.6. The computational cost of all the considered al-
gorithms is illustrated in Section 2.7, whereas their performance is analysed in Section
2.8, where various numerical results, based on both synthetically generated data and
experimental measurements, are illustrated. Finally, some conclusions are offered in
Section 2.9.
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Figure 2.1: Block diagram describing the general approach to target de-
tection and estimation adopted in this work.

2.2 Description of the proposed approach to the detection
and estimation of multiple targets

All the algorithms developed in the following section can be considered as specific
instances of a general approach to target detection and estimation; this approach is
described by the block diagram shown in Fig. 2.1. The processing accomplished by the
blocks which this diagram consists of can be summarized as follows. Each vector of the
set {x(v)

z }, collecting NVR vectors (see (1.17)), undergoes FFT processing, so that, in
a FMCW radar system, the analysis of the acquired measurements is moved from the
time-domain to the frequency-domain (time-domain). The output of the FFT block
is processed by the range profile estimator (RPE), that generates the so called target
range profile (TRP), i.e. a collection of: a) the ranges at which the relevant echoes are
detected; b) the associated energies. Note that the last quantities allow us to rank each
range on the basis of its perceptual importance. The output of the FFT processing
block and the target range profile are processed by the spatial estimator (SPE). This
block detects all the targets associated with each range appearing in the TRP and
estimates their angular parameters; moreover, it may generate a finer estimate of their
range. The SPE output is represented by the set

It ≜
{(
R̂l, θ̂l, ϕ̂l,

∣∣∣Ĉl∣∣∣) ; l = 0, 1, . . . , L̂− 1
}

(2.1)

or the set
It ≜

{(
R̂l, θ̂l,

∣∣∣Ĉl∣∣∣) ; l = 0, 1, . . . , L̂− 1
}

(2.2)

in the case of 3D and 2D imaging, respectively; here, L̂ represents an estimate of the
parameter L (i.e., of the overall number of point targets), whereas R̂l, θ̂l, ϕ̂l and |Ĉl|
represent an estimate of the range Rl, azimuth θl, elevation ϕl and amplitude |Cl|,
respectively, of the l-th target (with l = 0, 1, ..., L̂− 1).

It is important to point out that:

1. If this approach is adopted, range estimation is decoupled from angular estima-
tion, so that a 3D (2D) detection and estimation problem is turned into a) a 1D
detection/estimation problem involving the detection of multiple targets and the
estimation of their ranges only plus b) a 2D (1D) estimation problem concerning
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the targets detected at the same range and the estimation of their azimuth and
elevation (azimuth only). Consequently, the overall problem of detecting multiple
targets and estimating their range and angles is turned into a couple of simpler
detection and estimation problems.

2. The SPE exploits the range information generated by the RPE in order to con-
centrate its computational effort on a set of well defined ranges; this allows to
reduce the size of the search space involved in spatial estimation. This explains
also why the processing accomplished by the SPE cannot start before that at least
a portion of the range/energy information (i.e., a portion of the TRP) generated
by the RPE becomes available.

3. Various techniques can be exploited in the RPE and in the SPE to develop com-
putationally efficient embodiments of the proposed approach.

As far as the last point is concerned, the following techniques can be adopted by
the RPE to mitigate its complexity:

a) Antenna selection – This consists in feeding the RPE with a subset of the outputs
of the FFT processing block; such outputs are generated on the basis of NA of
the NVR VAs. Note that, on the one hand, a larger NA allows to compute a more
accurate TRP; on the other hand, selecting a smaller NA results in a reduction
of the overall effort required for the computation of the TRP.

b) Antenna-by-antenna processing – The measurements acquired through the selected
NA VAs can be efficiently processed by adopting a two-step procedure. In the
first step, target range estimation is accomplished on each VA independently of
all the other VAs, i.e. the acquired measurements are processed on an antenna-
by-antenna basis; this is beneficial when parallel computing hardware is employed
in the execution of the first step. In the second step, instead, the target range
information extracted from each of the selected NA VAs are fused to generate the
TRP.

c) Serial target cancellation in the range domain – Target detection and range estima-
tion on each VA represent a multidimensional problem since they aim at detecting
multiple targets and estimating their ranges. In our method, this multidimen-
sional problem is turned into a sequence of 2D estimation problems by adopting
a serial interference cancellation (SIC) approach (e.g., see [64]). This means that
the noisy signal observed on each VA is processed in an iterative fashion. In each
iteration, a single (and, in particular, the strongest) target is detected, and its
range and complex amplitude are estimated. Then, the contribution of this target
to the received signal is estimated and subtracted from the signal itself (i.e., the
detected target is treated as a form of interference to be cancelled), so generating
a residual signal. The last signal represents the input of the next iteration. This
procedure is repeated until the overall energy of the residual drops below a given
threshold. Note also that the use of this SIC-based approach allows us to mitigate
the impact of the spectral leakage due to strong targets, that can potentially hide
weak targets having similar ranges.
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d) Alternating maximization – The estimation of the normalised frequency (or delay)
and the complex amplitude of a detected target requires searching for the max-
imum (or the minimum) of a proper cost function over a 2D domain. In our
method, the alternating maximization (AM) technique is exploited to develop
iterative algorithms that alternate the estimation of the normalised frequency (or
delay) of a given target with that of its complex amplitude; for this reason, a
2D optimization problem is turned into a couple of interacting 1D optimization
problems (e.g., see [69, Par. IV-A]).

In the SPE block, instead, the following techniques can be employed to reduce its
overall computational complexity:

a) Alternating maximization – The AM technique is exploited to develop iterative
algorithms that alternate the estimation of the elevation of a given target with
that of its azimuth. This allows us to decouple the estimation of target elevation
from that of its azimuth.

b) Serial target cancellation in the angular domain – Each of the ranges collected in
the TRP is associated with an unknown number of targets; for this reason, the
processing accomplished by the SPE aims at resolving all the targets associated
with a given range and estimating their angular coordinates. In the technical
literature about radar systems, the detection of an unknown number of targets
characterized by the same range (or by ranges whose mutual differences are below
the range resolution of the employed radar system) and the estimation of their
angular parameters is known to be a difficult multidimensional problem (e.g.,
see [62, Par. III-C]). In our method, a SIC approach is exploited to turn this
multidimensional problem into a sequence of 2D (1D) estimation problems in 3D
(2D) imaging (see [64] and references therein). This means that the noisy data
referring to a specific range and acquired on all the VAs are iteratively processed
to detect a single (and, in particular, the strongest) target, and to estimate its
angular coordinates and complex amplitude. Then, the contribution of this target
to the outputs of the FFT processing block is estimated and subtracted from
them, so generating a set of residual data. This detection/estimation/cancellation
procedure is iteratively applied to the residual data until their overall energy drops
below a given threshold. Moreover, in a 3D propagation scenario, this procedure
is combined with the AM approach described in the previous point; this allows
to detect and estimate the angular parameters of a single target (i.e., to solve
a 2D optimization problem) by means of an iterative procedure alternating the
estimation of its elevation with that of its azimuth (i.e., by means of an algorithm
solving a couple of 1D optimization problems). Note also that, once again, the
use of a serial cancellation approach allows us to mitigate the impact of the
spectral leakage due to strong targets, that can potentially hide weak targets
having similar spatial coordinates.

c) Parallel processing of the data associated with different ranges – The detection and
the estimation of the targets associated with distinct ranges of the TRP can be
accomplished in a parallel fashion or in a sequential fashion. The first approach
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NVH � 1
<latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit>

q
<latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

NVV � 1
<latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit>

qR
<latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit>

dVV
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Figure 2.2: Virtual antenna array considered in the description of our
detection and estimation algorithms. The reference VA selected in this
case is identified by a yellow circle.

is more efficient than the second one if spatial estimation is executed on parallel
computing hardware. In fact, in this case, multiple spatial estimation algorithms
can be run in parallel, one for each of the ranges appearing in the TRP. Note,
however, that the price to be paid for this is represented by the fact that the target
information generated by all the parallel procedures need to be fused when they
end. In fact, the analysis of the measurements referring to close ranges appearing
in the TRP may lead to detecting the same target more than one time.

Based on the general approach outlined above and on the techniques listed for the
RPE and the SPE, four specific algorithms, called range & angle serial cancellation
algorithms (RASCAs) are developed in the following. These algorithms apply to colo-
cated MIMO FMCW radar systems and are called RASCA-FR2 (RASCA-FC2) and
RASCA-FR3 (RASCA-FC3), since they generate 2D and 3D radar images, respectively,
on the basis of real (complex) measurements. In the description of these algorithms
we assume, without loosing generality, that the available measurements are acquired
through the NVH ×NVV virtual uniform rectangular array (URA) represented in Fig.
2.2 in the case of 3D imaging and through an horizontal ULA (HULA), consisting of
NVH virtual antennas, in the case of 2D imaging. In the first case, the horizontal (ver-
tical) spacing between adjacent antennas is denoted dVH (dVV), whereas, in the second
one, is denoted dVH. Moreover, in our considerations, we assume that a reference VA,
identified by (p, q) = (pR, qR) (p = pR) in the 3D (2D) case, is selected in the virtual
array, as exemplified by Fig. 2.2.

In the following sections, all the RASCAs are described. In Section 2.3 we first
focus on the RASCA-FR3 and RASCA-FC3, i.e. on the algorithms to be employed in
a MIMO FMCW radar system equipped with a 2D antenna array (in particular, with
the URA shown in Fig. 2.2). Then, we show how to adapt these algorithms to the case
in which this radar system is equipped with a 1D antenna array (in particular, with an
ULA); this leads to the RASCA-FR2 and the RASCA-FC2.
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Table 2.1: Most relevant parameters, sets, vectors and matrices appearing
in our descrption of RASCA-FC3.

Parameter Description

x
(v)
0,ZP Zero-padded version of the vector {x(v)

z }.
x
(v)
m,ZP Zero-padded version of the vector {x(v)

m } (with m = 1 and 2).

X
(v)
m DFT of the vector x

(v)
m,ZP (with m = 0, 1 and 2).

SFFT Set collecting the NVR triads (X
(v)
0 ,X

(v)
1 ,X

(v)
2 ) such that v = 0, 1, . . . , NVR − 1.

NA Number of virtual antennas exploited by the RPE.
SA Set collecting the NA indices of the virtual antennas exploited by the RPE.

S̄FFT Set collecting the NA triads (X
(v)
0 ,X

(v)
1 ,X

(v)
2 ) such that v ∈ SA.

TSTDREC Threshold set in the STDREC algorithm to limit its overall number of iterations.

X
(vk)
m [i]

Residual spectrum available for the vk-th antenna at the end of the (i − 1)-th
iteration of the STDREC algorithm.

E
(vk)
i

Energy associated with the residual spectrum X
(vk)
m [i] and computed by the

STDREC algorithm for the vk-th antenna at the end of its (i− 1)-th iteration.

Ĉ
(vk)
i

Estimate of the complex amplitude C(vk)
i computed for the vk-th antenna in the

i-th iteration of the STDREC algorithm.

F̂
(vk)
i

Estimate of the normalised frequency F (vk)
i computed for the vk-th antenna in the

i-th iteration of the STDREC algorithm.
C

(vk)
Xm

[i]
Estimate of the contribution given by the i-th target detected on the vk-th antenna
to the vector X

(vk)
m [i] (with m = 0, 1 and 2).

SRPE Set collecting the information generated by the RPE and feeding to the SPE.
50 TSTDAEC Threshold set in the STDAEC algorithm to limit its overall number of recursions.

X(i)[l]
Matrix representing the spectral contribution given by the l-th frequency bin and
available at the beginning of the i-th iteration of the STDAEC algorithm.

E(i)[l]
Energy associated with the residual spectrum X(i)[l] made available by the
STDAEC algorithm for the l-th frequency bin at the end of its (i − 1)-th itera-
tion.

s
(i)
VULA,k[l]

k - th vector collecting the spectral information computed for the reference VULA
and the l-th frequency bin in the i-th iteration of the STDAEC algorithm (with
k = 0, 1 and 2).

ĈV,i[l]
Estimate of the complex amplitude CV,i[l] computed for the target detected in the
l-th frequency bin within the i-th iteration of the STDAEC algorithm.

F̂V,i[l]
Estimate of the normalised vertical spatial frequency FV,i[l] computed for the tar-
get detected in the l-th frequency bin within the i-th iteration of the STDAEC
algorithm.

R
(VF)
i [l, q]

Phase rotation factor computed for the q-th VULA and the l-th frequency bin
within the i-th iteration of the STDAEC algorithm (vertical folding).

X
(VF)
i [l]

Vertically folded spectrum computed for the l-th frequency bin within the i-th
iteration of the STDAEC algorithm.

ĈH,i[l]
Estimate of the complex amplitude CH,i[l] computed on the basis of a vertically
folded spectrum within the i-th iteration of the STDAEC algorithm for the l-th
frequency bin.

F̂H,i[l]
Estimate of the normalised horizontal spatial frequency FH,i[l] computed on the
basis of a vertically folded spectrum within the i-th iteration of the STDAEC
algorithm.

R
(HF)
i [l, p]

Phase rotation factor computed for the p-th HULA and the l-th frequency bin
within the i-th iteration of the STDAEC algorithm (horizontal folding).

R
(HV)
i [l, p, q]

Phase rotation factor computed for the (p, q) VA and the l-th frequency bin within
the i-th iteration of the STDAEC algorithm (overall folding).

{X(i)
m,OF[l]}

Overall folded spectrum computed for the l-th frequency bin within the i-th itera-
tion of the STDAEC algorithm.

Ĉi[l]
Estimate of the complex amplitude Ci[l] computed on the basis of a overall folded
spectrum within the i-th iteration of the STDAEC algorithm.

F̂i[l]
Estimate of the normalised frequency Fi[l] computed on the basis of a overall folded
spectrum within the i-th iteration of the STDAEC algorithm.

C
(i)
X0

[l]
Estimate of the contribution, given by the target detected within i-th iteration of
the STDAEC algorithm, to the vector X(i)[l].

R̂i[l], θ̂i[l], ϕ̂i[l]
Estimates of the range, azimuth and elevation made available by the SPE for the
i-th target detected in the l-th frequency bin.
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2.3 Range & angle serial cancellation algorithms for a fre-
quency modulated continuous wave radar system

In this paragraph, we provide a short description of the architecture of the RASCAs for
FMCW radar systems and comment on the method we developed for target detection
and cancellation in the angular domain. Then, we illustrate RASCA-FR3 and RASCA-
FC3 in detail. Finally, we show how to derive the RASCA-FR2 and RASCA-FC2 from
them.

2.3.1 Architecture of the range & angle serial cancellation algorithms
for a frequency modulated continuous wave radar system

The inner structure of the RASCAs for an FMCW radar system is described by the
block diagram shown in Fig. 2.3, whereas the meaning of the most relevant parameters,
sets, vectors and matrices appearing in the description of this algorithm is summarised
in Table 2.1. The processing accomplished inside the blocks appearing in that figure can
be summarized as follows. The FFT processing block turns the time domain informa-
tion provided by the set of NVR vectors {x(v)

z } into the frequency domain information
feeding both the RPE and the SPE blocks. This transformation requires the evaluation
of 3NVR FFTs, all of order N0. In fact, it consists in the evaluation of the triad (X

(v)
0 ,

X
(v)
1 , X(v)

2 ), collecting three N0-dimensional vectors, on the basis of x(v)
z , for v = 0, 1,

..., NVR − 1. For this reason, the output of the considered block is represented by the
set

SFFT ≜
{(

X
(v)
0 ,X

(v)
1 ,X

(v)
2

)
; v = 0, 1, ..., NVR − 1

}
, (2.3)

consisting of 3 ·NVR N0-dimensional vectors. Note that, however, a portion of this set
is discarded by the RPE, since this block processes the information originating from
NA distinct VAs only. The triads selected by the RPE form the subset

S̄FFT ≜
{(

X
(v)
0 ,X

(v)
1 ,X

(v)
2

)
; v ∈ SA

}
, (2.4)

of SFFT (2.3); here,
SA ≜ {v0, v1, ..., vNA−1} , (2.5)

represents the set of the values of the VA index v identifying the elements of SFFT

that belong to S̄FFT. Each of the triads of S̄FFT is processed, independently of all
the other ones, by a novel iterative estimation algorithm called single target detection,
range estimation and cancellation (STDREC). This algorithm detects the most rele-
vant targets on the selected antenna and estimates their ranges (i.e., the frequencies
associated with these ranges; see (1.14) and (1.18)) and their complex amplitudes (see
(1.16) and (1.12)). The name of this algorithm originates from the fact that, in each of
its iterations, it detects a single target (namely, the strongest target), estimates its pa-
rameters (and, in particular, the frequency characterizing it, i.e. its range) and cancels
the target contribution to the received signal; the residual signal resulting from target
cancellation represents the input of the next iteration. The output of the STDREC
algorithm that processes the raw data originating from the vk-th VA is represented by
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the set1

Svk ≜
{(
α̂
(vk)
i , Ĉ

(vk)
i

)
, i = 0, 1, . . . , Lk − 1

}
, (2.6)

with k = 0, 1, ..., NA − 1; here, Lk is the overall number of targets detected on
the considered VA, whereas Ĉ(vk)

i and α̂
(vk)
i represent the estimate of the complex

amplitude of the i-th target and the index of the frequency bin2 in which this target
has been detected. Finally, the information provided by the NA sets {Svk} are merged
to generate the single set

SRPE ≜ {(α̂l, Eb,l) , l = 0, 1, . . . , Lb − 1} , (2.7)

where Lb is the overall number of targets detected on all the selected VAs, α̂l is the
index of the frequency bin in which the l-th target has been detected and Eb,l is the
average energy estimated for it. Note that:

a) The cardinality Lb of the set SRPE represents a preliminary estimate of the overall
number of targets; in fact, multiple targets having the same range or ranges
whose mutual differences are below the resolution of the employed radar system
are detected as a single target and no effort is made at this stage to separate their
contributions.

b) The energies {Eb,l} represent the perceptual importance of the identified frequency
bins, in the sense that a larger energy is associated with a more important fre-
quency bin.

Both the sets SFFT (2.3) and SRPE (2.7) feed the SPE. The aim of this block is
to analyse the spectral information associated with the ranges (i.e., with the frequency
bins) identified by the RPE in order to: a) estimate the angular coordinates (i.e.,
azimuth and elevation) of the targets contributing to each frequency bin; b) detect
additional targets associated with adjacent frequency bins and potentially hidden by
the spectral leakage due to stronger targets; c) estimate the angular coordinates (i.e.,
azimuth and elevation) of such additional targets and compute a finer estimate of their
range.

The first stage of the processing accomplished by the SPE involves the whole set
SFFT (2.3) and is executed on a bin-by-bin basis, since it aims at: a) detecting all
the targets that contribute to the energy of each frequency bin contained in the TRP
and b) estimating their angular coordinates. For this reason, this stage consists of
Lb estimators running in parallel ; each estimator focuses on one of the Lb frequency
bins (i.e., ranges) appearing in the TRP (see Fig. 2.3). Moreover, each estimator
executes a novel iterative estimation algorithm, called single target detection, angular
estimation and cancellation (STDAEC). The l-th STDAEC algorithm processes the
spectral information available on the whole virtual receive array and referring to the
α̂l-th frequency bin only (with l = 0, 1, ..., Lb− 1), detects L[l] targets contributing to

1Note that the complex amplitude Ĉ(vk)
i appearing in the following equations is replaced by Â(vk)

i

if the received sequence is complex (see eqs. (1.10) and (1.12)). This consideration holds for various
equations appearing in the remaining part of this chapter.

2Generally speaking, the evaluation of an FFT of order N0 leads to partitioning the normalised
frequency interval [0, 1/2) in N0 frequency bins.
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Figure 2.3: Block diagram describing the inner structure of the RASCAs
for an FMCW radar system.

it and, for each detected target, computes: a) an estimate of its complex amplitude; b)
an estimate of its angular coordinates (i.e., its azimuth and its elevation); c) a refined
estimate of its range (do not forget that the preliminary estimate of this range is
provided by the bin index α̂l). If D[l] iterations are accomplished by the l-th STDAEC
algorithm, D[l] distinct targets are detected in the α̂l-th frequency bin, provided that
none of them is classified as a false (i.e., ghost) target. In addition, all the estimates
generated by this algorithm are collected in the set

Tl ≜
{(
Ĉi [l] , F̂i [l] , α̂i [l] , F̂V,i[l], F̂H,i[l]

)
;

i = 0, 1, . . . , D[l]− 1} , (2.8)

or in the set

Tl ≜
{(
Ĉi [l] , F̂i [l] , α̂i [l] , F̂H,i[l]

)
;

i = 0, 1, . . . , D[l]− 1} , (2.9)

with l = 0, 1, . . . , Lb − 1, in the case of 3D and 2D radar imaging, respectively;
here, Ĉi [l], F̂i [l] and α̂i [l] denote the estimates of the complex amplitude Ci [l], of the
normalised frequency Fi [l] and of the frequency bin αi [l], respectively, characterizing
the i-th target detected on the reference VA and in the l-th frequency bin, whereas
F̂H,i[l] and F̂V,i[l] represent the estimates of the normalised horizontal spatial frequency
FH,i[l] and of the normalised vertical spatial frequency FV,i[l], respectively, referring to
the above mentioned target.

Finally, in the second (and last) stage of the SPE, the spatial coordinates of all the
detected targets are computed on the basis of the spatial information collected in the
Lb sets {Tl} and an overall image of the propagation scenario is generated in the form
of a point cloud.
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2.3.2 Some considerations on target detection and cancellation in the
angular domain

It is worth pointing out that the STDAEC algorithm represents the most complicated
part of the processing accomplished by all the blocks appearing in Fig. 2.3. The
derivation of this algorithm relies on the fact that: a) each target provides an addi-
tive contribution to the spectra evaluated on all the VAs; b) periodic variations are
observed in the phase of this contribution if we move horizontally or vertically along
the considered virtual array (see Fig. 2.2). In fact, if we assume that the intensity of
the echo received by each VA from the i-th target detected in the l-th frequency bin
does not change from antenna to antenna, the complex amplitude Ci[p, q, l] observed
on the (p, q) VA can be expressed as (see (1.14) and (1.15))

Ci[p, q, l] =Ci[l] exp

[
j
4π

λ

[
dVH (p− pR) cos(ϕi[l])

· sin(θi[l]) + dVV (q − qR) sin(ϕi[l])
]]
; (2.10)

here, λ = c/f0 is the wavelength associated with the start frequency (see (1.3)), (pR,
qR) is the couple of integers identifying the selected reference VA, θi[l], ϕi[l] and Ri[l]
are the azimuth, the elevation and the range, respectively, characterizing the considered
target, and Ci[l] is its complex amplitude observed on the reference antenna. If (2.10)
holds, the rate of the phase variations observed in the complex amplitudes {Ci[p, q, l]}
for a given l is proportional to (see (1.21) and (1.22))

FH,i[l] ≜
2dVH

λ
cos(ϕi[l]) sin(θi[l]) (2.11)

and
FV,i[l] ≜

2dVV

λ
sin(ϕi[l]), (2.12)

if we move along an HULA and a vertical ULA (VULA), respectively. In fact, the
quantity FH,i[l] (FV,i[l]) represents the normalised horizontal (vertical) spatial frequency
characterizing the i-th target detected in the l-th frequency bin; if both these frequencies
are known, the elevation and the azimuth of this target can be evaluated as

ϕi[l] = arcsin

(
λ

2dVV
FV,i[l]

)
(2.13)

and
θi[l] = arcsin

(
λ

2dVH cos(ϕi[l])
FH,i[l]

)
, (2.14)

respectively.
Moreover, in the derivation of the STDAEC algorithm, the following two techniques

have been exploited:
Serial cancellation of targets – This technique is conceptually similar to the cancel-

lation strategy exploited by the STDREC algorithm and allows us to detect multiple
targets in the same frequency bin and, in particular, to identify targets having similar
spatial coordinates. It is important to keep in mind that the frequencies associated
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with distinct targets detected in the same frequency bin do not necessarily belongs to
that bin; in fact, they can belong to adjacent bins, so that the tails (not the peak) of
their spectra are really observed in the considered frequency bin. This problem orig-
inates from the fact that, generally speaking, the contribution of a point target to the
spectrum computed on each VA is not a line, unless the associated normalised frequency
is exactly a multiple of the fundamental frequency

FFFT = 1/N0, (2.15)

consequently, such a contribution is spread over multiple adjacent frequency bins (i.e.,
spectral leakage is observed)

Spatial folding – As already stated above, the frequency associated with a target
detected in the l-th frequency bin does not necessarily fall exactly in that bin. The
technique dubbed spatial folding has been devised to: a) evaluate a more accurate esti-
mate of the frequency associated with a target detected in a given bin; b) discriminate
real targets from ghost targets. Spatial folding is based on the following idea. Once the
horizontal and the vertical spatial frequencies associated with a target detected in a
given frequency bin have been estimated (see (2.11) and (2.12)), the spectra computed
on multiple VAs can be combined in a constructive fashion by

1) taking a reference VA (identified by (p, q) = (pR, qR); see Fig. 2.2), and compen-
sating for the phase differences, estimated for that target, between the reference
VA and the other VAs of the whole array, or

2) taking a reference ULA and compensating for the phase differences, estimated for
that target, between the reference ULA and other ULAs parallel to it.

In case 1), folding generates a single spectrum, dubbed folded spectrum, and has
the beneficial effects of a) averaging out the effects of the noise that affects the VAs
and b) combining, in an unconstructive fashion, the contributions of all the targets
different from the one which the employed spatial frequencies refer to. For this reason,
in analysing the amplitude of the folded spectrum, a well defined peak in its amplitude
is expected in the l-th frequency bin or in a bin close to it. When this peak is detected,
a refined estimate of the frequency (and, consequently, of the range) and the complex
amplitude characterizing the target for which folding has been accomplished can be
computed by identifying its position. On the contrary, if no peak is found, the detected
target is actually a ghost target. In case 2), folding generates as many folded spectra as
the number of antennas of the reference ULA and offers the same advantages as case
1).

In the remaining part of this chapter, when folding is employed, the following
terminology is adopted:

Vertical folding – This refers to the case in which folding involves a reference HULA
on which other HULAs are folded.

Overall folding – This refers to the case in which folding involves all the spectra,
i.e. the overall virtual URA; a single folded spectrum is computed in this case.

Note that, in any case, folding may involve the whole virtual receive array or a
portion of it. The exploitation of a subset of the available VAs is motivated by the
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fact that, in practice, in computing a folded spectrum that refers to the l-th frequency
bin, the estimates F̂H,i[l] and F̂V,i[l] of the frequencies FH,i[l] and FV,i[l], respectively,
are employed, so that the quality of the phase compensation factors computed for the
antennas that are farther from the reference antenna or the reference HULA may be
affected by significant estimation errors.

All the mathematical details about vertical and overall folding can be found in the
next paragraph.

2.3.3 Detailed description of the range & angle serial cancellation
algorithms for a frequency modulated continuous wave radar
system endowed with a two-dimensional antenna array

In the following, the RASCA-FR3 is described first; then, the (minor) modifications
required to obtain the RASCA-FC3 from it are illustrated. The RASCA-FR3 pro-
cessing is divided in three tasks, each associated with one of the blocks appearing in
Fig. 2.3 (the i-th task is denoted Ti); a description of each task is provided below.
Various details about the techniques employed in these tasks, omitted here to ease the
understanding of the overall flow of the algorithm, are provided in Section 2.4.

T1 – FFT processing

The processing accomplished within this task can be summarized as follows. Given the
vector x

(v)
z , the N -dimensional vectors

x
(v)
1 ≜

[
x
(v)
1,0, x

(v)
1,1, . . . , x

(v)
1,N−1

]T
(2.16)

and
x
(v)
2 ≜

[
x
(v)
2,0, x

(v)
2,1, . . . , x

(v)
2,N−1

]T
(2.17)

are evaluated for v = 0, 1, ..., NVR − 1; here,

x(v)m,n ≜ nm x(v)z,n (2.18)

with n = 0, 1, ..., N − 1 and m = 1, 2. Then, the vectors x
(v)
z , x(v)

1 and x
(v)
2 undergo

zero padding (ZP) for any v; this produces the N0-dimensional vectors

x
(v)
0,ZP =

[
(x(v)
z )T 0T(M−1)N

]T
, (2.19)

x
(v)
1,ZP =

[
(x

(v)
1 )T 0T(M−1)N

]T
(2.20)

and
x
(v)
2,ZP =

[
(x

(v)
2 )T 0T(M−1)N

]T
, (2.21)

respectively; here, M is a positive integer (dubbed oversampling factor), 0D is a D-
dimensional (column) null vector and

N0 ≜M N. (2.22)
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Finally, the N0-dimensional vectors

X(v)
m =

[
X

(v)
m,0, X

(v)
m,1, ..., X

(v)
m,N0−1

]T
= Xm [p, q]

=
[
Xm,0 [p, q] , Xm,1 [p, q] , ..., Xm,N0−1 [p, q]

]T
≜DFTN0

[
x
(v)
m,ZP

]
, (2.23)

with m = 0, 1, 2, are computed for any v (i.e., for any p and q) by executing a N0

order FFT for each of them; here, DFTN0 [x] denotes, up to a scale factor, the N0 order
discrete Fourier transform (DFT) of the N0-dimensional vector x. More specifically,
we assume that

X
(v)
m,k ≜

1

N

N−1∑
n=0

nm x(v)z,n exp

(
−j 2πnk

N0

)
, (2.24)

with k = 0, 1, ..., N0 − 1 and m = 0, 1, 2.

T2 – RPE

The processing accomplished within this task consists of the three consecutive steps
listed below (the i-th step is denoted T2-Si in the following); each step is associated
with one of the blocks included in the RPE, as shown in Fig. 2.3.

T2-S1) VA selection – In this step, the set S̄FFT (2.4) is built. This requires
generating the set SA (2.5), i.e. a set of NA integers that identifies the selected VAs.
In our computer simulations, the elements of SA have been generated by randomly
extracting NA distinct integers from the set {0, 1, ..., NVR − 1}.

T2-S2) Target detection and range estimation – The processing carried out within
this step is executed by the STDREC algorithm; this operates on an antenna-by-
antenna basis. The STDREC processing for the vk-th VA (with k = 0, 1, ..., NA − 1)
can be summarized as follows. A simple initialization is accomplished first by setting

X(vk)
m [0] ≜ X(vk)

m , (2.25)

with m = 0, 1, 2, and the iteration index i to 0. Then, the STDREC iterations are
started; in the i-th iteration, the three steps described below are accomplished to detect
a new target and cancel its contribution to the triad (X

(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]) (the

p-th step of each is denoted STDREC-Sp in the following).
STDREC-S1) Detection of a new target and estimation of its parameters – The

triad (X
(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]) is processed to detect a new (i.e., the i-th) target, and

to estimate the normalised frequency F (vk)
i and the complex amplitude C(vk)

i associated
with it. Note that, generally speaking, the normalised frequency F (vk)

i is not a multi-
ple of the fundamental frequency FFFT (2.15), that characterizes the FFT processing
executed in T1; for this reason, it can be expressed as

F
(vk)
i = F

(vk)
c,i + δ

(vk)
i FDFT, (2.26)

where F (vk)
c,i represents a coarse estimate of F (vk)

i and δ
(vk)
i is a real parameter called

residual. This step consists in executing an algorithm, dubbed single frequency esti-
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mator3 (SFE) and whose detailed description is provided in Paragraph 2.4.1. In short,
the SFE computes the estimates Ĉ(vk)

i , F̂ (vk)
c,i , δ̂(vk)i ,

α̂
(vk)
i =

⌊
F̂

(vk)
c,i /FDFT

⌋
(2.27)

and
F̂

(vk)
i = F̂

(vk)
c,i + δ̂

(vk)
i FDFT (2.28)

of the parameters C(vk)
i , F (vk)

c,i , δ(vk)i , α(vk)
i and F

(vk)
i , respectively, on the basis of the

triad (X
(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]); here, α̂(vk)

i represents the index of the frequency bin
in which the i-th target is detected on the vk-th antenna. Note that the parameter
F̂

(vk)
i , even if useless in the construction of the set Svk (2.6), is exploited in the next

step.
STDREC-S2) Cancellation of the new target – The contribution (C

(vk)
X0

[i], C(vk)
X1

[i],

C
(vk)
X2

[i]), given by the i-th (i.e., by the last) target detected on the vk-th VA, to the triad

(X
(vk)
0 [i],X

(vk)
1 [i],X

(vk)
2 [i]) is computed on the basis of (2.91)–(2.93) (see Paragraph

2.4.3) and cancelled from the triad itself. Cancellation consists in the computation of
the new residual triad

X(vk)
m [i+ 1] =

[
X

(vk)
m,0 [i+ 1], ..., X

(vk)
m,N0−1[i+ 1]

]T
≜X(vk)

m [i]−C
(vk)
Xm

[i], (2.29)

with m = 0, 1, 2.
STDREC-S3) Computation of the residual energy in the frequency domain – The

energy

E
(vk)
i+1 ≜

∥∥∥X(vk)
0 [i+ 1]

∥∥∥2 = N0−1∑
p=0

∣∣∣X(vk)
0,p [i+ 1]

∣∣∣2 (2.30)

characterizing the residual spectrum vector X
(vk)
0 [i + 1] (2.29) is computed and com-

pared with the positive threshold TSTDREC (which may depend on range, i.e. on the
detected frequency). If this energy is below the threshold, the STDREC algorithm stops
and Lk = i relevant targets are detected on the vk-th VA; otherwise, the recursion index
i is increased by one and a new recursion is started by going back to STDREC-S1.

T2-S3) Fusion of range information – This step aims at merging the information
provided by the NA sets {Svk} (2.6) evaluated in the previous step. Its output is
represented by the set SRPE (2.7), whose elements (i.e., the Lb couples {(α̂l, Eb,l)}) are
evaluated as follows. If we define the set

A
(vk)
b ≜ {α̂(vk)

i ; i = 0, 1, . . . , Lk − 1}, (2.31)

identifying all the bins in which at least one target has been detected on the vk-th VA
(with k = 0, 1, ..., NA − 1), the set

Ab ≜ {α̂l; l = 0, 1, . . . , Lb − 1} (2.32)
3Note that our general description of the SFE includes the computation of three DFTs, that, in

this case, are already evaluated in T1.
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is generated by putting together all the distinct integers that appear at least once in
the NA sets {A(vk)

b ; k = 0, 1, ..., NA−1}. Then, the average energy Eb,l associated with
the α̂l-th bin (with l = 0, 1, . . . , Lb − 1 ) is computed as

Eb,l =
1

Nb,l

NA−1∑
k=0

Lk−1∑
i=0

∣∣∣Ĉ(vk)
i

∣∣∣2δ [α̂(vk)
i − α̂l

]
, (2.33)

where

Nb,l =

NA−1∑
k=0

Lk−1∑
i=0

δ
[
α̂
(vk)
i − α̂l

]
(2.34)

represents the overall number of antennas that contribute to this energy (here, δ[z] = 1
if z = 0 and δ[z] = 0 if z ̸= 0)

T3 – SPE

The processing accomplished within this task consists of the two consecutive steps
listed below (the i-th step is denoted T3-Si in the following); each step is associated
with one of the blocks contained in the SPE represented in Fig. 2.3.

T3-S1) Bin analysis – Within this step, Lb STDAEC algorithms are run in parallel,
one for each of the Lb ranges (i.e., frequency bins) appearing in the TRP. A schematic
description of l-th STDAEC algorithm is provided below (with l = 0, 1, ..., Lb − 1).
This algorithm consists of three steps (its r-th step is denoted STDAEC-Sr in the
following) and is initialised by

1. Setting its iteration index i to 0.

2. Setting
X(0) [l] ≜ X [l] , (2.35)

where
X [l] ≜ [X0,α̂l [p, q]] , (2.36)

is a NVH×NVV matrix collecting the spectral information available on the whole
virtual receive array and referring to the α̂l-th frequency bin only.

Then, the STDAEC algorithm starts executing its iterations. Within its i-th iter-
ation, it accomplishes the three steps described below.

STDAEC-S1) Detection of a new target and estimation of its angular parameters
– In this step, the NVH ×NVV matrix

X(i) [l] ≜
[
X

(i)
l [p, q]

]
, (2.37)

is processed to detect the strongest target contributing to it, and to compute the
estimates θ̂i[l], ϕ̂i[l] and Ĉi[l] of θi[l], ϕi[l]) and Ci[l], respectively (note that this target
represents the i-th one detected in the considered frequency bin, since (i − 1) targets
have been detected in the previous recursions). This result is achieved by executing
a novel iterative detection and estimation algorithm called single target detection and
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angular estimation (STDAE), whose description is provided after illustrating the overall
structure of the RASCA-FR3 to ease reading.

STDAEC-S2) Target cancellation – The contribution C
(i)
X0

[l], given by the i-th
target detected in the l-th frequency bin, to the vector X(i) [l] (2.37) is computed on the
basis of (2.105)–(2.106) (see Paragraph 2.4.3) and is cancelled. Cancellation consists
in the computation of the new residual vector

X(i+1) [l] ≜ X(i) [l]−C
(i)
X0

[l] . (2.38)

STDAEC-S3) Residual energy test – The energy

E(i+1) [l] ≜
∥∥∥X(i+1) [l]

∥∥∥2 = NVH−1∑
p=0

NVV−1∑
q=0

∣∣∣X(i+1)
l [p, q]

∣∣∣2 (2.39)

of the residual spectrum vector X(i+1) [l] (2.38) is compared with the positive threshold
TSTDAEC (which may dependend on angular coordinates). If this energy is below the
threshold, the STDAEC algorithm stops; otherwise, the recursion index i is increased
by one and a new iteration is started by going back to STDAEC-S1. If D[l] iterations
are accomplished by the STDAEC algorithm operating on the α̂l-th frequency bin, no
more than D[l] distinct targets are identified in that bin (D[l] targets are found if none
of them is deemed to be a ghost target). All the targets information acquired from the
α̂l-th frequency bin are collected in the set Tl (2.8).

T3-S2) Evaluation of the target spatial coordinates and generation of the overall
image – In this step, the estimates of the range, of the elevation and of the azimuth of
the i-th target detected in the α̂l-th frequency bin are computed as (see (1.18), (2.13)
and (2.14))

R̂i[l] =
c

2µ
f̂i [l] , (2.40)

ϕ̂i[l] = arcsin

(
λ

2dVV
F̂V,i[l]

)
(2.41)

and

θ̂i[l] = arcsin

(
λ

2dVH cos(ϕ̂i[l])
F̂H,i[l]

)
, (2.42)

respectively; here, f̂i [l] = Fi[l] fs (see (1.13)). Finally, these information are fused to
generate the overall set It (2.1), describing the generated radar image; in general, this
image is a cloud of L̂ points. The set It (2.1) results from the union of all the sets
{I(l)

t }, where

I
(l)
t ≜

{(
R̂i[l], θ̂i[l], ϕ̂i[l],

∣∣Ĉi[l]∣∣); i = 0, 1, . . . , D[l]− 1
}
, (2.43)

with l = 0, 1, . . . , Lb − 1.
This concludes our description of the RASCA-FR3.
Let us focus now on the most complicated part of the STDAEC algorithm, i.e. on

the STDAE algorithm. This algorithm makes use of the so called spatial folding (see
the previous paragraph). The exploitation of this procedure in the STDAE algorithm
requires:
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dVH
<latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit>

q
<latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit>

p
<latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

pI
<latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="JsY2M/+G/6hlSBrAiTTvRkpSb8w=">AAAB5HicbZA7SwNBFIXvxldco8baZjAIVmHXRkvBxjKCeUBcwt3JTRwy+2DmrhBC/oCtlZ34ryz8L86uKTTxVB/nzHDvPXGuleUg+PRqW9s7u3v1ff+g4R8eHTcbPZsVRlJXZjozgxgtaZVSlxVrGuSGMIk19ePZbZn3n8lYlaUPPM8pSnCaqomSyM7qjJqtoB1UEpsQrqAFK42aX4/jTBYJpSw1WjsMg5yjBRpWUtPSfyws5ShnOKWhwxQTstGiWnMpzguLnImcjFBaVCb9/rHAxNp5EruXCfKTXc9K879sWPDkOlqoNC+YUlkOYqWpGmSlUe5+EmNliBnLzUmoVEg0yExGCZTSmYUrxHd1hOvHb0Lvsh06vg+gDqdwBhcQwhXcwB10oAsSxvACr5713rz3n9pq3qq/E/gj7+MbljKOsg==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="G3giy2qd1ID+lqvobpEGJSb/2Ao=">AAAB93icbVA9SwNBFNzzM8avqKXNYhCswp0IWgZstIvgJYHkCHubl7hkb2/ZfSeEI7/BVis7sfXnWPhf3JxXaOJUw8x7vHkTayks+v6nt7K6tr6xWdmqbu/s7u3XDg7bNs0Mh5CnMjXdmFmQQkGIAiV0tQGWxBI68eR67ncewViRqnucaogSNlZiJDhDJ4V6kN/OBrW63/AL0GUSlKROSrQGta/+MOVZAgq5ZNb2Al9jlDODgkuYVfuZBc34hI2h56hiCdgoL8LO6GlmGaZUg6FC0kKE3xs5S6ydJrGbTBg+2EVvLv7n9TIcXUW5UDpDUHx+CIWE4pDlRrgWgA6FAUQ2Tw5UKMqZYYhgBGWcOzFztVRdH8Hi98ukfd4IHL/z682LspkKOSYn5IwE5JI0yQ1pkZBwIsgTeSYv3tR79d6895/RFa/cOSJ/4H18A5UOky8=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit>

pR
<latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit>

pF
<latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit>

NVH � 1
<latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit>

NVV � 1
<latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit>

qI
<latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit><latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit><latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit><latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit>

qR
<latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit>

qF
<latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit><latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit><latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit><latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit>

(a)
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HULA

Vertically
Folded
HULAs

antennas

HULAs
N (VF)

HULA
<latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit><latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit><latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit><latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit>

p
<latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

pI
<latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="JsY2M/+G/6hlSBrAiTTvRkpSb8w=">AAAB5HicbZA7SwNBFIXvxldco8baZjAIVmHXRkvBxjKCeUBcwt3JTRwy+2DmrhBC/oCtlZ34ryz8L86uKTTxVB/nzHDvPXGuleUg+PRqW9s7u3v1ff+g4R8eHTcbPZsVRlJXZjozgxgtaZVSlxVrGuSGMIk19ePZbZn3n8lYlaUPPM8pSnCaqomSyM7qjJqtoB1UEpsQrqAFK42aX4/jTBYJpSw1WjsMg5yjBRpWUtPSfyws5ShnOKWhwxQTstGiWnMpzguLnImcjFBaVCb9/rHAxNp5EruXCfKTXc9K879sWPDkOlqoNC+YUlkOYqWpGmSlUe5+EmNliBnLzUmoVEg0yExGCZTSmYUrxHd1hOvHb0Lvsh06vg+gDqdwBhcQwhXcwB10oAsSxvACr5713rz3n9pq3qq/E/gj7+MbljKOsg==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="G3giy2qd1ID+lqvobpEGJSb/2Ao=">AAAB93icbVA9SwNBFNzzM8avqKXNYhCswp0IWgZstIvgJYHkCHubl7hkb2/ZfSeEI7/BVis7sfXnWPhf3JxXaOJUw8x7vHkTayks+v6nt7K6tr6xWdmqbu/s7u3XDg7bNs0Mh5CnMjXdmFmQQkGIAiV0tQGWxBI68eR67ncewViRqnucaogSNlZiJDhDJ4V6kN/OBrW63/AL0GUSlKROSrQGta/+MOVZAgq5ZNb2Al9jlDODgkuYVfuZBc34hI2h56hiCdgoL8LO6GlmGaZUg6FC0kKE3xs5S6ydJrGbTBg+2EVvLv7n9TIcXUW5UDpDUHx+CIWE4pDlRrgWgA6FAUQ2Tw5UKMqZYYhgBGWcOzFztVRdH8Hi98ukfd4IHL/z682LspkKOSYn5IwE5JI0yQ1pkZBwIsgTeSYv3tR79d6895/RFa/cOSJ/4H18A5UOky8=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit>

pR
<latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit>

pF
<latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit>

NVH � 1
<latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit>

dVV
<latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit><latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit><latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit><latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit>

dVH
<latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit>

q
<latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit>

NVV � 1
<latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

qR
<latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit>

q(VF)
I

<latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit><latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit><latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit><latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit>

q(VF)
F

<latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit><latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit><latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit><latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit>
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(b)

Figure 2.4: Example of reference VULA and reference HULA including
the reference antenna (a) and representation of a set of vertically folded
HULAs (b).

1. Selecting a reference VULA, that consists of NVULA adjacent and vertically
aligned VAs (with NVULA ≤ NVV), within the virtual array; in the following,
we assume, without any loss of generality, that the reference VULA includes the
reference antenna and, consequently, is identified by p = pR and q = qI , qI + 1,
..., qF (with qI ≤ qR ≤ qF ), so that NVULA = qF − qI + 1 (see Fig. 2.4a).

2. Selecting a reference HULA, that consists of NHULA adjacent and horizontally
aligned VAs; in the following, we assume, without any loss of generality, that
the reference HULA is the horizontal ULA containing the reference antenna and,
consequently, is identified by p = pI , pI + 1, ..., pF (with pI ≤ pR ≤ pF ) and
q = qR, so that NHULA = pF − pI + 1 (see Fig. 2.4a).

3. Selecting a set of HULAs, different from the reference HULA and having the same
size of it (i.e., the same number of VAs); in the following, we assume, without any
loss of generality, that these HULAs, called vertically folded HULAs, correspond
to q = q

(VF)
I , q(VF)

I + 1, ..., qR − 1, qR + 1 , ..., q(VF)
F , with q

(VF)
I < qR < q

(VF)
F ,

as illustrated in Fig. 2.4b; note that the overall number of involved HULAs is
N

(VF)
HULA = q

(VF)
F − q

(VF)
I + 1.

The STDAE algorithm consists in the four steps described below (its r-th step is
denoted STDAE-Sr in the following).

STDAE-S1) FFT processing on the reference VULA and vertical frequency estima-
tion – The portion of the initial spectral information referring to the reference VULA
is extracted from the matrix X(i) [l] and stored in the NVULA-dimensional vector

S
(i)
VULA,0 [l] =

[
S
(i)
0,0 [l] , S

(i)
0,1 [l] , ..., S

(i)
0,NVULA−1 [l]

]T
≜
[
X

(i)
l [pR, qI ] , ..., X

(i)
l [pR, qF ]

]T
, (2.44)

that is processed by the complex single frequency estimator4 (CSFE). This algorithm
detects the i-th (strongest target) appearing in α̂l-th frequency bin and computes the

4A detailed description of this estimator is provided in Paragraph 2.4.2. Note that this algorithm
represents the complex counterpart of the SFE, in the sense that the former is fed by a complex
sequence, whereas the latter by a real one.
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estimates ĈV,i [l] and F̂V,i[l] of the parameters Ci[l] and FV,i[l] (see (2.12)), respectively.
Note that the quantity ĈV,i [l] is not exploited in the following since, it represents a
preliminary estimate of Ci[l].

It is worth pointing out that the execution of the CSFE entails:
a) The evaluation of the NVULA-dimensional vector

S
(i)
VULA,k [l] ≜

[
S
(i)
k,0 [l] , S

(i)
k,1 [l] , ..., S

(i)
k,NVULA−1 [l]

]T
, (2.45)

with k = 1 and 2; here,

S
(i)
k,p [l] ≜ pk X

(i)
VULA,p [l] = pk X

(i)
l [pR, qI + p] (2.46)

with p = 0, 1, ..., NVULA − 1.
b) The computation of an N̄0 order FFT of the vector S̄

(i)
VULA,k [l], that represents

a zero padded version of the vector S
(i)
VULA,k [l] (with k = 0, 1 and 2); here,

N̄0 ≜ M̄ ·NVULA (2.47)

and M̄ represents the adopted oversampling factor. This produces the vector

s
(i)
VULA,k [l] =

[
s
(i)
k,0 [l] , s

(i)
k,1 [l] , ..., s

(i)

k,N̄0−1
[l]
]T

≜DFTN̄0

[
S̄
(i)
VULA,k [l]

]
, (2.48)

with k = 0, 1 and 2. Note that the m-th element of the vector s
(i)
VULA,k [l] can be

expressed as

s
(i)
k,m [l] ≜

1

NVULA

NVULA−1∑
p=0

S
(i)
k,p [l] exp

(
−j 2πpm

N̄0

)
, (2.49)

with m = 0, 1, ..., N̄0 − 1.
STDAE-S2) Vertical folding – The estimate F̂V,i[l] of the normalised vertical fre-

quency FV,i[l] (2.12) is employed to compensate for the phase difference between each
of the HULAs selected for vertical folding and the reference HULA (i.e., for the phase
differences along the vertical direction), so that the spectral information associated
with all these HULAs can be combined (i.e., summed) in a constructive fashion. To
this aim, the phase rotation factor

R
(VF)
i [l, q] ≜

[
exp

(
−j∆ψ(VF)

i [l]
)]q−qR

, (2.50)

with
∆ψ

(VF)
i [l] ≜ 2πF̂V,i[l], (2.51)

is computed for the q-th HULA, with q = q
(VF)
I , q(VF)

I +1, ..., qR− 1, qR+1, ..., q(VF)
F .

Then, vertical folding is accomplished by computing the NHULA-dimensional vector

X
(VF)
i [l] = X(i) [l, qR] +

q
(VF)
F∑

q=q
(VF)
I

q ̸=qR

X(i) [l, q] R
(VF)
i [l, q] , (2.52)
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that collects the values taken on by the NHULA vertically folded spectra referring to
the α̂l-th frequency bin; here,

X(i) [l, q] ≜
[
X

(i)
l [pI , q] , X

(i)
l [pI + 1, q] , ..., X

(i)
l [pF , q]

]T
, (2.53)

is a NHULA-dimensional row vector extracted from the q-th row of the matrix X(i) [l]
(2.37).

STDAE-S3) FFT processing and horizontal frequency estimation – The processing
accomplished in this step is very similar to that carried out in STDAE-S1. In fact, the
only difference is represented by the fact that the NVULA-dimensional vector S(i)

VULA,0[l]

(2.44) is replaced by the NHULA-dimensional vector X
(VF)
i [l] (2.52) generated in the

previous step. Therefore, in this case, the CSFE algorithm is exploited to compute the
estimate F̂H,i[l] of the horizontal frequency FH,i[l] (2.11) and a new estimate, denoted
ĈH,i[l], of the complex amplitude Ci[l] associated with the i-th target. Note that: a) in
general, an order different from N̄0 (2.47) can be selected for the three DFTs computed
by the CSFE algorithm in this step; b) the quantity ĈH,i[l] is not exploited in the
following since, it represents a preliminary estimate of Ci[l]; c) the estimates ĈV,i[l]

and ĈH,i[l] can be significantly different if multiple targets having similar horizontal
frequencies or similar vertical frequencies contribute to the considered frequency bin.

STDAE-S4) Overall folding and frequency/amplitude estimation – In this step,
the angular information i.e., the frequencies F̂V,i[l] and F̂H,i[l] computed in STDAE-
S2 and STDAE-S3, respectively, are exploited to accomplish overall folding5; this
step involves the whole spectrum computed on the selected VAs. If the whole receive
antenna array is exploited, overall folding consists in computing the N0-dimensional
vector

X0,OF [l] ≜
NVH−1∑
p=0

NVV−1∑
q=0

X0 [p, q] R
(HV)
i [l, p, q] , (2.54)

where
R

(HV)
i [l, p, q] ≜ R

(VF)
i [l, q] R

(HF)
i [l, p] (2.55)

is a phase rotation factor, R(VF)
i [l, q] is expressed by (2.50),

R
(HF)
i [l, p] ≜

[
exp

(
−j∆ψ(HF)

i [l]
)]p−pR

(2.56)

and
∆ψ

(HF)
i [l] ≜ 2πF̂H,i[l]; (2.57)

note that R(HV)
i [l, p, q] = 1 if p = pR and q = qR. Given X0,OF[l] (2.54), the sequence

of the absolute values of its elements is analysed to verify the presence of a peak in the
α̂l-th frequency bin or in a bin close to it. To this aim, after evaluating

α̂OF ≜ arg max
ã∈{0,1,...,N0−1}

|X0,OF[ã]| , (2.58)

5As already mentioned above, a portion of the whole virtual array can be exploited to mitigate the
impact of the estimation errors affecting these spatial frequencies.
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the quantity dα̂[l] ≜ |α̂OF − α̂l| is compared with the positive threshold TOF. If dα̂[l]
exceeds TOF, the presence of a ghost target is detected; otherwise, the N0-dimensional
vector

Xm,OF [l] ≜
NVH−1∑
p=0

NVV−1∑
q=0

Xm [p, q] R
(HV)
i [l, p, q] , (2.59)

is computed for m = 1 and 2, and the CSFE algorithm6 is run to estimate, on the
basis of the triad (X0,OF[l], X1,OF[l], X2,OF[l]), the final estimates F̂i[l] and Ĉi[l] of the
parameters Fi[l] and Ci[l], respectively; these parameters characterize the i-th target
detected in the α̂l-th frequency bin. Note that the integer part (see (2.27))

α̂i [l] ≜
⌊
F̂i[l]/FDFT

⌋
(2.60)

of F̂i[l] does not necessarily coincide with α̂l but, if it differs, it is certainly close to α̂l.
If α̂i[l] is different from α̂l and appears in one of the couples forming the set SRPE (2.7),
it is discarded, because the corresponding frequency bin is already being analysed by
one of the other STDAEC algorithms. Otherwise, the new couple

(α̂i [l] , Eb,Lb) , (2.61)

where Eb,Lb ≜ |Ĉi[l]|
2
, is added to the set SRPE and the number of its elements (i.e.,

Lb) is increased by one. This means that an additional STDAEC algorithm is run on
the (new) α̂i[l]-th bin.

This concludes our description of the STDAE algorithm and, consequently, of the
RASCA-FR3, whose overall structure is summarised in Algorithm 1.

The RASCA-FC3 can be easily obtained from RASCA-FR3 by: a) replacing C(vk)
i

and Ĉ
(vk)
i with A

(vk)
i and Â

(vk)
i , respectively (see STDREC-S1); b) replacing the

SFE with the CSFE in STDREC-S1; c) computing the vectors of the triad (C
(vk)
X0

[i],

C
(vk)
X1

[i], C(vk)
X2

[i]) on the basis of (2.101)–(2.103) (see Paragraph 2.4.3) in STDREC-
S2; d) replacing Ci[l] and Ĉi[l] with Âi[l] and Ai[l], respectively (see STDAEC-S1);
e) replacing ĈV,i [l] and ĈH,i[l] with ÂV,i [l] and ÂH,i [l], respectively (see STDAE-S1
and STDAE-S3).

Additional comments

The structure of the RASCA-FR3 (RASCA-FC3) deserves a number of comments, that
are listed below for the different tasks and the steps they consist of.

T1 – In this task, each of the vectors {X(v)
0 , X(v)

1 , X(v)
2 } is computed by executing

a N0 order FFT. The vector X(v)
0 collects N0 equally spaced samples of the spectrum of

the sequence {x(v)z,n} acquired on the v-th VA (see (2.18), (2.23) and (1.17)). The vectors
X

(v)
1 and X

(v)
2 , instead, consist of, up to a scale factor, N0 equally spaced samples of

the first and the second derivatives, respectively, of the same spectrum.

6Note that our general description of the CSFE includes the computation of three order N0 DFTs,
that, in this case, are already available, being represented by {Xm,OF [l]; m = 0, 1, 2}.
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Algorithm 1: Range & angle serial cancellation algorithm for an FMCW
radar system (real case)
1 T1 – FFT Processing:

Compute the vectors x
(v)
0,ZP, x(v)

1,ZP and x
(v)
2,ZP according to (2.19)–(2.21); then,

compute the triad {X(v)
0 ,X

(v)
1 ,X

(v)
2 } according to (2.23).

2 T2 – RPE:
S1) Extract NA VAs from all the available VAs; then, build the set S̄FFT (2.4).
for k = 0 to NA − 1 do

S2) Set X
(vk)
m [0] ≜ X

(vk)
m for m = 0, 1, 2 (see (2.25)); then, set the iteration

index i = 0 and compute the initial energy E(vk)
0 according to (2.30).

while E(vk)
i > TSTDREC do

STDREC-S1) Compute the couple (Ĉ
(vk)
i , F̂ (vk)

i ) running the SFE
algorithm on the triad (X

(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]).

STDREC-S2) Compute the vectors (C
(vk)
X0

[i],C
(vk)
X1

[i],C
(vk)
X2

[i])
according to (2.91)–(2.93); then, compute the new residual triad
(X

(vk)
0 [i+ 1], X(vk)

1 [i+ 1], X(vk)
2 [i+ 1]) according to (2.29).

STDREC-S3) Compute the residual energy E(vk)
i+1 according to (2.30).

end
end
S3) Build the set SRPE (2.7) (see (2.32) and (2.34)).

3 T3 – SPE:
S1) Set the iteration index i = 0 and set the initial vector X(0)[l] according to
(2.35); then, compute the initial energy E(0)[l] according to (2.39).
Parallel For l = 0 to l = Lb − 1 do

while E(i)[l] > TSTDAEC do
STDAEC-S1) Compute the couple (ĈV,i[l], F̂V,i[l]) running the CSFE
algorithm fed by the vector S

(i)
VULA,0[l] evaluated according to (2.44).

Then, compute the phase rotation factor R(VF)
i [l, q] and the matrix

X
(VF)
i [l] according to (2.50) and (2.52), respectively. Then, run the

CSFE algorithm to compute the couple (ĈH,i[l], F̂H,i[l]) and compute
the phase rotation factor R(HF)

i [l, p] according to (2.56). Finally,
compute the vectors {Xm,OF[l];m = 0, 1, 2} according to (2.54) and
(2.59) and run the CSFE algorithm fed by the set
{Xm,OF[l];m = 0, 1, 2} to evaluate the couple (Ĉi[l], F̂i[l]).
STDAEC-S2) Compute the vector C

(i)
X0

[l] according to
(2.105)–(2.106); then compute the new residual vector X(i+1)[l]
according to (2.38).
STDAEC-S3) Compute the residual energy E(i+1)[l] according to
(2.39).

end
S2) Compute R̂i[l], ϕ̂i[l], θ̂i[l] according to (2.40)–(2.42).

end
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a)

���X(vk)
0,l

���
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���Ĉ(vk)
i

���
<latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit><latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit><latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit><latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit>

���Ĉ(vk)
1

���
<latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit><latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit><latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit><latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit>

���Ĉ(vk)
0

���
<latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit><latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit><latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit><latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit>

���Ĉ(vk)
Lk�1

���
<latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit><latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit><latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit><latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit>

l
<latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit><latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit><latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit><latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit>

i
<latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit><latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit><latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit><latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit>↵̂(vk)

1<latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit><latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit><latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit><latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit>

↵̂(vk)
0

<latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit><latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit><latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit><latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit>

↵̂(vk)
Lk�1

<latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit><latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit><latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit><latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit>

N0 � 1
<latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit><latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit><latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit><latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit>
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b)

Figure 2.5: Representation of: a) the absolute value of the elements of
the vector X

(vk)
0 ; b) the corresponding discrete amplitude-range profile gen-

erated by the STDREC algorithm (the RASCA-FC3 is considered).

T2-S1 – The exploitation of a subset of the available antennas is motivated by the
need of reducing the computational effort required by T2 as much as possible. The
adoption of a deterministic method for the selection of NA antennas (with NA < NVR)
is not recommended. In fact, when multiple consecutive snapshots are processed to gen-
erate independent images, randomly changing the subset of NA antennas from snapshot
to snapshot allows the considered radar system to benefit from antenna diversity.

T2-S2 – The STDREC algorithm deserves the following comments:

a) The availability of accurate estimates of the normalised frequency F
(vk)
i and of

the complex amplitude C(vk)
i (A(vk)

i ) (see (1.10) and (1.12)) plays an important
role in this step, since these parameters are exploited in the serial cancellation
procedure based on (2.29). In particular, ignoring the frequency residual δ(vk)i

of the normalised frequency F
(vk)
i (2.26) in this procedure (i.e., assuming that

F̂
(vk)
i = α̂

(vk)
i ; see (2.27)) may result in a significant error accumulation.

b) A threshold on the maximum computational effort required by the STDREC al-
gorithm can be set by requiring that the recursion index i never exceeds a fixed
threshold; this is equivalent to limit the overall number of targets that can be
detected on each VA.

c) The STDREC algorithm generates NA different data sets; the k-th data set consists
of the triads {(α̂(vk)

i , F̂ (vk)
i , Ĉ(vk)

i ); i = 0, 1, . . . , Lk − 1} ({(α̂(vk)
i , F̂ (vk)

i , Â(vk)
i );

i = 0, 1, . . . , Lk−1}), characterizing the Lk targets detected on the vk-th antenna
(with k = 0, 1, ..., NA − 1). Note that the overall number of targets may change
from antenna to antenna, especially in the presence of extended targets; this is
due to the fact that the signals acquired on different VAs can exhibit significant
differences in their spectral content.
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d) The following important interpretation of the processing accomplished by the STDREC
algorithm on the vk-th VA can be given. The vector X(vk)

0 can be seen as a collec-
tion of noisy spectral information referring to N0 distinct frequency bins (i.e., to
N0 distinct range bins) and is usually dense in the presence of multiple extended
targets, as illustrated in Fig. 2.5-a) (where the absolute value of its elements is
represented). The STDREC allows to extract a discrete frequency (i.e., range)
profile from the vector X

(vk)
0 , as illustrated in Fig. 2.5-b). In various real world

scenarios, this profile turns out to be sparse, even in the presence of a dense vector
X

(vk)
0 ; this is beneficial, since allows to concentrate the RPE computational effort

on a set of specific ranges (i.e., frequency bins). The range profile characterizing
the vk-th VA is described by the set of Lk couples Svk = {(α̂(vk)

i , Ĉ(vk)
i ); i = 0,

1, . . . , Lk − 1} (Svk = {(α̂(vk)
i , Â(vk)

i ); i = 0, 1, . . . , Lk − 1}), with k = 0, 1, ... ,
NA − 1; the parameter α̂(vk)

i identifies the frequency bin associated with the i-th
target detected on the considered VA, whereas the absolute value of Ĉ(vk)

i (Â(vk)
i )

represents an estimate of the strength of the echo associated with it.

e) The STDREC algorithm can be used for detecting multiple targets and accurately
estimating their range in a monostatic radar.

f) The STDREC algorithm can be easily extended in a way that multiple targets are
detected and estimated in parallel in each of its iterations. If we focus on its
i-iteration and the vk-th VA, this result is achieved by running multiple (say,
m

(vk)
i ) instances of the SFE (CSFE) algorithm in parallel. Each of these in-

stances is initialised with the frequency corresponding to the absolute maximum
or a relative maximum detected in the sequence of the absolute values of the
elements of the vector X

(vk)
0 [i] (see (2.23)). In this case, a constraint is set on

the minimum spacing between the m(vk)
i detected frequencies in order to mini-

mize the interference between the instances running in parallel. Moreover, after
identifying the absolute maximum in the above mentioned sequence, a threshold,
proportional to such a maximum, is set on the minimum value of the acceptable
relative maximum/maxima, so that unrelevant frequencies are discarded. It is
also worth stressing that, if a cluster of m(vk)

i distinct frequencies is estimated,
each of the components of the triad (C

(vk)
X0

[i],C
(vk)
X1

[i],C
(vk)
X2

[i]) appearing in the

RHS of (2.29) consists of the sum of m(vk)
i terms, each associated with one of

these frequencies.

g) The STDREC algorithm employed in the RASCA-FR3 (RASCA-FC3) represents
an instance of the single frequency estimation and cancellation (complex single
frequency estimation and cancellation) algorithm derived in [65] for the estima-
tion of multiple overlapped real (complex ) tones. For this reason, in the case of
complex received signals, it can be replaced by one of the multiple tone estimators
available in the technical literature, like the CFH algorithm [70], the algorithm
developed by Ye and Aboutanios in [71, 72] and the algorithm derived by Serbes
in [73] (the last two algorithms are denoted Alg-YA and Alg-S, respectively, in the
following). In fact, all these algorithms are recursive and rely on a serial cancel-
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lation procedure since, within each recursion, they detect a single tone, estimate
its parameters and subtract its contribution from the residual signal emerging
from the previous iteration.

h) The estimates generated by the STDREC algorithm are potentially biased if the
parameters of the SFE (CSFE) executed in its first step are not properly se-
lected (see [65]). In principle, this bias can be arbitrarily reduced by increasing
the overall number of iterations and/or re-estimations accomplished by the SFE
(CSFE). However, we found out that, in the case of complex received signal,
a computationally efficient alternative to this approach is represented by run-
ning an additional step (i.e., STDREC-S4) after that the first three steps of the
STDREC algorithm has been carried out. In this final step, the Alg-YA is run
after initializing it with the estimates of the normalised frequencies and the as-
sociated complex amplitudes generated by the STDREC. The hybrid technique
that results from interconnecting the STDREC algorithm with the above men-
tioned algorithm is dubbed hybrid STDREC (HSTDREC) in the following; note
that this algorithm represents an instance of the hybrid CSFE proposed in [65].

T3-S1 – This step is the most complicated of the whole algorithm and deserves the
following comments:

a) In principle, the horizontal and vertical spatial frequencies (see (2.11) and (2.12)) of
multiple targets contributing to the α̂l-th frequency bin can be detected by first
computing a 2D DFT of the matrix X [l] (2.36) and, then, by looking for local
maxima over the absolute values of the elements of the resulting 2D matrix; note
that the matrix X [l] can be also zero-padded before computing its 2D FFT to
improve the resulting spectral resolution. This procedure may require a significant
computational effort and its accuracy is affected by the spectral leakage due to
any potential strong target. In the STDAEC algorithm, instead, 2D processing is
avoided by alternating vertical and horizontal 1D FFTs. Consequently, relevant
spatial frequencies are estimated by searching for the peaks of 1D amplitude
spectra (i.e., in the absolute values of the elements of the vectors S

(i)
VULA,0[l] and

X
(VF)
i [l]); in other words, an AM approach is adopted. Note that this approach

allow us to mitigate the overall computational complexity and to detect weak
targets hidden by close strong targets through successive cancellations.

b) In STDAE-S1, each of the three vectors {s(i)VULA,k [l]; k = 0, 1, 2} is computed by
executing a N̄0 order FFT (see (2.48)). Note that, on the one hand, the vector
s
(i)
VULA,0 [l] collects N̄0 equally spaced samples of the spectrum of the sequence

{X(i)
VULA,p; p = 0, 1, ..., NVULA − 1} (see (2.46)). On the other hand, the k-th

vector s
(i)
VULA,k [l] (with k = 1 and 2) collects, up to a scale factor, N0 equally

spaced samples of the k-th order derivative of the same spectrum.

c) The processing accomplished in STDAE-S3 is very similar to that carried out
in STDAE-S1. In fact, the only difference is represented by the fact that the
NVULA-dimensional vector S(i)

VULA,0 [l] (2.44) is replaced by theNHULA-dimensional
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vector X
(VF)
i [l] (2.52) generated in STDAE-S2. Therefore, in this case, the

CSFE is exploited to estimate the horizontal frequency FH,i[l] and, again, the
complex amplitude Ci[l] (Ai[l]) associated with the i-th target.

d) Similarly as the STDREC algorithm, the STDAEC algorithm can also be consid-
ered as an instance of the CSFEC algorithm mentioned at point g) of T2-S2.
Therefore, in principle, it can be replaced by the CFH algorithm [70], the Alg-
YA [71, 72] or the Alg-S [73]. Moreover, a further (and final) step, based the
Alg-YA can be added to the STDAEC algorithm to mitigate its estimation bias.

e) As already suggested for the STDREC algorithm, the STDAEC algorithm can be
employed to detect and estimate multiple angles in parallel; this requires running
multiple instances of the CSFE algorithm in parallel.

Our final comments concern the use of RASCA-FR3 and RASCA-FC3 in FMCW
radar systems whose virtual antenna array is not an URA; for instance, in our ex-
perimental work (see Section 2.8), a colocated MIMO FMCW radar equipped with
the virtual receive array shown in Fig. 2.6 has been employed. Note that the first two
processing tasks of the RASCAs are carried out on an antenna-by-antenna basis; there-
fore, they are not influenced by the shape of the considered virtual array. However,
this shape influences the way spatial folding is accomplished in T3. More specifically,
as far as the last point is concerned, the following considerations can be made:

1) The array structure represented in Fig. 2.6 can be treated as an URA if its gaps
are zero-padded.

2) The reference VULA should be selected in a way to maximize the number of
non-zero vertically aligned VAs and, consequently, the number of VAs contributing to
the estimation of the elevation angle, as illustrated in Fig. 2.6.

3) The reference HULA should be selected in the middle of the antenna array; this
mitigates the effects of the errors affecting the estimate of normalised vertical frequency
in the vertical folding procedure (do not forget that such errors may have a significant
impact on the contributions of the HULAs that are farther from the reference HULA;
see (2.50)).

4) The vertical folding accomplished by the STDAE algorithm involves VULAs of
different sizes. More specifically, in the i-th iteration of the STDAEC algorithm, vertical
folding is accomplished by computing the NHULA-dimensional vector (see (2.37) and
STDAE-S2)

X
(VF)
i [l] =

[
X

(VF)
i [pI , l] , X

(i)
l [pI + 1, l] , ..., X

(i)
l [pF , l]

]T
(2.62)

where

X
(VF)
i [p, l] =

1

NV [p]

qF [p]∑
q=qI [p]
q ̸=qR

X
(i)
l [p, q] R

(VF)
i [l, q]

+
X

(i)
l [p, qR]

NV [p]
, (2.63)
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Reference
HULA

Reference
VULA

Figure 2.6: Virtual array considered in our experimental work.

with p = pI , pI + 1, ..., pF ; here, R(VF)
i [l, q] is expressed by (2.50), qI [p] (qF [p]) is the

index identifying the first (last) antenna of the p-th VULA and NV[p] is the overall
number of VAs which that VULA consists of.

2.3.4 Range & angle serial cancellation algorithms for a radar system
endowed with a one-dimensional antenna array

The algorithms described in the previous paragraph can be easily adapted to the case
in which the considered colocated MIMO radar system is equipped with a single ULA
and, consequently, can be exploited for 2D imaging only; this leads to RASCA-FR2 and
RASCA-FC2. The changes made in RASCA-FR3 and RASCA-FC3 to obtain RASCA-
FR2 and RASCA-FC2, respectively, concern only the SPE and can be summarized as
follows:

1. The first three steps of the STDAE in T3-S1 are not performed; therefore, the
fourth step of that algorithm is the first one to be executed. Moreover, the matrix
X(i) [l] (2.37) is replaced by the NVH-dimensional vector

X(i) [l] ≜
[
X

(i)
l [p]

]
, (2.64)

collecting the spectral information available on the whole virtual receive array
and referring to the α̂l-th frequency bin only.

2. The spatial frequency F̂V,i[l] is unavailable and, therefore, it is not included in
the set Tl (2.8); note that the elevation angle ϕ̂i[l] (2.41) is not estimated in this
case.

2.4 Description of Various Algorithms Employed in the
Proposed Embodiments

In this section, various mathematical details about the techniques employed in the
RASCAs are provided.
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Since the processing accomplished in T1 of the RASCAs has been fully analysed
in the previous section, in this paragraph we provide a detailed description of: a) the
SFE (see T2-S2); b) the CSFE (see T2-S2 and T3-S1); c) the target cancellation
procedures employed in T2-S3 and T3-S1.

2.4.1 Single frequency estimator

In this Paragraph, the SFE derived in [65] is summarized. This algorithm processes
the samples of the real sequence {xr,n; n = 0, 1, ..., N − 1}, whose n-th element is

xr,n = a cos (2πnF + ψ) + wr,n

= C exp (j2πnF ) + C∗ exp (−j2πnF ) + wr,n, (2.65)

with n = 0, 1, ..., N −1, and generates an estimate of the normalised frequency F and
of the complex amplitude

C ≜
1

2
a exp (jψ) (2.66)

of the real tone appearing in the RHS of (2.65); here, N is the overall number of elements
of the sequence {xr,n}, a and ψ are the tone amplitude and phase, respectively, and
{wr,n; n = 0, 1, ..., N − 1} is a real AWGN sequence. This algorithm is initialised by

1) Evaluating: a) the vector

X0 =
[
X0,0, X

(v)
0,1 , ..., X

(v)
0,N0−1

]T
≜ DFTN0

[
x
(v)
0,ZP

]
, (2.67)

where the DFT order N0 is defined by (2.22),

x0,ZP ≜
[
(x0)

T 0T(M−1)N

]T
, (2.68)

M is the oversampling factor and

x0 ≜ [xr,0, xr,1, ..., xr,N−1]
T ; (2.69)

b) the initial coarse estimate F̂ (0)
c of F as

F̂ (0)
c = α̂ FDFT, (2.70)

where the integer α̂ is computed as

α̂ = arg max
α̃∈{0,1,...,N0/2−1}

∣∣X̄0,α̃

∣∣ ; (2.71)

c) the quantity

ρ̂(0) ≜
F̂

(0)
c

FDFT
= α̂; (2.72)

d) the initial estimate Ĉ(0) of C as

Ĉ(0) = G
(
F̂ (0)
c

)
(2.73)
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where

G
(
F̃
)
≜
X̄(F̃ )− X̄∗(F̃ )g(F̃ )

1−
∣∣∣g(F̃ )∣∣∣2 , (2.74)

X̄(F̃ ) ≜
1

N

N−1∑
n=0

xr,n exp
(
−j2πnF̃

)
(2.75)

and

g(F̃ ) ≜
1

N

N−1∑
n=0

exp
(
−j4πnF̃

)
; (2.76)

e) the spectral coefficients X̄1,α̂ and X̄2,α̂, and the coefficients {Kp(2α̂); p = 1, 2} and
{b(α̂), c(α̂)} on the basis of the definitions

X̄k,ρ ≜
1

N

N−1∑
n=0

xk,n exp

(
−j 2πnρ

N0

)
, (2.77)

Kp (x) ≜
1

N

N−1∑
n=0

gp [n] exp

(
−j 2πnx

N0

)
, (2.78)

b (ρ) ≜ −ℜ
{
Ĉ∗X̄2,ρ

}
+ 2ℜ

{(
Ĉ∗
)2
K2 (2ρ)

}
(2.79)

and
c (ρ) ≜ ℑ

{
Ĉ∗X̄1,ρ

}
−ℑ

{(
Ĉ∗
)2
K1 (2ρ)

}
, (2.80)

respectively; f) the initial estimate ∆̂(0) of ∆ as

∆̂(0) = P
(
ρ̂(0)
)
, (2.81)

where
P (ρ̃) ≜ −c (ρ̃) /b (ρ̃) ; (2.82)

g) the first fine estimate F̂ (0) of F as

F̂ (0) = F̂ (0)
c +

∆̂(0)

2π
(2.83)

2) Setting its iteration index i to 1.
Then, an iterative procedure is started. The i-th iteration is fed by the estimates

F̂ (i−1) and Ĉ(i−1) of F and C, respectively, and produces the new estimates F̂ (i) and
Ĉ(i) of the same quantities (with i = 1, 2, ..., NSFE, where NSFE represents the overall
number of iterations); the procedure employed for the evaluation of F̂ (i) and Ĉ(i)

consists of the two steps described below (the p-th step is denoted SFE-Sp).
SFE-S1) - The new estimate ∆̂(i) of ∆ is computed as7 (see (2.81)–(2.82))

∆̂(i) = P (ρ̂(i−1)) = −c
(
ρ̂(i−1)

)/
b
(
ρ̂(i−1)

)
; (2.84)

7The quantities {X̄k,ρ; k = 1, 2} required in the computation of the coefficients b(ρ) and c(ρ) can be
also evaluated by means of the interpolation-based method illustrated in [65, Sect. III, p. 12]. In our
work, barycentric interpolation has been always used [74]; in the following, the parameter I represents
the interpolation order. These considerations hold also for the CSFE described below.
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in the evaluation of the coefficients {b(ρ), c(ρ)} appearing in the RHS of (2.82), Ĉ =
Ĉ(i−1) and

ρ = ρ̂(i−1) ≜ F̂ (i−1)/FDFT (2.85)

are assumed. Then,
F̂ (i) = F̂ (i−1) + ∆̂(i)/(2π) (2.86)

is evaluated.
SFE-S2) - The new estimate Ĉ(i) of Ĉ is evaluated as Ĉ(i) = G(F̂ (i)) (see (2.73)–

(2.74)). Moreover, the index i is incremented by one before starting the next iteration.
At the end of the last (i.e., of the NSFE-th) iteration, the fine estimates F̂ = F̂ (NSFE)

and Ĉ = Ĉ(NSFE) of F and C, respectively, become available.

2.4.2 Complex single frequency estimator

All the results illustrated in the previous paragraph refer to the real sequence {xr,n},
whose n-th element is expressed by (2.65). However, a similar estimation method
(namely, the CSFE) has been developed for the complex counterpart, i.e. for a complex
sequence {xc,n; n = 0, 1, ..., N − 1}, whose n-th element is

xc,n = A exp (j2πnF ) + wc,n, (2.87)

with n = 0, 1, ..., N−1. Here, A is the complex amplitude of the single tone appearing
in the RHS of the last equation, {wc,n; n = 0, 1, ..., N − 1} is a complex AWGN
sequence and all the parameters have exactly the same meaning as that illustrated for
(2.65). The description of the CSFE is similar to that illustrated for the SFE in the
previous paragraph, the only differences being represented by the fact that: a) the
parameter C (2.66) is replaced by A; b) (2.73) is replaced by

Ã = Â = X̄(F̂ ), (2.88)

where X̄(F̂ ) is computed according to (2.75) (in which xr,n is replaced by xc,n (2.87));
c) (2.79) and (2.80) are replaced by

b (ρ) ≜ ℜ{Â∗X̄2,ρ} (2.89)

and
c (ρ) ≜ −ℑ{Â∗X̄1,ρ}, (2.90)

respectively.

2.4.3 Target cancellation procedures employed in FMCW radar sys-
tems

In T2 of the RASCA-FR2 and RASCA-FR3 (and, in particular, in STDREC-S2;
see (2.29)), a target cancellation procedure is used in combination with the SFE. This
procedure requires the evaluation of the triad (C

(v)
X0

[i], C
(v)
X1

[i], C
(v)
X2

[i]), that represents
the contribution given by the i-th (i.e., by the last) point target detected on the v-th
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VA. If F̂ (v)
i and Ĉ(v)

i denote the estimates of the normalised frequency and the complex
amplitude, respectively, characterizing this target, the expressions

C
(v)
X0

[i] = Ĉ
(v)
i W̄

(v)
0 [i] +

(
Ĉ

(v)
i

)∗ (
W̄

(v)
0,c [i]

)
, (2.91)

C
(v)
X1

[i] = Ĉ
(v)
i W̄

(v)
1 [i] +

(
Ĉ

(v)
i

)∗ (
W̄

(v)
1,c [i]

)
(2.92)

and
C

(v)
X2

[i] = Ĉ
(v)
i W̄

(v)
2 [i] +

(
Ĉ

(v)
i

)∗ (
W̄

(v)
2,c [i]

)
(2.93)

are employed; here, W̄(v)
k [i] denotes the N0 order DFT of the vector

w̄
(v)
k [i] ≜

[
0, 1k · w̄(v)

i , 2k ·
(
w̄

(v)
i

)2
, . . . ,

(N − 1)k ·
(
w̄

(v)
i

)N−1
, 0, . . . , 0

]T
, (2.94)

with k = 0, 1 and 2, W̄(v)
k,c [i] the N0 order DFT of the vector (w̄

(v)
k [i])∗,

w̄
(v)
i ≜ exp(j2πF̄

(v)
i ) (2.95)

and
F̄

(v)
i ≜ f̂

(v)
i Ts (2.96)

is the normalised frequency associated with the frequency f̂ (i)v . It is important to point
out that an efficient method can be used for the computation of the vectors W̄

(v)
k [i]

and W̄
(v)
k,c [i] appearing in the RHS of (2.91)–(2.93) (with k = 0, 1 and 2); note that, for

any k, these vectors represent the N0 order DFTs of the sequences {nk (w̄
(v)
i )n; n = 0,

1, ..., N − 1} and {nk ((w̄
(v)
i )∗)n; n = 0, 1, ..., N − 1}, respectively. In fact, the l-th

element of the vectors W̄
(v)
k [i] and W̄

(v)
k,c [i] is given by

W̄
(v)
k [i, l] =

1

N

N−1∑
n=0

nk
(
w̄

(v)
i

)n
exp

(
−j 2πl

N0
n

)

=
1

N

N−1∑
n=0

nk(q [l])n (2.97)

and

W̄
(v)
k,c [i, l] =

1

N

N−1∑
n=0

nk
((
w̄

(v)
i

)∗)n
exp

(
−j 2πl

N0
n

)

=
1

N

N−1∑
n=0

nk(qc [l])
n, (2.98)

respectively, where

q [l] ≜ exp

(
j2π

(
F̄

(v)
i − l

N0

))
(2.99)
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and
qc [l] ≜ exp

(
j2π

(
−F̄ (v)

i − l

N0

))
. (2.100)

Therefore, the identities listed in [65, eqs. (84)-(85) and (145)] can be exploited for an
efficient computation of the RHSs of (2.97) and (2.98).

A target cancellation procedure is also employed in T2 of the RASCA-FC2 and
RASCA-FC3; however, in this case, the CSFE is adopted in place of the SFE, and the
vectors C

(v)
X0

[i], C(v)
X1

[i] and C
(v)
X2

[i] are evaluated as

C
(v)
X0

[i] = Â
(v)
i W̄

(v)
0 [i], (2.101)

C
(v)
X1

[i] = Â
(v)
i W̄

(v)
1 [i] (2.102)

and
C

(v)
X2

[i] = Â
(v)
i W̄

(v)
2 [i]; (2.103)

respectively; here, W̄(v)
k [i] denotes the N0 order DFT of the vector

w̄
(v)
k [i] ≜

[
0, 1k · w̄(v)

i , 2k ·
(
w̄

(v)
i

)2
, . . . ,

(N − 1)k ·
(
w̄

(v)
i

)N−1
, 0, . . . , 0

]T
, (2.104)

with k = 0, 1 and 2, and w̄(v)
i is still expressed by (2.95). The vector W̄(v)

k [i] appearing
in (2.91)–(2.93) (with k = 0, 1 and 2) can be efficiently computed following the same
approach illustrated above for the SFE.

The CSFE is also employed in T3-S1 and, in particular, in STDAEC-S2 of
the RASCA-FR2, RASCA-FR3, RASCA-FC2 and RASCA-FC3. In this case, the
cancellation procedure requires the evaluation of the contribution

C
(i)
X0

[l] =
[
C

(i)
X0

[p, q, l]
]

(2.105)

given by the i-th (i.e., by the last) target detected in the l-th frequency bin to the
whole array (see (2.38)). Here, we focus on the target cancellation procedure employed
in the above mentioned RASCAs. In this case, if Âi[l], F̂V,i[l] and F̂H,i[l] denote the
estimates of the complex amplitude, the normalised vertical spatial frequency and the
normalised horizontal spatial frequency, respectively, characterizing the i-th target, the
expression

C
(i)
X0

[p, q, l] =Âi[l] exp
{
j2π

[
(p− pR)F̂H,i[l]

+(q − qR)F̂V,i[l]
]}

, (2.106)

is employed for any VA (i.e., for any p and q).
Finally, it is important to mention that the cancellation procedure adopted in

STDREC algorithm aims at removing the contribution of a single target in each of
its iterations. If a cluster of m(v)

i distinct frequencies is estimated by the SFE (CSFE)
in the i-th iteration of the above mentioned algorithm, each of the components of
the triad (C

(v)
X0

[i], C(v)
X1

[i], C(v)
X2

[i]) consists of the sum of m(v)
i terms and each term is

evaluated on the basis of (2.91)–(2.93) ((2.101)–(2.103)).
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2.5 Limitations

In this section, some technical limitations that have emerged in the implementation of
our algorithms on commercial radar devices are illustrated and the solutions we have
devised to mitigate their impact are described.

2.5.1 Unequal response of virtual antennas

The derivation of the RASCAs for FMCW radar systems relies on the assumption that
the real (complex) sample sequence made available by the v-th VA is expressed by
(1.9) ((1.11)). The adopted signal models hold if the amplitudes of the L overlapped
oscillations contributing to the useful component of the received signal do not change
from antenna to antenna. However, our experiments accomplished on commercial colo-
cated radar devices have evidenced that: a) these amplitudes are not constant across
the whole virtual array; b) their differences are influenced by the azimuth and the
elevation of each target. We believe that all this is due to the different behavior of
the multiple receive chains employed in each MIMO device and to the mismatches in
the receive antenna patterns, together with electromagnetic interference patterns due
to the phase coherency of the radiated waves. This problem affects the quality of the
data acquired through FMCW radar systems and, consequently, the accuracy of our
detection and estimation algorithms. It can be mitigated by enriching the physical
array with a set of surrounding passive antennas; in this case, the array is artificially
extended with new antennas along all its sides, so that the behavior of all its active
antennas becomes more uniform.

It important to point out that, in principle, the presence of this phenomenon can
be accounted for in the development of target detection and estimation algorithms by
including its effects in the received signal model. For instance, (1.9) can be generalised
as

x(v)r,n =

L−1∑
l=0

αv (θl, ϕl) al cos
(
2πnF

(v)
l + ψ

(v)
l

)
+ w(v)

r,n, (2.107)

where αv(θl, ϕl) represents an attenuation factor depending on the angular coordinates
of the l-th target and v is the VA index. Consequently, the complex amplitude associ-
ated with the l-th target detectable on the considered VA becomes (see (1.10))

C
(v)
l (θl, ϕl) ≜

1

2
al αv (θl, ϕl) exp

(
j ψ

(v)
l

)
. (2.108)

Neglecting the presence of the factor αv (θl, ϕl) in the development of our algorithms
has the following implication: an error is introduced by the STDAEC algorithm in its
cancellation procedure (see STDAEC-S2 in Paragraph 2.4). Note, in particular, that
the estimate Ĉi[l] of the complex amplitude characterizing to the i-th target detected
in the α̂l-th bin is computed after the overall spatial folding (i.e., after STDAE-S5);
consequently, its absolute value represents a sort of spatial average computed over all the
involved VAs. Moreover, only the phase variations of this complex gain are accounted
for in the computation of the contribution C

(i)
X0

[l] of this target to the matrix X(i)[l]
(see (2.105)–(2.106)). Note that, if the functions {αv(θl, ϕl)} were known for all the



52 CHAPTER 2. RASCA ALGORITHM

VAs, their effect could be compensated for after evaluating the estimates (θ̂i, ϕ̂i) of the
angular coordinates of the i-th target; in fact, this result could be achieved by replacing
the estimate Ĉi[l] of the complex gain Ci[l] with

Ĉi[v, l] ≜ Ĉi[l] αv(θ̂i, ϕ̂i). (2.109)

in the evaluation of the term C
(i)
X0

[l] appearing in (2.105)–(2.106). Estimating the func-
tion αv(θ, ϕ), however, is a time consuming task, since it requires a proper measurement
setup and an anechoic chamber. We believe that this problem can be circumvented
by: a) exploiting deep learning techniques [75] in the SPE; b) adopting a data-driven
approach [76], [77]. This solution is motivated by the fact that:

a) Deep learning techniques can be employed to approximate complicated functions,
that do not lend themselves to a simple parametric representation and without requiring
particular expertise in data pre-processing.

b) A data-driven approach allows to train different models on the basis of data col-
lected in a real scenario or synthetically generated data, without prior knowledge about
the parametric representation of the considered problem. Note that a fundamental role
is played by the adopted training procedure since it makes the involved network able
to generate correct predictions on the basis of never seen data available at its input.

In practice, the adoption of the proposed approach requires modifying the STDAEC
technique employed in the RASCAs (see Fig. 2.3) and, in particular, embedding a deep
neural network in it. This network is employed to estimate the distorted amplitudes of
all the targets detected in the l-th frequency bin (with l = 0, 1, . . . , Lb − 1), so that
accurate cancellation becomes possible.

The use of this solution in our radar systems is not investigated in the following,
since it is out of the scope of this chapter.

2.5.2 Antenna coupling

In our description of the SFE and the CSFE (see Section 2.4), it has been implicitly
assumed that the minimum frequency of the useful component contained in the ob-
served data sequence can be arbitrarily small. Unluckily, this is not always true. For
instance, in commercial colocated FMCW MIMO radar systems, a strong interference
is observed in the lower portion of the spectrum evaluated on all the receive antennas.
This phenomenon, known as mutual coupling [78], is due to the electromagnetic cou-
pling that originates from the small distance between adjacent transmit and receive
antennas [54]. Its impact can be mitigated resorting to various methods based on cal-
ibration measurements [79]. Because of mutual coupling, any target whose range is
below a certain threshold cannot be detected by our algorithms in a reliable fashion.

2.6 Other target detection and estimation techniques

The detection and estimation algorithms described above have been compared, in terms
of accuracy and complexity, with two different types of algorithms that, similarly as
the RASCAs, are able to generate radar images in the form of point clouds. The
algorithms of the first type are called FFT-based algorithms (FFT-BAs), since they rely
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DOA Estimation

FFT 

Processing

Radar
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Target detection and range estimation

CFAR-CASO

Figure 2.7: Block diagram describing the overall structure of the FFT-
BAs and the MUSIC-BAs.

on multidimensional FFT processing for the evaluation of all the spatial coordinates of
targets (i.e., their range and DOA); such algorithms have been inspired by the FFT-
based algorithm proposed by Texas Instrument in [61]. The algorithms of the second
type, instead, are called MUSIC-based algorithms (MUSIC-BAs); these make use of the
same method as the first type for range estimation, but the MUSIC algorithm for DOA
estimation [80]. In the remaining part of this section, a brief description is provided for
both types. In our analysis, we always refer to a FMCW radar system, since, if a SFCW
radar system is considered, the only change to be made in the described algorithms
consists in replacing each FFT with an IFFT of the same order.

The inner structure of both types of algorithms is described by the block diagram
shown in Fig. 2.7. The processing accomplished by the blocks this diagram consists of,
can be summarized as follows. Each vector of the set {x(v)

z }, collecting NVR vectors (see
(1.17)), undergoes, after ZP, a N0 order FFT; this produces a set of N0-dimensional
vectors {X(v)

0 } (see (2.19), (2.23) and (2.24)). Based on this set of vectors, the N0-
dimensional power spectrum

P0 = [P0,0, P0,1, ..., P0,N0−1]
T (2.110)

is computed; here,

P0,i ≜
1

NVR

NVR−1∑
v=0

(
X

(v)
0,i

)2
(2.111)

with i = 0, 1, ..., N0 − 1. The vector P0 (2.110) feeds the cell-averaging smallest of
- constant false alarm rate (CFAR-CASO) algorithm developed in [81]. Based on this
algorithm, a target is detected in the i-th frequency bin if

P0,i > TCFAR, (2.112)

where i ∈ {im, im + 1, ..., iM}. Here,

TCFAR = K0min
(
P̄l , P̄u

)
(2.113)

represents a decision threshold, K0 is a real parameter whose value is selected on the
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basis of the required false alarm rate, and

P̄l =
1

Cs

i−(Gs+1)∑
k=i−(Gs+Cs)

P0,k (2.114)

and

P̄u =
1

Cs

i+Gs+Cs∑
k=i+Gs+1

P0,k (2.115)

represent the average of the power spectrum computed over Cs adjacent bins posi-
tioned on the left and on the right, respectively, with respect to the i-th frequency
bin. Moreover, Gs and Cs are two integer parameters defining the size and the position
(with respect to the i-th bin), respectively, of the set of frequency bins involved in the
computation of P̄l (2.114) and P̄u (2.115), whereas im and iM are two non negative
integers such that im ≥ (Gs + Cs) and iM ≤ N0 − 1− (Gs + Cs).

In our work, the inequality
P0,i > Pl,u (2.116)

is also required to be satisfied together with the condition (2.112), where Pl,u represents
the largest element of the set {P0,i+l; l = −(Gs+Cs), −(Gs+Cs)+1, −Gs−1, Gs+1,
Gs+Cs}. This allows us to reduce the overall number of detected targets, so reducing
the density of the generated point cloud.

The CFAR-CASO algorithm generates the vector

ACF = [α̂0, α̂1, ..., α̂Lb−1]
T (2.117)

where α̂l represents the index of the frequency bin in which the l-th target has been
detected (with l = 0, 1, . . . , Lb − 1) and Lb is the overall number of detected targets.
This vector is processed for DOA estimation. The two options (associated with the
above mentioned types of algorithms) are considered for this task and are described in
the remaining part of this paragraph.

FFT-based DOA estimation – Let us focus first on the case in which a virtual HULA,
consisting of NVH virtual elements, is employed for resolving the targets associated with
a given frequency bin and estimating their azimuth. In this case, azimuth estimation
consists of the following two steps:

1) The NVH-dimensional column vector (see (2.64))

X [l] ≜
[
X

(0)
0,α̂l

, X
(1)
0,α̂l

, ..., X
(NVH−1)
0,α̂l

]T
, (2.118)

collecting the spectral information available on the whole array and referring to the
α̂l-th frequency bin (with l = 0, 1, ..., Lb−1) is applied to an N̄0 order FFT algorithm;
let s[l] = [s0[l], s1[l], ..., sN̄0−1[l]]

T denote the N̄0-dimensional FFT output.
2) The dominant peaks8 in the sequence {|sk[l]|; k = 0, 1, ..., N̄0 − 1} are identified;

each peak corresponds to a distinct target. If ki[l] denotes the index of i-th peak (with
8It is important to distinguish peaks associated with different targets from side-lobes; in our simu-

lations, a candidate peak is classified as a side-lobe (and, consequently, ignored) if its amplitude differs
by more than 1 dB from that of a close dominant peak, as suggested in [61].
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i = 0, 1, ..., Lh[l] − 1, where Lh[l] is the overall number of targets detected in the
considered frequency bin), the estimate of the azimuth of the i-th target is evaluated
as

θ̂i [l] = arcsin
(
hN̄0

[ki [l]]
)

(2.119)

where
hN̄0

[x] ≜ 2
(
x− N̄0/2

) /
N̄0 . (2.120)

Let us now consider the case in which the URA represented in Fig. 2.2 is employed
for resolving the targets associated with each frequency bin, and estimating their az-
imuth and elevation. The algorithm employed in this case involves the NVH × NVV

matrix X[l] ≜ [X0,α̂l [p, q]] (2.36), collecting the spectral information available on the
whole array for the α̂l-th frequency bin. This algorithm consists of the following four
steps:

1) The pR-th row of the matrix X[l] is processed to generate the N̄0-dimensional
column vector sVULA,0[l] = [s0,0 [l] , s0,1 [l] , ..., s0,N̄0−1 [l]]

T on the basis of (2.44); here,
pR represents the column index of the reference antenna in the considered URA (see
Fig. 2.2).

2) The dominant peaks of the sequence {[|s0,r [l] |; r = 0, 1, ..., N̄0−1} are identified.
If ri[l] denotes the index of i-th peak (with i = 0, 1, ..., Lv[l] − 1, where Lv[l] is the
overall number of targets detected in the considered frequency bin), the estimate of the
elevation ϕ̂i[l] of the associated target is evaluated as

ϕ̂i [l] = arcsin
(
hN̄0

[ri [l]]
)
. (2.121)

3) The 2D FFT of the matrix X[l] is computed; this produces the N̄0 × N̄0 matrix
S̄[l] = [S̄k,r[l]], such that

S̄k,r [l] ≜
1

NVR

NVV−1∑
q=0

NVH−1∑
p=0

X0,α̂l [p, q] · exp
(
−j 2π

λ
ψr,k

)
, (2.122)

where
ψr,k ≜ q hN̄0

[r] dVV + p hN̄0
[k] dVH. (2.123)

4) The dominant peaks of the sequence {[|S̄k,ri[l][l]|; k = 0, 1, ..., N̄0 − 1} are
identified (with i = 0, 1, ..., Lv[l] − 1); let Lh[i, l] denote their overall number. If the
m-th peak is found for k = km,i[l] (with m = 0, 1, ..., Lh[i, l]− 1), the azimuth θ̂i,ri[l][l]
of the associated target is evaluated as

θ̂i,ri[l] [l] = arcsin

hN̄0
[km,i[l]]

cos
(
ϕ̂i [l]

)
 , (2.124)

where ϕ̂i [l] is expressed by (2.121); consequently, the angular coordinates of the i-th
target detected in the α̂l-th frequency bin are (θ̂i,ri[l] [l], ϕ̂i [l]), whereas its range is
computed on the basis of α̂l.
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The last step concludes our description of the FFT-BAs. Note that the overall
number of detected targets is given by

L̂ =

Lb−1∑
l=0

Lv [l]−1∑
i=0

Lh [i, l] . (2.125)

MUSIC-based DOA estimation – Similarly as our description of the FFT-BAs, we
first focus on the case in which a virtual HULA, consisting of NVH virtual elements, is
employed for resolving the targets associated with a given frequency bin and estimating
their azimuth. In this case, the algorithm considered for DOA estimation consists of
the following three steps:

1) The NVH ×NVH autocorrelation matrix

RX [l] = X [l] X[l]H (2.126)

is computed; here, X [l] is defined by (2.118).
2) The N̄0-dimensional pseudo-spectrum P

(l)
MU is evaluated; its k-th element is given

by

P
(l)
MU[k] =

1

aH [k] QNVR
QH
NVR

a [k]
(2.127)

with k = 0, 1, ..., N̄0−1; here, (·)H denotes the conjugate and transpose operator, QNVH

is a matrix having size NVH × (NVH−1) and whose columns are the (NVH−1) noise
eigenvectors (associated with the (NVH−1) smallest eigenvalues) of RX [l] (2.126) and
a[k] is a NVH-dimensional steering vector, whose n-th element an[k] is given by9

an[k] = exp
(
jπnhN̄0

[k]
)
, (2.128)

with n = 0, 1, ..., NVH − 1.
3) The dominant peaks appearing in the sequence {P(l)

MU[k]; k = 0, 1, ..., N̄0 − 1},
consisting of the ordered elements of P(l)

MU, are identified; let Lh[l] denote their overall
number. If the i-th peak is found for k = ki[l] (with i = 0, 1, ..., Lh[l]−1), the azimuth
θ̂i[l] of the associated target is evaluated on the basis of (2.119)–(2.120).

Let us consider now the case in which the uniform rectangular array shown in
Fig. 2.2 is employed for resolving the targets associated with each frequency bin, and
estimating their azimuth and elevation. In this case, the adopted procedure involves
the NVH×NVV matrix X[l] ≜ [X0,α̂l [p, q]] (2.36) for any α̂l and consists of the following
four steps:

1) The pseudo-spectrum referring to the reference VULA (that consists of NVULA

virtual elements) is evaluated. In this step, we assume that the pR-th row of X[l] is
employed for the evaluation of the autocorrelation matrix RX [l] (2.126) and that the
N̄0-dimensional vector P

(VULA)
MU [l] is computed on the basis of (2.127)–(2.128) (note

that NVR and δ[k] are replaced by NVULA and δ[r], respectively).
2) The dominant peaks appearing in the sequence of the ordered elements of

P
(VULA)
MU [l] are identified; let Lv[l] denote their overall number. If the i-th peak is
9Note that the following equation applies to an FMCW radar; if an SFCW radar is considered, the

sign of the argument of the complex exponential appearing in its RHS must be reversed.
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found for r = ri[l] (with i = 0, 1, ..., Lv[l] − 1), the elevation ϕ̂i[l] of the associated
target is evaluated on the basis of (2.121).

3) The pseudo-spectrum P
(HULA)
MU [l, i] associated with the i-th estimated elevation is

evaluated for the whole virtual array. In this step, if we assume that the autocorrelation
matrix RX is computed according to (2.126) (where, however, X [l] is the NVH ×NVV

matrix defined above), the N̄0-dimensional vector P (HULA)
MU [l, i] is generated on the basis

of (2.127). Note that, in this case, NVR is replaced by NHULA and that the n-th element
an[k] of the NHULA-dimensional steering vector a[k] is

an[k] = exp
(
jπnhN̄0

[k] cos
(
ϕ̂i[l]

))
(2.129)

with n = 0, 1, ..., NHULA.
4) The dominant peaks appearing in the sequence of the ordered elements of

P
(HULA)
MU [l] are identified; let Lh[i, l] denote their overall number. If the m-th peak

is found for k = km,i[l] (with m = 0, 1, ..., Lh[i, l] − 1), the azimuth θ̂i,ri[l][l] of the
associated target is evaluated as

θ̂i,ri[l] [l] = arcsin
(
hN̄0

[km,i[l]]
)
. (2.130)

Consequently, the angular coordinates of this target are (θ̂i,ri[l][l], ϕ̂i [l]), whereas its
range is computed on the basis of its bin index α̂l. The last step concludes our descrip-
tion of the MUSIC-BAs. Finally it is important to point out that:

a) The overall number of targets detected by these algorithms is still expressed by
(2.125).

b) The order adopted in the computation of the pseudo-spectra (first the vertical
pseudo spectrum P

(VULA)
MU [l], then the horizontal pseudo-spectra {P(HULA)

MU [l, i]})
is dictated by the fact P

(HULA)
MU [l, i] depends on the elevation estimate ϕ̂i[l] for

any i.

The performance of the FFT-BAs and the MUSIC-BAs has been assessed for
FMCW radar systems working in 2D and 3D propagation scenarios. The acronyms
adopted in the following for these types of algorithms are summarized in Table 2.2.

Table 2.2: Acronyms adopted for the FFT-based and MUSIC-based algo-
rithms.

Alg.
Radar Complex FMCW Real FMCW

FFT-BA (2D) FFT-FC2 FFT-FR2
MUSIC-BA (2D) MUSIC-FC2 MUSIC-FR2
FFT-BA (3D) FFT-FC3 FFT-FR3
MUSIC-BA (3D) MUSIC-FC3 MUSIC-FR3
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2.7 Computational complexity

The computational cost of the algorithms described in Sections 2.3 and 2.6 has been
carefully assessed in terms of floating point operations (flops) to be executed in the de-
tection of L targets10. Various details about the method we adopted for the evaluation
of the computational cost of each algorithm are provided for the RASCA-FC3 only.

RASCA-FC3 computational cost evaluation

Here, the computational complexity, in terms of flops, is assessed for the RASCA-FC3
developed in Section 2.3. The overall computational cost of this algorithm can be
expressed as

CFC3 = NVR CT1 +NAKT2 CT2 + LbKT2 CT3 + CTsc , (2.131)

where CT1 is the contribution due to the first task of the the RASCA-FC3, KT2 (KT3)
represents the overall number of iterations carried out by the STDREC (STDAEC)
algorithm, CT2 ( CT3) is the contribution due to a single iteration of the STDREC
(STDAEC) executed on a single VA (on the whole virtual array for a given frequency
bin) and CTsc is the contribution due to the computation of the spatial coordinates of
the overall image. The general criteria adopted in estimating the computational costs
appearing in the RHS of (2.131) are illustrated in [315] and can be summarised as
follows:

• 4d− 2 flops are required to compute the inner product uTc v of the d-dimensional
complex column vector uc and the d-dimensional real column vector v;

• 6d + 2(d − 1) flops are required to compute the inner product uTc vc of the
d-dimensional complex vectors uc and vc;

• d flops are required to find the largest element of d-dimensional real vector v;

• 4d2+14d−8 flops are required to compute an interpolation based on the elements
of the d-dimensional complex vector v.

• 8d log2(d) flops are required to compute the FFT of the d-dimensional complex
vector v.

The expressions of the computational costs associated with each of the three tasks
of the RASCA-FC3 are illustrated below.

T1 - The cost CT1 can be expressed as

CT1 ≜ Cxk,ZP + CXk
, (2.132)

where: a) CxZP = 4N is the contribution due to the computation of the vectors
{x(v)

k,ZP; k = 0, 1, 2} (see (2.19)–(2.21)); b) CX = 24N0 log2N0 is the contribution due

to the computation of the vectors {X(v)
k ; k = 0, 1, 2} (see (2.23)).

10In the remaining part of this section, the overall number of estimated targets (L̂) is assumed to
be equal to L, for simplicity.
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T2 - The computational cost of this task is mainly due to its main algorithm, i.e.,
to the STDREC algorithm. The cost CT2 can be expressed as

CT2 ≜ CCSFE + CCXk
+ CE , (2.133)

where: a) CCSFE = 4NCSFEI
2 is the cost originating from the CSFE11 employed in

STDREC-S1; b) CCXk
= 18N0 is the contribution due to the computation of the

vectors (C(vk)
X0

[i],C
(vk)
X1

[i],C
(vk)
X2

[i]) (see (2.101)–(2.103)); c) CE = 8N0− 2 is the contri-
bution due to the computation of the residual energy (see (2.30)).

T3 - The cost CT3 can be expressed as

CT3 ≜ CCSFEV
+ CX(VF) + CCSFEH

+ CXOF
+ CCSFEOF

+ CE , (2.134)

where: a) CCSFEV
= 8N̄0 log2(N̄0) + 4NCSFEI

2 is the cost originating from the CSFE
employed in STDAE-S1; b) CX(VF) = 6NVVNVH + 2NVV is the contribution due to
the computation of the vertically folded spectrum X

(VF)
i [l] (2.52) in STDAE-S2; c)

CCSFEH
= 8N̄0 log2(N̄0) + 4NCSFEI

2 is the cost originating from the CSFE employed
in STDAE-S3; d) CXOF

= 6NVVNVH + 18NVVNVHN0 is the contribution due to
the computation of the overall folded spectrum {Xm,OF[l];m = 0, 1, 2} (see (2.54) and
(2.59)); e) CCSFEOF

= 4NCSFEI
2 is the cost due to the CSFE12 in STDAE-S4; f)

CE = 6NVVNVH is the contribution due to the computation of the residual energy in
STDAEC-S3 (see (2.39)). Finally, the cost CTsc = 5L is required to generate the
overall point cloud. Based on the results illustrated above, (2.131) can be rewritten as

CFC3 =NVR(4N + 24N0 log2(N0))

+NT2(4NCSFEI
2 + 26N0 − 2)

+NT3(12NCSFEI
2 + 2NVV + 18NVHNVV

+ 18NVHNVVN0 + 16N̄0 log2(N̄0) + 5L, (2.135)

where NT2 ≜ NAKT2 and NT3 ≜ LbKT2 .
Our analysis leads to the conclusion that the overall cost of RASCA-FC3 and

RASCA-FC2 is approximately of order O(MR−FC3) and O(MR−FC2), respectively, where
(see (2.135))

MR−FC3 = 24NVRN0 log2 (N0) + 26NAKT2 N0

+ LbKT3

(
18NVHNVVN0 + 16N̄0 log2

(
N̄0

))
(2.136)

and

MR−FC2 =24NVHN0 log2(N0) + 26NAKT2N0

+ LbKT3

(
18NVHN0 + 8N̄0 log2(N̄0)

)
; (2.137)

here, KT2 (KT3) represents the overall number of iterations carried out by the STDREC
(STDAEC) algorithm.

11Note that, in this case, the cost of the CSFE does not account for the evaluation of three DFTs,
since these have been already evaluated in T1.

12Note that, in this case, the cost of the CSFE does not account for the evaluation of three DFTs,
since these are made available by overall folding.
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Figure 2.8: Computational cost versus overall number of targets for: a)
the first scenario; b) the second scenario. The RASCA-FC3, RASCA-FC2,
FFT-FC3, FFT-FC2, MUSIC-FC3 and MUSIC-FC2 are considered.

MUSIC and FFT computational cost

In evaluating the cost of the FFT-based and MUSIC-based algorithms described in
Section 2.6, we have assumed that: a) the cost due to the computation of the eigenvalue
decomposition of a d× d matrix is O(d3); b) the computational effort required to find
the dominant peaks in a sequence is negligible. Based on these assumptions, it can
be shown that the computational complexity of the FFT-FC3, FFT-FC2, MUSIC-
FC3 and MUSIC-FC2 algorithms are approximately of order O(MF−FC3), O(MF−FC2),
O(MM−FC3) and O(MM−FC2), respectively, where

MF−FC3 =8NVRN0 log2(N0)

+ 8Lb
(
N̄2

0 log2(N̄
2
0 ) + N̄0 log2(N̄0)

)
, (2.138)

MF−FC2 = 8
(
NVHN0 log2(N0) + LbN̄0 log2(N̄0)

)
, (2.139)

MM−FC3 =8NVRN0 log2(N0) + LbN̄0(N
3
VV +N3

VH)

+ 16LbN̄0(N
2
VV +N2

VH) (2.140)

and
MM−FC2 = 8NVHN0 log2(N0) + LbN̄0(N

3
VH + 16N2

VH). (2.141)

Computational cost comparison

It is important to keep in mind that a comparison among the computational costs listed
above does not fully account for the gap that can be observed in the execution speed of
the corresponding algorithms. In fact, in practice, a portion of the computation time
is absorbed by the procedure employed to find the dominant peaks of real sequences in
both the FFT-BAs and the MUSIC-BAs. Moreover, the vector ACF (2.117), collecting
the indices of the frequency bins in which at least one target has been detected, may
include ghost targets; as evidenced by our computer simulations, the impact of this
phenomenon on the overall computation time may not be negligible. Despite this,
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some interesting insights on how the complexity is influenced by the overall number
of targets can be obtained by comparing the computational costs (2.136), (2.138) and
(2.140) ((2.137), (2.139) and (2.141)) in two specific scenarios. The first scenario we
take into consideration refers to the case in which the mutual distance between the
targets is above the range resolution of the employed radar system, so that KT2 = L,
KT3 = 1 and Lb = L can be assumed in the RHS of (2.136)–(2.141). In our second
scenario, instead, the targets form clusters, each of which consists of four targets having
the same range, but different angular coordinates; for this reason, KT2 = L/4, KT3 = 4
and Lb = L/4 can be assumed in the RHS of (2.136)–(2.141). Moreover, the following
parameters have been chosen for both scenarios: a) NVR = 256; b) N0 = 1024; c)
NA = 10 d) NVV = 16; e) NVH = 16; f) N̄0 = 32. The dependence of the complexity
Malg on L is represented in Fig. 2.8a (Fig. 2.8b) for the first (second) scenario; here,
alg denotes the algorithm which this complexity refers to. From these figures it is easily
inferred that:

a) The RASCAs require the largest computational effort in both the considered sce-
narios for any value of L; for instance, MRASCA−FC3 is approximately 4.1 (4.6)
times greater than MMUSIC−FC3 in the first (second) scenario for L = 8.

b) The ratio between MRASCA−FC2 and MMUSIC−FC2 is approximately 2.4 for any
value of L in the first scenario, but it increases with L in the second scenario; for
instance, MRASCA−FC2 is 3.9 (4.6) times greater than MMUSIC−FC2 for L = 12
(L = 36).

c) The computational cost estimated for the MUSIC-BAs in the first scenario is larger
than that referring to the second scenario for L ≥ 4; for instance, if L = 20,
the value of MMUSIC−FC3 (MMUSIC−FC2) evaluated in first scenario is 1.33 (2.5)
times larger than that found in the second scenario .

Finally, it is important to stress that:

a) in real world scenarios, the overall number of targets detected by the FFT-BAs
and the MUSIC-BAs may be greater than the true number of targets, since some
targets are detected multiple times; this may have a significant impact on the
overall computational effort required by these algorithms.

b) The computational complexity of the RASCA-FR3 (RASCA-FR2), the FFT-FR3
(FFT-FR2), and the MUSIC-FR3 (MUSIC-FR2) is of the same order as the
RASCA-FC3 (RASCA-FC2), the FFT-FC3 (FFT-FC2) and the MUSIC-FC3
(MUSIC-FC2), respectively.

2.8 Numerical results

In this section, the accuracy of the RASCAs is assessed on the basis of both synthetically
generated and experimental data, and is compared with that provided by various FFT-
BAs and MUSIC-BAs.
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2.8.1 Numerical results based on synthetically generated measure-
ments

In this paragraph, the accuracy achieved by the RASCA-FC3, the FFT-FC3 and the
MUSIC-FC3 in the generation of 3D radar images is assessed. The performance of these
algorithms has been evaluated in a colocated MIMO FMCW radar system providing
both the in-phase and quadrature components of all its received signals, and equipped
with an URA consisting of NT = 16 TX and NR = 16 RX antennas; therefore, the
available virtual array is made of 16 · 16 = 256 VAs with inter-antenna spacings dVV =
dVH = λ/4. The other relevant parameters of the considered radar system are: a) chirp
slope µ = 4 · 1013 Hz/s; b) bandwidth B = 2.5 GHz; c) central frequency f0 = 77 GHz;
d) sampling frequency fs = 8 MHz; e) number of samples per chirp N = 512. Note
that, in principle, the available antenna array allows us to achieve the range resolution

∆R =
c

2B
∼= 6 cm, (2.142)

the azimuthal resolution

∆θ =
λ

2dVH(NHULA − 1)
∼= 7.45◦ (2.143)

and the elevation resolution

∆ϕ =
λ

2dVV(NVULA − 1)
∼= 7.45◦. (2.144)

The considered radar system is assumed to operate in the presence of L = 10 targets,
whose echoes have unit amplitude. The range, the azimuth and the elevation of each
target are sequentially generated at the beginning of each run. Moreover, the range
Rk, the azimuth θk and the elevation ϕk of the k-th target (with k = 1, 2, ..., 10)
have been randomly evaluated in a way that: a) they belong to the intervals [1, 10] m,
[−π/3, π/3] rad and [−π/3, π/3] rad, respectively; b) the minimum spacing between
the k-th target and the previously generated (k − 1) targets is not smaller than ∆R
(2.142), ∆θ (2.143) and ∆ϕ (2.144) in the range, azimuth and elevation dimensions,
respectively (scenario S1) or is not smaller than ∆R (2.142) in the range domain,
but can be arbitrarily small in the azimuth and elevation dimensions (this scenario is
denoted S2). In our computer simulations, the following values have been selected for
the parameters of the RASCA-FC3:

a) FFT Processing: M = 2;

b) RPE: NA = 10, NCSFE = 10, I = 7 andTSTDREC = 0.001 · E(vk)
0 (see (2.30));

c) SPE: M̄ = 2, NCSFE = 10, I = 7 andTSTDAEC = 0.001·E(0)[l] (see (2.39)), TOF = 0.

In addition, the following values have been selected for the parameters of the FFT-
FC3 and the MUSIC-FC3: Cs = 3, Gs = 2 and K0 = 1.5. The SNR ≜ 1/σ2 has
been assumed to be equal to 10 dB and the following performance indices have been
evaluated to assess estimation accuracy: a) The detection rate (RD) defined as the
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Table 2.3: Root mean square error ε̄X , peak error ε̂X and detection rate
RD evaluated in the two simulation scenarios defined in Paragraph 2.8.1.
Target range, azimuth and elevation are taken into consideration.

ε̄X ε̂X

Scenario Algorithm R (m) θ (◦) ϕ (◦) R (m) θ (◦) ϕ (◦) RD (%)

S1
RASCA-FC3 0.01 1.56 0.79 0.02 9.86 2.64 100

FFT-FC3 0.02 2.07 1.05 0.04 14.34 3.06 71
MUSIC-FC3 0.02 1.74 0.83 0.04 34.03 13.48 70

S2
RASCA-FC3 0.01 1.54 0.79 0.02 8.01 2.31 100

FFT-FC3 0.02 2.05 1.05 0.04 14.78 2.95 70
MUSIC-FC3 0.02 1.53 0.81 0.04 7.56 2.03 0.72

percentage of simulation runs in which the considered algorithm detects all the targets;
b) the root mean square error (RMSE)

ε̄X ≜

√√√√N−1
m

Nm−1∑
k=0

[
Xk − X̂k

]2
; (2.145)

c) the peak error
ε̂X ≜ max

k

∣∣∣Xk − X̂k

∣∣∣ ; (2.146)

here, Xi and X̂i represent the exact value of a parameter X and its corresponding
estimate, whereas Nm represents the overall number of synthetically generated values
of X; note that, if all the targets are detected by the considered algorithm in each run,

Nm ≜ Nr L (2.147)

where Nr is the overall number of simulation runs. In our work, the performance of the
above mentioned algorithms has been assessed by: a) evaluating the detection rate for
both the considered scenarios; b) ignoring the failure events (i.e., the events in which
not all the targets have been detected) in the evaluation of all the RMSEs. The three
performance indices defined above have been assessed on the basis of the estimates
generated by executing Nr = 500 runs; the resulting values are summarised in Table
2.3. From these results it is easily inferred that:

a) The RASCA-FC3 achieves the lowest RMSEs in range, azimuth and elevation
(range, elevation) estimation in the first (second) scenario; for instance, the
RMSE ε̄θ characterising the RASCA-FC3 is about 1.3 (1.3) times smaller than
the corresponding RMSE obtained for the FFT-FC3 in the first (second) scenario.

b) The RASCA-FC3 exhibits the lowest peak errors in range, azimuth and eleva-
tion (range) in the first (second) scenario; for instance, its peak error ε̂R is 2
times smaller than the corresponding RMSE obtained for the FFT-FC3 and the
MUSIC-FC3 in both scenarios.
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c) All the considered algorithms achieve an excellent accuracy in both scenarios, since
the RMSEs evaluated for range, azimuth and elevation are smaller than the cor-
responding resolutions given above.

d) The FFT-FC3 and the MUSIC-FC3 are outperformed by the RASCA-FC3 in terms
of detection rate; in fact, the value of this parameter is about 70 % for the first two
algorithms, but is equal to 100 % for the RASCA-FC3, since the last algorithm
has been able to detect all the targets in every simulation run in both scenarios.

2.8.2 Numerical results based on experimental measurements

In this paragraph, we first describe the radar devices employed in our measurement
campaigns and the adopted experimental setup. Then, we analyse: 1) the accuracy
achieved by our RPE (and, in particular, by the STDREC algorithm) in range and
phase estimation on multiple antennas of the same array in the presence of a single
target and of multiple targets; 2) the accuracy of the 2D (3D) images generated by
RASCA-FR2 (RASCA-FR3) and RASCA-FC2 (RASCA-FC3) in the presence of mul-
tiple targets.

Employed radar devices and adopted experimental setup

A measurement campaign has been accomplished to acquire a data set through two
FMCW MIMO radars, all operating in the E-band. The first FMCW device, dubbed
TI FMCW radar in the following, is the TIDEP-01012 Cascade mmWave radar (see
Fig. 2.9-a)). It is manufactured by Texas Instrument Inc. [82], classified as a long
range radar (LLR) and provides both the in-phase and quadrature components of
received signals (i.e., complex measurements). Its main parameters are: a) chirp slope
µ = 4 · 1013 Hz/s; b) bandwidth B1 = 2.5 GHz; c) central frequency fc = 77 GHz; d)
sampling frequency fs = 8 MHz; e) number of samples per chirp N = 512. Moreover,
it is endowed with a planar array made of NT = 12 TX and NR = 16 RX antennas
(each consisting of an array of four patch elements), as shown in Fig. 2.9-a). The
corresponding virtual array consists of 12 · 16 = 192 VAs; however, only 134 of them
are available, since the remaining 58 VAs overlap with the other elements of the virtual
array. As shown in Fig. 2.9-b) (where each VA is represented by a small blue circle),
the virtual array has the following characteristics:

1. the non-overlapped VAs form an horizontal ULA (HULA1), consisting ofNHULA1 =
86 VAs and three smaller HULAs, each made of 16 equally-spaced VAs;

2. the inter-antenna spacing of all the HULAs is dVH = λ/4;

3. the vertical spacing of the three smaller HULAs is not uniform, since dVV1 = λ/4,
dVV2 = λ and dVV3 = 3λ/2 (see Fig. 2.9-b)).

This virtual antenna array allows us to achieve a range, azimuth and elevation
resolution equal to ∆R1 = 5.8 cm (see (2.142)), ∆θ1 = 1.35◦ (see (2.143)), and ∆ϕ1 =
16.4◦ (see (2.144)), respectively; note that the elevation resolution is coarser than the
azimuth one since NVV = 7 equally aligned antennas (dVV = dVV1 = λ/4) are assumed
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along the vertical direction (this is equivalent to considering an elevation aperture
Dy = 3λ along the vertical direction; see [54]). In our work, on the one hand, a central
portion of the first HULA (contained inside the red rectangle appearing in Fig. 2.9-
b)), consisting of NVV = 16 antennas, has been exploited for 2D imaging, in order to
guarantee a fair comparison with the other two radar devices. On the other hand, the
whole array have been employed for 3D imaging.

1HULA

2HULA

3HULA

4HULA

1VVd

2VVd

3VVd

b)

a)TX antennas

RX antennas

Figure 2.9: Representation of: a) the TI FMCW radar (the physical
TX/RX antennas are contained inside the three rounded rectangles); b)
the corresponding virtual array (the lower rounded rectangle contains the
portion of HULA1 employed for 2D imaging, whereas the green one the
vertical array chosen as a reference for 3D imaging).

The second FMCW device, dubbed Inras FMCW radar in the following (see
Fig. 2.10-a)), is a modular system manufactured by Inras GmbH [83] and consisting
of: a) the so called Radar Log board; b) an RF front-end including multiple TX/RX
antennas and monolithic microwave integrated circuits (MMIC) operating at 77 GHz.
This system is classified as a LLR and its main parameters are: a) chirp slope µ =
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9.7656 · 1012 Hz/s; b) bandwidth B2 = 2.5 GHz; c) central frequency fc = 77 GHz; d)
sampling frequency fs = 8 MHz; e) number of samples per chirp N = 2048. Unlike the
TI FMCW radar, this device provides only the in-phase component of the RF received
signals and, consequently, real measurements. Moreover, it is endowed with a custom
designed planar array made of NT = 16 TX antennas and NR = 16 RX antennas, each
consisting of an array of six patch elements, as shown in Fig. 2.10-a). The resulting
virtual array, consisting of NVR = 16 · 16 = 256 VAs is shown in Fig. 2.10-b). As it
can be inferred from the last figure, the virtual array has the following characteristics:

1. It consists of 16 HULAs, each of which is made of 16 antennas with inter-antenna
spacing dVH = λ/4.

2. The vertical distance between each couple of its adjacent HULAs is dVV = λ/2;
this entailes the unambiguous elevation range [−45◦, 45◦].

3. Its shape is not rectangular (the horizontal shift of adjacent HULAs is equal to
λ/4).

This virtual array allows us to achieve the same range resolution as the TI FMCW
radar, and azimuth and elevation resolutions equal to ∆θ2 = 7.6◦ and ∆ϕ2 = 3.8◦,
respectively (see (2.143)–(2.144)). In our work, the HULA contained inside the red
rectangle appearing in Fig. 2.10-b) (the whole array) has been exploited for 2D (3D)
imaging.

a) b)

q

p0

0

VVd

VHd

VH 1N −

VV 1N −

Figure 2.10: Representation of: a) the physical array of the Inras FMCW
radar; b) the corresponding virtual array (the red rounded rectangle contains
the HULA employed for 2D imaging, whereas the green one the vertical
array chosen as a reference for 3D imaging).

Our measurement campaigns have been conducted in a large empty room (whose
width, depth and height are 10 m, 8 m and 2.5 m, respectively). Each of the employed
radar devices has been mounted on an horizontal wooden bar together with a pico-flexx
camera manufactured by PMD Technologies Inc. [84] and has been lifted by a tripod
at an height of roughly 1.60 m from ground, as shown in Fig. 2.11. The employed
camera is based on a near-infrared vertical cavity surface emitting laser, and is able
to provide a depth map or, equivalently, a 3D point-cloud of a small region of the
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observed environment (its maximum depth is equal to 4 m, whereas its field of view
is 62◦ × 45◦).

In each measurement campaign, the experiments have been repeated for all the
radar devices exactly in the same conditions.

It is important to point out that:

a) in all the radar systems, the target ranges have been estimated with respect to the
central virtual channel of the employed ULA;

b) the exact target positions have been acquired with respect to the centre of the
pico-flexx camera;

c) the data processing has been accomplished in the MATLAB environment;

d) all our detection and estimation algorithms have been run on a desktop computer
equipped with a single i7 processor.

Inras Radar Picoflexx

𝑇1

𝑇5𝑇4
𝑇3

𝑇2

Figure 2.11: Experimental set-up developed for our measurement cam-
paigns. The radar device (the Inras FMCW radar in this case) and a ref-
erence sensor (pico-flexx) are mounted on a wooden bar. A group of metal
targets, placed at the same height as our sensors, is also visible.

Range and amplitude estimation

In this paragraph, the accuracy of the STDREC algorithm employed by the RPE is
analysed for two specific static scenarios. The first scenario is characterized by a single
detectable target (a small metal disk13 having a diameter equal to 5.5 cm) placed in
ten different positions. The target range R and azimuth θ have been selected in the
interval [1.0, 3.0] m, with a step of 0.5 m and [−40◦, 40◦]. The range and azimuth of the
considered targets are listed in Table 2.4 for all the employed radar devices (the data
referring to the i-th position are collected in the column identified by Ti, with i = 1,
2, ..., 10). The second scenario, instead, is characterized by the presence of an overall
number of targets ranging from 1 to 9 (so that 1 ≤ L ≤ 9). The targets are represented
by small coins with a diameter of 2 cm; the range and azimuth characterizing their
exact positions are listed in Table 2.5 (the data referring to the i-th target are collected

13Each target is hung from the ceiling: a nylon thread has been used for suspending it.
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in the column identified by Ti, with i = 1, 2, ..., 9). Each target has been sequentially
added in our scenario; this has allowed us to assess how the performance of the STDREC
algorithm is influenced by the value of the parameter L in the presence of closely spaced
targets.

Prior knowledge of L has been assumed during the processing; moreover, the fol-
lowing values have been selected for the parameters of the STDREC algorithm14:

TI FMCW radar - N = 512, M = 4, N0 = N ·M = 2048, NCSFE = 5 and I = 7.
Inras FMCW radar - N = 2048, M = 1, N0 = N ·M = 2048, NSFE = 5 and and

I = 7.
Note that: a) the value of the oversampling factor (M) has been selected in way

to guarantee approximately the same value of N0 in all cases, i.e. roughly the same
resolution in the spectral analysis of radar signals; b) the values of the parameters
NSFE and NCSFE are all equal and large enough so that accurate range estimation is
achieved by the STDREC algorithm.

Table 2.4: Exact positions (range and azimuth) of the considered target,
estimated ranges and RMSEs evaluated for the phase fitting over the con-
sidered sixteen virtual channels of each device (first experimental scenario).
All our radar devices are taken into consideration.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Exact (TI FMCW)
R (m) 1.2 1.25 1.5 1.6 2.16 2.23 2.85 2.55 2.96 3.25

θ (◦) -25 40 -10 30 -18 24 -14 21 -18 25

STDREC
R̂ (m) 1.166 1.219 1.523 1.643 2.184 2.278 2.885 2.582 2.932 3.267

ε̄ψ (rad) 0.8 0.597 0.592 0.5 0.521 0.524 0.576 0.574 0.513 0.506

Exact (Inras FMCW)
R (m) 1.35 1.3 1.73 1.72 2.2 2.1 2.71 2.67 3.2 3.2

θ (◦) -25 35 -13 30 -5 15 -10 26 -9 20

STDREC
R̂ (m) 1.38 1.32 1.74 1.74 2.25 2.14 2.76 2.7 3.24 3.24

ε̄ψ (rad) 0.18 0.18 0.2 0.22 0.67 0.79 0.16 0.21 0.16 0.3

θ (◦) -35 30 -20 20 -12 15 -14 15 - 18 25

STDREC
R̂ (m) 1.242 1.06 1.517 1.413 2.025 2.06 2.78 2.409 2.905 3.041

ε̄ψ (rad) 0.25 0.35 0.67 0.345 0.422 0.45 0.686 0.919 0.379 0.54

The accuracy of range estimates has been assessed by evaluating the RMSE ε̄R
and the peak error ε̂R, expressed by (2.145)–(2.146) with X = R, Xi = Ri and X̂i.
Since the RCS of the considered targets was unknown, our analysis of the complex
gains available over the 16 channels of the considered virtual ULA and associated
with the same target has concerned only their (unwrapped) phase. The phases {ψ(v);
v = 1, 2, ..., 16} estimated by the STDREC algorithm over the considered reference
HULA (consisting of 16 VAs; see the red rounded rectangles appearing in Figs. 2.9-
b), 2.10-b)) and associated with a target placed at approximately15 the same azimuth

14Note that in this case the stopping criterion based on eq. (2.30) has not be employed, since the
overall number of targets is known.

15The exact range of this target can be found in the T7 (T3) column for the TI FMCW and the
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angle with respect to the centre of the radars is shown in Fig. 2.12. Since the distance
dVH between adjacent virtual channels is constant, the (unwrapped) estimated phases
exhibit a linear dependence on the index of the virtual channel, as illustrated in Section
1.3 (see, in particular, (1.15) and (1.16)). Moreover, if a linear fitting is drawn for these
data, it should be expected that the slope of the resulting straight line is proportional
to sin(θ) (see (1.21) with ϕ = 0); this is confirmed by the results shown in Fig. 2.12 for
the FMCW radar system. To assess the quality of the estimated phases, their RMSE
ε̄ψ has been evaluated in all the scenarios; in doing so, the linear fitting of the 16 phases
{ψ(v)} has been taken as a reference with respect to which the error of each of them
has been computed.
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Figure 2.12: Unwrapped phase of the complex gain versus the index of
the virtual channel of the reference HULA; a single target is assumed (first
experimental scenario). The phase estimates generated by the STDREC
algorithm in our three radar systems are identified by red, blue and green
circles, whereas straight lines represent their linear fitting.

Inras FMCW radar in Table 2.4.
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Table 2.5: Exact ranges of the nine coins characterizing our second ex-
perimental scenario. The range estimates evaluated by the Alg-YA, the
Alg-S and the STDREC, the HSTDREC and the CFH algorithm are also
provided.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9

(m) (m) (m) (m) (m) (m) (m) (m) (m)

Exact 1.860 1.900 1.980 2.110 2.190 2.220 2.370 2.410 2.460

STDREC (TI FMCW) 1.900 1.966 2.015 2.113 2.158 2.242 2.377 2.441 2.516

HSTDREC (TI FMCW) 1.906 1.971 2.016 2.118 2.158 2.238 2.378 2.444 2.514

STDREC (Inras FMCW) 1.920 1.980 2.040 2.100 2.220 2.280 2.460 2.520 2.580

CFH (TI FMCW) 1.947 2.017 2.077 2.161 2.241 2.338 2.374 2.435 2.518

Alg-YA (TI FMCW) 2.022 2.054 2.161 2.257 2.294 2.339 2.416 2.447 2.514

Alg-S (TI FMCW) 2.020 2.142 2.142 2.142 2.153 2.236 2.383 2.433 2.522
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Figure 2.13: Representation of the ranges estimated by the STDREC al-
gorithm (first experimental scenario). All our radar devices are considered.

The estimate of the target range generated by the STDREC algorithm for each of
the Nm = 10 distinct positions considered in the first scenario are listed in Table 2.4;
in the same table, the value of ε̄ψ computed for each position is also given. The target
ranges and their estimates listed in Table 2.4 are also represented in Fig. 2.13. The
errors ε̄R and ε̂R, the mean of ε̄ψ (denoted ε̄m,ψ and generated by taking the average
of the Nm values available for ε̄ψ) and the average computation time (CT) evaluated
on the basis of these results are listed in Table 2.6.
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Table 2.6: Root mean square error ε̄R, peak error ε̂R, mean error ε̄m,ψ
and CT evaluated for the STDREC algorithm in our first experimental
scenario.

Method ε̄R ε̂R ε̄m,ψ CT
(m) (m) (rad) (msec)

TI FMCW 0.033 0.048 0.570 0.3

INRAS FMCW 0.035 0.050 0.30 0.4

The results referring to the first scenario lead us to the following conclusions:

1. In all the considered cases, the STDREC is able to accurately estimate the range
and the phase characterizing each target.

2. All the values of ε̄R and ε̂R are comparable, reasonably low and in the order of
the resolution of our devices.

3. The range estimates evaluated for the two devices are closer to the correspoding
exact values when the target range is above 3 m; this can be related to the fact
that those are LRRs, which aperture size is big compared to the distance of the
target when it is too close.

4. The Inras FMCW radar achieves the lowest ε̄m,ψ.

5. The CTs are always in the order of few milliseconds.

Let us focus on the second scenario. In this case, our range estimates have been
generated by: a) the STDREC algorithm for all the radar devices; b) the HSTDREC
algorithm for the TI FMCW radar; c) the Alg-YA, the Alg-S and the CFH algorithm
for the TI FMCW. The obtained results are listed in Table 2.5. The errors ε̄R and ε̂R,
and the CT obtained in this case are listed in Table 2.7. From these results it can be
inferred that:

1. In the case of the TI FMCW radar, all the considered algorithms achieve com-
parable accuracy. However, the STDREC and the HSTDREC algorithms, unlike
all the other algorithms, achieve the lowest RMSE and peak error.

2. The HSTDREC algorithm is not more accurate than the STDREC algorithm;
moreover, these algorithms are characterized by similar CTs.

3. The estimated RMSEs and peak errors are in the order of the resolution of our
radar devices, but a little bit higher in the Inras FMCW radar systems. This is
mainly due to the poorer estimates evaluated for the targets T8 and T9, since, in
our specific experiment, the energy received from these targets has been found
to be lower than that coming from the others. This problem is not so evident in
the case of the TI FMCW and SFCW radars, whose RMSEs and peak errors are
very low.
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Finally, we would like to stress that the accuracy of STDREC and HSTDREC
algorithms can be related to the accuracy of the estimation and cancellation procedure
they accomplish. This is exemplified by Fig. 2.14, where the initial amplitude spectrum
of the signal received on the central virtual channel of the TI FMCW radar in the
second scenario and its (weak) residual, resulting from the cancellation of the spectral
contributions due to the detected targets, are shown. Here, the range and amplitude of
the targets estimated by the STDREC (HSTDREC) are also represented by red circles
(green crosses).

Table 2.7: Root mean square error ε̄R, peak error ε̂R and computation
time (CT) evaluated in our second experimental scenario.

Method ε̄R ε̂R CT
(m) (m) (msec)

STDREC (TI FMCW) 0.03 0.07 20

HSTDREC (TI FMCW) 0.03 0.07 20

STDREC (Inras FMCW) 0.07 0.10 40

CFH (TI FMCW) 0.07 0.12 15

Alg-YA (TI FMCW) 0.11 0.18 40

Alg-S (TI FMCW) 0.08 0.24 45
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Figure 2.14: Representation of the initial amplitude spectrum of the signal
observed on the central virtual channel (blue line) and of the final residual
amplitude spectrum generated by the STDREC algorithm (red line). The
TI FMCW radar operating in our second experimental scenario is consid-
ered; moreover, the target positions estimated by STDREC (HSTDREC)
are represented by red circles (green crosses).
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Two-dimensional and three-dimensional imaging

In this paragraph, the accuracy of the 2D and 3D images generated by the RASCAs is
assessed. Two different groups of experiments have been carried out. The first (second)
group of experiments has allowed us to assess the performance achieved by the above
mentioned algorithm in 2D (3D) imaging. In both cases, the measurements have been
acquired in the presence of an increasing number of targets for all our radar devices.
In the first group of experiments, the following choices have been made:

1. The targets have been placed at the same height. Their range and azimuth belong
to the intervals [2.2, 2.7] m and [−15 ◦, 30◦] , respectively (see Table 2.8).

2. The measurements have been acquired through a virtual ULA, consisting of 16
VAs, in all the considered radar systems.

As far as the second group of experiments is concerned, the following choices have
been made:

1. The range, azimuth and elevation of the targets have been selected in the intervals
[1.9, 2.8] m, [−30◦, 35◦] and [−10◦, 10◦], respectively (see Table 2.11).

2. The measurements have been acquired through the whole virtual array of each
of our radar devices.

The following values have been selected for the parameters of the RASCAs: a)
NA = 16 (NA = 10) in the RPE employed in 2D (3D) imaging; b) NCSFE = NSFE = 5
in both the STDREC and the STDAEC algorithms; c) the threshold TOF = 0 has
been selected in the STDAE-S4 algorithm; d) the values of the parameters N0 and
M are equal to those employed for the STDREC in the previous paragraph; e) the
oversampling factor is M̄ = 16 (M̄ = 7) for Inras FMCW (for the TI FMCW), so that
the FFT orders are N̄0 = 256 (N̄0 = 602). Moreover, the following values have been
selected for the parameters16 of the FFT-BAs and the MUSIC-BAs: Cs = 6, Gs = 6
and K0 = 2. Prior knowledge of L has been assumed and the threshold TSTDAEC has
been selected in the range [0.01, 0.9] ·E(0)[l] (2.39) (the value of this threshold has been
adjusted on the basis of the SNR characterizing the received signal and the overall
number of detectable targets).

The estimates of range and azimuth generated by the RASCAs on the basis of
the measurements acquired in our first group of experiments are listed in Table 2.8,
whereas the values of RMSE, peak error and CT computed by averaging the RMSEs,
peak errors and CTs evaluated in each single experiment are listed in Table 2.9. In
the last table, the values of RMSE, peak error and CT for the employed FFT-BAs and
MUSIC-BAs are also provided. These results lead to the following conclusions:

1. All the range and azimuth errors are comparable with the resolution of our de-
vices.

16Our simulations have evidenced that small changes in the value of these parameters do not signif-
icantly influence the detection probability and the estimation accuracy of the considered algorithms.
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2. The RASCAs always outperform the other algorithms and require a lower CT.

3. The highest range peak errors and RMSEs are found in the case of the Inras
FMCW radar; the TI FMCW radar, instead, achieves the lowest range and az-
imuth errors. This is mainly due to the differences in the SNR available at the
receive side of distinct radar devices is different.

The good accuracy achieved by the RASCAs is also evidenced by Fig. 2.15, where
a range-azimuth map [53], generated though standard 2D FFT processing of the mea-
surements acquired through the Inras FMWC radar, is represented as a contour plot17;
in the same figure, the exact position of the five targets employed in our first group of
experiments and their estimates evaluated by all the considered algorithms are shown.
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Figure 2.15: Representation of the range-azimuth map (in x − y coor-
dinates) computed on the basis of the measurements acquired through the
Inras FMCW radar in the presence of five targets. The exact position of
each target and its estimate obtained through the RASCAs (shown in Ta-
ble 2.8) and the other algorithms are also shown. The rectangles allow to
delimit the region in which the position of each target and its estimates are
located.

17Note that x− y coordinates are employed in this case, in place of range and azimuth; the position
of the radar system corresponds to the origin of our reference system.
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Table 2.8: Exact range and azimuth of the five targets considered in our
first group of experiments and corresponding estimates generated by the
RASCAs.

Exp. Method Params. T1 T2 T3 T4 T5

Exact R (m) 2.26 2.51 2.44 2.68 2.21
θ (◦) -12.7 -4.5 10.6 18.0 28.3

1)

RASCA-FC2 R (m) 2.52
θ (◦) -5.1

RASCA-FR2 R (m) 2.6
θ (◦) -3.9
θ (◦) -11.8

2)

RASCA-FC2 R (m) 2.53 2.40
θ (◦) -5.2 8.1

RASCA-FR2 R (m) 2.6 2.55
θ (◦) -4.3 11.3
θ (◦) -12.8 6.3

3)

RASCA-FC2 R (m) 2.27 2.53 2.41
θ (◦) -14.0 -5.2 9.8

RASCA-FR2 R (m) 2.63 2.55 2.33
θ (◦) -4.3 11.3 28.2
θ (◦) -13.2 7.2 25.5

4)

RASCA-FC2 R (m) 2.32 2.53 2.42 2.26
θ (◦) -13.7 -5.2 11.2 29.4

RASCA-FR2 R (m) 2.30 2.64 2.42 2.22
θ (◦) -12.5 -4.1 11.9 31.2
θ (◦) -13.2 6.7 17.5 25.5

5)

RASCA-FC2 R (m) 2.31 2.53 2.42 2.56 2.27
θ (◦) -12.4 -5.2 11.2 17.0 26.3

RASCA-FR2 R (m) 2.34 2.47 2.39 2.66 2.36
θ (◦) -17.3 -6.7 8.1 16.4 29.5
θ (◦) -12.5 -7.0 4.0 17.1 27.0
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Table 2.9: Root mean square error ε̄X , peak error ε̂X , and computa-
tion time (CT) evaluated on the basis of our first group of measurements.
Target range and azimuth are taken into consideration.

Method ε̄ ε̂ CT

R (m) θ (◦) R (m) θ (◦) (sec)

RASCA-FC2 0.04 1.2 0.05 1.5 0.3

FFT-FC2 0.06 1.6 0.11 2.8 0.4

MUSIC-FC2 0.05 1.4 0.09 2.4 0.5

RASCA-FR2 0.09 1.1 0.12 1.8 0.4

FFT-FR2 0.13 1.8 0.16 2.65 0.45

MUSIC-FR2 0.13 1.6 0.16 2.49 0.45

Let us consider now on the results obtained for our second group of experiments.
The estimates of range, azimuth and elevation generated by the RASCAs are listed in
Table 2.11, whereas the values of RMSE, peak error and CT evaluated on the basis
of this table are listed in Table 2.10. In the last table, the errors characterizing the
FFT-based and MUSIC-based algorithm for 3D imaging are also provided. From these
results it can be inferred that:

1. The RMSEs and the peak errors evaluated for target range, azimuth and elevation
are reasonably low and comparable with those obtained in the case of 2D imaging.
Moreover, these errors are smaller than the ones characterizing the FFT-based
and MUSIC-based algorithms.

2. The range errors evaluated for all the radar devices are comparable; however, the
lowest peak error and RMSE are achieved in the case of the TI FMCW radar.

3. The azimuth and elevation estimates computed on the basis of the measurements
acquired through the TI and Inras FMCW radars are reasonably good.

4. In general, the CT of RASCAs is higher than that required by the proposed FFT-
based or MUSIC-based methods. This is mainly due to the recursive cancellation
procedure that is not employed by the other two methods. However, we believe
that this cancellation procedure plays a fundamental role in the detection of weak
targets and allows to achieve a good estimation accuracy.

The good accuracy and resolution provided by the RASCAs are highlighted by Fig.
2.16, where the exact positions of the five targets employed in our second group of
experiments and their estimates produced by all the considered algorithms are shown;
note that, unlike FFT-based and MUSIC-based algorithms, the RASCAs achieve good
accuracy even in the presence of closely spaced targets, like T4 and T5.
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Table 2.10: Root mean square error ε̄X , peak error ε̂X and computation
time (CT) evaluated on the basis of our second group of measurements.
Target range, azimuth and elevation are taken into consideration.

Method ε̄ ε̂ CT

R (m) θ (◦) ϕ (◦) R (m) θ (◦) ϕ (◦) (sec)

RASCA-FC3 0.05 2.8 1.9 0.07 3.9 2.5 2.0

FFT-FC3 0.07 3.0 1.5 0.08 4.2 2.1 1.5

MUSIC-FC3 0.07 3.9 3.2 0.08 6.4 3.8 1.6

RASCA-FR3 0.06 2.0 2.3 0.08 3.0 3.0 2.6

FFT-FR3 0.1 1.0 2.1 0.17 1.5 3.2 1.1

MUSIC-FR3 0.1 1.0 2.2 0.15 1.5 3.3 1.3
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Figure 2.16: Representation of a 3D scenario characterized by five tar-
gets. The exact position of each target and the corresponding estimates
evaluated by all the considered algorithms are shown (all our radar systems
are considered).

2.9 Conclusions

In this chapter, four novel algorithms, dubbed range & angle serial cancellation algo-
rithms (RASCAs), have been developed for the detection and the estimation of multiple
targets in colocated MIMO FMCW radar systems. All these algorithms can be seen
as instances of a general approach to target detection and estimation, and exploit new
methods for the estimation of multiple overlapped real and complex tones. As ev-
idenced by our computer simulations run on both synthetically generated data and
measurements acquired through commercial devices, the devised algorithms are able to
generate accurate 2D and 3D radar images in the presence of multiple closely spaced
targets and outperform other algorithms based on the computation of multiple FFTs
or on the MUSIC for DOA estimation.
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Table 2.11: Exact range, azimuth and elevation of the five targets con-
sidered in our second group of experiments and corresponding estimates
generated by the RASCAs.

Exp. Method Params. T1 T2 T3 T4 T5

Exact R (m) 1.94 2.34 2.75 2.49 2.08
θ (◦) -27.8 -9.9 0 14.0 35.2
ϕ (◦) -6.0 2.0 -2.1 -7.0 -2.0

1)

RASCA-FC3 R (m) 1.89
θ (◦) -25.8
ϕ (◦) -4.0

RASCA-FR3 R (m) 2.04
θ (◦) -29.3
ϕ (◦) -7.5
θ (◦) -20.9
ϕ (◦) -3.5

2)

RASCA-FC3 R (m) 1.89 2.12
θ (◦) -25.2 37.8
ϕ (◦) -3.4 -2.3

RASCA-FR3 R (m) 2.0 2.1
θ (◦) -27.0 34.2
ϕ (◦) -8.0 -2.5
θ (◦) -21.0 28.5
ϕ (◦) -3.5 -1.5

3)

RASCA-FC3 R (m) 1.89 2.43 2.12
θ (◦) -25.2 -8.6 37.8
ϕ (◦) -3.4 1.1 -3.4

RASCA-FR3 R (m) 2.0 2.45 2.1
θ (◦) -29 -10 31.5
ϕ (◦) -4.0 5.0 -3.0
θ (◦) -21.0 -9.5 29.2
ϕ (◦) -4.0 5.0 -3.0

4)

RASCA-FC3 R (m) 1.89 2.44 2.48 2.12
θ (◦) -25.2 -8.6 20.1 37.3
ϕ (◦) -3.2 -0.6 -6.9 -2.9

RASCA-FR3 R (m) 2.0 2.4 2.45 2.1
θ (◦) -29.5 -12.0 18.3 33.5
ϕ (◦) -4.0 5.0 5.0 -3.0
θ (◦) -21 -9 15 29
ϕ (◦) -3.5 0 -7 -2.5

5)

RASCA-FC3 R (m) 1.89 2.44 2.83 2.48 2.12
θ (◦) -25.2 -8.6 3.2 20.1 37.3
ϕ (◦) -3.2 -0.6 -2.87 -6.9 -2.9

RASCA-FR3 R (m) 1.98 2.4 2.65 2.4 2.13
θ (◦) -27.6 -15.0 0.4 18.3 37.3
ϕ (◦) -5.8 5 -1.1 -3 -6.2
θ (◦) -21.0 -9.0 2.1 14.6 29.0
ϕ (◦) -3.5 0 -2.5 -8.2 -1.0



3. Machine Learning and Deep Learning
Techniques for colocated MIMO Radar
systems Techniques

3.1 Introduction

As already pointed out in the previous chapters, the full exploitation of the poten-
tialities offered by modern colocated MIMO radar devices requires the use of proper
detection and estimation methods. In the last two decades, significant advances have
been made in the development of deterministic methods accomplishing these tasks.
These are mainly based on a maximum likelihood approach [21, 85] or on sub-space
methods, like the MUltiple SIgnal Classification (MUSIC) technique [31]. Moreover,
they are model-based, since they require the full knowledge of the employed radar de-
vice and rely on a parametric description of the propagation environment; note that, in
such a description, targets are usually represented as points reflecting electromagnetic
energy. An overview of deterministic methods is provided by refs. [53, 58], whereas
some interesting applications of them can be found in refs. [64, 86, 87]; relevant exam-
ples of these applications include the detection and the estimation of the position of
cars or pedestrians in a street [50], as well as the analysis of human vital signs [88].
In many cases, these methods allow to achieve good estimation accuracy at the price
of an acceptable computational effort. Unluckily, in a number of recent applications,
MIMO radars operate in extremely complex, highly dynamic and time varying scenar-
ios, affected by multipath propagation, clutter and interference, and in the presence of
extended targets. In such conditions, deterministic algorithms may fail, since they are
unable to achieve acceptable estimation accuracy and are prone to generate ghost tar-
gets [89]. When this occurs, machine learning (ML) and deep learning (DL) techniques
represent an appealing alternative or the only viable technical solution. A relevant ex-
ample of this class of techniques is represented by neural networks (NNs) [76,90]. These
networks can automatically learn specific data patterns and extract useful information
directly from raw data, even in the presence of strong interference. In fact, they can
be trained to recognise interference and remove it, so making the recovery of useful
signal components possible. Unfortunately, the application of NNs and related meth-
ods to MIMO radars is challenging, because, on the one hand, the problems tackled
in this field are often substantially different from those to which such methods have
been applied for a number of years (e.g., processing of RGB images in computer vi-
sion); on the other hand, the large radar dataset required for the proper training of a

79
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NN may be unavailable. Another critical issue emerging from the exploitation of ML
and DL methods in real world applications is represented by the fact that a trained
machine is, by and large, a black box mapping inputs to outputs; for this reason, gen-
erally speaking, it cannot be inferred why a given output has been produced on the
basis of its input data. This explains why, in various radar applications, a model-based
approach could be preferred. Despite this relevant limitation, it is widely accepted
that the use of ML and DL methods in colocated MIMO radars will allow to solve a
number of real world problems. For instance, recent work has evidenced that they can
be successfully exploited in the classification of human activities and gestures, in the
detection of human falls [91] and in the classification of dynamic targets in dense and
dynamic urban scenarios [92]. This aims at providing an overview of the ML and DL
methods employed in all the above mentioned applications, analysing their pros and
cons, discussing the main lessons that have been learnt from their use and illustrat-
ing some trends in this research area. As far as we know, in the technical literature,
the few manuscripts offering related contributions refer to specific applications, namely
human-motion recognition [91] and assisted living [88]. The scope of this work, instead,
is offering a wider perspective on this research area. Furthermore, our description of
learning methods is interspersed with various numerical examples on synthetically gen-
erated dataset and an entire section is devoted to the analysis of various numerical
results generated the measurements acquired through a commercial colocated MIMO
radar.

The remaining part of this chapter is organized as follows: the most relevant ML
and DL methods currently being investigated for their use in colocated MIMO radars
are described in Sections 3.2 and 3.3, respectively; a brief comparison among such
methods is illustrated in Section 3.4. An overview of the specific applications of these
techniques to colocated MIMO radars is illustrated in Section 3.5, where we focus on
human-motion and human-gesture classification, healthcare monitoring, and target de-
tection and localization in automotive scenarios. Some trends emerging in the current
research activities about the application of DL techniques to colocated MIMO radars
are illustrated in Section 3.6. Various ML and DL methods are compared, in terms
of accuracy and computational effort, in Section 3.7, where their use in human activ-
ity classification, and in the detection and position estimation of a moving target is
illustrated. Finally, some conclusions are offered in Section 3.8.

3.2 Machine Learning Techniques for Colocated MIMO
Radar Systems

In this section, after illustrating the main differences between a deterministic approach
and a ML-based approach to target detection and estimation, the most important ML
techniques applied in the field of colocated MIMO radar systems are described. Our
introduction to these techniques is based on a specific case study, involving a FMCW
radar system (see Paragraph 1.3).
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3.2.1 A case study

The most relevant conceptual differences between a deterministic approach and a ML
approach to detection and estimation problems in MIMO radar systems can be un-
derstood by analysing the detection of a single point target, and the estimation of its
range R and its azimuth ϕ in a 2D propagation scenario. In this case, we assume that
an FMCW radar system equipped with an ULA, consisting of three antenna elements,
is employed (see Fig. 3.1-a). This array is made of a central TX antenna and a cou-
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Figure 3.1: Physical geometry and virtual array of a colocated FMCW
MIMO radar equipped with an ULA composed by a single TX antenna and:
a) two RX elements; b) four RX elements.

ple of antipodal RX antennas (these are identified by a red box and two blue boxes,
respectively, in the considered figure), so that NT = 1 and NR = 2; consequently, a
virtual array, consisting of NV = 2 · 1 = 2 virtual elements, is available. The abscissa
xv of the v-th virtual antenna element associated with the TX antenna and the v-th
RX antenna is computed as (see eq. (1.6))

xv =
xt + xr,v

2
(3.1)

with v = 0 and 1; here, xt = 0 and xr,0 = −d (xr,1 = d) are the abscissas of the TX
and of the first (second) RX antenna, respectively (note that the origin of our reference
system coincides with the center of the array). If the target is in far field1, the wavefront
of the electromagnetic echo originating from it is a straight line and is orthogonal to
the line connecting the target with the center of the array. In these conditions, the
n-th time-domain sample acquired on the v-th virtual antenna in a single snapshot can
be expressed as (see eq. (1.9))

rv,n = av cos (2πnfvTs + ψv) + wv,n, (3.2)
= Av exp (j 2πnFv) +A∗

v exp (−j 2πnFv) + wv,n,
(3.3)

for n = 0, 1, ..., N − 1, where (see eqs. (1.13), (1.14) and (1.15))

Fv ≜ fvTs, (3.4)
1A rigorous definition of this condition can be found in ref. [93, Par. 2.2.4, pp. 34-36]
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fv =
2µ

c
[R+ xv sin (ϕ)] , (3.5)

xv = (−1)(v+1) d

2
, (3.6)

d is inter-antenna spacing of the considered ULA,

Av ≜
1

2
av exp (jψv) (3.7)

is a complex parameter depending on the target reflectivity av and (see eqs. (1.15) and
(1.16))

ψv ≜ ∠Av ∼=
4π

λ
[R+ xv sin (ϕ)] (3.8)

is the phase observed on the considered antenna (the wavelength λ is defined by eq.
(1.20)). It is important to point out that:

a) Relevant information about the target azimuth are provided by the frequency dif-
ference

∆f0,1 ≜ f1 − f0 (3.9)

or by the phase variation
∆ψ0,1 ≜ ∠A1A

∗
0, (3.10)

where the quantity ∠X represents the phase of the complex number X (it belongs
to interval [−π, π)). In fact, on the one hand, from eqs. (3.5)-(3.6) it is easily
inferred that (see the definition (3.9))

∆f0,1 = 2
µd

c
sin(ϕ); (3.11)

on the other hand, based on eqs. (3.6)-(3.8), it is easy to show that (see the definition
(3.10))

∆ψ0,1 = ψ1 − ψ0 = 4π
d

λ
sin (ϕ) , (3.12)

provided that the inequality

4π
d

λ
|sin (ϕ)| ≤ π (3.13)

holds for any ϕ. The last condition is met for any ϕ ∈ [−π
2 ,

π
2 ) if

d ≤ λ/4. (3.14)

b) If the received signal is noiseless, the frequency fv is known and N is large, the
complex amplitude Av can be easily estimated as2

Âv ∼=
1

N
X̄v(fv), (3.15)

2This result can be easily proved by substituting eq. (3.3) in the right-hand side (RHS) of the
definition (3.16).
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where

X̄v (f) ≜
N−1∑
n=0

rv,n exp(−j2πnfTs) (3.16)

represents the Fourier transform of the sequence {rv,n; n = 0, 1, ..., N − 1}.

c) Information about the target range is provided by the average frequency (see eq.
(3.5))

fm ≜
f0 + f1

2
=

2µ

c
R (3.17)

Therefore, the estimation of the frequency of the sinusoid contained in the noisy data
sequence acquired through each virtual antenna represents a fundamental problem in
target detection and estimation. It is well known that the so called periodogram method
can be employed to solve it in an approximate way [86, 94]. This method is based on
the computation of the amplitude spectrum of the zero-padded measurement sequence
and on the identification of its peak.

Based on the mathematical results and the considerations illustrated above, a simple
deterministic algorithm, consisting of the three steps listed below, can be easily derived
for the detection of the target and the estimation of its spatial coordinates (R, ϕ).

1. DFT processing - In this step, the N -dimensional vector

rv ≜ [rv,0, rv,1, ..., rv,N−1]
T , (3.18)

with v = 0 and 1, undergoes zero padding (ZP); this results in the N0-dimensional
vector

r(ZP )
v ≜

[
rTv 0TP

]T (3.19)

where N0 ≜MrN , 0P denotes the P -dimensional (column) null vector and Mr repre-
sents the selected oversampling factor adopted in time-domain processing. Then, the
vector r(ZP )

v (3.19) feeds a N0-th order discrete Fourier transform (DFT); this produces
the N0-dimensional vector

Xv ≜ [Xv,0, Xv,1, ..., Xv,N0−1]
T , (3.20)

where
Xv,l =

1

N0
X̄v(f̄l) (3.21)

X̄v(f) is defined by eq. (3.16) and

f̄l ≜
l

N0Ts
, (3.22)

with l = 0, 1, ..., N0 − 1. Finally, the N0-dimensional vector

P ≜ [P0, P1, ..., PN0−1]
T , (3.23)

where

Pl ≜
M2
r

2

[
|X0,l|2 + |X1,l|2

]
, (3.24)
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with l = 0, 1, ..., N0 − 1, is computed; note that the quantity Pl (3.24) represents a
sort of average power spectrum evaluated at the frequency f̄l (3.22).

2. Target detection - The problem

l̂ = arg max
l̃∈{0,1,...,N0/2}

Pl (3.25)

is solved and a target is detected if the condition

Pl̂ > Pth (3.26)

is satisfied, where Pth is a proper threshold. When this occurs, the next step is executed;
otherwise, the algorithm stops.

3. Estimation of target coordinates - The estimate

f̂m =
l̂

N0Ts
(3.27)

of the frequency fm (3.17) and the estimate

Âv =MrXv,l̂ (3.28)

of the complex amplitude Av (3.7) (with v = 0 and 1) are computed. Then, the
estimate (see eq. (3.17))

R̂ = f̂m
c

2µ
(3.29)

of the target range R and the estimate (see eq. (3.12))

ϕ̂ = arcsin

(
λ

4πd
∆ψ̂0,1

)
(3.30)

of the target azimuth θ are evaluated; here,

∆ψ̂0,1 = ∠X1,l̂

(
X0,l̂

)∗
. (3.31)

represents an estimate of ∆ψ0,1 (3.12) and its expression is based on eqs. (3.15), (3.21)
and (3.28).
This concludes the description of the proposed detection and estimation algorithm. It
is important to point out that:

a) The accuracy achievable in range estimation is influenced by the DFT order N0

and, consequently, for a given N , by the oversampling factor Mr. Increasing the value
of the parameter Mr leads to a more refined analysis of the spectrum X̄v (f) (3.16) and,
consequently, allows to locate the spectral peak originating from the target with better
accuracy; however, this result is achieved at the price of an higher computational cost.

b) The estimate ϕ̂ (3.30) is unambiguous if the condition (3.14) is satisfied or if,
for a given d > λ/4, the azimuth ϕ belongs to the interval [−ϕm, ϕm), where (see eq.
(3.13))

ϕm ≜ arcsin

(
λ

4 d

)
(3.32)
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c) Eq. (3.11) has not been exploited to compute an estimate of the target azimuth.
This is due to the fact that the quality of this estimate is limited by the accuracy of
frequency estimation on each antenna; such an accuracy, in turn, is intrinsically limited
by the DFT order N0.

d) If the target reflectivity observed on the two antennas is approximately the same
(i.e., if a0 ∼= a1), an estimate of it can be computed as (see eqs. (3.7) and (3.28))

â ≜Mr

[∣∣∣X0,l̂

∣∣∣+ ∣∣∣X1,l̂

∣∣∣] . (3.33)

e) The estimation of the azimuth characterizing the echo from a specific target
requires at least two RX antennas, since it is based on computation of the phase
variation observed at a specific frequency on at least two receive antennas (see eqs.
(3.30) and (3.31)).

f) The maximum number of detectable targets depends on the number of virtual
elements of the whole array. It is worth noting that, unlike a phased array system, where
a single waveform is transmitted, a MIMO radar system endowed with NT different
TX antennas can radiate NT independent signals. This leads to the conclusion that
the maximum number of targets that be can uniquely identified by a MIMO radar is
NT times larger than that of its counterpart employing a phased array [8], if the first
system employs an ULA whose virtual elements do not overlap (like the ULAs shown
in Fig. 3.1).

The estimation accuracy achieved by the considered radar system can be improved
by increasing the size of its ULA, i.e. the overall number of its antennas, so that a
larger number of virtual channels becomes available. For instance, if the ULA shown
in Fig. 3.1-a) is replaced by the one represented in Fig. 3.1-b) (and characterized by
NT = 1 and NR = 4), NV = 4 virtual channels become available, i.e. the overall
number of virtual antennas is doubled with respect to the previous case. Note that
this results not only in an increase of the maximum number of detectable targets, but
also in an improvement of the angular resolution ∆ϕ, defined as the minimum angular
separation below which the DOAs of two distinct targets cannot be separated. More
specifically, if an ULA is used and the bore-sight direction is considered, we have that
(e.g., see [64, Par. 4, eq. (51)])

∆ϕ =
λ

2 d (NV − 1) cos(ϕ)
. (3.34)

It is also worth mentioning that the algorithm illustrated above for a couple of virtual
channels can be easily extended to the case of an ULA providing NV virtual channels.
The only relevant modification concerns step 3., since the NV -dimensional vector

Â =
[
Â0, Â1, ..., ÂNV −1

]T
, (3.35)

where Âv is still expressed by eq. (3.28) for any v, becomes available and, consequently,
(NV −1) phase variations, referring to the (NV −1) distinct couples of adjacent virtual
antennas can be evaluated. If we assume that the variations of the target reflectivity
over the whole virtual array are negligible and that the SNR on each virtual antenna
is high, such variations are approximately constant, being all expressed by the RHS
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of eq. (3.12). This means that a phase modulation, characterized by the normalised
spatial frequency

F = 2
d

λ
sin (ϕ) , (3.36)

is observed in the sequence {Âv; v = 0, 1, ..., NV − 1}. An estimate of the parameter
F can be computed by exploiting, once again, the periodogram method. In practice,
this requires executing the following three steps:

1. DFT processing - The vector Â is zero padded by appending to it a null vector
of size (MA − 1)NV , where MA represents the oversampling factor adopted in spatial
processing ; this produces the N̄0-dimensional vector ÂZP , where N̄0 ≜ MANV . The
vector ÂZP feeds a N̄0-th order DFT, generating the N̄0-dimensional vector

s ≜
[
s0, s1, ..., sN̄0/2, s−N̄0/2+1, s−N̄0/2+2, ..., s−2, s−1

]T
. (3.37)

2. Azimuth estimation - After solving the problem

p̂ = arg max
p̃∈{−N̄0/2+1,−N̄0/2+2,...,N̄0/2}

|sp̃| , (3.38)

the estimate (see eq. (3.30))

ϕ̂ = arcsin

(
2
p̂

N̄0

)
(3.39)

of the target azimuth ϕ is evaluated. Note that the angular resolution provided by the
DFT computed in step 1. improves as N̄0 increases.

The deterministic algorithm and its extension illustrated above have the following
relevant properties: a) their derivation is based on a well defined mathematical model
originating from our knowledge of the propagation of electromagnetic waves and of the
radar system (and, in particular, of the geometry of its array and of the processing it
accomplishes); b) if they fail detecting a given target, or generate inaccurate estimates
of its range and/or azimuth, the causes of such events can be identified; c) being based
on the DFT and other simple formulas, they are computational efficient.

An alternative to the approach to algorithm design illustrated above is offered by
ML methods [76]. In fact, if such methods are employed, the inner structure of the
considered radar system and the physical laws on which its operation is based can be
ignored, since the required information are automatically extracted by an algorithm
able to learn the regularities characterizing the set of observed data. Let us reconsider
now the detection and estimation problem described above from this new perspective
and show how a solution based on ML methods can be devised. To this aim, we take
into consideration again a FMCW radar system equipped with the antenna array shown
in Fig. 1.2-a) and assume that it is employed to perform a measurement campaign.
In this campaign, Nt independent trials are accomplished in the presence of a single
point target or in the absence of it; in each trial, the couple [r0, r1] of noisy vectors
(see eq. (3.18)) is acquired and stored in a database together with the target range
and azimuth (when the target is present). In the following, [rq,0, rq,1] and

tq ≜ [dq, Rq, ϕq]
T (3.40)
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denote the value of the couple [r0, r1] and the associated label acquired in the q-th
trial (with q = 0, 1, ... , Nt − 1); here, dq = −1 (1) if the target is absent (present),
and Rq and ϕq represent the target range and azimuth, respectively, in the same trial
if dq = 1 (if dq = −1, the values of both Rq and ϕq are irrelevant). In this case, the
ML approach consists in processing the dataset

Di ≜ {[rq,0, rq,1] , tq; q = 0, 1, ..., Nt − 1} (3.41)

to learn how to detect the presence of a target on the basis of a new couple [r0, r1]
and, if a target is detected, how to estimate its position. The accuracy of the algorithm
resulting from the learning phase (i.e., from training) depends not only on the adopted
ML method, but also on the size of Di (i.e., on Nt). Generally speaking, the use of
ML methods requires the availability of a large set of measurements, i.e. a large Nt

(say, at least, a few thousands). Unluckily, any ML method extracting the required
knowledge directly from Di (3.41) has to process high dimensional vectors if the size
N of the vectors r0 and r1 is large. Actually, the dimensionality of the given problem
can be easily reduced by exploiting our prior knowledge. In fact, in developing our
deterministic algorithm, we have learnt that essential information for target detection
and estimation is provided by the complex couple [X0,l̂, X1,l̂] (see eqs. (3.26)-(3.31)),
where l̂ is expressed by eq. (3.25). These considerations suggest to:

a) Pre-process the couple (rq,0, rq,1) in order to generate the vector

Xq ≜
[
X

(q)
0 , X

(q)
1

]T
, (3.42)

where X(q)
0 and X

(q)
1 are the values taken on by the quantities X0,l̂ and X1,l̂,

respectively, in the q-th trial (with q = 0, 1, ..., Nt − 1); X(q)
0 and X

(q)
1 can

be considered as highly informative data extracted from the received signal, i.e.,
briefly, as the features available in the considered problem.

b) Replace the set Di (3.41) with the new set

D ≜ {Xq, tq; q = 0, 1, ..., Nt − 1}, (3.43)

that consists of low dimensional vectors only, and use it to train the considered
ML method; when this occurs, the last set is called training set.

Once training is over, the ML algorithm resulting from it is able to infer the unknown
value of tq (3.40) for any new vector Xq (3.42) of noisy data (with q > Nt−1); in other
words, it is able to predict: a) dq; b) Rq and ϕq if a target is detected. It is important
to point out that any ML algorithm predicting dq solves a binary classification problem,
since it assigns a new observation to one of two categories of noisy data, one associated
with the presence of a target, the other one with its absence; in other words, the
algorithm is exploited to recognise a specific pattern in the noisy observations. If the
considered ML algorithm is also able to predict the value of the couple (Rq, ϕq) (i.e., of
two continuous variables), it solves a regression problem too. In the considered radar
system, different ML algorithms can be employed to learn classification and regression
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rules from the training set D (3.43). Moreover, all such algorithms can be considered
as specific instances of the so called supervised learning, as shown in the following
paragraph. Generally speaking, supervised learning techniques can be employed when:

1. A training set
D ≜ {(rq, tq) ; q = 0, 1, ..., Nt − 1}, (3.44)

collecting Nt, Dr-dimensional real observations (also called covariates, or domain
points, or explanatory variables) {rq; q = 0, 1, ..., Nt − 1}, with

rq ≜ [rq,0, rq,1, ..., rq,Dr−1]
T , (3.45)

and the associated Dt-dimensional real labels (also called dependent variables or
responses) {tq; q = 0, 1, ..., Nt − 1}, with

tq ≜ [tq,0, tq,1, ..., tq,Dt−1]
T , (3.46)

is available.

2. There exists some mechanism relating the variable rq to the variable tq for any
q.

The last point is a fundamental one, since it does not make any sense to develop
rules applicable to unseen examples in the absence of some assumptions about the
mechanism underlying data generation; the set of these assumptions is known as the
inductive bias.

3.2.2 Supervised learning

Supervised learning is a branch of ML frequently employed in the field of colocated
MIMO radars for solving classification and regression problems. In this paragraph, we
discuss some basic methods for supervised learning and analyse the approaches adopted
in their derivation. Specific attention is paid to some classification algorithms that can
be easily employed for target detection in radar systems.

Formulation of the supervised learning problem

Generally speaking, supervised learning concerns the identification of the conditional
probability density function (pdf) f(t|r) (also called predictive distribution) minimizing
the average generalization loss

Lp(̃t) ≜ Ef(t,r)
{
ℓ
(
t, t̃ (r)

)}
; (3.47)

here, Ef(x) {·} denotes the expectation evaluated with respect to the joint f(x), t̃(r)
is a prediction of the label t computed on the basis of the observation r and ℓ (·, ·) is
a given cost function. If the label of each observation is one-dimensional (1D) and is
real, the cost functions

ℓ2
(
t, t̂
)
= (t− t̂)2 (3.48)
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and

ℓ0
(
t, t̂
)
=

{
1 if t = t̂
0 elsewhere (3.49)

are often employed for regression and binary classification, respectively. It is well known
that, if the posterior pdf f(t|r) is known, the minimum value of the loss Lp(̃t) (3.47)
is achieved by selecting the optimal prediction (e.g., see [76, Par. III.C, eq. (4)])

t̂ (r) = argmin
t̃

Ef(t|r)
[
ℓ
(
t, t̃
)
|r
]
, (3.50)

whatever cost function is selected.
Supervised learning methods are employed when the conditioned pdf f(t|r) (or the

joint pdf f(t, r)) is unknown, but a training set D, collecting Nt distinct data generated
on the basis of it and structured according to eq. (3.43), is available. The objective of
these methods is to generate a predictor, denoted t̂D(r), exclusively based on the set D
and whose performance, in terms of generalization loss, is as close as possible to that of
the optimal predictor t̂(r) (3.50); this means that the loss evaluated for the prediction
of the label associated with a new observation should be as small as possible. The
derivation of the predictor t̂D(r) can be formulated as an optimization problem, whose
form depends on the specific assumptions we make about the model that is being learnt.
In fact, a frequentist approach or a Bayesian approach can be adopted, as illustrated
in the following two paragraphs.

The frequentist approach to supervised learning

The frequentist approach relies on the assumption that all the points of the set D (3.44)
are generated independently on the basis of the same unknown joint pdf f(r, t) , that
is

(rq, tq) ∼ f (r, t) = f (t|r) f (r) , (3.51)

with q = 0, 1, ..., Nt − 1. Under this assumption, two possible approaches can be
adopted to derive the above mentioned predictor t̂D(r), namely: a) separate learning
and inference; b) direct inference via empirical risk minimization (ERM). The first
approach consists in learning an approximation, denoted fD(t|r), of the conditional pdf
f(t|r), and in using the former pdf in place of the latter one to derive the expression
of the predictor t̂D(r) on the basis of eq. (3.50). The second approach, instead, aims
at directly learning t̂D(r) by solving the problem

t̂D (r) = argmin
t̃
LD

(
t̃ (r)

)
, (3.52)

where

LD

(
t̃ (r)

)
≜

1

Nt

Nt−1∑
q=0

ℓ
(
tq, t̃ (rq)

)
(3.53)

is the so called empirical loss. In both cases, the optimization of a set of parameters
characterizing the model selected for the conditional pdf fD(t|r) or that chosen for the
predictor t̂D(r) is required. However, the first approach is more flexible than the second
one since, in principle, the approximate pdf fD(t|r) it generates can be exploited to
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derive the predictor t̂D(r) for any cost function; on the contrary, the solution of the
problem (3.52) holds for a specific cost function only. Moreover, it should be kept in
mind that, if the first approach is adopted, two options are available. The first option
consists in learning a discriminative probabilistic model, i.e. in learning directly an
approximation of the posterior f(t|r). On the contrary, the second option consists in
learning a generative probabilistic model, i.e. in learning the joint pdf f(t, r) and, then,
in deriving an estimate of the posterior f(t|r) from it.

Let us see now how the general principles illustrated above can be employed to
solve a specific regression problem concerning the first FMCW radar system described
in the previous paragraph and equipped with the array shown in Fig. 1.2-a). In this
case, we assume: a) the presence of a single point target placed at a fixed and known
range R; b) the availability of the synthetically generated dataset3 (see eq. (3.44))

D ≜ {rq, tq; q = 0, 1, ..., Nt − 1}, (3.54)

where4

tq ≜ ϕq, (3.55)

rq = ∆ψ̂q (3.56)

is an estimate of the phase difference

∆ψq ≜ ψq,1 − ψq,0 (3.57)

and ψq,0 (ψq,1) is the phase of the sinusoidal oscillation associated with the considered
target and observed on the first (second) RX antenna for any q (see eqs. (3.2)-(3.8) and
(3.12)). Moreover, in generating our dataset, the following choices have been made:

a) the distance d between adjacent virtual channels is equal to λ/4;
b) the target range R is equal to 3.0 m, whereas the target azimuth ϕq is uniformly

distributed over the interval [ϕm, ϕM ] = [−60◦ 60◦], respectively, for any q (this interval
is comparable to the horizontal FOV of a real radar system);

c) the amplitude a(q)v characterizing the sinusoid observed on the v-th virtual an-
tenna is randomly selected in the interval [0.4, 1.2] V for any q (see eq. (1.9));

d) the random variable a(q)v is independent of a(p)u for any u ̸= v and/or p ̸= q;
e) the observation rq (3.56) is generated on the basis of eqs. (3.31) and (3.42), i.e.

as ∆ψ̂q = ∠X(q)
0 (X

(q)
1 )∗ for any q.

Moreover, the following choices have been made for the parameters of the radar
system:

a) the generated frequency modulated waveform is characterized by µ = 7.8125·1012
Hz s−1, T = 256µs and TR = 64µs;

b) the sampling period employed at the receive side is Ts = 0.25 µs and N = 512
time-domain samples are acquired from each of the two RX antennas;

c) the standard deviation of the noise affecting these samples is σw =
√
2 V (see

eq. (1.9));

3This dataset and all the other synthetic datasets processed in our work have been generated by
resorting to various functions available in the MATLAB and/or Python environment.

4Note that, in this case, dq = 1 and Rq = R in eq. (3.40), so that the label tq turns into a scalar.
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d) the oversampling factor Mr = 4 and the threshold Pth = 0.5 V2Hz−1 are em-
ployed by the detection algorithm based on eqs. (3.25)-(3.26).

In this case, our objective is to derive a predictor of the the azimuth ϕq associated
with the new observation ∆ψ̂q for any q > Nt− 1. To solve this problem, we adopt the
discriminative probabilistic model

f (t|rq,w) = N
(
t;µ (rq,w) , β−1

)
, (3.58)

where

µ (rq,w) ≜
M∑
j=0

wj φj (rq) = wT φ (rq) , (3.59)

M is the order of the model,

w ≜ [w0, w1, ..., wM ]T (3.60)

is a vector collecting M + 1 distinct real parameters (called weights),

φ (rq) ≜ [φ0(rq), φ1(rq), ..., φM (rq)]
T (3.61)

is the so called feature vector, {φj(x); j = 0, 1, ..., M} are M + 1 non linear functions
and β−1 is the variance of the noise affecting the labels. In the following, we assume
that

φj(x) = xj (3.62)

for j = 0, 1, ..., M ; consequently, eq. (3.59) becomes

µ(rq,w) ≜ w0 +
M∑
j=1

wj r
j
q. (3.63)

It is worth noting that:
a) Adopting the probabilistic model (3.58) with the mean µ(rq,w) (3.63) is tanta-

mount to postulating a polynomial dependence of the label ϕq on the corresponding
observation ∆ψ̂q.

b) The selected model depends on its order M and on the (M + 2)-dimensional
parameter vector θ ≜

[
wT , β

]T .
c) The parameterM defines the number of degrees of freedom available in the model

and, consequently, determines its bias.
As far as the last point is concerned, it is important to mention that, if M is

too small, the resulting predictor may underfit the observations, since it is unable to
accurately represent this dependence on their labels. On the contrary, if M is too large,
the model is able to account for the observations of the training set, but it may generate
inaccurate predictions; in other words, it memorizes the training set, but it is unable to
generalise what has learnt to new examples. The last problem is known as overfitting.
For instance, in the considered problem, good results are obtained if M = 3 is selected.

If the ERM approach is adopted to adjust the parameters of the probabilistic model
(3.58) (and, in particular, the weight vector w (3.60)) in an optimal fashion, the ob-
tained result depends on the selected cost function and cannot be always put in a closed



92 CHAPTER 3. ML AD DL TECHNIQUES FOR MIMO RADARS

form. However, if the cost function ℓ2(t, t̂) (3.48) is chosen and noise is neglected (i.e.,
β−1 is assumed to be very small), a closed form expression can be derived for ŵ for
any M . In fact, under these assumptions, it can be proved that:

1. The optimal predictor t̂D(r) (3.52) becomes (e.g., see [75, Sect. 3.1.1, eq. (3.20)])

t̂D(rq) = µ (rq, ŵ) , (3.64)

where
ŵ = argmin

w̃
LD (w̃) , (3.65)

w̃ denotes a trial value of w and

LD (w̃) ≜
1

Nt

Nt−1∑
q=0

(tq − µ (rq, ŵ))2 (3.66)

is the empirical loss (see eq. (3.53)).

2. The solution of the minimization problem appearing in the RHS of eq. (3.65) is

ŵ = (ΦT
DΦD)

−1 ΦT
D tD, (3.67)

where
ΦD ≜ [φ(r0),φ(r1), ...,φ(rNt−1)] (3.68)

is a Nt × (M + 1) matrix and

tD ≜ [t0, t1, ..., tNt−1]
T . (3.69)

Given the weight vector ŵ (3.67), the estimate

β̂−1 ≜
1

Nt

Nt−1∑
q=0

(
tq − ŵTφ (rq)

)2 , (3.70)

of the noise variance β−1 can be easily evaluated.
Training the algorithm illustrated above consists in computing the weight vector

ŵ (3.67) on the basis of the available training set D (3.54). Once training has been
carried out, the generalization capability of the resulting algorithm can be assessed by
evaluating the empirical loss (3.53) on the basis of a different dataset, called test set
Dts and collecting N̄t observations generated in the same way as the ones of D, but in
an independent fashion.

In our computer simulations, the training set D (3.54) and the test set Dts consist
of Nt = 200 and N̄t = 25 observations, respectively; the points of these sets are
represented in Figs. 3.2 and 3.3, respectively. First, the weight vector ŵ (3.67) and
the estimate β̂−1 (3.70) of the noise variance have been computed on the basis of D.
Then, the accuracy of the resulting regression algorithm has been assessed on Dts. The
predictions associated with the points of Dts are represented in Fig. 3.3; in this figure,
two (red) straight lines, generated on the basis of the linear equations

t = µ(r, ŵ)± β̂−1/2, (3.71)
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are also shown to highlight the meaning of the noise standard deviation 2β̂−1/2. These
results lead to the conclusion that, in the considered scenario, the developed regression
method is able to predict the azimuth of a target with good accuracy. This is confirmed
by the fact that the empirical loss computed over the set Dts (i.e., the generalization
loss) is close to the empirical loss LD (ŵ) evaluated over the set D (see eq. (3.53)); in
fact, the root mean square error5 (RMSE) evaluated over D is equal to6 1.7◦, whereas
that computed over Dts is equal to 1.3◦.
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Figure 3.2: Representation of the points of the synthetically generated
training set D (3.54); Nt = 200 is assumed.

In general, if the discriminative probabilistic model adopted to solve a specific re-
gression problem is represented by the parametric pdf f(t|r,θ), a closed form expression
for the optimal value

θ̂ = argmin
θ̃
LD

(
θ̃
)
, (3.72)

of the Dθ-dimensional parameter vector θ is unavailable in most cases. When this
occurs, iterative optimization techniques, like the stochastic gradient descent (SGD)
method, can be employed to estimate θ̂ . The application of the SGD to the considered
problem leads easily to the recursive equation

θ̂
(i+1)

= θ̂
(i)

+ γ(i+1)N−1
S

∑
q∈S

∇θ̃ ℓ
(
tq, t̂

(
rq, θ̃

)) ∣∣
θ̃=θ̂

(i) , (3.73)

with i = 0, 1, ..., NE − 1; here, θ̂
(i)

denotes estimate of θ̂ computed in the i-th recur-
sion, S is a set of NS integers randomly selected in the set {0, 1, ..., Nt − 1} (with
NS < Nt), γ(i) is the learning rate adopted in the i-th iteration and ∇xf(x) denotes
the gradient of the function f(x). It can be proved that, if the learning rate schedule
(i.e., the sequence {γ(i)}) satisfies the so called Robbins-Monro conditions, the SGD
converges to the optimal solution, provided that the function LD(θ̃) is strictly convex.
The initial value θ̂

(0)
can be either randomly selected or it can be inherited from the

5This parameter represents the square root of the empirical loss.
6The RMSE computed over D is given by β̂−1/2.
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Figure 3.3: Representation of the points of the synthetically generated test
set Dts (blue circles) and of the corresponding predictions (green triangles)
evaluated on the basis of eq. (3.64); N̄t = 25 is assumed. Two straight
lines, expressed by eq. (3.71), are also shown.

training procedure accomplished another model; the last solution represents a specific
application of the so called transfer learning technique (see Paragraph 3.6.1). Itera-
tions are stopped when negligible variations are observed in the estimates generated
by consecutive recursions or an upper limit set on the overall number of recursions is
reached. Once the final estimate of θ̂ has been computed on the basis of the available
training set, the generalization capability of the resulting algorithm can be assessed by
evaluating the empirical loss (3.53) on a given test set Dts.

Finally, it is worth mentioning that the selection of the parameter Dθ (i.e., of the
model complexity) plays a fundamental role in the considered problem. In fact, if its
value is too small (too large), the resulting regression method can suffer from under-
fitting (overfitting). The overfitting phenomenon is usually prevented by including a
regularization term in the training of the adopted model. For instance, if the opti-
mization problem (3.72) is considered, this result can be achieved by adopting the cost
function

LD

(
θ̃
)
+

λ

Nt

∥∥∥θ̃∥∥∥2 , (3.74)

where λ is a real positive weight influencing the predictive capability of the resulting
solution and ||x|| is the Euclidean norm of the vector x.

The Bayesian approach to supervised learning

The frequentist approach illustrated in the previous paragraph leads to the identifica-
tion of a specific probabilistic model through the estimation of its parameter vector
θ. The Bayesian approach, instead, consists in formulating our uncertainty about the
parameters of the adopted probabilistic model in statistical terms, i.e. in treating its
parameter vector θ as a random vector. In this paragraph, we show how the specific
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regression problem analysed in the previous paragraph can be tackled from this per-
spective; for this reason, we assume that each observation and its label are 1D (i.e.,
Dt = Dr = 1), so that all the labels of the training set D (3.44) and the associated
observations can be collected in the Nt-dimensional vectors tD (3.69) and

rD ≜ [r0, r1, ..., rNt−1]
T , (3.75)

respectively. If the discriminative probabilistic model (3.58) introduced in the previous
paragraph is exploited, a Bayesian method based on it can be developed as follows. To
begin, the joint pdf

f (t, tD,w|rq, rD, ) = f (tD,w|rD, α, β) f (t|rq,w) (3.76)

is considered in place of the pdf f(t|rq,w) (3.58); here, β−1 is the variance of the noise
affecting the labels,

f (tD,w|rD, α, β) = f (tD|rD,w, β) f (w|α) (3.77)

is the joint probability of the (M + 1)-dimensional weight vector w (3.60) and the
label vector tD (3.69) conditioned on rD (3.75), on the hyperparameter α and on the
parameter β, and f(w|α) is the prior pdf of w. The Gaussian model

f(w|α) = N
(
w;0, α−1IM+1

)
(3.78)

=
( α
2π

)(M+1)/2
exp

{
−α
2
wTw

}
is employed for the second pdf appearing in the RHS of eq. (3.77) (e.g., see [75, Sect.
1.2.4, p. 30, eq. (1.65)] ); here, IN is the N × N unit matrix and α represents the
precision of the last pdf. The first pdf appearing in the RHS of eq. (3.77), instead,
represents a likelihood function expressing how likely the response tD are, given rD, w
and β; this function can be factored as

f (tD|rD,w, β) =

Nt−1∏
k=0

f (tk|rk,w, β) , (3.79)

and, consequently, can be expressed in terms of the probabilistic model (3.58) Given
the joint pdf f(t, tD,w, |rq, rD) (3.76), the predictive distribution f(t|rq, rD, tD) can be
evaluated as

f (t|rq, rD, tD) =
1

f (tD|rD, α, β)

∫
f (t, tD,w|rq, rD) dw, (3.80)

where

f(tD|rD, α, β) =

∫
f (tD,w|rD, α, β) dw

=

∫
f (tD|rD,w, β) f (w|α) dw

(3.81)
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is a marginal likelihood. The expression (3.80) can be also reformulated as follows.
Substituting the RHS of eq. (3.77) in that of eq. (3.76) and the resulting factorization
in the RHS of eq. (3.80) yields

f (t|rq, rD, tD) =

∫
f (tD|rD,w, β) f (w|α)

f (tD|rD, α, β)

·f (t|rq,w) dw. (3.82)

Then, since
f (tD|rD,w, β) f (w|α)

f (tD|rD, α, β)
= f (w|rD, tD, α, β) , (3.83)

eq. (3.82) can be rewritten as

f (t|rq, rD, tD) =

∫
f (w|rD, tD, α, β) f (t|rq,w) dw. (3.84)

The last equation shows how the predictive distribution is influenced by our uncertainty
about the weight vector; such an uncertainty is expressed by the pdf f(w|rD, tD, α, β).

Let us apply now the mathematical results derived above to the considered regres-
sion problem. If the pdf f(w|rD, tD, α, β) is assumed to be Gaussian and, in particular,

f (w|rD, tD, α, β) = N(w|µD, σ
2
D), (3.85)

where (e.g., see [75, Sec. 3.3, p. 153, eqs. (3.53)-(3.54)])

µD = β σ2D ΦT
DtD, (3.86)

σ2D =
(
αIM+1 + βΦT

DΦD

)−1 (3.87)

and the Nt × (M + 1) matrix ΦD is given by eq. (3.68), the expression

f (t|rq, rD, tD) = N(t;µ(rq), σ
2(rq)) (3.88)

can be derived from eq. (3.84) (e.g., see [75, Sec. 1.2.4, p. 31, eq. (1.69)] for a proof of
this result); here,

µ (rq) = βφ (rq)
T S

Nt−1∑
k=0

φ (rk) tk, (3.89)

σ2 (rq) = β−1 +φ (rq)
T Sφ (rq) , (3.90)

φ(rq) is the (M + 1)-dimensional vector (3.61) and

S−1 ≜ α IM+1 + β

Nt−1∑
k=0

φ (rk) φ (rk)
T (3.91)

is an (M + 1) × (M + 1) matrix. It is important to point out that the variance
σ2(rq) (3.90) of the predictive distribution f (t|rq, rD, tD) (3.88) (and, consequently,
the accuracy of the prediction), unlike that of the Gaussian model f(t|rq,w) (3.58), is
given by the sum of two terms; the first term originates from the noise affecting the
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labels, whereas the second one from our uncertainty about the parameter vector w.
Moreover, the second term is influenced by the considered observation (i.e., it depends
on rq); in practice, smaller values of the standard deviation σ(rq) are usually obtained
when rq is close to the observations of the training set.

The accuracy of the new regression algorithm described above has been assessed
on the test set shown in Fig. 3.3 after training it on the set illustrated in Fig. 3.2;
moreover, α = 0.05 has been selected in this case. The prediction µ(rq) evaluated
on the basis of eq. (3.89) for each observation of the test set and the corresponding
standard deviation σ (rq) (i.e., the square roof of the RHS of eq. (3.90)) are represented
in Fig. 3.4. The RMSE evaluated over the test set is equal to 1.4◦ and is approximately
equal to the one computed over the training set. Note that this value is comparable to
the ones computed for the predictor described in the previous paragraph (and based
on a frequentist approach). For this reason, in this case, the Bayesian approach does
not offer any advantage with respect to the frequentist one.
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Figure 3.4: Representation of the regression technique based on the prob-
abilistic model (3.88). The blue circles represent the true domain points,
whereas the green triangles the corresponding predictions; the red curves
are generated by interpolating the points generated on the basis of the two
equations tq = µ(rq)± σ(rq), with rq ∈ Dts.

Specific methods for binary classification

In the remaining part of this section we focus on a specific supervised problem, namely
binary classification, and develop two classification methods, based on discriminative
deterministic models, to solve it. Moreover, we show how different classification meth-
ods can be combined to improve the overall accuracy. Note that, in general, classifi-
cation methods based on discriminative deterministic models are able to represent the
deterministic mapping between domain points and labels through specific functions,
called discriminant functions. In the field of radar systems, these methods can be
exploited for target detection.

The first method we take into consideration in this paragraph is the support vector
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machine (SVM) technique; in the following, we limit our analysis to its linear form, for
simplicity, and assume that the label of each observation can take on only the values
±1 (consequently, Dt = 1). The SVM technique processes the training set D (3.44)
to find the maximum-margin hyperplane; this divides the subset of observations for
which tq = 1 from that for which tq = −1 in a way that the distance between itself and
the nearest point from either group is maximized. In the considered case, the above
mentioned hyperplane can be defined as the set of points satisfying the equation

y(rq,w) = 0 (3.92)

for any q, where
y(rq,w) ≜ wT rq + b , (3.93)

rq is the q-th observation of D (see the definition (3.45)), w represents aDr-dimensional
weight vector (expressed by eq. (3.60), with M = Dr − 1) and b is a real parameter
called bias. The adoption of a classification strategy based on the approach illustrated
above relies on the implicit assumption that, if the parameters w and b appearing
in eq. (3.93) are properly selected, the dataset D (3.44) is linearly separable in the
feature space. In fact, when this occurs, two parallel hyperplanes separating the above
mentioned two subsets of observations and having their mutual distances as large as
possible can be found. If the observations of the set D are normalised, the hyperplanes
delimiting the subsets of observations associated with tq = 1 and tq = −1 can be
represented by the equations

y(rq,w) = 1 (3.94)

and
y(rq,w) = −1, (3.95)

respectively, i.e. briefly as
tq y(rq,w) = 1. (3.96)

The last formula expresses the canonical representation of the decision hyperplanes.
Based on the last result, the constraint according to which each point of the set D
(3.44) must lie on the correct side of each of the two hyperplanes (i.e., that it must fall
in the correct decision region) can be formulated as

tq y(rq,w) ≥ 1 (3.97)

for any q.
A method for the optimization of the parameters b and w appearing in eq. (3.93)

can be developed as follows. The perpendicular distance of the point rq from the
decision hyperplane can expressed as

tq y(rq)

||w||
=
tq
(
wT rq + b

)
||w||

(3.98)

for any q; its minimum value over the set D is known as margin. The optimal choice
(ŵ, b̂) of the parameters (w, b) is the one maximizing the margin and, consequently,
can be evaluated as(

ŵ, b̂
)
= argmax

w̃,b̃

{
1

∥w̃∥
min
q

[
tq(w̃

T rq + b̃)
]}

, (3.99)
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where (w̃, b̃) denotes a trial value of the couple (w, b); the data points closest to the
max-margin hyperplane are called support vectors. Unluckily, the optimization problem
appearing in the RHS of eq. (3.99) does not admit a simple solution. However, since
there is always at least one support vector satisfying eq. (3.96), this problem can be
reformulated in a simpler form, i.e. as the maximization of ||w̃||−1 or, equivalently, as

ŵ = argmin
w̃

||w̃||2

2
(3.100)

under the constraint expressed by eq. (3.97); note that the parameter b̃ is no more
visible in the last formulation, but its value is implicitly determined by the above
mentioned constraint. To solve the constrained optimization problem (3.100), the La-
grangian function

L
(
w̃, b̃, ã

)
≜

||w̃||2

2
−
Nt−1∑
q=0

ãq{tq(w̃T rq + b̃)− 1}. (3.101)

is defined; this function depends not only on the parameters w̃ and b̃, but also on the
non negative parameters {ãq}, called Lagrange multipliers and collected in the vector
ã ≜ [ã0, ã1, ..., ãNt−1]

T (the q-th element of this vector is associated with the q-th
constraint expressed by eq. (3.97)). Taking the partial derivatives of the function
L(w̃, b̃, ã) (3.101) with respect to w̃ and b̃ and setting them to zero results in

Nt−1∑
q=0

ãq tq = 0 (3.102)

and

w̃ =

Nt−1∑
q=0

ãq tq rq, (3.103)

respectively. Then, substituting eqs. (3.102)-(3.103) in the RHS of eq. (3.101) produces
the so called dual representation of the margin maximization problem. Solving the last
problem requires maximizing the function

L (ã) ≜
Nt−1∑
q=0

ãq −
1

2

Nt−1∑
q=0

Nt−1∑
k=0

ãq ãk tq tk(r
T
q rk) (3.104)

with respect to the vector ã, under the set of constraints {ãq ≥ 0 for any q} and the
constraint expressed by eq. (3.102) and produces the optimal value â of the vector ã.
Given â, the optimal values ŵ and b̂ of w̃ and b̃, respectively, are computed as (see eq.
(3.103))

ŵ =

Nt−1∑
q=0

âq tq rq, (3.105)

and

b̂ = N−1
SM

∑
q∈SM

tq − ∑
k∈SM

âk tk r
T
q rk

 , (3.106)
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respectively, where SM and NSM denote the set of support vectors and its cardinality,
respectively. Given (ŵ, â, b̂), the classification of a new data point (rq, tq) (with
q > Nt − 1) is accomplished on the basis of the sign of the quantity (see eq. (3.93))

y(rq, ŵ) ≜ ŵT rq + b̂, (3.107)

that can be also expressed as (see eq. (3.105))

y(rq) =

Nt−1∑
k=0

âk tk r
T
q rk + b̂. (3.108)

As already mentioned above, this classification method is derived under the as-
sumption that the set of feature vectors {rq} is linearly separable. When this does
not occur, a specific kernel function, denoted ϕ(·), can be used to map the vector rq
(3.45) into the new feature vector ϕ(rq) for any q (e.g., see [75, Chap. 6]). The objec-
tive is transforming the available classification space into a one characterized by linear
boundaries; in principle, the dimensionality of ϕ(·) may be different from Dr. Well
known examples of the kernels employed with the SVM method are the polynomial,
the Gaussian and the Laplace kernels. It is important to note that kernel selection is
very critical, since its choice can significantly influence classification accuracy.

The second method we take into consideration is the so called K nearest-neighbour
(K-NN) technique [51], that represents an example of non-parametric approach to the
classification problem. In the case of binary classification, this method can be sum-
marised as follows. The points of the training set D (3.44) are partitioned into two
classes, denoted C0 and C1, where

Ck ≜ {(rqk , tqk); qk = 0, 1, ..., Nk − 1}, (3.109)

with k = 0 and 1, and Nk denotes the number of points belonging to the k-th class, so
that

1∑
k=0

Nk = Nt. (3.110)

Let us assume now that a newDr-dimensional observation, denoted rq (with q > Nt−1)
and called query instance, becomes available. The K-NN strategy classifies rq, i.e.
assigns it to one of the two classes defined above, on the basis of the votes of its K
nearest neighbours (i.e., of the K points of D closest to rq); here, K is an integer
parameter, whose value is usually small and odd. The identification of the nearest
neighbours unavoidably requires the computation of the distance of rq from all the
points of the set D; if the Euclidean distance is employed, the distance of rq from
rt ∈ D is given by

dq ≜ ||rt − rq||, (3.111)

with t = 0, 1, ..., Nt − 1. Given the set {dq}, consisting of Nt distances, the nearest
neighbours {rnn,j ; j = 0, 1, ..,K − 1} are identified by searching for the K points of D
that satisfy the inequality

dq < Vq (3.112)
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where Vq is a fixed threshold, such that all the required K points are found. Then,
if Kk denotes the number of nearest neighbours belonging to Ck (i.e., the number
of representatives of Ck), rq is assigned to the class having the largest number of
representatives, i.e. to C0 ( C1) if K0 > K1 (K1 > K0).

It is worth pointing out that the parameter K controls the degree of smoothing,
i.e. the size of the regions assigned to each class. In fact, a small value of K usually
results in many small regions assigned to each class, whereas a large one leads to fewer
larger regions [75, Par. 2.5.2]. Moreover, if K = 1 is selected, a nearest-neighbour
classifier is obtained; in this case, if the dataset is quite large, it can be shown that the
error rate of a K-NN classifier is never larger than twice the minimum achievable error
rate of an optimal classifier7, i.e. of a classifier having full knowledge of the pdf of the
observations [95].

Multiple classification methods can be combined to improve the overall accuracy;
this idea leads to the development of the so called ensemble classifiers [75, Ch. 14.2].
Specific examples of these classifiers are represented by the so called bootstrap aggregat-
ing (also known as bagging [96]) and boosting methods [75]. The first method can be
employed when M predictions, denoted {y(m)(rq); m = 0, 1, ...,M − 1} and generated
by M different classifiers (called base classifiers), are available; the output is computed
as

YM ≜
1

M

M−1∑
m=0

y(m) (rq) , (3.113)

i.e. as an average of all the above mentioned predictions and the predicted class is
identified by the sign of this quantity; this reduces the impact of the error due to each
single classifier M times. This method is really effective when the errors originating
from distinct classifiers are uncorrelated; unluckily, in some cases, such errors may
be significantly correlated. When this occurs, classification accuracy can be improved
through boosting and, in particular, through the adaptive boosting method, also known
as AdaBoost [97]. In fact, the AdaBoost technique can achieve good accuracy even if its
M base classifiers do not perform well (say, their behaviour is only slightly better than
random), i.e. they are weak learners. If a binary classification problem is considered, the
training phase of this method evolves through M classification stages, each involving a
distinct base classifier; moreover, this method is initialised assigning the same weight
to all the observations, i.e. setting w̃(0)

q = 1/Nt for any q, where w̃(0)
q denotes the initial

weight assigned to the q-th observation. The m-th stage (with m = 0, 1, ..., M − 1)
evolves through the following steps:

1) The m-th base classifier is trained to minimise the weighted error function

J (m) ≜
Nt−1∑
q=0

w̃(m)
q I(y(m)(rq)), (3.114)

where

I
(
y(m) (rq)

)
≜

{
1 if y(m) (rq) ̸= tq
0 otherwise

(3.115)

7The optimal classification strategy can be easily formulated on the basis of eq. (3.50) (see Para-
graph 3.2.2).
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and {w̃(m)
q } is a set of non negative weights such that

Nt−1∑
q=0

w̃(m)
q = 1. (3.116)

2) The weighted measure of the error rate

ε(m) ≜

∑Nt−1
q=0 w̃

(m)
q I

(
y(m) (rq)

)∑Nt−1
q=0 w̃

(m)
q

(3.117)

and the weighting coefficient (e.g., see [75, Par. 14.3, eq. (14.16)])

α(m) ≜ ln

(
1− ε(m)

ε(m)

)
(3.118)

are computed.
3) The weight assigned to the q-th data point is updated on the basis of the recursive

formula (e.g., see [75, Par. 14.3, eq. (14.18)])

w̃(m+1)
q = w̃(m)

q exp
(
α(m)I

(
y(m) (rq)

))
(3.119)

for any q.
These steps force the classifier employed in each stage to put more emphasis on

those points that have been misclassified by previous classifiers. In fact, an higher
error rate entails a larger increase of the weight assigned to the q-th observation (see
eqs. (3.118) and (3.119)), provided that it has not been correctly classified (i.e., that
I(y(m)(rq)) = 1). The final prediction generated by the AdaBoost technique is

YBM (rq) = sign

(
M−1∑
m=0

α(m) y(m)(rq)

)
. (3.120)

In assessing the accuracy of any classification method, N -fold cross validation can
be used when the size of the available dataset is not so large. This consists in:

a) randomly partitioning the whole available dataset in N blocks;
b) assessing the classification accuracy on the n-th block (taken as test set) after

that the considered method has been trained on the basis of the remaining (N − 1)
blocks (with n = 0, 1, ...., N − 1).

At the end of this procedure, N distinct accuracies are available; the final score is
expressed by their average.

Let us focus now on a specific application of the SVM and K-NN techniques to
an FCMW radar system equipped with the antenna array shown in Fig. 3.1-b) (and
characterized by d = λ/4) and operating in the presence of at most a single point
target. In the q-th trial, the set {r0,q, r1,q, r2,q, r3,q}, consisting of four N -dimensional
noisy vectors, each associated with one of the NV = 4 virtual receive channels, is
available for any q (see eq. (3.18)). The dimensionality reduction technique illustrated
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in Paragraph 3.2.1 is applied to this set in order to extract the 4-dimensional (4D)
feature vector

Rq =
[
R

(q)
0 , R

(q)
1 , R

(q)
2 , R

(q)
3

]T
≜

[∣∣∣X(q)
0

∣∣∣ , ∣∣∣X(q)
1

∣∣∣ , ∣∣∣X(q)
2

∣∣∣ , ∣∣∣X(q)
3

∣∣∣]T ; (3.121)

here,
X(q)
v =Mr X

(q)

v,l̂
(3.122)

and X
(q)

v,l̂
is computed on the basis of eqs. (3.21), (3.25) and (3.28), i.e. by sampling

the spectrum X̄
(q)
v (f) (3.16) of the zero-padded sample sequence acquired on the v-th

virtual antenna at the target frequency f̂m (3.27) (with v = 0, 1, 2 and 3). The target
detection strategy we adopt in our radar system is different from the one illustrated in
Paragraph 3.2.1 and based on the computation of the average power

Pq ≜ N−1
V

NV −1∑
v=0

|X(q)
v |2, (3.123)

and on its comparison with a threshold (see eqs. (3.24) and (3.26)). This choice is
motivated by the fact that, the amplitude a(q)v of the sinusoid observed on the v-th
virtual channel and associated with the detected point target is assumed to depend on
the antenna index8 v; the last assumption allows us to account for: a) the dependence
of the target reflectivity on the direction of observation; b) the differences in the am-
plifications introduced by distinct receive chains of the employed MIMO radar. In fact,
in the considered radar system, a target is detected if the inequality

max
v∈{0,1,2,3}

∣∣∣X(q)
v

∣∣∣2 > Pda, (3.124)

holds, i.e. if |X(q)
v |2 > Pda for at least a single value of v. This strategy outperforms the

one based on the average power Pq (3.123) in terms of missed detection probability;
however, the price to be potentially paid for this is an increase of the false alarm
probability, i.e. of the probability of erroneously detecting the presence of target.

In our experiment, the training set

D ≜ {(Rq, tq); q = 0, 1, ..., Nt − 1}, (3.125)

referring Nt = 100 independent trials, has been synthetically generated. Half of its
data are associated with the detection of a real target, the remaining half with the
detection of a false target; for this reason, the vector Rq (3.121) is labelled by tq = 1
(−1) in the presence of a real (false) target. Moreover, the following assumptions have
been made in generating the q-th observation of the training set D and the test set Dts:

a) The amplitude a(q)v of the sinusoid observed on the v-th antenna in the presence
of a real target is uniformly distributed over the interval [0, 1] V;

8For this reason, the assumption we made in writing eq. (1.9) does not hold any more.
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b) The random variable a(q)v is independent of a(p)u for any u ̸= v and/or p ̸= q.
c) The range Rq and the azimuth ϕq of the target (if present) are uniformly dis-

tributed over the intervals [Rm , RM ] = [1.0 m, 5.0 m] and [ϕm , ϕM ] = [−60◦, 60◦],
respectively, for any q.

The values selected for most of the parameters of the considered radar system are
equal to those listed in the examples of Paragraphs 3.2.2 and 3.2.2, the only differences
being represented by the fact that:

a) the standard deviation of the noise affecting the received signal samples is σw =
1.0 V (see eq. (1.9));

b) the threshold Pda = 0.3 V2Hz−1 is employed by the detection algorithm based
on eq. (3.124).

The dataset D (3.125) has been employed to train the linear SVM, K-NN and
Adaboost techniques; K = 4 and M = 100 has been selected for the second classifier
and the third one, respectively. Moreover, the weak learner employed in the m-th step
of the Adaboost technique consists in comparing one of the components of the vector
Rq (3.121) with a threshold9. More specifically, the classification criterion adopted by
each weak learner can be expressed as

R(q)
v

tq=1
>
<

tq=−1

Pv (3.126)

where the index v is randomly selected in the set {0, 1, 2, 3} and Pv ∼ U(min
q

(R
(q)
v ),max

q
(R

(q)
v ))

is the decision threshold associated with the v-th feature R(q)
v acquired in the q-th trial.

Note that the classification criterion (3.126) leads to partitioning the observation space
into two regions, separated by an hyperplane (perpendicular to one of the reference
axes).

In this case, the aim of the three classifiers is discriminating between the presence of
a real target and that of a false target any time a target is detected; for this reason, they
are exploited to reduce the false alarm probability. Some numerical results are shown
in Figs. 3.5, 3.6 and 3.7, that refer to the SVM, to the K-NN and to the Adaboost
techniques, respectively; in all these figures, the set of points10 {(R(q)

0 , R
(q)
1 )} extracted

from the dataset D (3.125) are represented on a Cartesian plane and are identified by
a green (blue) circle if associated with a false (real) target. These results deserve the
following comments:

1) SVM training leads to generating the linear decision boundary shown in Fig. 3.5;
in this figure, a new observation is classified as a false target, since it falls in the lower
decision region.

2) The K-NN method classifies the new observation shown in Fig. 3.6 as a false
target, since class C1 is the one having the largest number of representatives contained
in the black circumference (having radius equal to Vq = 0.07 V and centered at the
new observation).

9This simple classifier can be interpreted as a form of a decision tree known as decision stump and
characterized by a single node (e.g., see [75, Ch. 14.3-14.4]

10Note that the observations of the dataset belong to a 4D space in this case; for this reason, all
their components cannot be represented in the same figure.
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3) Adaboost training leads to generating the decision boundary shown in Fig. 3.7.
In the same figure, the critical points of the base classifiers (i.e., their misclassified
points) are also shown; as it can be easily inferred from eq. (3.119), their weights of
these points tend to increase with iterations. In the same figure, a new observation is
classified as a false target, since it falls in the lower decision region.

In the considered scenario, our computer simulations have evidenced that the ac-
curacy achieved by the considered classification techniques is around 90%, assuming
N -fold cross validation with N = 5; in particular, the accuracies of SVM, K-NN and
Adaboost are 91%, 89% and 93%, respectively.
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Figure 3.5: Representation of the decision mechanism employed by a lin-
ear SVM classifier. The points of the training set corresponding to false
(real) targets are identified by the green (blue) circles. The decision bound-
ary of the SVM is represented by a dashed line, whereas the red crosses
identify support vectors. A new observation, identified by a black cross, is
classified as a false target, since it falls in the lower half plane delimited by
the decision boundary.

The binary classification methods illustrated above can be also exploited to develop
solutions to multi-class problems; in fact, in general, any problem of this type can
be represented as a sequence of binary classification problems [98]. This approach
is exemplified in Paragraph 3.5.1 and, in more detail, in Paragraph 3.7.1, where its
application to the classification of three human activities is illustrated. In particular,
in Paragraph 3.7.1, it is shown how a specific solution to this problem can be devised
by exploiting pairwise classification (also known as round-robin class binarization).
If K denotes the overall number of classes, this classification method is based on a)
combining L = K(K − 1)/2 binary classifiers (called base learners) and b) using the
so called one-versus-one coding scheme. In this case, each binary classifier is trained
assuming one class as positive, another class as negative (the labels associated with
the q-th observation are tq = 1 and tq = −1 for the first class and the second one,
respectively), and ignoring all the other classes (the label associated with this case is
tq = 0). When a new observation is available, it is processed by each binary classifier,
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Figure 3.6: Representation of the decision mechanism employed by a K-
NN classifier (with K = 4). The points of the training set corresponding to
false (real) targets are identified by the green (blue) circles. A new obser-
vation, identified by a black cross, is classified as a false target, since class
C1 is the one having the largest number of representatives contained in the
black circle.

so that all its possible assignments to every class pair are taken into consideration.
This procedure leads to generating a codeword of size L for each class; the l-th element
of this codeword can take on the values ±1 or 0 on the basis of the class membership
established by the l-th binary learner (with l = 0, 1, ..., L − 1). The K codewords
produced by the L learners in response to the q-th observation represent the rows of
the K ×L design matrix Tq = [t

(q)
k,l ]; note that the presence of a ‘0’ on the k-th row of

the l-th column for any q means that all the observations associated with the k-th class
are ignored by the l-th classifier. The class predicted for the q-th observation is the one
minimizing the average of the binary losses over the L different binary learners [99]; in
practice, the value of the class index for the q-th observation is computed as

k̂q = arg min
k∈{0,1,...,K−1}

∑L−1
l=0 |t(q)k,l | g

(
t
(q)
k,l , yq,l

)
∑L−1

l=0 |t(q)k,l |
, (3.127)

where yq,l is the score11 assigned by the l-th binary learner to the considered observation
and

g
(
t
(q)
k,l , yq,l

)
≜

1

2
exp (−t(q)k,l yq,l) (3.128)

is the binary loss function.

11This quantity can be computed on the basis of eq. (3.108) (eq. (3.120)) if the SVM (Adaboost)
method is used.
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Figure 3.7: Representation of the decision mechanism employed by the
Adaboost classifier. The points of the training set corresponding to false
(real) targets are identified by the green (blue) circles. The decision bound-
ary of the Adaboost is represented by a dashed line, whereas the red crosses
identify critical targets. A new observation, identified by a black cross, is
classified as a false target, since it falls in the lower region delimited by the
decision boundary.

3.2.3 Unsupervised learning

Unsupervised learning is less well defined than its supervised counterpart, since it deals
with learning some specific properties of the mechanism on which the generation of
the considered set of observations is based. Unlike supervised methods, unsupervised
learning operates over unlabelled datasets. In the following, we assume that:

1) Learning is based on the dataset

D ≜ {rq; q = 0, 1, ..., Nt − 1}, (3.129)

that consists of Nt i.i.d. unlabelled Dr-dimensional observations;
2) All the available observations are realizations of the same random variable r,

characterized by its unknown pdf f(r).
The goal of unsupervised methods is to learn some useful properties of the pdf

f(r). It is important to keep in mind that the Dr elements which the random vector
r is made of can be highly correlated. These mutual dependencies are often modelled
by introducing a new vector, denoted z and collecting the so called latent or hidden
variables. This approach allows to model the dependencies between the elements of
the observations indirectly, i.e. through the direct dependencies between such elements
and the hidden vector. The relationship between the vectors z and r can be modelled
in different ways. This results in various different models that can be adopted in
unsupervised learning; further details about this issue can be found in ref. [100].

In the remaining part of this paragraph, we first list the typical unsupervised prob-
lems tackled in the field of MIMO radar systems. Then, we describe two specific
unsupervised methods and illustrate their application to specific problems in that field.
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Unsupervised problems

Unsupervised learning methods can be exploited to solve the following four relevant
technical problems:

a) Clustering - Data clustering consists in partitioning the dataset D (3.129) in a
number of groups such that data points in the same group are dissimilar from the data
points belonging to all the other groups. In clustering problems, an hidden random
variable, called class variable, is usually added to all the elements of the dataset; this
variable describes the cluster membership for every observation of the dataset. In
the last years, significant attention has been paid to the use of clustering methods in
automotive radar systems, since distinct clusters can be related to different types of
targets, like pedestrians, cars or obstacles. A description of two clustering methods
employed in the above mentioned field is provided in Paragraph 3.5.4.

b) Dimensionality reduction - This aims at generating a reduced dimensionality rep-
resentation of the observations. Such a representation eases the visualization and inter-
pretation of the dataset, and the identification of specific patterns in it. A well known
technique for dimensionality reduction is the principal component analysis (PCA); its
description is provided in Paragraph 3.5.3, whereas its application to a dataset referring
to a specific MIMO radar system is illustrated in Paragraph 3.2.3.

c) Feature extraction - This consists in deriving a vector-valued function, denoted
g(·) and such that g(r) represents a useful and lower-dimensional representation of
the feature vector r; the vector g(r) can be used as an input to a supervised learning
method. A well known method for synthetizing the function g(·) is represented by the
autoencoder, as illustrated in Paragraph 3.3.4. A simple method for feature extraction
in a MIMO radar system has been described in Paragraph 3.2.1; other techniques are
illustrated in Paragraphs 3.5.1 and 3.5.4, where their use of radar in human motion
characterization and in autonomous driving, respectively, is considered.

d) Generation of new samples - This aims at producing new samples of a random
vector r in a way that these are approximately distributed according to its true pdf
f(r). Methods for generating new samples can be exploited to de-noise data and for
interference mitigation in autonomous driving applications, as illustrated in Paragraph
3.5.4.

Specific unsupervised methods

In this paragraph we focus on two specific unsupervised methods, namely the PCA
technique for dimensionality reduction [101] and the K-means algorithm for data clus-
tering [102].

The PCA method is employed to project the dataset D (3.129) onto a new space,
called principal subspace and having dimensionality D′

r < Dr; in doing so, the variance
of the projected data is maximised, in order to retain the most relevant variations char-
acterizing the original dataset. This method can be easily understood by illustrating
its application to the case in which Dr = 4, D′

r = 1 and rq = Rq, where the 4D vector
Rq is expressed by eq. (3.121). In this case, the 4D observation Rq is projected onto
the scalar

R
′
q ≜ uT0 Rq, (3.130)
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where u0 is a 4D unit vector [75]. If we define the data covariance matrix

∆ ≜
1

Nt

Nt−1∑
q=0

(
Rq − R̄

) (
Rq − R̄

)T , (3.131)

where

R̄ ≜
1

Nt

Nt−1∑
q=0

Rq, (3.132)

is the data mean, the variance
σ2R = uT0 ∆u0 (3.133)

of the projected dataset is maximized if

uT0 ∆u0 = λ0, (3.134)

where λ0 is the largest eigenvalue of the matrix ∆ (3.131) and u0 (that represents the
first principal component) is the associated eigenvector.

In general, if a D′
r-dimensional projection space is considered, the principal com-

ponents are represented by D′
r eigenvectors {ul; l = 0, 1, ..., D′

r − 1} of the data
covariance matrix ∆; these eigenvectors are associated with its D′

r largest eigenvalues
{λl; l = 0, 1, ..., D′

r−1} and are chosen to be orthonormal. The quality of the resulting
transformation can be assessed by evaluating the distortion measure (e.g., see [75, Par.
12.1.2, eq. (12.18)])

J ≜
Dr−1∑
l=D′

r

λl, (3.135)

i.e., the sum of the eigenvalues associated with the eigenvectors that are orthogonal to
the principal subspace; the smaller is the value taken on by this parameter, the better
is the original dataset approximation.

In our experiment, the PCA method has been applied to extract a 2D dataset from
the 4D dataset which Figs. 3.5-3.7 refer to (see Paragraph 3.2.2). The 2D points
of the new dataset, denoted D′, are represented in the principal component biplot12

shown in Fig. 3.8. In this figure, the axes of the Cartesian plane are associated with
the principal components, whereas the vector wi, represented by an oriented segment,
allows to quantify, through its amplitude and orientation, the weight of the contribution
provided by the i-th component of the original feature vectors (i.e., of the set {Rq};
see eq. (3.121)) to the principal components (with i = 0, 1, 2 and 3). From Fig. 3.8 it
is easily inferred that:

1. The weights of the contributions due to R(q)
2 and R(q)

3 are similar and are about
half of those provided by R(q)

0 and R(q)
1 .

2. The new 2D observations referring to real (false) targets are spread over the right
(left) half plane of the Cartesian plane.

12A detailed description of how a bi-plot is generated can be found in ref. [101, Sect. 5.3]
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Figure 3.8: Biplot of the dataset D′ generated by the PCA technique.
The points of the reduced dataset corresponding to false (real) targets are
identified by the green (blue) circles. The four oriented segments allow to
quantify the contribution provided by each of the four components of the
original feature vector to the two principal components.

The K-means method allows to partition the available dataset D into K clusters,
each collecting the samples whose mutual distances are small with respect to the dis-
tances from the points outside the cluster itself. In practice, if the center of the k-th
cluster is denoted µk (with k = 0, 1, ..., K − 1), the K-means method assigns the
q-th data point rq to the cluster whose center is closest to rq. This strategy can be
formalised as the one minimizing the so-called distortion measure

V ≜
Nt−1∑
q=0

K−1∑
k=0

pq,k||rq − µk||2, (3.136)

with respect to the variables {pq,k} and the vectors {µk}; here, pq,k is a binary indicator
variable implementing the 1-of-K coding scheme, i.e. such that pq,k = 1 (pq,k = 0) if
rq is (is not) assigned to the k-th cluster. The problem of minimizing the function V
(3.136) is solved by means of an iterative procedure, whose iterations consist of two
steps. In the first step, known as expectation, the metric V is minimized with respect
to each of the variables {pq,k}, keeping the centers {µk} fixed; on the contrary, in the
second step, called maximization, the same metric is minimized with respect to the
vectors {µk}, keeping the variables {pq,k} fixed. More specifically, in the first step, the
values of the variables {pq,k} employed are computed as

pq,k ≜

1 if k = argmin
j

||rq − µj ||2

0 otherwise
(3.137)

for any q (in other words, the q-th data point is assigned to the cluster whose center is
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closest to it). Then, in the second step, the center of the k-th cluster is evaluated as

µk =

∑Nt−1
q=0 pq,krq∑Nt−1
q=0 pq,k

, (3.138)

with k = 0, 1, ..., K − 1. It is important to point out that:

1. In principle, the initial values of the cluster centers can be arbitrarily chosen. In
this case, however, the algorithm may require several iterations to reach conver-
gence. A better initialization procedure consists in choosing the initial centers in
a random fashion.

2. The sum appearing in the denominator of the RHS of the eq. (3.138) gives the
overall number of points assigned to the k-th cluster; consequently, the cluster
center evaluated on the basis of the same equation represents the mean of all the
data points rq assigned to the k-th cluster.

3. Iterations are stopped when is no further change in the assignments of the data
points to the K clusters or their overall number has reached a fixed threshold.

Let us analyse now an application of the K-means technique to the dataset D
(3.129), where Nt = 100,

rq ≜
[
R̂q , ϕ̂q

]T
, (3.139)

and R̂q and ϕ̂q represent the estimates of the range and of the azimuth, respectively,
of the single point target observed in the q-th trial; these estimates are generated by
the algorithm illustrated in Paragraph 3.2.1 and employed in a FCMW radar system
equipped with the antenna array illustrated in Fig. 3.1-b) (d = λ/4 is assumed).
Moreover, in generating the q-th observation of the dataset D (3.129), the following
assumptions have been made:

a) The amplitude a(q)v of the sinusoid observed on the v-th virtual antenna is uni-
formly distributed over the interval [0.3, 1.0] V.

b) The random variable a(q)v is independent of a(p)u for any u ̸= v and/or p ̸= q.
c) The overall number of time-domain samples (N) acquired from each of the four

RX antennas is equal to 512 and the standard deviation σw of the noise affecting them
is equal to 1.0 V (see eq. (1.9)).

d) The oversampling factor Mr = 4 and the threshold Pth = 0.5 V2Hz−1 are
employed by the detection algorithm based on eqs. (3.25)-(3.26).

e) The range Rq of the target detected in the q-th trial is uniformly distributed over
the interval [Rm , RM ] = [1.0 m, 9.0 m], whereas its azimuth is randomly selected in
the set of relative integers ranging from ϕm to ϕM , with ϕM = −ϕm = 45◦.

f) The parameters of the employed radar system take on the same values as those
selected for the example illustrated for the SVM and K-NN methods in Paragraph
3.2.2.

In this case, the K-means algorithm is employed to group the detected targets in
three different clusters (consequently, K = 3 is selected) on the basis of their azimuth
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only; the points of the first (third) cluster are characterized by ϕq < −15◦ (ϕq > 15◦),
whereas those of the second one by |ϕq| ≤ 15◦.

The observations collected in the synthetically generated dataset and their parti-
tioning into the clusters generated by the K-means technique are shown in Fig. 3.9,
where circles of different colours are used to identify targets assigned to distinct classes.
From these results it is easily inferred that:

1. all the points are correctly classified on the basis of their azimuth, even if an
unlabelled dataset is used;

2. each of the centroids is located in the middle of the corresponding cluster and
its position is influenced by the distribution of the detected targets along the range
dimension.
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Figure 3.9: Representation of three clusters generated by the K-means
algorithm. The green (red) circles refer to the targets detected on the left
(right) of the considered radar system, whereas the blue circles to the tar-
gets detected in front of it. The black crosses identify the centroids of the
clusters.

3.3 Deep Learning Techniques for Colocated MIMO Radar
Systems

In this section, we first analyse some relevant differences between ML and DL tech-
niques. Then, we introduce readers to deep neural networks by illustrating their archi-
tecture, their training and a specific application to an FMCW radar system. Finally,
we briefly illustrate a few fundamental DL methods employed in the field of MIMO
radar systems.

3.3.1 Relevant differences between ML and DL techniques

Machine learning techniques allow to achieve satisfying accuracy in various applica-
tions at the price of a reasonable computational complexity. Nevertheless, in pattern
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recognition problems, their capability is often limited by the features selected to learn
common patterns and to detect them; in fact, in these cases, devising a transformation
able to extract a suitable internal representation from the observed raw data requires
good expertise and engineering skills [103]. A revolutionary data-driven approach to
feature extraction is offered by DL methods. Despite the significant computational
complexity of these methods, in recent times their implementation has become pos-
sible thanks to the availability of low-cost powerful graphic processing units (GPUs),
which make the exploitation of their inner parallelism possible.

Deep learning solves the problem of feature extraction by adopting a multilayer
representation of raw data. This fundamental principle is exemplified by a feedforward
deep network, also known as multilayer perceptron (MLP); such a network is able to
represent a complicated mathematical function by composing multiple simpler func-
tions, i.e. multiple layers. Generally speaking, a MLP consists of three different types
of layers: an input layer, multiple hidden layers with learnable weights and an out-
put layer. Its architecture can be represented through a directed acyclic graph (DAG),
whose structure is exemplified in Fig. 3.10, that refers to the specific case of a fully
connected MLP containing a single inner layer. The basic building block of each layer
is the so called neuron. In general, the output z(k)j generated by the j-th neuron of the
k-th layer can be expressed as

z
(k)
j = h

(
a
(k)
j

)
, (3.140)

with j = 1, 2, ..., Mk and k = 1, 2, ..., K; here, Mk denotes the overall number of
neurons in the k-th layer, K denotes the overall number of layers, h(·) is a differentiable
non-linear function (i.e., a sigmoid function, an hyperbolic tangent or rectifier linear
unit) and the quantity

a
(k)
j ≜

Mk−1∑
i=1

w
(k)
j,i z

(k−1)
i + w

(k)
j,0 , (3.141)

known as activation function, is a linear combination of the neuron inputs {z(k−1)
i ;

i = 1, 2, ..., Mk−1} (whose learnable weights are the Mk parameters {w(k)
j,i ; i = 1, 2, ...,

Mk−1}) and the bias w(k)
j,0 . The outputs of the neurons of the k-th layer are collected

in the vector
z(k) ≜

[
z
(k)
1 , z

(k)
2 , ..., z

(k)
Mk

]
, (3.142)

that feeds the successive hidden layer. The input layer is fed by the Dx-dimensional
input vector

x ≜ [x1, x2, ..., xDx ] , (3.143)

whereas the output layer generates the Dy-dimensional output vector

y ≜
[
y1, y2, ..., yDy

]
, (3.144)

on the basis of eqs. (3.140) and (3.141).
It is important to mention that: a) the learnable weights of the hidden layers can be

interpreted as an encoded representation of the inputs; b) unlike ML methods, where
a number of manually extracted features are chosen a priori, the considered neural
network automatically extracts features through the use of non linear functions.
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Figure 3.10: Directed acyclic graph describing the architecture of a fully-
connected neural network. Variables are represented by circles (i.e., by
nodes), whereas weights by the links between nodes. A single inner layer
(i.e., K = 1) is assumed for simplicity.

3.3.2 Training of a deep neural network

Training a deep neural network is an art [100]. Its objective is the same as that already
illustrated for ML methods, i.e. the minimization of a loss or an error function (see
Paragraph 3.2.2). However, in a feedforward neural network, this result is achieved by
using a local message passing scheme, according to which the internal representations of
each neuron are sent, alternately, forward and backward along the graph representing
the network itself (e.g., see [75, Par. 5.3]). This scheme, known as back-propagation
[104], operates as follows (batch processing is assumed here). For each pattern of the
training set, the activations of the hidden and output layers of the considered network
are computed through successive applications of eqs. (3.141) and (3.140), respectively;
this process is known as forward propagation, since it proceeds from the input to the
output of the network. The back-propagation algorithm, instead, allows to compute
the gradient of the selected error function, denoted E and corresponding to the loss
function defined for ML methods (see eq. (3.47)), with respect to the weights appearing
in each layer. The derivative of the error function E with respect to the weight w(k)

j,i ,
referring to the i-th input of the j-th neuron in the k-th layer of the network, can be
expressed as

∂E

∂w
(k)
j,i

=
∑
q

∂Eq

∂w
(k)
j,i

, (3.145)

with j = 1, 2, ..., Mk, i = 1, 2, ..., Mk−1 and k = 1, 2, ..., K; here, Eq represents
the error associated with the q-th observation. Based on the chain rule, the partial
derivative appearing in the RHS of eq. (3.145) can be evaluated as

∂Eq

∂w
(k)
j,i

= σ
(k)
j z

(k)
i , (3.146)
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where σ(k)j ≜ ∂Eq/∂a
(k)
j , z(k)i ≜ ∂a

(k)
j /∂w

(k)
j,i and a(k)j is defined by eq. (3.141). Conse-

quently, eq. (3.145) can be put in the form

∂E

∂w
(k)
j,i

=
∑
q

σ
(k)
j z

(k)
i . (3.147)

The quantity σ(k)j appearing in the last formula can be evaluated as follows. First, the
quantity

σ
(K)
l ≜ yl − tl (3.148)

is computed for the l-th unit of the output layer, where tl denotes its target. Then, the
backpropagation formula

σ
(k)
j = h′

(
a
(k)
j

)∑
l

w
(k+1)
l,j σ

(k+1)
l . (3.149)

is applied for k = K − 1, K − 2, ..., 1 and, given k, for j = 1, 2, ..., Mk; here, h′(·)
denotes the first derivative of the function h(·) appearing in eq. (3.140). This allows
us to recursively compute all the quantities {σ(k)l } on the basis of the similar quantities
{σ(k+1)

l } made available by all the units appearing in the (k+1)-th layer of the network.
It is worth noting that: a) the computational complexity of the network depends

on the number of neurons in each hidden layer, since this determines the number of
parameters to be tuned in the network; b) overfitting may be observed in the presence
of a larger number of neurons. The last problem can be mitigated by including a
regularization term in the considered error function (a similar strategy has been also
proposed for ML methods; see eq. (3.74) in Paragraph 3.2.2). An alternative to
this approach is represented by the so called early stopping procedure, that consists in
stopping network training when the error over a given validation dataset13 is minimised.

3.3.3 A specific application

Let us focus now on a neural network having the architecture illustrated in Fig. 3.10
and analyse its possible use in an FMCW radar system equipped with the antenna array
shown in Fig. 3.1-b) (d = λ/4 is assumed). In our experiment, the overall synthetically
generated dataset includes N̂t = 2500 observations, all acquired in the presence of a
single point target, whose range Rq and the azimuth ϕq are uniformly distributed over
the intervals [Rm, RM ] = [1 m, 7 m] and [ϕm, ϕM ] = [−60◦, 60◦], respectively, for any
q. Moreover, the values selected for the parameters of the employed radar system are
equal to those listed in the example of Paragraphs 3.2.2 and 3.2.2; the only difference is
represented by the standard deviation of the noise affecting the received signal samples,
that is σw =

√
2/2 V. The q-th observation and the associated label are14

rq ≜ [rq,0, rq,1, rq,2, rq,3, rq,4]
T

=
[
ψ̂0,q, ψ̂1,q, ψ̂2,q, ψ̂3,q, f̂q

]T
(3.150)

13The validation dataset is a set of data on which the performance of the considered network is
evaluated during its training.

14Unwrapped phases are employed in this case, since they ease network training
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and
tq ≜ [tq,0, tq,1]

T = [Rq, ϕq]
T , (3.151)

respectively; here, ψ̂v,q = ∠Âv,q (with v = 0, 1, 2 and 3) and Âv,q is the complex
amplitude measured on the v-th virtual element at the frequency f̂q (3.27) (see eqs.
(3.28) and (3.35)).

The aim of the neural network is predicting the position of the target (i.e., its
azimuth and range) on the basis of a new observation. In this case, the network has 5
inputs two outputs, since xj = rq,j (with j = 0, 1, ..., 4) and yk = tq,k (with k = 0, 1).
Moreover, a single hidden layer consisting of M1 = 10 neurons is used; each of these
neurons is connected to all the available inputs and employs the hyperbolic tangent
transfer function

h(x) ≜
exp(2x)− 1

exp(2x) + 1
(3.152)

in the evaluation of its output on the basis of eqs. (3.140)-(3.141). The predictions
of the target range and azimuth are computed by the output layer, that contains two
neurons.

The scaled conjugate gradient method [105] has been employed to train the network
described above. The size of the training set D is Nt = 2225, since 85% of the overall
dataset has been exploited for network training; the remaining part Dts of the dataset,
whose size is N̄t = 375, has been used as a test set. Our simulation results have
evidenced that the adopted network is able to accurately predict the position of a new
target; in fact, the RMSEs evaluated for the range and the azimuth on the set Dts are
approximately equal to 4 cm and to 0.2◦, respectively. Finally, it is worth noting that:

a) The use of the network described above does not require a specific expertise.
b) Unlike the regression methods illustrated in Paragraph 3.2.2, the employed net-

work is able to predict both the azimuth and the range of a single point target; however,
a by far larger dataset is used for its training.

In general, the main drawback of DL methods is represented by the size of the
dataset, which is usually much larger than that needed by ML techniques; this results
in a significant increase in the computational effort of the required training.

3.3.4 Specific methods

In this paragraph, we focus on specific deep learning methods, namely autoencoders,
convolutional neural networks, convolutional autoencoders, recurrent neural networks
and generative adversarial networks. Each method is briefly described and some con-
siderations on its use in the field of MIMO radars are made.

Autoencoders

An autoencoder (AE) is a neural network that, similarly as the PCA technique, is able
to perform dimensionality reduction by learning an efficient representation of its input
data in an unsupervised fashion. Since the goal of an AE is to approximate the identity
function without learning it exactly, its Dy-dimensional output vector (3.144) can be
expressed as

y = hw (x) ≈ x, (3.153)
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where hw(·) represents the transformation performed by the network on itsDx-dimensional
input vector x.

The architecture of an under-complete AE based on a symmetric encoding-decoding
structure is illustrated in Fig. 3.11 [106]. If we consider the encoder side, the number
of units contained in each hidden layer15 decreases as we move from the network input
to the output of that side; this is due to the fact that the network tries to learn a
compressed version of the input data. On the other hand, the decoder has the goal
to reconstruct, as faithfully as possible, the data vector x available at the AE input,
starting from its compressed representation. For this reason, the dimensionality of
input layer of the decoder side is lower than that of its output layer. If this network
is trained to minimise a reconstruction error, it is able to learn the most important
attributes of the input data and how to best reconstruct the original input from an
encoded state; ideally, this encoding learns and describes the latent attributes of the
input data.

Other well known AE architectures are the denoising AE and the sparse AE. The
former AE is largely used for the denoising of images, i.e. to reconstruct a clean image
from a corrupted version of it. This task is accomplished by storing only the relevant
and recurrent features of an image inside the hidden layers, so that the noise affecting
it can be filtered out. The latter one, instead, makes an over-complete representation
of its input available at its output.

In the following, we will take into consideration under-complete AEs only, since
they are employed in various radar applications, as shown in Paragraphs 3.5.1-3.5.4. It
is also worth mentioning that, in such applications, autoencoding is often employed as
pre-processing method preceding supervised classification; this allows to learn repetitive
structures of input data when the training dataset is not so large. The last application
of AEs will be analysed in Paragraph 3.3.4 in more detail.

Encoder layers Decoder layers

Compressed 

Data (   )

x y

z

Figure 3.11: Architecture of an under-complete autoencoder characterized
by a symmetric encoding-decoding structure.

Let us focus now on a possible application of auto-encoding to an FMCW radar
system equipped with the antenna array shown in Fig. 3.1-b) (d = λ/4 is assumed)
and operating in the presence of at most a single point target. In this case, the set
{r0,q, r1,q, r2,q, r3,q} (see eq.(1.9)), consisting of four N -dimensional noisy vectors be-
comes available in the q-th trial, with q = 0, 1, ..., Nt − 1. Each of these vectors

15Note that, in Fig. 3.11 and in the following figures, each layer is represented by a prism having a
rectangular base and whose height is proportional to the overall number of its units.
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undergoes the DFT processing described in Paragraph 3.2.1; this allows to compute
the 4N̂0-dimensional feature vector

Rq = [Rq,0, Rq,1, ..., Rq,4N̂0−1]
T

≜

[(
Y

(q)
0

)T
,
(
Y

(q)
1

)T
,
(
Y

(q)
2

)T
,
(
Y

(q)
3

)T]T
(3.154)

for any q; here, for any v,

Y(q)
v = [Y

(q)
v,0 , Y

(q)
v,1 , ..., Y

(q)

v,N̂0−1
]T

≜ Mr[|Xv,bm | , |Xv,bm+1| , ..., |Xv,bM |]T (3.155)

is an N̂0-dimensional vector, Xv,k is the k-th element of the N0-dimensional vector
X

(q)
v computed on the basis of eq. (3.20) (with k = bm, bm + 1, ..., bM ), Mr is the

oversampling factor employed in DFT processing,

N̂0 ≜ bM − bm + 1, (3.156)

and bm and bM are integer parameters delimiting the portion of the received signal
spectrum over which an amplitude peak, due to the presence of a possible target, is
expected. Note that the couple (bm, bM ) represents a form of a priori information and
that, in general, the inequality 0 ≤ bm < bM ≤ N0 − 1 holds. Let assume now that the
overall data set

Do = {(Rq, tq); q = 0, 1, ..., N̂t − 1}, (3.157)

acquired in N̂t = 2400 independent trials, is available; here, the label tq = 1 (−1)
refers to the presence of a real (false) target detected on the basis of the deterministic
strategy expressed by eq. (3.124). Moreover, the following assumptions are made in
synthetically generating the set Do (3.157):

a) Half of its data are associated with the detection of a real target, the remaining half
with the detection of a false target.

b) The parameters of the employed radar system take on the same values as those
selected for the example illustrated for the SVM and K–NN methods in Paragraph
3.2.2.

c) The stochastic models adopted for amplitude a(q)v of the sinusoid observed on the
v-th antenna in the presence of a real target, and for the range Rq and the
azimuth ϕq of the target (if present) are the same as those defined in the example
illustrated for the SVM and K–NN methods in Paragraph 3.2.2.

d) The size N̂0 of the vector X
(q)
v is equal to 121, since (see eq. (3.156))

bm =

⌊
2Rm µ

c
N0Ts

⌋
= 13 (3.158)
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and
bM =

⌊
2RM µ

c
N0Ts

⌋
= 133, (3.159)

where Rm = 0.5 m (RM = 5.0 m) represent the minimum (maximum) range
expected for the target.

An AE is employed in the considered radar system to reduce the dimensionality
of the feature vector Rq (3.154) (whose size is 4N̂0 = 484); note that, unlike the
deterministic approach described in Paragraph 3.2.1 and based on a maximum search,
an unsupervised data-driven method is exploited in this case. The AE architecture we
adopt is similar to the one illustrated in Fig. 3.11, but includes only a single layer in its
encoder and a single layer in its decoder, for simplicity. The compressed representation
available at the output of the encoder layer is represented by the M -dimensional vector

zq ≜ he (WeRq + be) (3.160)

collecting the hidden variables; here, We is a weight matrix of size M × 4 N̂0, be is an
M -dimensional bias vector and he (x) is an M -dimensional vector resulting from the
element-by-element application of the positive saturating linear transfer function

h(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

(3.161)

to the 4N̂0-dimensional input vector Rq (3.154). The decoder maps the encoded rep-
resentation zq (3.160) back to the 4N̂0-dimensional vector

yq = [yq,0, yq,1, ..., yq,4N̂0−1]
T

≜ Wd zq + bd, (3.162)

that represents an estimate of the original input vector; here, Wd is a 4N̂0 × M
weight matrix and bd is an 4N̂0-dimensional bias vector. In our simulations, M = 60
has been selected; consequently, a 60-dimensional hidden vector is extracted from
a 484-dimensional observation (i.e., roughly an eightfold dimensionality reduction is
achieved). Moreover, the scaled conjugate gradient method [105] has been employed
to train the AE. Training is based on the dataset D, that contains 90% of the dataset
Do (3.157) and, consequently, involves Nt = 2160 observations; the remaining part of
the dataset, whose size is N̄t = 240, forms the test set Dts. The effectiveness of the
employed AE is exemplified by Fig. 3.12, where the output vector yq generated by the
autoencoder in response to a specific feature vector Rq of the test set is shown; this is
also confirmed by the small RMSE evaluated over Dts: RMSE = 0.1 V is found in this
case. This leads to the conclusion that the compressed representation computed by
the AE and expressed by the vector zq (3.160) is really able to capture all the relevant
information conveyed by the input vector Rq (3.154).

Finally, it worth mentioning that the compressed representation zq (3.160) can be
exploited to train the linear SVM and K-NN methods described in Paragraph 3.2.2
and employed to discriminate between real and false targets. In our experiment, these



120 CHAPTER 3. ML AD DL TECHNIQUES FOR MIMO RADARS

two supervised methods have trained on a dataset consisting of Nt = 240 observations
(K = 4 has been selected for the K-NN method); half of them are associated with
the detection of a real target, half with the detection of a false target. Our computer
simulations have evidenced that, despite the dimensionality reduction, a slightly better
accuracy is achieved by the considered classification techniques; in fact, the obtained
accuracies are equal to 93% and 97% for the K-NN and the linear SVM, respectively
(N -fold cross validation, with N = 5, has been used).
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Figure 3.12: Example of a feature vector Rq (3.154) (red line) and of
the corresponding output vector yq (3.162) (blue line) predicted by the AE
employed in the example of Paragraph 3.3.4. The contributions of the four
vectors {Y(q)

v ; v = 0, 1, 2, 3} which Rq is made of are delimited by green
dashed lines.

Convolutional neural networks

Convolutional neural networks (CNNs) play an important role in DL applications,
since they allow to exploit the spatio-temporal information available in a sequence
of images [103], [106]; for this reason, they are trained using a labelled dataset. The
processing performed by a CNN aims at capturing the local features of input images and
is based on spatially localized convolutional filtering. Its typical architecture includes
convolutional, pooling, fully connected layers, and is motivated by the fact that, in
images, local groups of values may exhibit high correlation and local statistics are
invariant to position. In fact, convolutional layers aim at detecting local features on
the basis of the data originating from the previous layer, pooling layers at merging
semantically similar features and fully connected layers at generating the final feature
vector.

The processing accomplished by the convolution and pooling operations on a greyscale
image is outlined in Fig. 3.13. The output of the convolution depends on both its in-
put, represented by a small portion of the image, and the adopted convolution kernel,
denoted {K[m,n]}; moreover, this operation is repeated on multiple disjoint portions
until the whole input image is scanned. From a mathematical viewpoint, the convolu-
tion input is a matrix, consisting of IS × IS pixels and denoted I = [I[i, j]], whereas



3.3. MIMO RADARS AND DEEP LEARNING 121

the resulting output is a SY ×SY matrix, called activation or feature map and denoted
Y = [Y [i, j]]. The (i, j)-th element (i.e., unit) of the activation map is evaluated as

Y [i, j] ≜ σ

 F/2−1∑
m=−F/2

F/2−1∑
n=−F/2

K[m,n] I[i−m, j − n]

 , (3.163)

where F and K[m,n] are the size of the convolutional filter (also known as kernel
size) and its (m,n)-th weight, respectively, and σ(·) is a non linear activation function.
Another relevant parameter of a convolutional layer is its stride S, that represents the
number of pixels shifts over the input matrix when the kernel moves from a portion
of the image to the next one; for instance, when the stride is one, the filter moves
one pixel at a time. The area of the input image processed by the kernel can be also
extended by adding a set of pixel (usually set at zero) to the border of image itself, as
shown in Fig. 3.13; in that figure, the parameter P (dubbed padding) represents the
number of zero columns and rows added to the input image. The stride, the padding
and the kernel size of a convolutional layer influence the size SY of the output matrix;
in fact, it can be shown that

SY =
IS − F + 2P

S
+ 1. (3.164)

For this reason, the above mentioned parameters have to be jointly selected in a way
that the RHS of last equation takes on an integer value.

Generally speaking, the convolution operation expressed by eq. (3.163) can be per-
formed Nd times over the same image; in accomplishing this procedure, the parameters
P and S do not change. This produces the output volume (i.e., matrix) W shown in
Fig. 3.13 and having size SY ×SY ×Nd (the parameter Nd is called depth); this matrix
results from stacking Nd distinct activation maps, each representing a specific slice.

The convolutional layer represented in Fig. 3.13 feeds a pooling layer, whose task is
reducing the dimensionality of each input slice and, consequently, the overall complexity
of the considered CNN. The processing accomplished by the pooling layer can be easily
described by referring to a single slice, denoted Y, of the output volume W. Similarly as
the convolution operation, the pooling operation is fed by a portion, having size Fp×Fp,
of the considered slice and generates the SYp × SYp output matrix Yp = [Yp[i, j]]. The
most popular layers of this type are known as max pooling and as average pooling. In
the former case, the (i, j)-th pixel of the output matrix Yp is computed as

Yp[i, j] ≜ max
p,q∈SFp (i,j)

Y [p, q], (3.165)

whereas in the latter one as

Yp[i, j] ≜
1

F 2
p

∑
p,q∈SFp (i,j)

Y [p, q], (3.166)

where SFp(i, j) ≜ {(p, q)|−Fp/2+ i ≤ p ≤ i+Fp/2−1,−Fp/2+ j ≤ p ≤ Fp/2−1+ j)}
and the parameter Fp is called pool size. It can be shown that

SYp =
SY − Fp
Sp

+ 1, (3.167)
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where Sp is the stride of the pooling (its meaning is similar to that illustrated above for
the parameter S). Note that the depth Nd of the final output volume Wp generated
by pooling is the same as that of W.

Finally, it is important to point out that:
a) in CNN applications, a chain of pairs of convolutional and pooling layers is

commonly used. Moreover, fully connected layers (FC) of different lengths are often
added at the end of the cascade of convolutional/pooling layers, as illustrated in Fig.
3.14; this allows to combine all the extracted features in a 1D vector.

b) As shown in Paragraphs 3.5.1-3.5.4, CNNs are employed in a number of radar ap-
plications ranging from human activity characterization to autonomous driving. Some
experimental results about the use of CNNs in the classification of three different human
activities CNN are illustrated in Section 3.7.
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Figure 3.13: Representation of the convolution and pooling operations
accomplished by a CNN on a greyscale image. The area corresponding to
the convolution input (red square) is moved from left to right, and up and
down over the input image. The convolution generates the activation map
Y, that represents a portion of the output volume W. Pooling is employed
to reduce the size of the final map Yp.
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Figure 3.14: Architecture of a CNN containing multiple convolutional
layers, max pooling layers and fully connected layers.

Convolutional autoencoders

A convolutional autoencoder (CAE) may represent an appealing technical option in
those applications in which a large amount of labelled data is unavailable. In fact,
it combines the advantages offered by unsupervised learning techniques (i.e., by AEs)
with the capability of CNNs to extract the spatio-temporal information from a sequence
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of images. The architecture of a CAE is exemplified by Fig. 3.15; this network consists
of an encoder side, combining convolutional and pooling (i.e., downsampling) layers,
and of a decoder side, made of transposed convolutional (also called deconvolutional)
and unpooling (i.e., upsampling) layers. Each transposed convolutional layer allows to
upsample its input feature map with the aim of retrieving the original shape of the image
available at the input of the first convolutional layer contained in the encoder side. In
each unpooling layer, instead, an upsampling procedure exploiting the positions of the
maxima stored in the corresponding max pooling operation executed at the encoder
side is accomplished.

Input

Image (  )

Output

Image (  )

Conv1

Conv2

Conv3 Deconv1

Deconv2

Deconv3

Compressed 

Data (  )𝐳

Down-sampling Up-sampling

𝐱
𝐲

Figure 3.15: Example of CAE architecture.The acronym ConvX (with
X = 1, 2 and 3) identifies the X-th convolutional and pooling layer, whereas
DeconvX (with X = 1, 2 and 3) the transpose and unpooling layer. The
vector z can be considered as a compressed representation of the input image
x.

Recurrent neural networks

In the neural networks treated so far, all the inputs and all the outputs are time-
independent from each other. Features related to the time evolution of the observed
data can be extracted through a recurrent neural network (RNN) [107]. A well known
example of RNN is the so called Vanilla RNN, whose architecture is represented in
Fig 3.16-a). In this network, past information contribute to the computation of its
output, since they are reinjected into the network itself and stored in its internal (i.e.,
hidden) state. Moreover, the following three distinct weight matrices are employed by
this network: a) the M×Dr matrix U employed in the mapping of the Dr-dimensional
input vector r(t)q at time t to its M -dimensional hidden state h(t); b) the M×M square
matrix W involved in the update of its internal state; c) theD′

r×M matrix V employed
to map h(t) to its D′

r-dimensional output vector o(t). In fact, based on these matrices,
the state update of the network and the computation of its output at time t can be
expressed as

h(t) = ϕ(Wh(t−1) +Ur(t)q ) (3.168)

and as
o(t) = Vh(t), (3.169)

respectively; here, ϕ(·) denotes a non-linear activation vector function.
It is important to point out that:
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a) A RNN can be thought as the result of the interconnection of multiple copies of
the same network, each passing a message to a successor. In fact, unrolling it leads to
a chain-like architecture, made of multiple replicas of the same module and such that
each module passes a message to its successor.

b) The standard procedure for training a RNN is known as backpropagation through
time (BPTT) [108]. Unluckily, it may not be so effective when training involves long
time sequences, because of the so called vanishing and the exploding gradient problems
[109]. The former problem refers to the exponential decrease observed in the norm of the
gradient of the employed cost function during training, whereas the latter one concerns
the opposite behaviour (more specifically, a large increase of the same gradient).

The problems mentioned in the last point can be circumvented by adopting a long
short term memory (LSTM) neural network [110], whose architecture is illustrated
in Fig. 3.16-b). This architecture consists of a memory cell and of three different
multiplicative gates, namely an input gate, an output gate and a forget gate. The input
gate, whose content at time t is denoted i(t), represents the input of the memory cell
(whose content at time t is denoted c(t)) and is employed to protect the content of this
cell from perturbations due to irrelevant inputs. The output gate, whose content at
time t is denoted o(t), protects the other units connected to the output of the memory
cell from perturbations due to irrelevant memory contents. Finally, the forget gate,
whose content at time t is denoted f (t), protects the contents stored in the vector c(t)

from the unwanted fluctuations of the memory at the previous instance (i.e., from
c(t−1)). In summary, the cell allows for long term memory storage, whereas the gates
prevent memory contents from being perturbed by irrelevant inputs and outputs.

If r(t)q denotes the vector of input features at time t, the time evolution of the LSTM
network shown in Fig. 3.16-b) is described by the equations

i(t) = σ(Ui r
(t)
q +Wi s

(t−1)), (3.170)

f (t) = σ(Uf r
(t)
q +Wf s

(t−1)), (3.171)

o(t) = σ(Uo r
(t)
q +Wo s

(t−1)), (3.172)

g(t) = σc(Ug r
(t)
q +Wg s

(t−1)), (3.173)

c(t) = c(t−1) ⊙ f (t) + g(t) ⊙ i(t) (3.174)

and
s(t) = σc(c

(t))⊙ o(t); (3.175)

here, σ(·) is a logistic sigmoid vector function, σc(·) is an hyperbolic tangent vector
function, the operator ⊙ denotes the Hadamard product, s(t) is the output of the
memory cell at time t, Ui,Uf ,Uo and Ug (Wi,Wf ,Wo and Wg) are weight matrices
characterizing the multiplicative gates and referring to the vector r(t)q (s(t−1)), and g(t)

can be interpreted as a candidate state, whose influence on the state c(t) is controlled
by the input gate through i(t). From eqs. (3.170)-(3.175) it is easily inferred that:
a) the contents of the input, output and forget gates at time t are proportional to a
combination of both the vectors r

(t)
q and s(t−1); b) the output state s(t) depends not

only on the cell content c(t), but also on the content of the output gate (i.e. on o(t)).
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Figure 3.16: Architecture of: a) a Vanilla RNN; b) an LSTM neural
network.

Let us focus now on the application of an LSTM neural network to an FMCW radar
system equipped with a single TX-RX pair and detecting a person that accomplishes
specific activities and, in particular, that runs or walks. In this case, each observation
processed by the LSTM involves Nf consecutive frames, in each of which Nc chirps
are transmitted (see Paragraph 1.3). For this reason, the q-th observation processed
by the considered network is extracted from Nf Nc noisy vectors, acquired over Nf

consecutive frames, (i.e., over Nf Nc consecutive chirps). In the p-th frame (with
p = 0, 1, ..., Nf − 1), the set of vectors {r(q)p,0, r

(q)
p,1, ..., r

(q)
p,Nc−1}, each having size N , is

available; here,

r
(q)
p,k =

[
r
(q)
p,k,0, r

(q)
p,k,1, ..., r

(q)
p,k,N−1

]
, (3.176)

represents the vector of signal samples acquired in the k-th chirp interval of the p-th
frame and its n-th sample r(q)p,k,n is expressed by a formula similar to eq. (1.23) (with
n = 0, 1, ..., N − 1). In our experiment, the Phased Array System toolbox available
in the MATLAB environment is employed to generate the useful signal component
(i.e., the contribution of the detected person) to the vector r

(q)
p,k (3.176) [111]. This

contribution is modelled as the superposition of L different echoes, each originating
from a point-like target and associated with a different part of the body. Moreover, in
the p-th frame contributing to the q-th observation, the l-th point target is characterized
by its RCS a

(q)
p,l , its range R(q)

p,l and its radial velocity v
(q)
p,l (with p = 0, 1, ..., Nc − 1

and l = 0, 1, ..., L− 1). These parameters are assumed to be static over each frame; in
addition, the values they take on in the p-th frame are automatically computed by the
above mentioned toolbox on the basis of the height hp of the person, its position and
its RCS in the previous (i.e., in the (p − 1)-th) frame, the direction of its movement
with respect to the radar system and its radial velocity vq. The dataset processed by
the network is

Do ≜ {(Rq, tq); q = 0, 1, ..., N̂t − 1}, (3.177)

where

Rq ≜

[(
x
(q)
0

)T
,
(
x
(q)
1

)T
, ...,

(
x
(q)
Nf−1

)T]T
, (3.178)
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is the q-th noisy observation, tq its label,

x(q)
p ≜ [R̂(q)

p , v̂(q)p ]T , (3.179)

and R̂
(q)
p and v̂

(q)
p are the estimates of the range R(q)

p and of the velocity v(q)p , respec-
tively, of the considered person in the p-th frame (with p = 0, 1, ..., Nf − 1); moreover,
it is assumed that tq = 1 (−1) if the person is walking (running), i.e. if |v(q)p | ≤ vth

(|v(q)p | > vth), being vth a proper threshold.
In our experiment, the dataset Do (3.177) has been acquired in N̂t = 400 inde-

pendent trials; half of the labels of this dataset are associated with a walker and the
remaining half with a runner; moreover, the estimates R̂(q)

p and v̂
(q)
p are computed by

the algorithm consisting of the following two steps:

1. Range Estimation - In this step, the N -dimensional vector r(q)p,k (3.176) undergoes

zero padding; this results in the N0-dimensional vector r
(q)
p,k,ZP, with N0 ≜ MrN

(here, the parameter Mr represents the selected oversampling factor). The last
vector feeds a N0-th order FFT, whose output is the N0-dimensional vector
X

(q)
p,k = [X

(q)
p,k,0, X

(q)
p,k,1, ..., X

(q)
p,k,N0−1]

T . Then, the average power spectrum

P (q)
m ≜

1

Nc

Nc−1∑
k=0

|X(q)
p,k,m|

2, (3.180)

is computed for k = 0, 1, ..., Nc−1. Finally, R̂(q)
p is evaluated as (see eqs. (3.25),

(3.27) and (3.29))
R̂(q)
p =

c

2µ
f̂ (q)p , (3.181)

where f̂ (q)p = m̂
(q)
p /N0Ts and

m̂(q)
p = arg max

m∈{0,1,...,N0/2}
P (q)
m . (3.182)

2. Velocity Estimation - This step is based on the Nc-dimensional vector

Â(q)
p = [Â

(q)
p,0, Â

(q)
p,1, ..., Â

(q)
p,Nc−1]

T , (3.183)

where
Â

(q)
p,k =MrX

(q)

p,k,m̂
(q)
p

(3.184)

and m̂
(q)
p is expressed by eq. (3.182). Applying zero padding to this vector pro-

duces the N ′
0-dimensional vector Â

(q)
p,ZP, with N

′
0 ≜ MANc (here, the parameter

MA represents the selected oversampling factor); the last vector feeds a N
′
0-th

order FFT, whose output is the N ′
0-dimensional vector

d(q)
p ≜

[
d
(q)
p,0, ..., d

(q)
p,N ′

0/2
, d

(q)
p,−N ′

0/2+1
, ..., d

(q)
p,−1

]T
. (3.185)
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After solving the maximization problem

k̂(q)p = arg max
k̃∈{−N ′

0/2+1,−N ′
0/2+2,...,N ′

0/2}

∣∣∣d(q)
p,k̃

∣∣∣ , (3.186)

the estimate (see eqs. (1.24) and (3.27))

v̂(q)p =
1

2
f (q)p λ (3.187)

of the person velocity is evaluated; here,

f (q)p ≜
2k̂

(q)
p

N ′
0T0

(3.188)

represents the Doppler frequency estimated in p-th frame.

For any q, in generating the sequence of pairs {(R̂(q)
p , v̂

(q)
p ); t = 0, 1, ..., Nf − 1}, the

following assumptions have been made about the detected person:
a) its response to the signal radiated by the radar system consists of L = 16 echoes;
b) its height hp is uniformly distributed over the interval (1.70 , 2.0) m;
c) its initial coordinates in a 3D space are (x(q)0 , y(q)0 , z(q)0 ) = (0,10,0) m, whereas the

coordinates of the employed radar device in the same reference system are (xr, yr, zr) =
(0,0,1) m;

d) the angle ϕi representing the initial direction of its velocity is uniformly dis-
tributed over the domain (60◦ , −60◦)∪ (120◦, 180◦) (the reference line, with respect to
which this angle is measured, is perpendicular to the array of the radar system).

e) the radial velocity v
(q)
p is uniformly distributed over the interval (0.1, 2.1) m/s

((−2.1, −0.1) m/s) if ϕi ∈ (60◦ , −60◦) (ϕi ∈ (120◦, 180◦)) for any p and, in each frame,
changes in an independent fashion;

f) the initial amplitude a(q)0,l is equal to 1V (with l = 0, 1, ..., L− 1).
Moreover, the following choices have been made for the employed radar system:
a) the transmitted waveform is characterized by λ = 4 mm, µ = 1.5625 · 1013 Hz

s−1, T = 64 µs and T0 = 72 µs;
b) each frame consists of Nc = 128 chirps;
c) consecutive frames are separated by a time interval lasting ∆t = 40 ms;
d) the sampling period employed at the receive side is Ts = 12.5µs;
e) the overall number of time-domain samples acquired in each chirp interval is

N = 1024 and the standard deviation of the noise affecting each sample is σw = 0.1 V
(see eq. (1.23));

f) the oversampling factors Mr = 2 and MA = 8, and the threshold vth = 1.1 m/s
are selected for the range/estimation algorithm illustrated above;

g) each observation refers to Nf = 30 consecutive frames.
The representation, on a Cartesian plane, of two different feature vectors (see eqs.

(3.178)-(3.179)), is provided in Fig. 3.17. These vectors are denoted R0 and R1; the
former refers to a runner, whereas the latter to a walker. Note that the range difference
∆R̂0 ≜ |R̂(0)

Nf−1−R̂
(0)
0 | referring to the runner is greater than the corresponding quantity

(i.e., ∆R̂1 ≜ |R̂(1)
Nf−1 − R̂

(1)
0 |) referring to the walker. In this case, the proposed LSTM
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Figure 3.17: Representation of the elements of the two feature vectors R0

and R1; one refers to a runner (red lines), the other one to a walker (blue
lines).

network is employed to discriminate a walker from a runner. The core of its architecture
is characterized by an LSTM layer, able to learn the long term dependencies between
different frames. The behaviour of network is described by the block diagram shown in
Fig. 3.16 and by eqs. (3.170)-(3.174) (the time index t corresponds to the frame index
p in this case). Moreover, in our experiment, the following choices have been made:

1) the size of the input vector is Dr = 2, whereas that of the inner state is M = 10;
2) the non-linear gate activation function σ(x) = [1 + exp(−x)]−1 is used;
3) the size of each of the weight matrices {Ui, Uf , Ug, Uo} is M ×Dr = 10 × 2,

whereas that of the weight matrices {Wi,Wf ,Wg,Wo} is M ×M = 10× 10;
5) both the initial cell content c(0) and the initial state s(0) are independently chosen

as random vectors of size M = 10;
6) a fully connected layer and a softmax layer16 have been added at the output of

the LSTM layer to perform classification.
The adaptive moment estimation (briefly, adam) optimizer [112] has been exploited

to train the proposed network (i.e., to tune all the above mentioned weighted matrices);
the batch size, the (constant) learning rate and the number of epochs selected for this
procedure areNS = 32, γ = 10−3 andNE = 50, respectively (see eq. (3.73)). Moreover,
a training set D of size Nt = 300, corresponding to 75% of the dataset Do (3.177) has
been employed for training; the remaining part Dts of Do has been used as a test set
(collecting N̄t = 100 observations)). Our results have evidenced that a 98% accuracy
is achieved by the adopted LSTM network. These results suggest that:

a) Combining deterministic estimators with deep learning methods can result in
classification techniques achieving excellent performance;

b) Merging range and velocity information can enhance the discrimination capabil-
ity of the network;

c) Observing range/velocity evolution over time (i.e., over multiple consecutive
frames) significantly contribute to improve network accuracy.

16See Par. 3.3.4 for further details about this layer.
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Generative adversarial networks

A generative adversarial network (GAN) is a probabilistic generative method consisting
of two deep neural networks, called generator and discriminator, and competing one
against each other [113]; its architecture is shown in Fig. 3.18. The generator produces a
sample17 x = G(z,θg) from a pdf fg(x), starting from an input noise variable z ∼ fz(z);
here, G(·, ·) is called generative model and is typically implemented through a neural
network, whereas θg is the vector of training parameters.

Generator

Discriminator

( )z zzf
 ,G z θg

( , )x θdD

y( )x xxf

Figure 3.18: Architecture of a generative adversarial network.

The discriminator, instead, generates the output y = D(x,θd), that represents the
probability that an input x originates from the training data (i.e., from their pdf
fd(x)) rather than from the generator pdf fg(x); here, D(·, ·) represents the discrimi-
native model and θd is the vector of the training parameters characterizing the network
that implements the model itself. In practice, the generative model can be thought as a
team of counterfeiters, trying to produce fake currency for fooling the police, while the
discriminator, acting like the police, tries to detect the counterfeit currency. Competi-
tion in this game drives both teams to improve their methods. In fact, the objective of
the training of the generative network is minimizing the accuracy of the discriminative
network when the data generated by the former network are provided to the latter one;
on the contrary, the objective of the discriminator is maximizing the probability of as-
signing the correct label to both the real data of the training set and the fake samples
originating from the generator. For this reason, the interaction between the discrim-
inator and the generator can be modelled as a two-player minimax game. This leads
to formulating the optimal strategy of these networks as the solution of the minimax
problem

min
G

max
D

V (D,G) (3.189)

= min
θg

max
θd

V (D,G), (3.190)

where

V (D,G) ≜ Ex∼fd(x) {logD (x,θd)}] +
+ Ez∼fz(z) {log (1−D (G (z,θg) ,θd))} .

(3.191)
17Scalar variables are considered in this paragraph, for simplicity.
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The backpropagation algorithm can be used for training a GAN; the training process
allows the discriminator of the considered GAN to learn, through a proper feature
representation, how to identify real inputs among the generated data and, similarly,
the generator how to generate realistic data.

Generative adversarial networks have the favourable property that a wide variety
of functions can be incorporated into their model; these make them able to represent
very sharp (and even degenerate) data distributions. However, their use require the
availability of efficient tools to solve the minimax optimization problem (3.189). More-
over, a tight synchronization between the generator and the discriminator has to be
guaranteed during training; in fact, if one of the two networks learns too quickly, the
other one may fail to learn.

Softmax Classification Layer

Generally speaking, the DL methods illustrated above can be employed to extract
the relevant features of an image. Once this result has been obtained, any multi-
class problem referring to that image can be solved by adding a softmax layer to the
employed network. If K classes are assumed, the target of this layer is generating the
posterior probability

pi =
exp(ai(r

(L)))∑K−1
j=0 exp(aj(r(L)))

(3.192)

for the i-th class, with i = 0, 1, ..., K − 1; here,

aj(r
(L)) = wT

j r
(L) + wj,0 (3.193)

and r(L) is an L-dimensional feature vector made available by the previous hidden
(convolutional or LSTM) layer, and wj and wj,0 are an L-dimensional weight vector
and a bias term, respectively, characterizing the softmax layer.

3.4 Comparison of ML and DL techniques

The ML and DL methods described in Secs. 3.2 and 3.3 are compared in Table 3.1 in
terms of: a) the type of their training procedure (supervised, S, or unsupervised, U);
b) the complexity of their training procedure (low, L, medium, M, or high, H); c) their
classification accuracy; d) their sensitivity to clutter and noise; e) the method they
use for extracting the salient features (manual, M, or automatic, A); f) the size of the
dataset they require in order to achieve a good generalization capability (small, S, or
large, L). If these methods are employed for image classification, it should be always
kept in mind that:

1. The K-NN and SVM methods require a limited computational load, but achieve
low classification accuracy. They are outperformed by CNNs and CAEs at the
price, however, of a substantially larger computational effort. Moreover, the last
methods are insensitive to a spatial transformation of input data. To understand
the importance of the last property (known as invariance property), let us take
into consideration a CNN employed to classify different objects in a radar image.
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This network, thanks to the above mentioned property, is able to select only those
portions of the images relevant for its task and its behaviour is not influenced
by other irrelevant characteristics, such as the position of a given target or its
rotation.

2. Long short term memory networks are able to cope with a sequence of signals
evolving over time.

3. Generative adversarial networks are able to generate synthetic images on the basis
of a set of noisy input data. This property can be exploited in radar systems to
de-noise images [114] or to detect abnormalities.

3.5 Applications of Machine and Deep Learning Techniques
to MIMO Radars

In this section we focus on some applications of the learning methods illustrated in
Sections 3.2 and 3.3 to MIMO radar systems. More specifically, we illustrate the
exploitation of these methods in the following fields: a) human motion characterization;
b) human gesture recognition (HGR); c) fall detection and health-care monitoring; d)
autonomous driving. Various research results are available in the technical literature
about these fields; some essential manuscripts concerning each of them and the use of
specific learning methods are listed in Table 3.2.

I/Q raw 

data
Radar 

pre-processing
Feature extraction

Classifier
Classified

object 

Regression

algorithm

Parameter

estimate

Figure 3.19: Block diagram representing the signal processing chain of a
MIMO radar system that employs a learning method.

Before delving into the analysis of each application, it is worth pointing out that
the processing accomplished at the receive side of any MIMO radar system employing
a learning method for classification and/or regression is based on the block diagram
shown in Fig. 3.19. First, the received signal undergoes frequency downconversion
to generate its in phase and quadrature components. Sampling these components
produces a stream of raw data, which is pre-processed (e.g., it may undergo FFT
processing; see Paragraphs 1.3 and 3.2.1) before extracting relevant features from it.
Finally, these features are processed by a classifier or by a regression algorithm; in the
former case, a specific object class is selected, whereas, in the latter one, an estimate
of the parameters of interest is evaluated. Feature extraction is based on our prior
knowledge about the employed radar system if a ML method is exploited; on the
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contrary, features are automatically selected and extracted from pre-processed data
if a DL method is adopted. In the following paragraphs, various details about the
processing accomplished by the blocks appearing in Fig. 3.19 are provided.

Methods Learning Complexity Performance Clutter Sensitivity Features Extraction Dataset size
(S/U) (L/M/H) (L/H) (L/H) (M/A) (S/L)

KNN S L L L M S

SVM S L L L M S

Adaboost S M H H M S

PCA U L L L A S

K-Means U L L L A S

AE U H L H A S

CNN S H H H A L

CAE U & S H H H A L

RNN S H H H A L

GAN S H H H A L

Table 3.1: Overview of the main characteristics of the learning techniques
described in this chapter.

Learning method Clustering NB K-NN SVM PCA HMM AE CNN CAE LSTM GAN
Field/Manuscript no.

a)
[114–129] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b)
[130–134] ✓ ✓ ✓

c)
[88,135–140] ✓ ✓ ✓ ✓ ✓

d)
[92,141–154] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.2: Specific learning methods investigated in various manuscripts
that concern the four application fields considered in Section 3.5.

3.5.1 Human motion characterization

Human motion characterization aims at recognizing and classifying different human
activities on the basis of the micro-Doppler fluctuations observed in the spectrograms of
radar signals. These fluctuations are known as micro-Doppler signatures (see Paragraph
1.3). Classifiers employed for this application aim at: a) identifying different types
of human motion (e.g., walking, running and sitting) [115]; b) differentiating human
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motion from that of other living animals [116]; c) remotely identifying potential active
shooters [117,118].

In the technical literature about this application, the following two methods are
exploited to extract relevant features from spectrograms: a) manual extraction of hand-
crafted features; b) automatic extraction of features based on a data-driven approach.
Machine learning methods exploiting manual extraction of features have been investi-
gated in [118–126], whereas the automatic extraction of features from micro-Doppler
signatures or spectrograms through DL methods has been proposed in [114, 115, 117,
127–129]. It is important to keep in mind that:

1. Machine learning methods relying on spectrogram information usually exploit:
a) physical features related to the characteristics of the observed motion; b)
transform-based features; c) speech-inspired features. Physical features include
the frequency and the bandwidth of the received waveforms, the offset and the
signal intensity of the associated signature (see Paragraph 1.3). The first two
physical features are strictly related to motion dynamics, whereas the other types
of features to the RCS of the body of the observed person [116].

2. Transform-based features exploited by ML methods can be extracted from a
received waveform by evaluating a) its spectral coefficients (e.g., its discrete cosine
transform coefficients) or b) other signal-dependent coefficients. As far as point
b) is concerned, the use of linear predictive coding (LPC) has been proposed in
ref. [120] to transform a time-varying Doppler signal in a low dimensional set
of prediction coefficients. A different approach, based on the computation of
pseudo-Zernike moments, is illustrated in ref. [121, Sect. II-A, eqs. (10)-(12)];
this allows to extract relevant characteristics from micro-Doppler signatures, such
as translational and scale invariance.

3. In many cases, the dimensionality of the feature space can be substantially re-
duced (see Paragraph 3.2.3). An interesting example of this approach is offered in
ref. [122], where the use of a 1D standard PCA and of a robust PCA for extracting
physical features from a Doppler radar signal is investigated.

Frequently used ML methods for the classification of human motion based on a set of
handcrafted features include the naive Bayes (NB) [123], the non linear SVM [124] and
the K-NN methods [125]. The use of a binary SVM classifier for multi-class problems
in human motion characterization is investigated in ref. [126], where a classification
procedure based on a decision-tree is proposed. This procedure is based on the idea
of representing a classification problem involving multiple choices as a set of binary
classification problems, each of which is solved through a binary SVM. This approach
is exemplified in [126, Fig. 8], where a decision tree referring to the case of seven classes
is illustrated. In practice, a binary SVM is employed for each node of the employed
decision tree in order to separate the possible activities in two groups; if each of the
two groups is further divided, another SVM classifier is used at an underlying node.

The most relevant problems emerging from the study of ML-based classification of
human motion concern the processing methods to be employed for the extraction of
hand-crafted features from raw micro-Doppler signals, the sensitivity of these methods
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to noise and clutter, and the impact of similarities among the considered classes on their
performance. The ability of a deep neural network to learn the relevant features directly
from the available raw data allows to solve the above mentioned problems. This consid-
eration has motivated the investigation of deep CNNs (DCNNs; see Paragraph 3.3.4)
for the automatic extraction of features in human motion characterization. The use of
a DCNN, fed by spectrograms (converted in red green blue, RGB, or greyscale images),
and employing convolutional layers and pooling layers of small size, has been proposed
in ref. [127]. A different DL method, based on the same principles as convolutional
autoencoding (see Paragraph 3.3.4), has been developed in ref. [128, Par. IV-C, Fig.8].
It combines the ability of a DCNN to capture local features of input images with that
of an AE to directly learn features through an unsupervised pre-training procedure. In
this case, after an initial and unsupervised pre-training stage, the decoder of a CAE
is substituted by a few fully connected layers and a softmax classifier. This procedure
allows the resulting DCNN to learn specific patterns from the processed signatures, so
easing training for supervised classification. The performance results obtained in this
case lead to the conclusion that a CAE not only is able to outperform conventional
classification methods based on handcrafted features (e.g., SVM), but also a standard
DCNN.

Finally, it is useful to mention that another important research problem investigated
in the field considered in this paragraph is represented by the de-noising of micro-
Doppler spectra. In this case, the training set includes two different types of images: a)
perfectly clean spectrograms; b) the same spectrograms affected by background noise.
The use of a deep GAN, based on a convolutional encoder-decoder structure, has been
proposed in ref. [114] for this application. The performance results obtained in this case
evidence that this network does not affect the relevant components of micro-Doppler
spectra and is able to outperform other classic de-noising techniques commonly used
for the suppression of background noise.

3.5.2 Human gesture recognition

The significant attention paid to HGR is due to its exploitation in advanced human
computer interfaces (HCIs), that are employed in a number of control, infotainment
and security applications. Relevant information about the dynamics of human ges-
tures are typically contained in the micro-Doppler signatures acquired over consecutive
transmitted frames. Therefore, similarly as human activity characterization, relevant
physical features can be easily extracted from spectrograms. A commonly employed
ML tool for classifying vectors of handcrafted features in HGR systems is represented
by hidden Markov modelling [130]. This approach leads to classifying a new sequence
of data, called observation, on the basis of a stochastic model, called hidden Markov
model (HMM), which has been extracted from past observations and describes their
generation. If an HMM of a given random phenomenon is available, the probability of
observing a specific realization (e.g., a specific gesture), conditioned on a given sequence
of hidden states, can be computed. In this case, model training aims at estimating the
so called transition and emission probability matrices of the developed HMM; the for-
mer matrix collects the probabilities to move from a given state to another one, while
the latter one the probabilities that a given observation is generated in each specific
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state. The efficacy of a HMM-based classifier depends on the overall number of states
characterizing the model; in general, a larger number of states allows to model a more
complicated process and to improve prediction accuracy. However, a discrete state
space of small size is often adopted in HGR applications in order to mitigate the over-
all complexity of the developed HGR system. This choice makes the resulting classifier
unable to distinguish gestures characterized only by subtle differences in their spec-
trograms. For this reason, DCNNs are usually preferred. One of the first important
research activities focusing on the exploitation of this type of networks in HGR is the
well known Google’s Soli project [131], whose scope has been the development of a HGR
mobile and wearable device based on a RF sensor. Various research results about this
research field can be found in ref. [132], where it is shown that the accuracy of these
deep classifiers gets worse if: a) the number of classes18 increases; b) the incident angle
and/or the distance between the gesture and the employed radar device get larger. The
accuracy of a classifier based on a DCNN can be improved by extracting features not
only from spectrograms, but also from range-Doppler maps [133]. Another DL architec-
ture, specifically developed for RF HGR and combining the ability of a CNN network
of capturing local features of input images with that of coping with time-varying sig-
nals, has been investigated in ref. [134]. This architecture consists of a 3D-CNN for
spatial-temporal modelling of short consecutive frames, an LSTM for extracting global
temporal features and a final classification layer (a detailed block diagram is illustrated
in ref. [134, Fig. 7]). This architecture achieves a very high recognition accuracy, and
outperforms other conventional ML and DL methods used in HGR applications, like
HMMs or 2D-CNNs.

3.5.3 Fall detection and health-care monitoring

Human falls represent a worldwide health problem and are known to be one of the
main causes of unintentional injury death in seniors; this motivates the recent interest
in devising electronic systems able to detect their occurrence. Another important
problem in the field of technology for human health concerns the development of non-
invasive and non-contact devices for monitoring human vital signs, such as breath and
heart rates, and sleep quality. Various results in both research areas have evidenced
that innovative solutions to both problems can be developed by exploiting ML and DL
methods fed by the micro-Doppler signatures acquired through a radar system. In any
case, when the overall number of classes to be identified increases and the degree of
dissimilarity between the Doppler signatures characterizing them reduces, DL methods
are preferred, since they achieve better accuracy.

An interesting study on the dynamics of human falls analysed through micro-
Doppler signatures can be found in in ref. [135], where it is shown that fall accidents can
be distinguished from normal activities on the basis of: a) the strength of the received
echo (i.e., the RCS of the subject under test); b) the distance of the radar device from
the body of the subject under test during a fall; c) the Doppler information acquired
during the movement of the subject itself. Experimental results have evidenced that,
when a subject starts falling, the observed Doppler frequency increases steeply; on the
contrary, the RCS of the human subject gradually decreases since its tilt angle gets

18The maximum number of distinct hand gestures considered in ref. [132] is equal to 10.
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larger. In this case, ML and DL algorithms can be trained to detect a fall on the
basis of the time variations of Doppler signatures. A specific DL classifier based on
a stacked AE and exploiting a range-Doppler radar has been developed in ref. [136],
where it is shown that the proposed solution is more accurate than PCA-based methods
in detecting different actions, such as falling, walking, sitting and bending.

The use of learning techniques in the analysis of sleep stages has been investigated
in ref. [137], where a solution based on a K-NN classifier has been proposed.

The exploitation of learning techniques for heart and breath rate estimation repre-
sents a challenging problem, because a large and heterogeneous datasets for network
training cannot be easily built and contactless systems for vital sign monitoring are
strongly limited by body movements. Some interesting contributions to this field are
provided by refs. [138], [139] and [140]. More specifically, a method based on a classical
feed-forward NN for hearth rate estimation is proposed in ref. [138], whereas a DL
method for body movement compensation is investigated in ref. [139]. Finally, a con-
tactless breathing disorder recognition system using 2.4-GHz Doppler radar and based
on a linear SVM classifier is developed in ref. [140].

The real-time implementation of radar sensing methods for HGR, health monitor-
ing and fall detection can be computationally intensive. This problem becomes more
relevant in all those applications in which multiple persons have to be monitored in the
same environment; in fact, in such cases, the exploitation of the MIMO technology be-
comes mandatory, because of the need of localising multiple agents. This explains why
an important technical challenge is represented by the exploitation of hardware plat-
forms that support parallel computing (namely, FPGAs and GPUs), require a limited
power consumption and can manage a large data rate at their inputs [88].

3.5.4 Autonomous driving

Automotive radar represents one of the key enabling technologies for autonomous driv-
ing. The typical processing chain employed for target detection in a MIMO FMCW
radar system for automotive applications is represented in Fig. 3.20. The signals ac-
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Figure 3.20: Typical processing chain employed in automotive radar sys-
tems [53].

quired through multiple receive antennas undergo multidimensional FFT processing;
this allows to extract range, Doppler and DoA information. The data generated by
the FFT blocks are processed by a detection algorithm, whose objective is identifying
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the presence of multiple extended targets, and estimating their spatial coordinates and
their radial velocity (i.e., the Doppler shift characterizing them). Each of the detected
targets (e.g., pedestrians, cars or bicycles) usually appears as a cloud of point targets;
the association of each point to a given extended target is called clustering. The sim-
plest unsupervised strategy that can be adopted for target detection is thresholding ; in
this case, a target is detected if the amplitude spectrum of the acquired signals exceeds
a fixed threshold, as illustrated in Paragraphs 3.2.1 and 3.2.2 for specific FMCW radar
systems. A more refined alternative is represented by the constant false alarm rate
(CFAR) technique [155]. This method consists in estimating the level of interference
in each cell in the range domain of interest and in exploiting these information for the
detection of the presence of a target in each cell of a radar image. Unluckily, due to
the high resolution achieved by automotive radars, a single target can occupy multiple
adjacent cells; when this occurs, the CFAR technique undergoes performance degrada-
tion because of the contamination affecting the estimated interference level. Clustering
techniques rely on the key idea that each cluster of points is a region containing a group
of detected targets, whose center typically corresponds to the point target character-
ized by the strongest reflectivity (see Par. 3.2.3). This means that each cluster has a
density (in terms of targets per region) which is considerably larger than that outside
it; for this reason, a given point is expected to be part of a cluster if the number of
its neighbours is greater than a proper threshold. Learning methods for unsupervised
clustering include the density based clustering algorithm (DBSCAN) [141], [142], and
the K-means algorithm [143]. The main difference between these two methods con-
sists in the fact that the former method, unlike the latter one, does not require prior
knowledge of the number of clusters and their shape.

All the techniques described above (namely, thresholding, CFAR and clustering)
allow to detect multiple point targets and to cluster them. In general, learning methods
can be adopted to improve detection performance. A number of technical problems have
been identified in this area; most of them require the development of sophisticated signal
processing algorithms. Specific contributions about the use of ML methods in target
detection can be found in refs. [144–146]. In particular, a K-NN classifier is proposed as
an alternative to robust CFAR detection in ref. [144], whereas the use of the SVM and
PCA techniques for improving angular resolution is investigated in ref. [145]. The use
of DL methods for target classification in a 2D space, instead, have been studied in refs.
[92, 147–154]. It is worth mentioning that, in the technical literature, the first results
about the use of DL methods in automotive radar systems appeared after 2015, when it
was found that DCNNs were able to simultaneously detect, localize and classify multiple
targets by simply analysing 2D range-azimuth (or range-Doppler) maps. Networks
originally developed for computer vision applications, like AlexNet [156] or ImageNet
[157], have inspired the architecture of various networks for automatically extracting
features from automotive radar images [92, 147, 148]. Despite this, the CNNs usually
devised for automotive applications are not as deep as those employed in computer
vision. This difference is mainly due to the fact that: a) the information provided
by range-azimuth or range-Doppler maps are not as rich as traditional RGB images;
b) the employed inference procedure has to be as fast as possible [149]. These ideas
are exemplified by the CNN proposed in ref. [150] for the classification of automotive
targets, like motorcycles, cars, bicycles and pedestrians; its architecture, illustrated in
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ref. [150, Fig. 2], consists of three convolutional layers and filters of size 3× 3 (whose
depths are equal to 32, 64 and 128, respectively). Moreover, each convolutional layer
is followed by a 2 × 2 average-pooling layer, two fully-connected layers and a softmax
layer, which is used at the end for classification. A relevant novelty introduced in this
work (and in ref. [151] too) consists in considering a certain region of interest (ROI)
around the desired targets in the analysed scene as prior information to be used during
training, in order to improve the learning procedure.

Deep learning methods can be also employed to solve the problem of scene under-
standing, i.e. of correctly interpreting the events occurring around it (e.g., the event
of a vehicle passing near a pedestrian that crosses a road). In this case, improving the
prediction accuracy of the employed NN requires exploiting the information contained
in the frames preceding and following the frame under test because of the high vari-
ability of the data provided by MIMO radar systems. An architecture based on the
cascade of a LSTM module with a CNN has been proposed in ref. [152]; this exploits
the temporal information provided by radar signals and is able to capture the dynamics
of the surrounding scene.

Finally, it is worth mentioning that learning methods can be also employed to detect
the fatigue of the driver’s eyes [146] and to mitigate the interference orginating from the
transmission of multiple MIMO radars in the same area. In general, the interference
affecting a MIMO radar system can be due to the system itself (self-interference) or
from other radar systems placed on the same vehicle or on other vehicles (cross or
mutual interference); in both cases, this phenomenon results in an increase of the
observed noise floor and, consequently, affects the detectability of targets. The use of
RNNs for interference mitigation has been investigated in refs. [153] and [154].

3.6 Current Trends in Research on MIMO Radars

In this section, a short description of three research trends in the field of DL techniques
for MIMO radars is provided. More specifically, we first focus on transfer learning, and
recent DL methods for object detection and classification. Then, we discuss the role
that explainable artificial intelligence (XAI) may play in the radar field.

3.6.1 Transfer learning

The minimization procedure accomplished by a deep NN trained from scratch (through
random initialization) may lead to a local minimum which is far from the globally
optimal solution if the involved cost function is highly non-convex. Moreover, if the
dataset employed in network training is not large enough, the risk of over-fitting is
quite high. These problems are likely to arise in radar applications. When this occurs,
transfer learning could represent a tool to solve them; in fact, this method often allows
to achieve a good generalization capability even if the available dataset is limited [158,
159]. Transfer learning is based on the idea of exploiting the knowledge gained from a
different domain to solve other related classification problems. Two approaches to the
exploitation of this method in radar applications have been recently proposed. The
first approach, developed for the classification of human activities, is based on training
an unsupervised network, characterized by an encoder-decoder structure and employed
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to learn specific patterns appearing in the available dataset [160]. When the decoder
becomes able to reconstruct the input data with a reasonable accuracy, it is removed,
and fully connected and softmax layers are added in cascade to the associated encoder.
Finally, the resulting network is trained in a supervised manner with a smaller, but
labelled dataset: this procedure is called fine-tuning.

The second approach is based on the architecture represented in Fig. 3.21 and
developed in ref. [161]. In this case, a DCNN network trained on a large dataset
of RGB images is combined with fully connected and softmax layers initialized from
scratch; this results in a new network, which is fine-tuned on a small dataset.

The decision about which type of transfer learning has to be preferred is based on
the size of the available dataset and on the similarity of the last dataset with the one
used for pre-training the selected network architecture. It has been shown that the final
score of a DCNN-based classifier can be improved either by exploiting a pre-training
procedure based on a simulated radar dataset [162] or by employing a pre-trained
DCNN on a separate large scale RGB dataset [161].
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Figure 3.21: Architecture of a DCNN pre-trained on dataset of RGB
images and fine-tuned on a small dataset of radar images.

3.6.2 Object detection and classification

The aims of object detection and classification are the labelling of all the objects ap-
pearing in a given image and the generation of a bounding box identifying their position.
The fast R-CNN [163] and faster R-CNN [164] are examples of region-based CNNs for
object detection based on bounding boxes. Another relevant solution of this type is
represented by the solo called You only look once (YOLO) network19. When building
up a dataset for training this network, each detectable target is bounded with a box
characterized by specific size and position in the whole image. If an object detection
problem in which different targets can be associated to several (say, K) classes is con-
sidered, the YOLO network should be preferred to the other methods mentioned above
because of: a) its ability to predict not only the size and the position of the bounding
box associated with a given target, but also the probability that the target inside a
given box belongs to a certain class; b) its architecture which, being based on a CNN,
is simple and fast; c) its ability to learn very general representations of objects. The
results illustrated in ref. [165] for various applications evidence that a YOLO network
outperforms a R-CNN in terms of detection ability, since it produces a lower number
of false negatives. However, it is important to remember that a YOLO network usually

19The name of this network has been inspired by the human ability of looking once at an image and
instantly recognizing the objects it contains.
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makes a significant number of localization errors and, consequently, achieves a limited
accuracy. Better results are obtained if an improved architecture, known as YOLO
v2 and originally proposed in ref. [166], is adopted. This new version of the YOLO
network is still based on a convolutional architecture, but employs anchor boxes20 in
predicting the position of objects. The use of anchor boxes makes the learning proce-
dure easy, since the network has only to adjust and refine their size in order to fit an
object detected in the processed image. A specific application of the YOLO v2 network
to a MIMO radar system is illustrated in Paragraph 3.7.2.

A recent research topic in the field of target detection and classification is rep-
resented by the use of semantic segmentation, that represents a powerful technique
adopted for classifying the pixels of an image (a fixed set of classes is assumed in this
case). The state of the art in semantic segmentation for image processing is represented
by: a) fully convolutional networks (FCNs) [167], in which a convolutional network en-
dowed with a pixel classification layer (instead of a fully connected layer) is used; b)
SegNet [168] and U-Net [169], both based on a symmetrical encoder-decoder architec-
ture. A more complicated method is represented by instance segmentation, whose aim
is not only detecting and classifying all the objects appearing in an image, but also
generating the segmentation of each instance appearing in the bounding box associated
with each detected object. To accomplish the last task, the Facebook AI research group
has proposed a new method called, Mask -R-CNN, that extends a Faster R-CNN by
adding a branch for the prediction of the segmentation mask in each ROI [170].

It is important to note that the application of the above mentioned DL techniques to
object detection and localization in radar images is still at an early stage. Despite this,
specific DL methods inspired by FCNs and U-Net have been already implemented for
detecting and estimating the position of different targets (like cars and other automo-
tive targets) on the basis of range-Doppler-azimuth radar maps [171–173]. Moreover,
the use of semantic segmentation in the radar field has been already investigated for
the classification and localization of 3D point clouds of automotive targets, like cars,
tractors and pedestrians; various results referring to automotive MIMO radars that
operate at 77 GHz can be found in refs. [174] and [175]. The experimental results
shown in these manuscripts evidence that the performance of the NNs employed for
semantic segmentation substantially improves if radar data are fused with those one
provided by optical sensors. It should not be forgotten that radar information can be
augmented by an highly dense point cloud generated by a lidar device and that lidar
data can be replaced by radar data in case of adverse weather or lighting conditions.
An example of radar-centric automotive dataset based on radar, lidar and camera data
for is described in ref. [176]; this dataset has been exploited in ref. [177] to test DL
algorithms for 3D object detection.

3.6.3 Explainable artificial intelligence

Neural networks and sophisticated decision methods are currently employed in a num-
ber of applications to solve complicated tasks. The requirement of transparency is be-
coming more and more important in AI, especially when it is employed in autonomous
systems. Unluckily, understanding which features are evaluated by a DNN in taking its

20Anchor boxes are a set of predefined bounding boxes having certain height and width.
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decision is a complicated problem. Explainable artificial intelligence is a new branch of
AI and concerns the problem of how the effectiveness of a deep network can be guaran-
teed [178]. An interesting method to improve the transparency of a DNN is based on
the visualization of the features learned by each layer of the network [179]. The first
layers of a DCNNs tested on radar images typically learn basic features, that depend
on the size of their convolution filters. In fact, large (small) filters memorize general
shapes (more specific properties), whereas some filters are also able to learn noise and
clutter [128]. An alternative method to get some insight on the learning process of a
CNN is based on the idea of identifying the parts of a radar image that are relevant for
the classification of the object under test; such parts are also known as spatial supports.
This approach allows to assess if a specific network is robust in taking its decision on
the basis of a correct analysis of the given image. A specific technique, called saliency
extraction, is based on this idea and, in particular, on the evaluation of the so called
saliency map, as illustrated in ref. [180].

3.7 Experimental Results

In this section we show how specific ML and DL methods can be employed in a com-
mercial colocated MIMO radar system to: a) classify three different human activities;
b) estimate the range and DoA (azimuth) of a single target in a 2D propagation sce-
nario. In both case, such methods are compared, in terms of accuracy and processing
time; moreover, in case b), a comparison with deterministic methods is also made.

It is worth stressing that, unlike the previous sections, the results illustrated below
do not originate from a synthetically generated dataset. In fact, the following tools
have been exploited to generate them:21

1. A colocated FMCW MIMO radar manufactured by Inras GmbH [181]. This radar
device, shown in Fig. 3.22-a) and employed to acquire all our measurements,
operates in the E-band (the center frequency of its transmitted signal is f0 = 77
GHz) and is equipped with a TX ULA and an RX ULA, consisting of NT = 2
and NR = 16 antennas, respectively (see Fig. 3.23-a)); even if, in principle,
2 · 16 = 32 virtual channels are available (see Paragraph 1.3), only NV = 31 of
them are exploited in our work, since two elements of the virtual array overlap.

2. A pico-flexx camera manufactured by PMD Technologies Inc. [84]. This time-of-
flight camera, shown in Fig. 3.22-b) and employed as a reference sensor in our
experiments, is based on a near-infrared vertical cavity surface emitting laser, and
is able to provide a depth map or, equivalently, a three-dimensional point-cloud
of a small region of the observed environment (its maximum depth is equal to 4
m, whereas its FOV is 62◦ × 45◦).

3. A desktop computer equipped with a single i7 processor. All our software has
been developed in the MATLAB and/or Python environment and run on this
computer.

21The datasets employed in our experiments are available at:
http://www.sigcomm.unimore.it/downloads/.
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a) b)

Figure 3.22: a) Colocated MIMO radar system and b) pico-flexx camera
employed in our experiments.
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Figure 3.23: Geometry of a) the physical TX and RX arrays and b) the
corresponding virtual array of the radar device shown in Fig. 3.22-a).

In the following two paragraphs, we provide various details about the experiments
accomplished for the two specific applications mentioned above and illustrate the most
relevant results we obtained.

3.7.1 Human activity classification

Our first experiment concerns the classification of following three different human ac-
tivities: walking, running and jumping. The following choices have been made in the
acquisition of our measurements:

1. The person whose activity has to be classified is alone and is in front of the
employed radar device.

2. A single pair of TX-RX antennas is used (since angular information is not re-
quired).

3. The transmitted waveform is characterized by the following parameters: Nc =
128, T = 128 µs, TR = 32 µs and B = 1 GHz (consequently, µ = 7.8 ·1012 GHz/s;
see eq. (1.4)).

4. At the receive side, analog-to-digital conversion is accomplished at the sampling
frequency fs = 80 MHz and N = 1024 samples are acquired over each chirp
period and an oversampling factor Mr = 4 is considered for our processing.

Different classification methods have been tested for this application. First of all,
we took into consideration the following five ML methods: a linear SVM technique,
the K-NN technique (with K = 4), an Adaboost classifier with decision stumps as
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weak learners (see Paragraph 3.2.2), a customised double stage SVM binary classifier
(CSVM) and a specific version of the Adaboost, called Stagewise Additive Modeling
using a Multi-class Exponential loss function (SAMME) [182]. As far as DL methods
are concerned, we have taken into consideration a specific CNN only, since, as shown
below, the preprocessed data feeding it can be interpreted as 2D images.

All these methods are fed by the matrices E and G defined at the end of Paragraph
1.3 (see eqs. (1.30) and (1.31)) and whose sizes are Nf ×N ′

0 and N ′
f ×N ′

0, respectively
(in all the experiments made for the considered application, Nf = 143, N ′

0 = 256 and
N ′
f = 512 have been selected). It is also worth remembering that the former (the

latter) matrix is used to generate the spectrogram (the CVD) of the received signal.
Examples of the spectrograms associated with the three possible activities are shown in
Figs. 3.24-(a), -(b) and -(c) (note that the same time scale is used in all these figures),
whereas an example of CVD is illustrated in Fig. 3.25. Moreover, in the last figure,
two additional plots, one referring to the cadence frequency of the observed motion
(left), the other one to its velocity (bottom), are also given for completeness. From
Figs. 3.24-3.25 it is easily inferred that:

a) The period of the spectrogram (i.e., the distance between its consecutive peaks) is
inversely proportional to the speed of the observed motion.

b) The shape of the spectrogram is influenced by the type of motion.

c) The CVD diagram contains important information regarding the motion and it is
strictly related to the shape of the spectrogram. In fact, the principal components
characterizing the observed motion can be identified in the CVD diagram in
correspondence of the so-called cadence frequencies; each of these frequencies
indicates how frequently a specific velocity component repeats in the observation
interval.

An experimental campaign has been accomplished to build up an experimental
dataset, that collects Nt = 150 observations equally divided among the three classes.
Each observation refers to Nf consecutive frames, each consisting of Nc chirps, and
is acquired over an observation interval whose duration is TO = 3 s (each frame lasts
TF = TO/Nf = 21 ms). Moreover, the q-th entry of the dataset Do processed by the
above mentioned ML methods is represented by the couple (rq, tq) (see eq. (3.41)),
where

rq = [rq,0, rq,1, rq,2, rq,3] (3.194)

is a 4D feature vector (so that Dr = 4) and tq is a integer label identifying the specific
activity which the vector rq is associated with (tq = 0, 1 and 2 if the observed person
is walking, running or jumping, respectively). The first three elements of the vector
rq (3.194) depend on the value Gq = [G

(q)
l,m] of the matrix G computed for the q-th

observation, since

rq,0 ≜
l̂q

N ′
f TF

, (3.195)

rq,1 ≜
1

N ′
0

N ′
0−1∑
m=0

(
G

(q)

l̂q,0,m
− µ

(q)
0

)
·
(
G

(q)

l̂q,1,m
− µ

(q)
1

)
(3.196)
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walking

running

jumping

Figure 3.24: Spectrograms observed for the following three different ac-
tivities: walking (top), running (center) and jumping (bottom).

and

rq,2 ≜
1

N ′
0

N ′
0−1∑
m=0

((
G

(q)

l̂q,0,m

)2
+
(
G

(q)

l̂q,1,m

)2)
; (3.197)

here,
l̂q ≜ arg max

l∈{0,1,...,N ′
f−1}

V
(q)
l , (3.198)

l̂q,k is the index identifying the k-th largest peak appearing in the sequence {V (q)
l ; l = 0,

1, ..., N ′
f − 1} (with k = 0 and 1),

V
(q)
l ≜

N ′
0−1∑
m=0

G
(q)
l,m, (3.199)

and µ
(q)
k is the mean of the elements of the l̂q,k-th row of the matrix Gq, i.e. of the

vector

G
(q)

l̂q,k
≜

[
G

(q)

l̂q,k,0
, G

(q)

l̂q,k,1
, ..., G

(q)

l̂q,k,N
′
0−1

]T
, (3.200)

with k = 0 and 1. The last feature of rq (3.194) (namely, the quantity rq,3) depends on
the value Eq of the matrix E computed for the q-th observation, since it represents the
period of the spectrogram, i.e. the distance between two consecutive peaks observed
along the time dimension. It is important to point out that:
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Figure 3.25: Representation of a CVD and of two diagrams extracted
from it (one providing information about cadence frequencies, the other one
about velocities). In the diagram appearing on the left, the three strongest
frequency components are identified by blue, red and green dashed lines;
each line is associated with the velocity profile shown in the other diagram
and having the same colour.

1. The parameter rq,0 (3.195) represents the strongest frequency component detected
in the CVD diagram (see Fig. 3.25). The value of this parameter is expected to
increase with the speed of the observed person.

2. The parameters l̂q,0 and l̂q,1 identify the two strongest frequencies (denoted f̂q,0
and f̂q,1, respectively) detected in the CVD referring to the q-th observation; such
frequencies are evaluated as

f̂q,k =
l̂q,k

N ′
f TF

, (3.201)

with k = 0 and 1.

3. The parameter µ(q)k is the mean of the velocity profile expressed by the N ′
0-

dimensional vector G
(q)

l̂q,k
(3.200).

4. The parameter rq,1 (3.196) represents the covariance between the velocity profiles
G

(q)

l̂q,0
and G

(q)

l̂q,1
, whereas rq,2 is the overall energy associated with both profiles; our

experimental data have evidenced that the value of rq,1 (rq,2) decreases (increases)
as the speed of the observed person gets larger (smaller).

5. The value of rq,3 is inversely proportional to the speed of the observed person,
since an increase of the speed shortens the period of the spectrogram.
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As far as the adopted ML methods are concerned, the following choices have been
made:

a) The K-NN classifier is structured as illustrated in Paragraph 3.2.2.
b) The classifiers based on the SVM and the Adaboost methods exploit the pairwise

classification approach illustrated at the end of Paragraph 3.2.2. For this reason, they
combine L = K(K − 1)/2 = 3 identical binary classifiers (i.e., base learners).

c) The CSVM method is obtained by cascading two linear SVM binary classifiers
(whose behaviour is described in Paragraph 3.2.2). The first SVM classifier (denoted
SVM #1) distinguishes jumping from the rest of the activities and is fed by the feature
vector r′q = [rq,0 , rq,1] (in this case, the scalar labels t′q = 1 and t′q = −1 are associated
with jumping, and with walking and running, respectively). The second classifier (SVM
#2) processes the observations related to running and walking only and is fed by the
feature vector r′′q = [rq,2 , rq,3] (in this case, the scalar labels t′′q = 1 and t′′q = −1 are
associated with walking and running, respectively). The final predictions of the CSVM
are generated on the basis of the SVM #1 (SVM #2) predictions for jumping (running
and walking).

d) The employed version of the SAMME method is the one implemented in the
Python library Scikit-learn [183] (namely, sklearn.ensemble.AdaBoostClassifier)
and represents a specific version of the Adaboost technique for solving multi-class prob-
lems; in practice, it is based on a decision tree classifier characterized by two nodes
(instead of a simple decision stump). This methods outperforms a classical Adaboost
technique by simply emphasizing the weights assigned to misclassified points.

In our experiment, a N -fold cross-validation, with N = 5, has been employed. The
accuracy achieved by the considered ML methods and the processing time they have
required for training and prediction are listed in Table 3.3.

From these results, it is easily inferred that:

a) The accuracy is reasonably good in all cases (slightly above the 90%).

b) The Adaboost performs marginally better than the K-NN and SVM methods, at
the price of substantially larger computation time.

c) The best trade-off in terms of performance and computation time is achieved by
the K-NN technique.

d) The CSVM method requires a lower computational effort (especially in training)
with respect to the method based on SVM and round-robin binarization. This
is mainly due to the fact that the former approach employs only two learners,
whereas the latter one three binary classifiers.

e) The SAMME algorithm achieves the same accuracy as the round-robin binariza-
tion of the classic Adaboost, even if its computation time (in both training and
prediction) is approximately ten times smaller.

The ML methods tested in the first part of our experiment exploit a dataset of
manually extracted features (see eqs. (3.194)-(3.197)). On the contrary, the CNN
employed in the second part of our experiment is able to classify human activities by
recognizing specific patterns directly in the matrix E. A description of its architecture
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SVM K-NN ADA CSVM SAMME

Accuracy (%) 89 90 91 90 91

Training time (s) 0.1 0.03 4.5 0.06 0.45

Prediction time (s) 0.01 0.01 0.5 0.01 0.05

Table 3.3: Accuracy, training time and prediction time evaluated for each
of the ML methods considered for human activity classification.

is provided in Table 3.4. The first three layers of the employed network are represented
by three convolutional 2D filters, having size 15× 5 and depths 4, 8 and 16; moreover,
each filter feeds a linear rectifier, followed by a max pooling layer. Each max pooling
layer allows to halve the size of the image made available by the previous layer, so that
a significant dimensionality reduction is obtained. The first three layers are followed
by another 2D convolutional filter with a batch normalization layer. The last layers
are represented by a fully-connected (FC) and a softmax (Soft) layer transforming the
residual 2D image in a vector of size 3, since three classes are considered. It is worth
noting that the adoption of a CNN having a small depth is justified by the fact that
spectrograms referring to the three activities are quite different, as exemplified by Fig.
3.24.

Layers Filters Size Stride Output

Convolutional + ReLu 4 15× 5 1 143× 53× 4

Max pooling - 15× 5 2 65× 25× 4

Convolutional + ReLu 8 15× 5 1 65× 25× 8

Max pooling - 15× 5 2 26× 11× 8

Convolutional + ReLu 16 15× 5 1 26× 11× 16

Max pooling - 3× 3 2 12× 5× 16

Convolutional + BN + ReLu 3 3× 3 1 12× 5× 3

FC + Soft 3 - - 1× 1× 3

Table 3.4: Architecture of the CNN employed for the classification of three
human activities.

The q-th entry of the dataset Do processed by the employed CNN is represented by
the couple (rq, tq), where, however, the observation rq is represented by the value Eq
taken on by matrix E in the q-th acquisition (the label tq, instead, has the same meaning
as in the ML case). Moreover, Nf = 143 and N̄ ′

0 = 53, and N̂t = 150 are assumed for
the size of the matrix E and for the dataset Do, respectively. Network training is based
on 60% of the whole dataset (the remaining part of the dataset has been equally divided
to generate a validation set and a test set); moreover, it has been accomplished by an
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SGD minimization procedure, which is characterized by a subset S of 4 training data
samples, a learning rate γ(i) = 10−3 for any i and an overall number of epochs NE = 50
(see eq. (3.73)). A 96% classification accuracy has been achieved in this case; therefore,
the proposed DL method achieves a substantially better generalization capability that
the ML counterparts described above. We should not forget, however, that this result
is achieved at the price of a training time of about 25 s; this is substantially larger than
that required by the considered ML methods (see Table 3.3). Finally, it is important
to mention that the computation time required by the employed CNN for evaluation a
new prediction is about 0.03 s and, consequently, is reasonably short and comparable
with the one characterizing the considered ML methods.

3.7.2 Estimation of the range and azimuth of a single target

The second application we have investigated concerns the detection of a specific target
moving on a 2D multi-target scenario, and the estimation of its range and azimuth.
In our experiment, the target to be detected is an omnidirectional reflector, obtained
by putting together eight corner reflectors (and inspired by the architecture of the
echo-master corners used for maritime applications). This target is mounted, through
a vertical carton support, on a Propeller Scribbler 3 mobile robot manufactured by
Parallax Inc [184]. This robot has been programmed to move randomly inside a square
white region delimited by four opaque black lines and whose side is equal to 2.5 m, as
shown in Fig. 3.26; note that two corner reflectors have placed on the borders of this
region in order to build a multi-target scenario. The following choices have been made
in the acquisition of our measurements:

1. The whole antenna array shown in Fig. 3.23-a) is exploited, so that NV = 31
distinct virtual channels are available at the receive side.

2. The waveform radiated by each TX antenna is characterized by the following
parameters: Nc = 1, T = 64 µs, TR = 32 µs and B = 2 GHz (consequently,
µ = 3.13 · 1013 GHz/s; see eq. (1.4)).

3. At the receive side, analog-to-digital conversion is accomplished at the sampling
frequency fs = 40 MHz and N = 2048 samples are acquired over each chirp
period.

4. The reference position of the target with respect to a three-dimensional reference
system is evaluated by means of the pico-flexx camera. This sensor is aligned
with the radar system, being mounted on the same plastic support of the radar
device and at a fixed distance from it (about 10 cm) along the vertical direction.

The following two supervised DL methods have been tested: a) a feed-forward NN
exploiting some manually extracted features (further details about this method are
provided below); b) a YOLO v2 NN for object detection (see Paragraph 3.6.2).

The q-th entry (rq, tq) of the dataset Do processed by the employed feed-forward
NN is generated as follows. The label tq associated with the q-th observation rq is
defined as

tq ≜ [R̂q, ϕ̂q] (3.202)
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Figure 3.26: Experimental-setup developed for our second application.
The region of interest is delimited by an opaque and black line; two coner
reflectors are located on its border. A robot, equipped with corner reflectors,
moves randomly inside that area. The employed radar system and pico-flexx
camera are placed on the tripod visible on the right.

where R̂q and ϕ̂q represent the estimates of the target range Rq and azimuth ϕq,
respectively, evaluated on the basis of the point-cloud made available by our pico-flexx
camera. Such a camera generates the Np × 3 matrix

P ≜ [x y z], (3.203)

collecting the 3D coordinates of Np = 38304 distinct points; here, x, y and z are Np-
dimensional column vectors. The deterministic algorithm developed for the estimation
of the target range and azimuth involves the computation of the estimates (x̂q, ŷq, ẑq)
of the target coordinates (xq, yq, zq) in the q-th observation; note that zq (i.e., the
target height) is assumed to be approximately known (zq ∼= 0.4 m). This algorithm
consists of the following three consecutive steps:

1. The size of the search space for the couple (x̂q, ŷq) is reduced by extracting the
set22

Sq ≜ {(xq,n, yq,n, zq,n)|zmin ≤ zq,n ≤ zmax;n ∈ ∆q}, (3.204)

from the matrix P (3.203); here, ∆q is a proper subset of the set of integers {0,
1, ..., Np − 1} and consists of N̄q elements, whereas zmin = 0.3 m and zmax = 0.5
m represent two thresholds.

2. The estimates

x̂q = 1/N̄q

N̄q−1∑
n=0

xq,n, (3.205)

ŷq = 1/N̄q

N̄q−1∑
n=0

yq,n (3.206)

22Note that, in this step, our prior knowledge about the target height is exploited.
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and

ẑq = 1/N̄q

N̄q−1∑
n=0

zq,n (3.207)

are computed. The estimate ẑq (3.207) is exploited only to check if the vector
(x̂q, ŷq, ẑq) is meaningful, i.e. if the condition ẑq ≈ 0.4 m is satisfied; if this does
not occur, the thresholds appearing in the RHS of eq. (3.204) should be properly
adjusted (i.e., zmin should be increased and/or zmax reduced) in order to improve
the obtained accuracy.

3. The estimates
R̂q =

√
x̂q + ŷq (3.208)

and
ϕ̂q = arctan (ŷq/x̂q) (3.209)

are evaluated.

The observation rq labelled by tq (3.202) is defined as23

rq ≜
[
ψ̂q,0, ψ̂q,1, ..., ψ̂q,NV −1, f̂q

]T
, (3.210)

where f̂q is the frequency associated with the detected target (and estimated on the
whole array) and ψ̂q,v is the phase of the signal spectrum computed at the frequency
f̂q for the v-th virtual element (with v = 0, 1, ..., NV − 1); note that the size of the
vector rq (3.210) is Dr = NV + 1 = 32. The deterministic algorithm employed for the
computation of the frequency f̂q and the phases {ψ̂q,v} forming rq (3.210) consists of
the following two steps:

1. Coarse estimation of the target position - The N -dimensional vector of the time
domain samples acquired over the v-th virtual antenna (see eq. (3.18)) undergoes
zero padding and FFT processing of order N0 = N · Mr (in our experiment,
N0 = 8192, since Mr = 4). This produces the N0-dimensional vector X

(q)
v (see

eq. (3.20)), which is employed to compute the power spectrum P
(q)
v = [P

(q)
v,0 , P (q)

v,1

, ..., P (q)
v,N0−1] on the basis of eq. (3.23). Then, given (see eq. (3.25))

l̂(q)v ≜ arg max
l̃∈{bm,...,bM}

P
(q)

v,l̃
, (3.211)

a target is detected on the v-th antenna if P (q)

v,l̂
(q)
v

> Pd, where Pd is a proper

threshold; here, the integer parameter bm (bM ) identifies the frequency bin cor-
responding to the minimum (maximum) measurable range Rm (RM ). In our
experiment, Pd = 0.9, and

bm =

⌊
2µN0TsRm

c

⌋
= 42 (3.212)

23Unwrapped phases are employed in this case, since they ease network training
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and
bM =

⌊
2µN0TsRM

c

⌋
= 147, (3.213)

since Rm = 1.0 m and RM = 3.5 m have been assumed. The procedure illustrated
above is accomplished for each virtual channel (i.e., for v = 0, 1, ..., NV − 1) and
is employed to generate the set

Ŝl ≜ {l̂(q)vk ; k = 0, 1, ..., N̄V − 1}, (3.214)

with vk < vk+1 for any k; the size N̄V of this set is usually smaller that NV , since:
a) the target may be missed on one or more virtual channels (this occurs when the
condition (3.211) is not satisfied); b) the elements of Ŝl are required to be distinct.
The elements of Ŝl are collected in the vector l̂q = [l̂

(q)
v0 , l̂(q)v1 , ..., l̂(q)vN̄V −1

]T . Then,

the following vectors are computed: a) the N̄V -dimensional vector f̂q = [f̂
(q)
v0 , f̂ (q)v1 ,

..., f̂ (q)vN̄V −1
]T and R̂q = [R̂

(q)
v0 , R̂(q)

v1 , ..., R̂(q)
vN̄V −1

]T , that collect N̄V estimates of the
target frequency and range, respectively (these quantities computed on the basis
of eqs. (3.27) and (3.29), respectively); b) the set of N̄V vectors {Â(q)

vk ; k = 0, 1,
..., N̄V − 1}, where Â

(q)
vk = [Â

(q)
vk,0

, Â(q)
vk,1

, ..., Â(q)
vk,NV −1]

T is made of the complex
amplitudes evaluated over the whole virtual array on the basis of eq. (3.28) under
the assumption that l̂ = l̂

(q)
vk for any k; c) the set of N̄V vectors {ψ̂(q)

vk
; k = 0, 1 ,

..., N̄V − 1}, where

ψ̂
(q)
vk

= [ψ̂
(q)
vk,0

, ψ̂
(q)
vk,1

, ..., ψ̂
(q)
vk,NV −1]

T (3.215)

and ψ̂
(q)
vk,l

is equal to the phase of the complex gain Â
(q)
vk,l

for any k and l (see

eq. (3.7)). Finally, each of the vectors {Â(q)
vk } undergoes zero padding, that

increases their size to N̄0 = 128, and N̄0-th order FFT processing for azimuth
estimation (see eqs. (3.37)-(3.39)). This produces the vector ϕ̂q = [ϕ̂

(q)
v0 , ϕ̂(q)v1 , ...,

ϕ̂
(q)
vN̄V −1

]T , collecting N̄V different estimates of the target azimuth. Therefore, this

step produces N̄V distinct estimates {(f̂ (q)vk , R̂(q)
vk , ϕ̂(q)vk ); k = 0, 1 , ..., N̄V − 1} of

the target frequency, range and azimuth, respectively.

2. Fine estimation of the target position - A single estimate of the target frequency,
range and azimuth is evaluated in this step on the basis of the N̄V estimates
{(f̂ (q)vk , R̂(q)

vk , ϕ̂(q)vk )} available at the end of the previous step. This estimate is
computed as follows. First, we compute

v̂q = min
l̃∈Ŝl

∣∣∣ϕ̂q − ϕ̂(q)vl̃

∣∣∣ , (3.216)

under the constraint ∣∣∣R̂q − R̂(q)
vl̃

∣∣∣ < Rth, (3.217)

with Rth = 0.3 m; here, the quantities R̂q and ϕ̂q are expressed by eq. (3.208)
and eq. (3.209), respectively, and Ŝl is the set defined by eq. (3.214). Then, the
vector rq (3.210) is evaluated as

rq = [ψ̂
(q)
v̂q , f̂

(q)
v̂q

]T (3.218)
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where the vector ψ̂
(q)
v̂q is expressed by eq. (3.215) with vk = v̂q.

The entire dataset is generated by accomplishing the feature selection procedure
expressed by eqs. (3.216)-(3.217) for any q. It is important to stress that, in our
experiment, only a specific target must be selected for each observation. In fact, in a
multiple target scenario like the one we are considering, it is hard to understand which
elements of the set Ŝl (3.214) are associated with the target of interest.

The vector rq (3.218) generated by the deterministic procedure described above
represents the input of our feed-forward NN, whose response is the bidimensional vector
t̂q ≜ [t̂q,0, t̂q,1]; the elements of this vector represent the estimates of the range and the
azimuth, respectively, of the target detected on the basis of the q-th observation (see eq.
(3.202)). This network contains three hidden layers, consisting of M1 = 30, M2 = 20
and M3 = 10 neurons (see Fig. 3.10). Each of them employs a ReLu, characterized by
the transfer function

h(x) = x u (x) , (3.219)

where u (·) denotes the unit step function. The estimates of the target range and
azimuth are computed by the output layer, that contains two neurons only.

The size of the whole dataset acquired in our experiment is N̂t = 1438; 80% of it
has been exploited for training the considered NN and the remaining part for its test
(therefore, the size of the training set and that of the test are Nt = 1150 and N̄t =
288, respectively). Moreover, training has been accomplished by an adam optimizer;
the batch size, the (constant) learning rate and the number of epochs selected for
this procedure are NS = 4, γ = 10−3 and NE = 50, respectively (see eq. (3.73)).
The elements of the feature vector rq (with q = 0, 1, ..., Nt − 1) have been scaled
before applying it to the network (more specifically, a min-max normalization has been
employed [185]); this ensures that the absolute value of such elements belongs to the
interval [0, 1] and makes the training procedure more effective. The accuracy achieved
by the network over the test set has been assessed by evaluating the RMSEs

ε̂R =
1√
N̄t

∥∥∥R̂− R̂NN

∥∥∥ (3.220)

and
ε̂ϕ =

1√
N̄t

∥∥∥ϕ̂− ϕ̂NN
∥∥∥ , (3.221)

where R̂ (ϕ̂) is the N̄t-dimensional vector collecting the values of the target range
(azimuth) estimated by means of the pico-flexx camera over the test set and R̂NN

(ϕ̂NN ) is the corresponding prediction computed by our NN (||x|| denotes the Euclidean
norm of the vector x). The network performance has been also assessed by evaluating
its detection score

Ac =
NC

NC +NW
, (3.222)

where NC (NW ) is the number of trials in the test set in which both target azimuth
and range have been correctly (wrongly) estimated (note that NC +NW = N̄t). In the
q-th trial, estimation is deemed correct if |R̂q − t̂q,0| ≤ ∆R and |ϕ̂q − t̂q,1| ≤ ∆ϕ, where
∆R = 20 cm and ∆ϕ = 5.5◦. It is worth pointing out that the values selected for
the parameters ∆R and ∆ϕ account for the limited resolution of the employed camera
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Methods ε̂R ε̂θ AC Training Prediction
(m) (◦) (%) (sec) (msec)

FFT based 0.09 3.0 88 - 5

ANN 0.07 3.5 92 8 10

YOLO v2 0.03 1.5 98 398 20

Table 3.5: Accuracy, detection score, training and prediction time of a
deterministic estimation algorithm, a feed-forward NN and a YOLO v2
network.

and radar system. Actually, the value selected for ∆R may look larger than expected,
because of the high resolution that can be potentially achieved by both our radar device
and pico-flexx camera. However, readers should not forget that the algorithm employed
for the computation of R̂q is not error free (see eq. (3.208) and (3.209)), especially when
the cluster of points ∆q (3.204) is not so dense or when the size N̄q in eq. (3.207) is
large. A low density in the set Sq could be observed when, for instance, the robot
reaches the corners of the delimited area or in presence of optical disturbances.

The estimated accuracy and precision achieved by the adopted NN together with
the time required for its training and testing are listed in Table 3.5. In the same
table, the values of the same parameters evaluated on the basis of the deterministic
algorithm employed for feature extraction are also provided; note that, for any q, this
algorithm can be exploited to generate the estimates R̂(q)

v̂q
and ϕ̂(q)v̂q of the target range

and azimuth, on the basis of v̂q (3.216) (note that R̂(q)
v̂q

and ϕ̂
(q)
v̂q

represent the v̂q-the
element of the vectors R̂q and ϕ̂q, respectively). From these results it is easily inferred
that: a) the NN is able to accurately predict the position of the target; b) it outperforms
the deterministic algorithm in terms of both accuracy and precision; c) its prediction
time is comparable with the computation time required by the deterministic algorithm.

In general, feed-forward NNs require a clever selection of their feature vector; for
this reason, some expertise in radar systems is desirable when applying them to target
detection and estimation. This problem can be circumvented by applying the YOLO v2
network (see Paragraph 3.6.2). Let us illustrate now how this network can be employed
to solve the target detection and estimation problem taken into consideration in this
paragraph. The q-the element of the collected dataset

Do ≜ {(rq,bq, tq) ; q = 0, 1, ..., N̂t − 1} (3.223)

consists of the following three components:

1. The noisy observation rq = Jq, where Jq = [J
(q)
l,m] is a range-azimuth matrix

having size N0 × N̄0 and computed on the basis of the measurements acquired in
the q-th trial. The element on the l-th row and the m-th column of Jq is defined
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as

J
(q)
l,m ≜

1

N0 N̄0
|
N̄0−1∑
v=0

N0−1∑
n=0

Sl,m|, (3.224)

where
Sl,m = r̂(ZP )

v,n exp (−j2πn flTs) exp
(
−j2πv d

λ
sm

)
(3.225)

with l = 0, 1, ..., N0− 1 and m = 0, 1, ..., N̄0− 1; here, r̂(ZP )
v,n is the n-tn element

of the N0-dimensional vector r(ZP )
v that results from zero padding N -dimensional

vector of time domain signal samples acquired over the v-th virtual antenna, Ts
the sampling period, fl ≜ l/(N0Ts) is the center frequency of the l-th frequency
bin and sm ≜ 2 (m − N̄0/2)/N̄0 is the m-th normalized spatial frequency. Note
that the matrix Jq can be computed through a N0 × N̄0-order 2D FFT, and
that the range and azimuth associated with J (q)

l,m (3.224) are (see eqs. (3.29) and
(3.39), respectively)

R̄l = fl
c

2µ
(3.226)

and
ϕ̄m = arcsin sm, (3.227)

respectively.

2. The vector
bq = [lq,mq, wq, hq] (3.228)

describing the bounding box associated with the detected target; here, the cou-
ple of integers (lq,mq) identifies the frequency bin and the normalised spatial
frequency, respectively, corresponding to the center of the box and wq (hq) rep-
resents the width (height) of the box itself.

3. The label tq; this equal to 1 (−1) if a target is detected (absent).

In our experiment, we have selected N0 = 8192 and N̄0 = 128 in the computation
of the elements of the matrix Jq. However, since Rm = 1.0 m (RM = 3.5 m) and
ϕm = −55◦ (ϕM = 55◦) have been assumed for the minimum (maximum) range, the
N0×N̄0 matrix J has been resized to an N̄l×N̄m matrix, where N̄l = bM−bm+1 = 106
(the values of the parameters bm and bM are expressed by eqs. (3.212) and (3.213),
respectively), N̄m = dM − dm + 1 = 106, with

dm =

⌊
N̄0

2
(sm + 1)

⌋
= 11 (3.229)

and
bm = 42. (3.230)

In addition, a square shape with wq = hq = 12 has been always assumed for the
bounding box; its parameters lq and mq have been computed as

lq = arg min
bm≤l̃≤bM

∣∣∣R̂q −Rl̃

∣∣∣ (3.231)
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and as
mq = arg min

dm≤m̃≤dM

∣∣∣ϕ̂q − ϕm̃

∣∣∣ (3.232)

where R̂q (ϕ̂q) is expressed by eq. (3.208) (eq. (3.209)) and Rl̃ (ϕm̃) by eq. (3.226) (eq.
(3.227)) with l = l̃ (m = m̃). The size of the dataset Do (3.223) is N̂t = 1438; 80%
of its elements are used for training and the remaining part for testing; consequently,
the sizes of the training set and the test set are Nt = 1150 and N̄t = 288, respectively.
Data augmentation has been performed on the training and test set in order to reduce
network overfitting, since their sizes are not so large; this procedure consists in randomly
flipping and scaling the input image and the associated box.

The architecture of the employed network is summarized in Table 3.6. It consists
of a cascade of 22 layers and is fed by a normalized version of the resized range-
azimuth matrix generated through the procedure illustrated above and having size
N̄l × N̄m = 106 × 106. Each of its first two convolutional layers has stride S = 2 and
is followed by a max pooling layer for dimensionality reduction. The use of a batch
normalization (BN) layer after each convolutional layer allows to avoid overfitting,
since the dataset size is not so large; consequently, other forms of regularization (as
dropout) are not required. The activation function at the end of each convolutional
layer is ReLu (see eq. (3.219)). The filter depth in the last convolutional layer must
be proportional to NA · (NPA +K), where NA is number of anchor boxes, NPA is the
number of predictions per each anchor and K is the number of classes (see refs. [165]
and [166]). Since, in our test, NA = 1, NPA = 5 and K = 1 (if the background is
ignored), the selected filter depth is equal to 6. A transform layer and an output layer
are also included in the architecture of the adopted network. The former layer improves
network stability in predicting the possible locations for the bounding box, whereas the
latter one refines the estimate of the bounding box location.

If the NK candidate boxes {bq[k] = [lq[k], mq[k], wq[k], hq[k]]T ; k = 0, 1, ...,
NK−1} (all labelled by tq = 1) are identified by network, the index k̂q of the bounding
box

b̂q =
[
lq[k̂q],mq[k̂q], wq[k̂q], hq[k̂q]

]
(3.233)

best fitting the ground truth box is evaluated as

k̂q = arg max
k̃∈{0,1,...,NK−1}

I
(q)

k̃
, (3.234)

where

I
(q)

k̃
=
A

(q)
BG ∩A(q)

BP

A
(q)
BG ∪A(q)

BP

(3.235)

is the intersection over union (IOU) associated with the k-th candidate box; here, A(q)
BG

(A(q)
BP ) represents the surface of the ground truth (predicted) bounding box referring

to the q-th observation. In our experiment, a target is detected if I(q)
k̃

> Ith, where
Ith = 0.1 is a properly selected threshold. Once the predicted bounding box b̂q (3.233)
is known, the estimate of the target range (azimuth angle) is evaluated by setting
l = lq[k̂q] ( m = mq[k̂q]) in eq. (3.226) (eq. (3.227)); note that the values selected for
the parameters l and m identify the center of the predicted bounding box.
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Layers Filters Size Stride Output

Convolutional + BN + ReLu 16 5× 5 2 52× 52× 16

Max pooling - 2× 2 2 26× 26× 16

Convolutional + BN + ReLu 32 5× 5 2 12× 12× 32

Max pooling - 2× 2 2 6× 6× 32

Convolutional + BN + ReLu 64 3× 3 1 6× 6× 64

Max pooling - 2× 2 2 3× 3× 64

Convolutional + BN + ReLu 128 3× 3 1 3× 3× 128

Convolutional + BN + ReLu 256 3× 3 1 3× 3× 256

Convolutional + BN + ReLu 512 3× 3 1 3× 3× 512

Convolutional 6 1× 1 1 1× 1× 6

Table 3.6: Architecture of the CNN employed for target detection and
estimation.

The training procedure of the adopted network has been carried out through the
SGD algorithm; a batch size NS = 10, a learning rate γ(i) = 10−3 and a number
of epochs NE = 25 have been assumed (see eq. (3.73)). The testing procedure has
evidenced that this network is able to predict the bounding boxes characterized by
I
(q)

k̃
> 0.1 over 98% of the test set. A realization of range-azimuth map associated with

the matrix J and of the associated ground truth and the predicted bounding boxes
around the detected target is illustrated in Fig. 3.27, where the position of the two
corner reflectors placed on the border of the area of interest is also identified (see Fig.
3.26). These results deserve the following comments:

a) The network is able to detect the target on the basis of the value of range and
azimuth obtained through the pico-flexx camera.

b) In the considered case, the IOU between the ground truth bounding box (red line)
and the predicted one (green line) is quite large, being equal to 0.73. Conse-
quently, the estimate of the position of the target (green circle) is very accurate
and certainly much better than the one used as reference (red cross) (note that
|R̂q −Rlq [k̂q ]| = 0.001 m and |ϕ̂q − ϕmq [k̂q ]| = 0.9◦ in this case).

The values of the achieved accuracy (evaluated in terms of the RMSEs ε̂R (3.220)
and ε̂ϕ (3.221)), the detection score (3.222), and the computational time required for
training and testing are listed in Table 3.5. From these results it is easily inferred that:

a) The YOLO network outperforms our (deterministic) FFT-based method in target
detection and estimation.

b) The value of the YOLO detection score Ac (3.222) is really high and better than
that provided by the feed-forward NN.
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Figure 3.27: Range-azimuth map referring to the scenario illustrated in
Fig. 3.26. The ground truth bounding box and the position of the target
are identified by a red square and a red cross, respectively. The prediction
of the network, together with the estimated bounding box, are identified by
a green circle and a green square, respectively.

c) The YOLO RMSE ε̂R (ε̂ϕ) is smaller than (close to) the one characterizing the
feed-forward NN.

These results lead to the conclusion that the YOLO network is more robust than
the feed-forward NN. Note also that, even if the complexity of this network is higher
than those of the other two methods, the time it employs for computing its prediction
is not too long, being in the order of few milliseconds.

Since the YOLO v2 network tries to solve also a binary classification problem, other
two important parameters for evaluating its performance are its precision

P =
TP

TP + TN
(3.236)

and its recall
R =

TP
TP + FN

, (3.237)

where TP (TN ) represents the overall number of true positives (true negatives), i.e.
the number of targets (false targets) classified correctly, and FN is the overall number
of false targets classified as targets. The precision versus recall plot evaluated in the
considered experiment is shown in Fig. 3.28. These results lead to the conclusion
that, in this case, the precision remains high for large values of the recall and drops
steeply only when the recall exceeds 0.9. The area under the curve shown in Fig. 3.28
represents the so called mean average precision (mAP ); in this case, we have found
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that mAP = 93% (note that the value of this parameter is expressed as a percentage
since the precision P (3.236) and the recall R (3.237) are defined in the range [0 , 1]).
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Figure 3.28: Representation of the precision versus recall plot referring
to the YOLO v2 network employed in the second application. Note that,
if the recall exceeds the threshold identified by the vertical dashed line, the
precision decreases steeply.

3.8 Conclusions

Thanks to recent developments of electronic technology and advances in signal process-
ing algorithms, colocated MIMO radar systems have reached a stage of maturity that
allows their adoption in a number of applications. Existing algorithms developed for
target detection and estimation in radar systems equipped with antenna arrays do not
always provide satisfactory performance in such applications, because of the complexity
of colocated MIMO radar devices and of the propagation scenario in which they operate.
This motivates the adoption of machine learning and deep learning techniques, since
these are able to extract relevant information from the available data in the absence
of an accurate mathematical description of the behaviour of radar devices and of the
mechanisms of electromagnetic propagation. Even if important steps have been made
in this field in the last years, significant research efforts are still required to make the
adoption of these techniques in commercial systems a reality. In this chapter, after pro-
viding essential information about MIMO radars and the deterministic algorithms they
employ for target detection and estimation, we have shown how some learning methods
can be exploited to solve simple classification and regression problems in FMCW radar
systems operating in a 2D propagation scenario and in the presence of point targets.
This allows readers to become familiar with some basic concepts and tools originat-
ing from the fields of radar systems and learning methods. Then, various applications
of learning methods to specific technical problems have been illustrated and relevant
trends in research on MIMO radars have been identified. Finally, the application of
machine learning and deep learning methods to two specific problems, namely human
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activity classification and range azimuth estimation, has been investigated. Our nu-
merical results, based on experimental datasets acquired through a colocated MIMO
device operating at 77 GHz, allow readers to grasp how such methods can be exploited
to solve real world problems. A pervasive use of such methods should be expected in
the near future, as understanding of the learning methods described in this chapter is
becoming deeper and deeper, and MIMO technology is continuously evolving.
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4. Vital Signs Monitoring

4.1 Introduction

Monitoring human vital signs, like heart and respiration rates, represents a routine
practice to detect patient deterioration. Changes in vital signs can reveal the exis-
tence of serious medical problems; for this reason, early identification of these changes
can improve survival rates in several conditions [186]. Vital signs monitoring is often
accomplished by means of wearable health devices [187]; this is due to the fact that
these devices enable continuous monitoring during daily activities. However, in various
situations, like in the case of infected patients, or of patients suffering from mental
illness or affected by severe burns or injuries, the use of wearable sensors is not possible
or recommended. In such cases, the use of non-contact monitoring devices, like radar
systems, can help healthcare professionals by providing critical information about pa-
tient state [188]. The application of radar devices to this field and, in particular, to
the estimation of the heart and respiration rates, has become an active research area in
recent years [189–192]. Actually, the first experimental results in this field date back to
1975, when the use of short-range radar technology was proposed to non-invasively ac-
quire respiratory information by comparing a microwave signal with its echo reflected
from the chest of a patient [193, 194]. In the following years, the possibility of em-
ploying radar systems for the wireless detection of the physiological movements due
to both heartbeat and respiration has been shown [195–198]. This has motivated the
investigation of the use of this technology in a number of medical applications, in-
cluding adult and neonatal sleep monitoring [199–201], disaster medicine (e.g., in the
detection of human vital signs under rubbles after earthquakes [202]) and lung cancer
radiotherapy [203].

In the last two decades, few review articles about radar-based monitoring of vi-
tal signs have been published [198, 204–209]; however, they have a limited scope since
they concern the use of specific technologies. In fact, on the one hand, [198, 204–206]
and [210] focus on continuous wave (CW) Doppler radars, ultra-wide band (UWB) and
radars equipped with a single transmit/receive antenna (i.e., single-input single-output,
SISO, radars), respectively. On the other hand, [207] takes into consideration radars
equipped with antenna arrays (i.e., multiple-input multiple-output, MIMO, radars) and
illustrates the advantages they offer with respect to their SISO counterparts. This
has motivated the writing of this chapter, that aims at offering a tutorial overview of
radar-based monitoring of vital signs and at providing some essential tips for its use in
a research laboratory. More specifically, in the remaining part of the chapter, essential
information about radar-based monitoring, cardiovascular and respiration physiology,
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and the modelling of chest displacement is provided. Then, we focus on the avail-
able radar technologies, and describe various radar architectures and signal processing
methods developed for radar-based estimation of vital signs; in this description, all the
available options are taken into consideration, and their pros and cons are illustrated.
This is followed by various technical considerations, formulated in the light of the ex-
perience acquired in our experimental activities on radar-based monitoring, and by the
analysis of some numerical results based on the measurements we acquired through
different radar devices; our considerations concern the essential technical requirements
that radar devices employed in this field should have and some essential guidelines to
be followed in conducting experimental campaigns. The study of all this allows us to
lay the foundations for understanding specific applications of radar-based monitoring
and relevant research trends in this field.

This chapter is organized as follows. In Section 4.2 the basic principles, challenges
and objectives of radar-based monitoring of vital signs are illustrated. In Section 4.3 the
physiological fundamentals of human cardiovascular and respiration activities are pro-
vided and simple mathematical models describing the dynamics of chest displacement
due to these activities are described. Section 4.4 is devoted to the four radar tech-
nologies employed in radar-based monitoring of vital signs, and to SISO and MIMO
radar architectures; for each architecture, simple mathematical models are provided
for the samples of the baseband signal received in the presence of a single point target.
An overview of the most important deterministic and learning-based signal processing
techniques employed for vital signs monitoring is offered in Section 4.5. In Section 4.6
we illustrate some basic guidelines to be followed in conducting experimental activities
in the considered field, analyse the problem of extracting hear rate from radar measure-
ments and comment on the assessment of estimation accuracy. The applications of the
considered radar-based techniques for vital signs monitoring to heart and breath rate
estimation, heart sound monitoring and heart rate variability estimation are discussed
in Section 4.7, whereas current research trends on radar-based monitoring of vital signs
are illustrated in Section 4.8. Finally, some conclusions are offered in Section 4.9.

4.2 Radars for Vital Signs Monitoring: Basic Principles,
Objectives and Challenges

Radar-based monitoring of vital signs is based on the idea that the chest-wall of human
bodies reflects the electromagnetic waves generated by a radar placed in front of it and
that its quasi periodic vibrations, resulting from respiration and heartbeat, modulate
such waves. Therefore, in principle, essential information about vital signs, i.e. heart
and breath rates, can be extracted from the reflected electromagnetic waves [211–213]
and a fundamental objective, namely contactless monitoring of vital signs, can be
achieved. Note also that, compared with traditional methods, such as pneumotachog-
raphy and electrocardiography, radar systems make continuous and timely breath rate
(BR) and heart rate (HR) monitoring possible without entailing an additional work
load for nurses. For these reasons, radars represent a favourable option for hospital
monitoring, especially in the case of severe burn or infectious disease patients, sudden
infant death syndrome monitoring, sleep apnoea monitoring, elderly home healthcare
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and psychology studies. Moreover, radar signals can be processed to extract more re-
fined medical information and, in particular, to detect anomalous alterations in the
sequence of heart beats.

Even if the usefulness of radar systems in vital signs monitoring is now globally
recognized and a wide literature about such systems is available, various challenges
concerning signal processing techniques for vital signs extraction are still open in this
research field; here, we limit to mention:

a) The estimation of heart rate – As illustrated in Subsection 4.3.2, the vibrations
due to heartbeat are significantly weaker than those originating from respiration. For
this reason, the contribution of the first phenomenon to the radar signal may be hidden
by that related to the second (and much stronger) one. This makes the task of esti-
mating HR much harder than that estimating BR; additional details about this issue
can be found in Subsections 4.7.1 and 4.6.3.

b) The identification of anomalous alterations of heart beats – This challenge con-
cerns the possibility of estimating HR variability (HRV) and detecting heart sounds;
these issues are discussed in Subsections 4.7.3 and 4.8.2, respectively.

c) The simultaneous observation of the vital signs of multiple people – In principle,
MIMO radar systems can be exploited to detect and estimate the vital signs of multiple
people located in a restricted area (e.g., in the same room; see Subsection 4.5.2 for
further details). However, experimental results supporting the feasibility of this idea
and involving a significant number of people are still missing in the technical literature
(e.g., see [207, Table I, Sect. IV]).

Finally, it is worth mentioning that the experimental results available in the techni-
cal literature about radar-based monitoring of vital signs concern heterogeneous radar
technologies and that there is not a broad consensus on the best technology to be
adopted in real world systems. For this reason, it is important to analyse the pros and
cons of each option available on the market; this issue is discussed in Section 4.4.

4.3 Physiological Fundamentals and Mathematical Mod-
elling

In this section we first provide readers with the physiological fundamentals of heart
and lung functions. Then, we concentrate on the movements of the chest surface in
human beings and illustrate some mathematical models describing them.

4.3.1 Basics of cardiovascular and respiration physiology

The human heart is made of two separated systems, called left and right sides. Each
side consists of two chambers, namely an atrium and a ventricle, which are separated
and connected by an atrioventricular valve. The main function of the left side is to
pump oxygenated blood through the aorta and the other arteries to peripheral tissues
and organs. The right side, instead, is in charge of pumping deoxygenated blood
through pulmonary arteries to lungs. Each side is connected to arteries through the so
called semilunar valves.

The cardiac cycle consists of a rhythmic sequence of contractions (systoles) and
relaxations (diastoles) of the heart; these events occur simultaneously in the left and
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right sides. During each cardiac cycle, sounds are generated by the action of the
heart muscle and the vibrations of the cardiac valves. In the case of an healthy adult
heart, two heart sounds are detected. The first one is caused by the contraction of
the ventricular muscle during systoles and the closing of atrioventricular valves. The
second heart sound, instead, is due to the closure of aortic and pulmonary valves.
Hemodynamic properties and HR can be determined by recording heart sounds. As
a matter of fact, such sounds can help the physician in the diagnosis of potential
cardiovascular diseases [214,215]. The physiologic HR at rest is 60 beats per min (bpm)
up to 100 bpm; values below this range (above it) characterise the so called bradycardia
(tachycardia).

A breathing cycle consists of two consecutive phases, known as inspiration and
expiration. In the first phase, thanks to the contraction of the diaphragm and of the
intercostal muscles, the thoracic volume increases; this results in a sub-atmospheric
pressure that allows air to flow through the airways into the lungs. Then, air oxygen
is absorbed into the blood and carbon dioxide is transferred from the blood to the
inhaled air through the alveolar-capillary membrane. Expiration, instead, is caused by
the elastic recoil of the lungs and relaxing muscles. In this phase, the deoxygenated air
can flow out of the lungs by increased pressure [216, 217]. The physiologic BR at rest
is 12 up to 25 acts per minute, whereas values below this range (above it) characterise
the so called bradypnea (tachypnoea).

4.3.2 Modelling of chest displacement

Let us focus now on the problem of modelling the chest displacement of an arbitrary
patient. As illustrated in the previous section, his/her inspiration (expiration) phase
produces an expansion (compression) of the thoracic wall. Moreover, the vibrations
due to his/her heart beat overlap with the thoracic breathing movement. In principle,
the time evolution of both the thoracic breathing movement and the cardiac vibrations
of the considered patient can be measured by a radar system placed in front of his/her
chest at a fixed distance. In the absence of random and large-scale body movements,
the displacement ∆R (t) of the chest surface measured by the radar system at the
instant t can be modelled as [218]

∆R (t) ≜ R (t)−R0 = δb (t) + δh (t) , (4.1)

where R(t) (R0) is the radar-chest distance at time t (distance in the absence of res-
piration) and δb(t) (δh(t)) represents the breath (heart) contribution to ∆R(t). It is
important to stress that:

a) the displacement δb (t) (δh (t)) is usually assumed to be periodic with period TBR

(THR), with TBR > THR;

b) the contribution of δh (t) to the displacement ∆R (t) is usually small with respect
to that due to δb (t); in fact, if δb,M (δh,M ) denotes the maximum absolute value
of δb(t) (δh(t)), it is known that 1 ≤ δb,M ≤ 5 cm and 1 ≤ δh,M ≤ 9 mm [219,220].

A simple mathematical model describing the breath displacement δb(t) within each
period has been proposed in [221]. According to this model, the displacement in the
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Figure 4.1: Representation of: a) a computer generated chest displace-
ment (multiple periods of breathing activity are considered); b) a computer
generated chest displacement (a couple of consecutive periods of breathing
activity are considered); c) the contributions of breathing activity to the
chest displacement shown in sub-figure b); d) the contributions of heart ac-
tivity to the chest displacement shown in sub-figure b). In all these figures,
a blue (red) line is used to identify the signals generated on the basis of
(4.1) ((4.6)).

inspiration phase is described by the parabolic profile

δb(t) = −
δb,M
Ti Te

(t− t0)
2 +

δb,MTBR
Ti Te

(t− t0), (4.2)

with t ∈ [t0, t0 + Ti), whereas that in the expiration phase by the exponential profile

δb(t) =
δb,M exp

(
−Te

τ

)
1− exp (−Te/τ)

[
exp

(
−(t− t0)− TBR

τ

)
− 1

]
, (4.3)

with t ∈ [t0 + Ti, t0 + TBR); here, t0 is the initial instant of the considered breathing
period, Ti (Te) is the duration of the inspiration (expiration) phase, τ is the time
constant of the expiratory profile; note that TBR = Ti + Te. The displacement due to
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Table 4.1: Minimum and maximum values of the parameters appearing in
(4.1)-(4.5). The values selected for generating the simulation results shown
in Fig. 4.1 are also listed.

Params TBR THR Ti Te δb,M δh,M τ a1 a2 a3
(s) (s) (s) (s) (cm) (cm) (s) (cm) (s) (s)

Minimum 1.5 0.3 0 0 1 0.1 0 0 0 0

Maximum 6 1.2 TBR TBR 5 0.9 TBR 1 1 1

Simulation 3 1 0.5TBR 0.5TBR 1.1 0.11 0.5TBR 0.2 0.5 0.8

the cardiac activity, instead, can be modelled as [218]

δh(t) =δh,M cos (w1(t− t1) + γh(t))

· exp
(
−((t− t1)− a2)

2

a3

)
, (4.4)

with
γh(t) = a1 sin (w2(t− t1)) (4.5)

and t ∈ [t1, t1 + THR); here, t1 is the initial instant of the considered heart beat, {ak;
k = 1, 2, 3} and {wl; l = 1 and 2} are tunable and fixed parameters, respectively. Note
that the function γh(t) is periodic, but can be easily modified to account for heart rate
variability (HRV), i.e. for the changes in the time interval between consecutive beats1.

The minimum and maximum values of all the parameters appearing in (4.2)–(4.5)
are listed in the second row and in the third row, respectively, of Table 4.1; note that,
given THR and TBR, w1 and w2 can be computed as w1 = 2π/THR and w2 = 2π/TBR,
respectively, and that both parameters are expressed in rad/s.

The chest displacement resulting from the mathematical model expressed by (4.1)–
(4.4), given the values of its parameters2 listed in the fourth row of Table 4.1, is
exemplified by Fig. 4.1, where the contributions due to breathing and cardiac activities
are also shown for a couple of consecutive periods of breathing activity (see sub-figures
b)-d)). Note that, in generating these numerical results, t0 = (kb − 1)TBR (with kb =
0, 1, ..., Nb − 1 and Nb = ⌊TF /TBR⌋), t1 = (kh − 1)THR) (with kh = 0, 1, ..., Nh − 1 and
Nh = ⌊TF /THR⌋) have been selected, where TF is the duration of the whole observation
interval; moreover, the values adopted for the model parameters have been selected on
the basis of the results obtained in our experimental campaign.

Although the models illustrated above are accurate, a simpler representation of
the heart and breathing profile has been adopted by various researchers [212,222,223].
More specifically, if Ti is assumed to be equal Te, the approximate model

∆R(t) ≈ ∆R̄(t) = δ̄b(t) + δ̄h(t), (4.6)

1Additional details about HRV are provided in Subsection 4.8.2.
2These values have been selected on the basis of the data acquired in our measurement campaigns.
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with
δ̄b(t) ≜

δb,M
2

[1− cos(wbt)] (4.7)

and
δ̄h(t) ≜ δh,M cos(wht), (4.8)

can be employed in place of that expressed by (4.1); here, wb = 2π/TBR (wh = 2π/THR)
represents the HR (BR). An example of chest displacement generated according to (4.6)
is provided in Fig. 4.1, where the contributions due to breathing and cardiac activities
are also shown. From this figure it can be easily inferred that the results obtained on
the basis of the models (4.1) and (4.6) are not so different; however, we should not
forget that the model (4.6) is unable to account for the presence of both HRV and all
the frequency components3 observed in the spectrum of the received signal.

Finally, it is worth mentioning that various sensors, such as pressure belts, fiber
Bragg gratings and inertial sensors, can be exploited to monitor chest surface motion
(some examples of commercial wearable sensors are described in Subsection 4.6.2); how-
ever, all these sensors require to be worn by the patient under test. In a measurement
campaign for radar-based monitoring, one of these sensors can be used as reference;
this allows to separate the cardiac activity from the dominant breathing dynamics.
In fact, as already mentioned above, the contribution of heart beats to surface chest
motion is relatively small with respect to the that due to respiration. Moreover, the
spectral components of heart motion may overlap with the respiratory harmonics; this
makes separating the former contribution from the latter one really challenging.

4.4 Radar Systems: Technologies and Architectures

In this section, after providing a classification of the radar technologies employed for
vital signs monitoring, some radar system architectures other than MIMO FMCW,
which is already discussed in previous chapters4, are illustrated.

4.4.1 Radar technologies and classification

Radar systems can be divided into two categories on the basis of the mechanism ac-
cording to which the waveform they radiate is generated; more specifically, the first
category is made of the continuous wave (CW) radars, whereas the second one of the
so called pulsed radars. In a CW radar, the radiated signal is transmitted continuously,
whereas, in a pulsed radar, it is sent over short periods of time. In both cases the trans-
mitted signal can be modulated or unmodulated; for this reason, radar systems can be
also classified on the basis of the modulating waveform. In the technical literature on
vital sign estimation, the use of the following types of radar systems has been investi-
gated: a) CW Doppler radar; b) frequency-modulated continuous wave (FMCW) radar;
c) stepped-frequency continuous wave (SFCW) radar; d) impulse radio ultra-wideband
(IR-UWB) radar. In the remaining part of this subsection, a brief description of each
type is provided.

3The spectral contribution due to respiration is represented by a few relevant harmonics, as evi-
denced by our numerical results shown in Subsection 4.6.3.

4A small difference in notation is present, but the core concepts are identical.
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Continuous wave Doppler radars radiate a continuous wave radio signal, charac-
terized by a known stable frequency, and are commonly employed for their hardware
simplicity. In these radar systems, the chest displacement due to heart and breathing
activities results in a variation of the phase of the received signal. Such a variation is
inversely proportional to the wavelength of the signal; therefore, reducing the wave-
length of the transmitted wave (i.e., increasing its frequency) results in larger changes
in the observed phase and, consequently, allows to detect smaller displacements. One
of the main limitations of these radar systems is represented by the fact that they
are unable to measure the frontal distance, i.e. the range between the radar and any
subject detected by it.

Frequency-modulated continuous-wave radars and stepped-frequency continuous-wave
radars radiate wideband frequency modulated signals. The main difference between
these systems is represented by the fact that, in the former case, the frequency of the
transmitted wave evolves over time in a linear manner, whereas, in the latter one, it
changes in a stepwise manner. However, in both systems, the propagation delay is
extracted from the phase variations observed in the received signal.

Impulse radio ultra-wideband radars radiate wideband frequency modulated signals.
In these systems, the chest distance is estimated by assessing the delay experienced by
sub-nanosecond pulses, being this delay proportional to the distance between the radar
and any detected subject.

The above mentioned radar systems can be also classified on the basis of their
wavelength or their maximum measurable range. In fact, in the first case, they are
divided into micro-wave radars, characterized by a wavelength of few centimetres, and
mm-wave radars, if their central frequency is equal to 77 GHz or, in general, greater
than 30 GHz [224]. In the second case, instead, they can be divided in (e.g., see [50, p.
24, Table 1]): a) short range radars, that are able to measure a maximum range of
about 30 m; b) medium range radars, that are characterized by a maximum range of
about 100 m; c) long range radars, that achieve the largest maximum range (of the
order 250 m).

Each of the considered radar systems is endowed with a single antenna or an antenna
array at its TX and/or RX sides. A SISO radar system employs a single antenna at
both its sides; note that most of the CW and IR-UWB radars considered in technical
literature on the monitoring of human vital signs are of SISO type. Multiple-input
multiple-output radar systems, instead, employ antenna arrays in their transmission
and reception; various FMCW and SFCW radars of this type are already available on
the market and their use in vital signs monitoring is currently being investigated. It is
also important to keep in mind that a SISO radar can estimate the range and/or the
distance of a single/multiple targets, whereas a MIMO radar makes the estimation of
its/their angular coordinates possible.

Multiple-input multiple-output radar systems can be divided into statistical radars
[9,10], and colocated radars [11], [8] on the basis of the distance between their transmit
and receive arrays. In practice, the transmit and receive antennas of statistical radar
systems are widely separated. On the contrary, the transmit antennas of colocated
radar systems are close to the receive ones and, in particular, are usually placed on the
same shield. The last feature allows to develop compact devices; this explains why all
the MIMO radars currently being considered for vital signs monitoring are of this type.



4.4. RADAR SYSTEMS: TECHNOLOGIES AND ARCHITECTURES 169

In a MIMO radar system, the signals radiated by distinct TX antennas are orthog-
onal. The simplest strategy to synthesize orthogonal waveforms is represented by time
division multiplexing (TDM) [12]. Adopting this strategy means that distinct transmit
antennas are activated over disjoint time intervals, so that the signals they radiate do
not overlap in the time domain.

In selecting a radar system of a specific type, the following relevant features must
be taken into considerations:

• Its maximum detection distance - This depends on the power radiated by the radar
device, on the gain of its antennas and on the signal processing accomplished at
both its TX and RX sides. If commercial radar devices operating at the same
power level are considered, FMCW and IR- UWB devices are usually found to
achieve a higher value of maximum detection distance than their CW and SFCW
counterparts. Note also that colocated MIMO radars benefit from the availability
of antenna arrays. In fact, increasing the overall number of radiating elements
in their TX and RX arrays, results in a larger overall gain and, consequently,
in an increase of the maximum detection distance, independently of the adopted
modulation format.

• The accuracy it can achieve in range estimation - The highest level of accuracy is
attained by MIMO radars (of FMCW, SFCW or IR-UWB types), thanks to the
fact that the signal-to-noise ratio (SNR) level at their RX side is higher that of
their SISO counterparts [11].

• Its ability to detect multiple subjects characterized by different DoAs - This ability
is offered by MIMO radars only5, since their RX array allows to separate signals
received from different directions [12].

• Its overall complexity - In general, SISO radars are significantly simpler than
their MIMO counterparts. In the category of SISO radar devices, the CW type is
undoubtedly the one having the simplest architecture. In the category of MIMO
radar devices, instead, MIMO FMCW radars usually have the largest complexity.

• Its cost - In general, the cheapest radar devices are the ones of CW type. For a
given radar type, the cost of commercial MIMO devices is at least twice that of
their SISO counterparts. The cost gap between SISO and MIMO devices mainly
depends on the size of the employed antenna arrays and, in particular, increases
when the overall number of the antenna elements (i.e., the overall number of RF
chips) gets larger.

4.4.2 Architecture of single-input single-output radar systems

In this subsection, a brief description of the architecture of the radar systems employed
for vital signs monitoring is provided. All the considered systems are equipped with
single TX and RX antennas. Moreover, in illustrating their baseband processing at the

5In principle, a SISO radar can be used to detect the vital signs of multiple subjects, provided that
their ranges are different (e.g., see [225]). However, it is unable to estimate their angular coordinates.
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Figure 4.2: Block diagram of a CW radar.

receive side, it is always assumed that the chest of the monitored subject, placed in
front of the radar system, can be represented as a single point target for simplicity6.

Continuous wave radars

Let us focus first on CW radar systems. The architecture7 of a radar system of this
type is represented in Fig. 4.2. In its transmitter, the RF signal produced by a wave-
form generator (and characterised by the carrier frequency f0) feeds a power amplifier
(PA), whose response is applied to the TX antenna; this antenna is placed in front of
the chest of a human being. The received signal is amplified by a low noise amplifier
(LNA), whose response undergoes frequency downconversion to extract its in-phase
and quadrature components, denoted xI(t) and xQ(t), respectively; this task is ac-
complished by a couple of mixers, each followed by the cascade of a low-pass filter
(LPF) with a variable gain amplifier (VGA). The output of each VGA is sampled by
an analog-to-digital converter (ADC), operating at the frequency fs = 1/Ts, where Ts
is the sampling period. The n-th sample of xI(t) (xQ(t)) is denoted xI [n] ≜ xI (nTs)
(xQ [n] ≜ xQ (nTs)); note that the mathematical expression of these samples depends
on the transmitted waveform. Further mathematical details are provided in the follow-
ing for each of the three types of CW radars introduced in Subsection 4.4.1.8

Continuous wave Doppler radar In this case, the waveform generator appear-
ing in Fig. 4.2 consists in a local oscillator (LO) generating a tone at the frequency fc.
The n-th sample of xI(t) and xQ(t) can be expressed as (e.g., see [232, Sect. II, eqs.
(1)-(2)])

xI [n] = a cos(ψ [n]) + wI [n] (4.9)

6As a matter of fact, the chest of the monitored subject is usually much larger than the resolution
of the employed radar sensor (and, for this reason, should be represented as a cloud of point targets)
and absorbs a significant fraction of the incident power at its skin surface [226]. All this is usually
neglected in the technical literature.

7Note that a different architecture is adopted by CW self-injection-locked radars and CW radars
employing super-regenerative oscillators; further details about this topic can be found in [227–229],
and [230,231], respectively

8Additional details about FMCW radars are not provided here, since the main features of these
systems have been illustrated in the previous chapters.
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and
xQ [n] = a sin(ψ [n]) + wQ [n] , (4.10)

respectively, with n = 0, 1, ..., N − 1; here, n is the fast time index, N represents the
overall number of samples acquired in the considered observation interval, a represents
the amplitude of the useful signal component, wI [n] (wQ[n]) is the contribution of the
additive white Gaussian noise (AWGN) affecting the in-phase (quadrature) component,

ψ[n] ≜ ψ0 +∆ψ[n], (4.11)

ψ0 = 4π
R0

λ
(4.12)

is a constant phase shift9 due to the (fixed) distance R0 between the chest of the
considered subject and the radar, and

∆ψ[n] =
4π

λ
∆R[n] (4.13)

is the phase variation due to the chest displacement ∆R(t) (see (4.1)); here, ∆R[n] ≜
∆R(t = nTs), λ = c/f0 is the wavelength of the radiated signal, c is the speed of light
and Ts is the sampling period. From the mathematical results illustrated above it can
be easily inferred that the chest displacement can be assessed by estimating the phase
variations over consecutive samples of the complex sequence {x[n]; n = 0, 1, ..., N−1},
where

x [n] ≜ xI [n] + jxQ [n] = a exp(jψ [n]) + w [n] , (4.14)

and
w [n] ≜ wI [n] + jwQ [n] (4.15)

is the noise contribution to x[n] (4.14).

9The phase shift ψ0 is called direct current (DC) offset. In vital sign monitoring, this quantity
depends on the distance between the employed radar and the chest wall in front of it; however, this
term may be influenced by other factors, such as the reflections from stationary targets or from other
parts of the human body, and the noise of electronic components.



172 CHAPTER 4. VITAL SIGNS MONITORING

Stepped frequency continuous wave radar The transmitter of an SFCW
radar is similar to that of an FMCW radar, the only difference being represented by
the fact that the ramp generator of the last system is replaced by a staircase wave-
form generator. Therefore, the instantaneous frequency of the signal generated by the
VCO employed in an SFCW radar changes in a step-wise manner within each radi-
ated frequency sweep. The time evolution of the instantaneous frequency of the signal
generated by the VCO over a single frame is shown in Fig. 4.3. In this figure, T0, T
and TR represent the frequency sweep duration, the sampling time and the reset time,
respectively, whereas N and ∆f represents the overall number and the width of each
frequency step, respectively. Note that, if Nc denotes the overall number of frequency
sweeps forming a single frame, each frame lasts TF = NcT0 s.

If we assume that the sampling interval Ts is equal to the duration of each frequency
step (i.e., that the sampling frequency fs ≜ 1/Ts is equal to ∆f), a single complex
sample is acquired at the RX side within each single frequency step. Moreover, in this
case, the k-th sample of the in-phase and quadrature components available in the n-th
frequency sweep interval can be expressed as (e.g., see [233, Sect. II.B, eq. (13)])

xI [k, n] = a cos(2πk∆fτn + ψ[n]) + wI [k, n] (4.16)

and
xQ[k, n] = −a sin(2πk∆fτn + ψ[n]) + wQ[k, n], (4.17)

respectively;
In the considered radar system, the complex sequence {x[k, n]; k = 0, 1, ..., N −1},

where

x [k, n] ≜ xI [k, n] + jxQ[k, n]

= a exp (−j (2πk∆fτn + ψ [n])) + w [k, n] (4.18)

for any n, is processed to generate an estimate of the normalised delay

Fn ≜ ∆fτn. (4.19)

Since the last quantity can be also interpreted as the normalised frequency of a complex
exponential sequence, the frequency estimation algorithms developed for FMCW radar
systems can be also employed in SFCW systems. Finally, it is worth stressing that
this similarity can be considered as a form of time-frequency duality [234]; from this
viewpoint, an SFCW radar system can be seen as the dual of an FMCW radar system,
as evidenced in [235].

Impulse radio ultra-wideband radar

The architecture of an IR-UWB radar is represented in Fig. 4.4. At the TX side, a
tunable Gaussian pulse generator, triggered by a square wave generator, is employed
to generate the (baseband) output signal

s (t) =
∑
n

p (t− nT0) ; (4.20)

here, p (t− nT0) represents the n-th transmitted pulse and T0 is the pulse repetition
interval (PRI). Note that, if T denotes the duration of each pulse10, the interval T0

10In practice, T is on the order of hundreds of ps.
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Figure 4.5: Example of the baseband signal s(t) (4.20) produced by the
pulse generator of the IR-UWB radar system represented in Fig. 4.4.

is can be expressed as T0 = T + TR, where TR is the so called reset time. The time
evolution of s(t) is exemplified by Fig. 4.5, where Nc consecutive pulses are represented;
such pulses form a transmission frame, whose duration is TF = NcT0 s.

The signal s(t) (4.20) undergoes frequency upconversion (accomplished by means
of a mixer and a LO operating at the frequency11 f0) and power amplification before
its transmission.

Since the pulses forming s(t) (4.20) are not overlapped, we can focus our attention
on the echo generated by the chest in response to the k-th pulse. At the RX side, the
RF signal conveying this pulse is amplified by a LNA and downconverted12 to extract

11This frequency usually belongs to the industrial, scientific and medical (ISM) band.
12The downconversion scheme is the same as that illustrated in Fig. 4.2.

Table 4.2: Received signal model and range formulas for the considered
radar systems.

Radar type Waveform Received signal model Target range

Continuous wave
Sine wave x [n] = a exp(jψ [n]) unavailable
Linear frequency mod. x [k, n] = a exp (j (2πkfnTs + ψ [n])) Rn = fn · c/(2µ)
Stepped frequency mod. x [k, n] = a exp (−j (2πk∆fτn + ψ [n])) Rn = τn · c/2

Impulse-radio Gaussian pulse x [k, n] = a p [k, n] exp (jψ[n]) Rn = τn · c/2
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its in-phase and quadrature components. Then, these components undergo analog-to-
digital conversion at the frequency fs = 1/Ts, where Ts is the sampling period. If τn
denotes the delay experienced by the considered pulse, the k-th sample of the in-phase
and quadrature components associated with it can be expressed as (e.g., see [236, Sect.
II, eq. (4)])

xI [k, n] = a p [k, n] cos (ψ[n]) + wI [k, n] (4.21)

and
xQ[k, n] = a p [k, n] sin (ψ[n]]) + wQ [k, n] , (4.22)

respectively, with k = 0, 1, ..., N − 1 and n = 0, 1, ..., Nc − 1; here, a represents the
amplitude of the useful signal component,

p[k, n] ≜ p (kTs − τn − nT0) , (4.23)

wI [k, n] and wQ[k, n] represent noise contributions (they correspond to the samples wI [n]
and wQ[n] contained in the RHS of (4.9) and (4.13), respectively), and N is the overall
number of samples acquired over each PRI (briefly, of fast time samples). Each of the
sequences {xI [k, n]} and {xQ[k, n]} is sent to a digital matched filter (MF), that is
to a digital filter whose impulse response is the sequence {p (T − kTs); k = 0, 1, ...,
N − 1}; the responses of the MFs fed by the samples of the in-phase and quadrature
components are denoted {x̂I [k, n]; k = 0, 1, ..., N − 1} and {x̂Q[k, n]; k = 0, 1, ...,
N −1}, respectively. If the chest displacement ∆R(t) is approximately constant within
a single PRI, i.e.

∆R (kTs + nT0) ∼= ∆R (nT0) (4.24)

for k = 0, 1, ..., N − 1 and any n, matched filtering allows to maximise the output
SNR, i.e. the ratio between the energy of the useful component available at the MF
output and the average power of the noise component affecting it. The target delay τn
is estimated by identifying the position of the main peak appearing in the MF response.

Finally, it is useful to point out that:

a) Eqs. (4.21)–(4.22) can be condensed in the complex signal model

x [k, n] ≜ xI [k, n] + jxQ[k, n]

= a p [k, n] exp (jψ[n]) + w [k, n] , (4.25)
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where w[k, n] ≜ wI [k, n] + jwQ[k, n] is the noise component.

b) In IR-UWB radar systems, the presence of clutter, i.e. of reflections from other
stationary targets, may affect the estimation of vital signs. The presence of clutter
in the received signal can be modelled as DC offset or small amplitude variations
in the slow time dimension in (4.21) and (4.22).

The received signal models and range formulas provided above for the different
types of radar systems are summarized in Table 4.2.

4.5 Signal Processing Algorithms for Vital Signs Monitor-
ing

In this section, we first describe the most important deterministic and learning-based
(LB) processing methods that can be employed to extract vital signs from the measure-
ments provided by the SISO radar systems described in the previous section. Then, we
provide essential information about the processing accomplished in colocated FMCW
and SFCW MIMO radars for estimating the vital signs of multiple people. Finally, we
illustrate some numerical results generated by applying some of the considered methods
to a synthetically generated dataset.

4.5.1 Deterministic detection and estimation algorithms for single-
input single-output radars

The majority of the radar-based methods for vital signs monitoring appeared in the
technical literature have the following features: a) they are deterministic (i.e., model-
based), since their derivation is based on our prior knowledge about the structure of
radar echoes; b) they extract vital signs from the phase of the received signal. As far
as the last point is concerned, it is useful to focus first on a SISO CW Doppler radar
for simplicity and to reconsider the phase expression (see (4.11))

ψ[n] ≜ ψ0 +∆ψ[n] (4.26)

provided in Paragraph 4.4.2 for the n-th received signal sample (where n denotes the
fast time index). As already illustrated in that paragraph, the constant ψ0 appearing
in the last equation represents the so called DC offset, whereas (see (4.13))

∆ψ[n] =
4π

λ
∆R[n] (4.27)

is a time-varying term related to the body movement induced by breath and cardiac
activities and, consequently, conveys the information we are interested in. This ex-
plains why the first step accomplished by the deterministic methods developed for CW
Doppler radars consists in extracting the phase of the received signal sequence {x[n]},
as shown in Fig. 4.7, where a block diagram is represented to describe the overall
processing they accomplish. As shown in this figure, phase extraction is carried out by
the first block, that generates the Nr-dimensional vector

ψ̂ ≜ [ψ̂[0], ψ̂[1], ..., ψ̂[Nr − 1]]T (4.28)
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on the basis of the sample sequence {x[n]} (whose elements are collected in the vector
x appearing in Fig. 4.7); here, Nr is the overall number of measurements and ψ̂[n]
represents an estimate of ψ[n] (4.26), i.e. of the phase of the complex sample x[n]
(which is expressed by (4.14) in the case of a single point target). Given the vector
ψ̂ (4.28), estimates of the BR and HR can be evaluated by applying the so called
periodogram method [94], i.e. by identifying the dominant frequency components in
the amplitude spectrum of {ψ̂[n]}. In fact, it is known that: a) the highest peak in
the above mentioned spectrum is found at the breath frequency in normal respiration
conditions; b) the HR is higher than the BR (at least more than two times higher).
For these reasons, an estimate f̂b of the BR fb (expressed in acts/s) can be computed
as

f̂b = b̂ fr, (4.29)

where
b̂ = arg max

b̃∈{0,1,...,N0/2}

∣∣Yb̃∣∣ , (4.30)

Yb̃ ≜
1

Nr

Nr−1∑
n=0

ψ̂[n] exp
(
−j2πn b̃ /N0

)
, (4.31)

N0 ≜M Nr, (4.32)

M is the oversampling factor and

fr ≜
1

N0Ts
(4.33)

for the CW Doppler radar system described in Subsection 4.4.2. Note that: a) Yb̃
(4.31) represents the b̃-th element of an order N0 Discrete Fourier Transform (DFT) of
ψ̂ (4.28) and can be efficiently computed by adopting a Fast Fourier Transform (FFT)
algorithm of the same order, as shown in Fig. 4.7; b) the strategy expressed by (4.30)
aims at identifying the dominant spectral component in the spectrum of the sequence
{ψ̂[n]}; c) for a given M , the adoption of a larger Nr (i.e., of a longer observation time)
allows to achieve a better spectral resolution.

A similar procedure can be employed for estimating the HR fh. However, in this
case, FFT processing is preceded by bandpass filtering (BPF) to cancel all the spectral
components whose frequency falls outside the interval in which the heart frequency is
expected (see Fig. 4.7). Then, an estimate f̂h of fh can be evaluated as

f̂h = ĥ f̄r, (4.34)

where
f̄r ≜

1

N̄0Ts
, (4.35)

ĥ = arg max
h̃∈{0,1,...,N̄0/2}

∣∣Zh̃∣∣ , (4.36)

Zh̃ (4.31) represents the h̃-th element of an order

N̄0 ≜ M̄ Nr, (4.37)

DFT of the BPF output vector (whose size is equal to Nr) and M̄ denotes the adopted
oversampling factor. It is worth pointing out that:
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a) Since some prior knowledge about the minimum and maximum BRs to be de-
tected is usually available, the search interval in the RHS of (4.30) can be re-
stricted to reduce the overall computational cost of the search for the maximum
over the set {|Yb̃|}. Similar considerations hold for (4.36), since {|Zh̃|} takes on
significant values in a restricted frequency range because of the employed band-
pass filtering.

b) The topology and order of the bandpass filter employed in HR estimation depend
on the required selectivity; for instance, a fourth order digital bi-quad filter and
a fifth-order low pass Butterworth filter have been adopted in [237] and [238],
respectively. The main problem in filter design is represented by the selection
of its passband, since the spectral components due to BR (HR) should not fall
inside (out of) it. In general, the lower limit fL and upper limit fU of the filter
passband should be selected in a way that fL ≥ 2/TBR and fU ≤ 3/THR, where
TBR (THR) is the breath (heart) period (see Subsection 4.3.1).

c) Generally speaking, the evaluation of an order N0 (N̄0) FFT in BR (HR) esti-
mation leads to partitioning the frequency interval in N0 (N̄0) frequency bins, all
having the same size. The quantity b̂ (4.30) (ĥ (4.36)) represents an estimate of
the index of frequency bin inside which the fundamental frequency of respiration
(heart) signal falls, whereas fr (4.33) (f̄r (4.35)) is the bin size.

d) Since the phase vector ψ̂ is real, the FFT output vectors Y and Z are Hermitian
symmetric; this explains why only a portion of their elements is involved in the
search required by (4.30) and (4.36), respectively.

Let us focus now on the extraction of phase information in CW Doppler radars
[239–241]. This is usually accomplished by means of the arctangent demodulation (AD)
technique. This means that the n-th element of the vector ψ̂ (4.28) is evaluated as13

ψ̂[n] = arctan

(
xQ[n]

xI [n]

)
, (4.38)

for n = 0, 1, ..., Nr − 1. If xI [n] or xQ[n] are equal to zero, the last equation is replaced
by

ψ̂[n] = arcsin (xQ[n]) (4.39)

and
ψ̂[n] = arccos (xI [n]) (4.40)

respectively. It is important to point out that:

a) The contribution of the DC offset and of the possible strong low frequency com-
ponents to the received signal phase can be mitigated by exploiting the method
illustrated in [242] and based on polynomial fitting. This method allows to cap-
ture the slow temporal variations of that phase and to subtract them from it.
Other techniques for DC offset removal have been proposed in [243] and [244],
and are based on a least-square (LS) approach and Kalman filtering.

13The arctan(·) operator can be also replaced by the arctan2(·) operator in order to extend the
codomain from (−π /2, π/2) to (−π , π).
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b) The estimated phase sequence {ψ̂[n]} may exhibit some discontinuities. In fact,
a discontinuity appears in the extracted phase whenever the condition14 (see eq.
(4.27))

∆ψ̂n+1,n ≜ |ψ̂[n+ 1]− ψ̂[n]| = 4π

λ
∆Rn+1,n ≥ 2π (4.41)

is met; here, ∆Rn+1,n ≜ |R̂[n+ 1]− R̂[n]|. This means that, whenever the range
variation ∆Rn+1,n observed over two consecutive sampling epochs exceeds half a
wavelength, the value of the estimated phase becomes ambiguous. Note that this
problem becomes more relevant as the frequency f0 of the radiated signal increases
(for instance, if f0 = 77 GHz, any displacement exceeding 2 mm produces a phase
ambiguity).

c) The phase sequence {ψ̂[n]} always undergoes a transformation known as unwrap-
ping ; unwrapping aims at ensuring that the variation between two consecutive
elements of this sequence does not exceed π. In practice, this result is achieved
by adding a multiple of 2π to some of the elements of the sequence {ψ̂[n]}. How-
ever, the use of unwrapping may introduce errors in the presence of abrupt phase
variations. In this case, the extended differentiate and cross-multiply (DACM)
algorithm proposed in [245] or its modified version [246] should be employed to
achieve precise phase unwrapping.

Finally, it is worth mentioning that an alternative to the arctangent method is rep-
resented by the complex signal demodulation (CSD) technique. This technique is based
on the idea that the received signal can be seen as a frequency modulated waveform
(see (4.6) and (4.27)). Therefore, an approximate model, based on the first order Bessel
functions, can be derived for it [247]. This allows to separate the contribution due to
the periodic movement of the chest from the one associated with the position of the
body (i.e., with the term ψ0; see (4.12)). In particular, Fourier analysis can be directly
applied to the sequence {x[n]} (see (4.14)) to estimate both BR and HR.

The architecture of the deterministic methods developed for FMCW, SFWC and IR-
UWB radars can be also represented through the block diagram in Fig. 4.7. However,
in these cases, the following changes are made:

a) The parameter Ts appearing in the RHSs of (4.33) and (4.35) is replaced by
the PRI Tp in the case of IR-UWB radar system and by the chirp (i.e., by the
frequency sweep) duration T0 in the case of an FMCW (SFCW) radar system.

b) The algorithm for extracting phase estimation (i.e., for generating the vector ψ̂
(4.28)) is more complicated.

As far as the last point is concerned, further details are provided in the following
two sub-subsections.

14In the derivation of the following result, the arctan2(·) operator is assumed in place of the simpler
arctan(·).
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various deterministic methods for vital sign estimation.

Frequency modulated and stepped frequency continuous wave radars

Let us concentrate first on the simplest method that can be adopted in an FMCW radar
system for the extraction of the above mentioned phase information. This method
processes the received signal samples acquired over a single transmission frame (made
of Nc consecutive chirps; see Subsection 4.4.2) and consists of the following steps:

1. The N ′
0 ×Nc complex matrix X = [X[l, n]] is computed; here,

X[l, n] ≜
1

N

N−1∑
k=0

x[k, n] exp
(
−j2πnl/N ′

0

)
, (4.42)

with l = 0, 1, ..., N ′
0 − 1 and n = 0, 1, ..., Nc − 1 . Note that X[l, n] represents the

l-th coefficient of an order N ′
0 DFT of the signal samples acquired over the n-th

chirp of the considered transmission frame.

2. The index of the frequency bin

l̂ ≜ arg max
l̃∈{0,1,...,N ′

0−1}

∣∣∣X[l̃, n]
∣∣∣ , (4.43)

associated with the target (i.e., with the chest of the subject under test) is iden-
tified.

3. Phase extraction is accomplished through the AD method (followed by phase
unwrapping), but does not involve the time domain samples of the received signal
(i.e., the samples {x[k, n]}). In fact, the samples xI [n] and xQ[n] are replaced by
ℜ{X[l̂, n]} and ℑ{X[l̂, n]}, respectively, in (4.38)–(4.40) (here, ℜ{x} and ℑ{x}
denote the real part and the imaginary part of x, respectively).

It is important to point out that:

a) The procedure described above generates, as a by product, an estimate of the
range of the target, i.e. of the distance between the radar and the chest wall of
the subject under test. In fact, given l̂ (4.43), such an an estimate is given by

R̂0 = l̂Km (4.44)
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where, in the case of a FMCW radar system,

Km ≜
c

2µN ′
0Ts

(4.45)

is the bin-to-meters conversion factor. Based on (1.4) and (1.5) (with N = Nr),
the last formula can be easily put in the form

Km ≜
cNr

2N ′
0B

, (4.46)

where B is the radar bandwidth. The last formula and (4.44) lead to the con-
clusion that a larger bandwidth leads to a better granularity in range estimation,
i.e. results in a better range resolution (see also Subsection 4.6.1).

b) Some methods, similar to the ones described above for CW Doppler radars, are
available for the compensation of a DC offset or of large movements; in fact, they
are based on filtering techniques or on polynomial fitting [206,242,248].

c) If the distance between the chest wall and the radar is known with a certain
accuracy (e.g., when the radar is employed for monitoring the vital signs of a
patient in a bed), a procedure for reducing the region of interest (ROI) can be
implemented to simplify the estimation of l̂. In particular, l̂ can be searched in
the ordered set {lm, lm + 1, ..., lM}, made of lM − lm + 1 elements; here, lm =
⌊Rm/Km⌋, lM = ⌈RM/Km⌉ and Rm (RM ) is the minimum (maximum) expected
range.

Impulse radio ultra-wideband radars

The AD method described in Subsection 4.5.1 can be also employed for phase extraction
in IR-UWB radar systems. In this case, however, the samples xI [n] and xQ[n] appearing
in the RHS of (4.38) are replaced by xI [k̂, n] and xQ[k̂, n] (see (4.21) and (4.22)),
respectively, with n = 0, 1, ..., Nc− 1; here, k̂ denotes the value of the fast time index k
corresponding to the main peak detected at the MF response15. Note also that phase
estimation is followed by phase unwrapping and that, given k̂, an estimate τ̂ of the
delay characterizing the detected target can easily computed; this allows to evaluate
the estimate R̂0 = τ̂ c/2 of the distance R0 between the radar and the chest of subject
under test (see (4.12)).

Finally, it is worth mentioning that:

a) The clutter contribution to the samples {x[k, n]} can be removed by applying an
high-pass filter to this sequence. However, if the clutter produces small fluctu-
ations along the slow-time axis, algorithms based on polynomial fitting can be
employed for its removal [248].

b) The SNR of the received signal can be also improved by resorting to noise re-
duction techniques. An example of such techniques is provided in [249, Sect.

15It is assumed that k̂ does not change in the considered frame interval for simplicity.
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Figure 4.8: Representation of the signal processing described in Subsection
4.5.2 and employed for estimating the position (range and azimuth) and the
vital signs (HR and BR) of multiple people by means of a colocated MIMO
radar.

3.2], where the empirical mode decomposition (EMD) is exploited for noise mit-
igation. In this case, the sequence {x[k, n]} is decomposed into a superposition
of intrinsic sub-signals, defined at precise instantaneous frequencies and called
intrinsic mode functions (IMFs). This method allows to retain only the most im-
portant frequency components of the input signal and to filter out the oscillations
associated with noise components.

Some alternatives to the FFT-based estimation method described above are also
available in the technical literature. These are based on the evaluation of a fourth
order cumulant [250] or of a continuous wavelet transform (CWT); note that the use
of the CWT in place of the FFT allows to analyse how the frequency components of
the received signal phase evolve over time [249].

4.5.2 Estimation of vital signs of multiple subjects through multiple-
input multiple-output radars

In the last few years, increasing attention is being paid to MIMO radar systems, mainly
because they make range and DOA estimation of multiple targets possible. The use of
MIMO FMCW, IR-UWB and CW radar systems for the monitoring of vital signs has
been investigated in [237, 251–254], [255, 256] and [257] respectively. More specifically,
the use of MIMO FMCW radars operating at 77 GHz and at 120 GHz has been studied
in [237, 251, 252] and [254], respectively, whereas the simultaneous use of two FMCW
radars, each endowed with single ULA, but one operating at 24 GHz and the other one
at 77 GHz, has been investigated in [253]. Reference [257], instead, focuses on the use
of beamforming in MIMO CW radar systems.

Let us illustrate now some key concepts that are useful to understand the processing
accomplished at the RX side of a MIMO radar system. To begin, we focus on a
FMCW MIMO radar equipped with NT TX and NR RX antennas (and, consequently,
with NV = NT NR VAs; see (1.6) and (1.7)). Under the assumptions illustrated in
Subsection 1.3, the signal samples acquired in a single frame through the NV VAs can
be collected in N ×NV ×Nc matrix x ≜ {x(v)[k, n]}, where

x(v)[k, n] ≜
L−1∑
i=0

A
(v)
i,n exp

(
j2πk F

(v)
i,n

)
+ w(v)[k, n], (4.47)
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with k = 0, 1, ..., N − 1, n = 0, 1, ..., Nc − 1 and v = 0, 1, ..., NV − 1; here, L is
the overall number of targets, and A(v)

i,n (F (v)
i,n = f

(v)
i,n Ts) is the complex amplitude (the

normalised version of the frequency f
(v)
i,n ) characterising the i-th target observed on

the v-th VA in the n-th chirp interval. A processing method that can be adopted in
this case to estimate the range, the DOA and the vital signs of multiple people in the
considered radar system is described by the block diagram represented in Fig. 4.8.
Such a method consists in the four steps listed below.

1. Computation of the range-azimuth map - A size N ′
0×NA 2D-FFT of the N ×NV

input matrix x[n] = [x(v)[k, n]] (with k = 0, 1, ..., N − 1 and v = 0, 1, ..., NV − 1)
is computed in the n-th chirp interval (with n = 0, 1, ..., Nc − 1); this produces
the N ′

0 ×NA matrix

Xn =
[
X(n)[l,m]

]
, (4.48)

with l = 0, 1, ..., N ′
0 − 1 (see Subsection 4.5.1) and m = −NA/2, −NA/2 + 1, ...,

NA/2− 1. Then, the n-th range-azimuth map is evaluated as

J [n] ≜
[∣∣∣X(n) [l,m]

∣∣∣] (4.49)

with n = 0, 1, ..., Nc − 1. Note that N ′
0 = NM (NA = NVMV ), where M (MV )

denotes the oversampling factor adopted in the fast time (VA) domain.

It is worth mentioning that, in the technical literature on radar systems (e.g.,
see [50, Sec. "Velocity estimation"] ), the first step in the signal processing chain
at the RX side often consists in the computation of a range-Doppler map, in
place of the considered range-azimuth map; this aims at jointly estimating the
range and velocity of all the targets detectable in the considered propagation
environment. However, in vital signs monitoring, the presence of one or more
static subjects is usually assumed. For this reason, on the one hand, Doppler
estimation is not meaningful; on the other hand, the localization of the monitored
subject in a room or a bed is required to generate accurate estimates of his/her
vital signs.

2. Peak detection - The peaks appearing in the n-th range-azimuth map J [n] are
detected by means of a proper method (for instance, the so called constant false
alarm rate, CFAR, method can be adopted [155]), since each of them reveals the
presence of a potential target. Let us assume that, independently of n, L̂ peaks
are detected in the n-th range-azimuth map J [n] and that the position of the
i-th peak (with i = 0, 1, ..., L̂− 1) is identified by the couple (l̂i [n], m̂i[n]) (with
n = 0, 1, ..., Nc − 1). Then, the estimate

R̂i[n] = Km l̂i[n] (4.50)

of the range and the estimate

θ̂i[n] = arcsin(m̂i[n] fr), (4.51)
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of the azimuth are evaluated for the target associated with the i-th peak; here,
Km is expressed by (4.45) and fr = 2/NA (see eq. (1.18) and (4.33)). Given the
set {(l̂i [n], m̂i[n]); i = 0, 1, ..., L̂− 1}, the L̂×Nc matrix

X̄ = [X̄[i, n]] (4.52)

is generated; here,
X̄[i, n] = X(n)[l̂i [n], m̂i[n]] (4.53)

with i = 0, 1, ..., L̂− 1 and n = 0, 1, .., Nc − 1.

3. Arctangent demodulation and phase unwrapping - In this step, the i-th row of
the matrix X̄ (4.52) undergoes AD followed by phase unwrapping (with i =
0, 1, ..., L̂− 1); this produces the phase vector

ψ̂i ≜ [ψi[0], ψi[1], ..., ψi[Nc − 1]]T . (4.54)

4. Breath and heart rate estimation - The phase vector ψ̂i undergoes FFT processing
(with i = 0, 1, ..., L̂− 1); this produces the Nm-dimensional spectrum Ȳ i (whose
b̃-th element is expressed by (4.31)). Then, an estimate b̂r[i] (ĥr[i]) of the BR
(HR) associated with the i-th target is evaluated on the basis of (4.30) ((4.36)).

At the end of the procedure described above, the range estimate

R̂i =
1

Nc

Nc−1∑
n=0

R̂i[n] (4.55)

and the azimuth estimate

θ̂i =
1

Nc

Nc−1∑
n=0

θ̂i[n] (4.56)

can be computed for the i-th target by averaging the corresponding estimates eval-
uated over each of the Nc chirps forming the considered transmission frame (with
i = 0, 1, ..., L̂− 1).

Finally, it is important to point out that the procedure illustrated above for a MIMO
FMCW radar system can be easily adapted to MIMO IR-UWB and SFCW radars; in
the last case, FFTs must be replaced by IFFTs.

4.5.3 Numerical results

In this subsection, we show some numerical results generated by applying various es-
timation methods illustrated above to a set of synthetically generated data. We first
focus on a SISO FMCW radar and a SISO SFCW radar, both placed in front of the
chest of a single subject at the distance d = 0.5 m. The following assumptions have
been made in generating our dataset:

a) The model described by (4.1)–(4.4) is adopted for the chest displacement of the
monitored subject (modelled as a single point target for simplicity); its parameters
are the same as those listed in the fourth row of Table 4.1 in Subsection 4.3.2).
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b) The FMCW and SFCW radars are characterised by the following parameters:
a) carrier frequency f0 = 77 GHz (the corresponding wavelenght is λ = c/f0 =
3.9 mm); b) bandwidth B = 2 GHz; c) number of samples N = 256 (in the
time domain for each chirp of the FMCW radar, in the frequency domain for
each frequency modulated pulse of the SFCW radar); d) chirp (pulse) repetition
period T0 = 0.06 s for the FMCW (SFCW) radar; e) number of chirps/frame
(pulses/frame) Nc = 1034 for the FMCW (SFCW) radar; f) ADC sampling
frequency fs = 9 MHz (fs = 7.8 MHz) for the FMCW (SFCW) radar. Moreover,
the ramp parameters of the FMCW are: a) reset time TR = 0; b) ramp time
T = N/fs = 28µs; c) chirp slope µ = 70.312 MHz/µs.

c) In both systems the frame duration is TF = NcT0 ∼= 60 s; this parameter repre-
sents also the duration of our observation interval.

d) The real and imaginary part of the AWGN noise samples {w[k, n]} appearing in
the RHS of (1.11) and (4.18) have zero mean and variance σ2n = 0.1.

Our synthetically generated data have been processed by means of the deterministic
method described in Subsection 4.5.1: its overall architecture is represented in Fig. 4.7.
The AD method followed by phase unwrapping has been used for phase estimation and
the following choices have been made: a) DFT orders N ′

0 = 512 and N0 = N̄0 =
MNc = 4 · 1034 = 4136; b) Km = 31 (bin-to-meters conversion factor; see (4.45)); c)
the bandpass filter employed in HR estimation is a fourth-order Butterworth filter and
the lower (upper) limit of its passband is fL = 50/60 ∼= 0.83 Hz (fU = 100/60 ∼= 1.7
Hz), so that its bandwidth is BBP = fU − fL ∼= 0.83 Hz.

The elements of the phase vector ψ̂ (4.28) obtained for the FMCW and SFCW radar
systems are represented in Fig. 4.9. The amplitude spectrum obtained at the output
of the slow-time FFT (IFFT) executed for phase estimation in the FMCW (SFCW)
radar system is shown in Fig. 4.10, whereas the amplitude spectrum evaluated after
BPF of the phase vector is shown in Fig. 4.11. The results obtained for the considered
radar systems are similar and deserve the following comments:
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Figure 4.9: Representation of the elements of the phase vector ψ̂ (4.28)
resulting from synthetically generated measurements. Both FMCW and
SFCW radar systems are considered.
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Figure 4.10: Representation of the amplitude spectrum referring to the
the phase vector ψ̂ shown in Fig. 4.9. The dashed vertical lines identify
the exact values of BR and HR. Both FMCW and SFCW radar systems
are considered.

a) The phase signal does provide information about the dynamics of chest displace-
ment; in fact, comparing Fig. 4.9 with Fig. 4.1 leads to the conclusion that its
evolution is similar to that characterising the chest displacement in the considered
scenario.

b) The peaks appearing in the amplitude spectrum shown in Fig. 4.10 are associated
not only with the BR and the HR, but also with the harmonics of the BR. Note,
in particular, that the third harmonic falls inside the passband of the filter and
that its presence may lead to a wrong estimate of the HR.

c) Based on the available spectra, the estimates b̂r = 17.9 acts/min and ĥr = 58.8
acts/min evaluated for the BR and the HR, respectively are very accurate since
the exact values of these rates are br = 18 acts/min and hr = 60 acts/min,
respectively.

Let us focus now on a MIMO FMCW radar system placed in front of the chest
of three static subjects (the i-th subject is denoted Si, with i = 1, 2 and 3), whose
range (R), azimuth (θ), HR (hr) and BR (br) are listed in Table 4.3. In this case, the
following assumptions have been made in synthetically generating our dataset:

a) The chest displacement characterising each person is modelled by (4.1)–(4.4);
moreover, the values of all the model parameters are the same as those employed
in Subsections 4.3.2 and 4.5.1.

b) The values of the parameters f0, B, N , T0, Nc, fs, TR, µ of the employed MIMO
radar are the same as those listed for the SISO FMCW radar considered above.
Moreover, the MIMO radar is endowed with a virtual ULA like the one shown
in Fig. 4.6-b); the overall number of VAs forming this array is NV = 16, wheras
the distance between adjacent virtual elements is d = λ/4.
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Figure 4.11: Representation of the amplitude spectrum of the sequence
generated through bandpass filtering of the phase vector ψ̂ shown in Fig.
4.9. The dashed vertical lines identify the exact values of BR and the third
harmonic of HR. Both FMCW and SFCW radar systems are considered.

Our data have been processed by the deterministic algorithm illustrated in Subsec-
tion 4.5.2; N ′

0 = 2 and NA = 4 have been selected in the computation of the 2D-FFT
output Xn (4.48). The range-azimuth map J[0] generated on the basis of the measure-
ments acquired through the MIMO radar in the first chirp interval is represented in
Fig. 4.12. The peaks detected by the CFAR algorithm are indicated by small circles,
whereas black crosses are used to identify the centroids16 of each cluster of adjacent
peaks. The elements of the phase vector ψ̂ (4.28) and of its amplitude spectrum in
correspondence of the centroid obtained for the first (closest to the radar) target are
shown in Fig. 4.13-a) and 4.13-b), respectively, whereas the estimates of the positions
of the three subjects together with the estimates of their BR and HR are listed in Table
4.3. From these results the following conclusions can be easily inferred:

a) The range-azimuth map allows to detect all the subjects and estimate their po-
sition.

b) The phase vector associated with each centroid provides important information
about the dynamic of the chest displacement of the subject associated with it.

c) The position and vital signs estimated for each subject are reasonably accurate.

4.5.4 Detection and estimation algorithms exploiting learning-based
methods

Various deterministic algorithms may fail in complicated, highly dynamic and time
varying scenarios [233]. In such cases, LB methods and, in particular, machine learn-
ing (ML) and deep learning (DL) techniques [100], may be extremely useful, since they
are able to: a) learn the regularities characterizing the raw data acquired by radar sys-
tems; b) automatically extract information from them. Note that, on the one hand, ML

16Note that each centroid represents the position estimated for one of the subjects.
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Figure 4.12: Contour plot of the range-azimuth map generated on the
basis of our synthetically generated data (a MIMO radar system is con-
sidered). The peaks P1, P2 and P3 detected by the CFAR algorithm are
identified by small circles, whereas black crosses indicate the position of the
centroid of each cluster of peaks.

Table 4.3: Exact values and corresponding estimates of the range (R),
azimuth (θ), breath rate (br) and heart rate (hr) of three distinct subjects.

Person R R̂ θ θ̂ br b̂r hr ĥr
(m) (◦) acts/min acts/min

S1 0.60 0.61 -30 -30.5 14.0 13.8 70 66.8

S2 1.00 1.01 30 30.3 17 16.9 66.0 63.1

S3 1.40 1.39 5 4.9 20.0 19.8 57.0 55.6

techniques exploit a customized set of features, manually extracted from the available
raw data by means of different processing techniques. On the other hand, DL tech-
niques can learn specific data patterns and extract useful information directly from the
same data through the use of neural networks; this approach requires limited expertise
on signal analysis in radar systems. Each class of methods includes supervised and
unsupervised learning techniques. Generally speaking, supervised techniques, mainly
used for solving classification or regression problems, are based on the idea of exploiting
a labelled dataset for learning from them through a specific procedure, called training.
Training aims at the identification of the model, i.e. at estimating of the probability
density function (also called predictive distribution) on the basis of which the available
dataset has been generated. Given the model learnt during training (i.e., the predictor),
the label associated with a completely new observation or the value of a continuous
variable related to it can be predicted in a way that a specific loss (known as gen-
eralisation loss) is minimised; such tasks are known as classification and regression,
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Figure 4.13: Representation of: a) the elements of a phase vector gen-
erated on the basis of the measurements acquired through a MIMO FMCW
radar during a single chirp interval; b) its amplitude spectrum. The target
closest to the radar is considered.

respectively. Well known ML methods for classification are the K-nearest neighbours
(K-NN), the support vector machine (SVM) and the ensemble classifier [75].

Unsupervised methods, instead, do not require a labelled dataset and learn some
specific properties of the mechanism on which the generation of the considered dataset
is based. They can be exploited to solve specific technical problems, like data cluster-
ing, dimensionality reduction and feature selection. In practice, data clustering aims
at partitioning the available dataset in a number of groups such that data points in
the same group are dissimilar from the data points belonging to all the other groups.
Dimensionality reduction is employed to generate a reduced dimensionality representa-
tion of the observations, whereas feature selection consists in deriving a vector valued
function that produces a useful and lower-dimensional representation of the available
feature.

In general, the dataset employed to train a specific LB method contains Nt couples,
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Figure 4.14: Block diagram representing the signal processing chain of a
radar-based system employing a LB method for vital signs monitoring.

each of which consists of a Dr-dimensional real vector of features and a Dt-dimensional
real vector of labels. The size Nt of the dataset can be reasonably small in the case of
ML (say, between a few dozen and a few hundred), but is substantially larger in the
case of DL (say, at least one thousand). In the case of radar-based monitoring of vital
signs, a vector of customized features can be obtained from the phase vector ψ̂ (4.28)
through a procedure called feature extraction and can be processed for classification
purposes. For instance, different breathing diseases could be recognised on the basis
of several features, such as the breathing frequency, the chest displacement and the
variability of the breathing frequency in short and long observation time. Generally
speaking, for all the radar topologies, the extracted features can be grouped in three
different classes, namely time, short-term and time-frequency domain features. Time
features are represented by various characteristics of the evolution of the elements of the
phase vector ψ̂, such as their average (or maximum) peak amplitude, the variability of
their amplitude and the number of peaks. Short-time features (time-frequency domain
features17), instead, allow to monitor how the energy (the spectral content) of the
elements of the phase vector ψ̂ evolves over time. The above mentioned features can be
employed for both classification and regression, as exemplified by Fig. 4.14, where the
overall signal processing chain of a radar system employing a LB method is illustrated.

An alternative to ML methods is provided by DL methods. In the last case, feature
extraction is automatically accomplished by a neural network and, if classification
is required, a softmax layer is employed to evaluate the probability that a certain
observation is associated with one of the given classes.

A limited literature on the use of ML and DL methods in radar-based monitoring
of vital signs is available. The use of ML methods in CW Doppler radar systems for
vital signs monitoring has been investigated in [138, 258–260], while an unsupervised
method for DC offset and clutter suppression using FMCW radars has been investi-
gated in [261]. Moreover, an HR estimation technique based on a convolutional neural
network (CNN) has been developed in [262] for an IR-UWB radar system. In partic-
ular, supervised methods have been exploited for classifying breathing disorders, for
heart sound classification and for removing the high order harmonics from the phase
vector ψ (4.28) in [258], [260] and [138], respectively. An artificial neural network
(ANN) for the reliable detection of heartbeats through a CW Doppler radar has been

17Different tools for time-frequency analysis, like the CWT and the short time Fourier transform
(STFT), can be employed to extract these features.
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proposed in [259]. The adopted ANN is composed by a cascade of multiple layers with
different number of neurons and its architecture is quite simple; its main drawback is
represented by its inability to cope with time series, i.e. to extract features related to
the time evolution of the observed signal.

4.6 Some Considerations on Radar Selection and on its
Use in Experimental Campaigns

In this section, we illustrate some important lessons that we have learnt from our
experimental work conducted on healthy adult volunteers in the laboratories of the
Department of Engineering "Enzo Ferrari" and of the Cardiology Division, Department
of Biomedical, Metabolic and Neural Sciences at the University of Modena and Reggio
Emilia. First, we focus on the essential requirements that radar devices employed for
vital signs monitoring should meet. Then, we provide some guidelines for developing an
experimental setup and illustrate some numerical results about the estimates of vital
signs extracted from our experimental measurements. Finally, we comment on how to
assess estimation accuracy in vital signs monitoring.

4.6.1 Fundamental requirements of radar devices

Nowadays, a number of compact radar devices, not explicitly developed for medical
applications and operating in the millimeter wave (mmwave) spectrum, are available on
the market at various prices. A radar system employed for vital signs monitoring needs
to satisfy various technical requirements, that are influenced by the environment in
which measurements are acquired [263]. These requirements concern: a) the maximum
distance of the radar from the body of the subject under test; b) its bandwidth and
its operating frequency f0; c) its displacement resolution; d) its angular resolution.
Different values of the parameters mentioned above may have a substantial impact on
the achievable accuracy, as illustrated below.

The maximum distance at which a radar should operate depends on the considered
application. If long range detection is required, an high transmission power and/or
highly directive antennas should be employed to guarantee a proper SNR at the RX
side [264]. The power radiated by colocated MIMO radars employed in vital signs
monitoring is small; however, in this case, beamforming techniques can be employed
to constructively combine the signals received by multiple antennas, so enhancing the
overall SNR. It is also important to keep in mind that any radar system, independently
of its antennas and maximum radiated power, is characterized by a maximum unam-
biguous range (denoted Rmax), that is by a maximum distance beyond which target
range is not correctly estimated. In the case of FMCW or SFCW radars, Rmax can be
expressed as18

Rmax = N
c

4B
, (4.57)

18If a FMCW radar system is considered, this result originates from the fact that the frequency
fn associated with the target (1.18) can be unambiguously estimated if its does not exceed half the
sampling frequency fs ≜ 1/Ts.
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where B is the bandwidth of the radiated signal and N is the overall number of samples
acquired in a chirp interval (frequency sweep) by an FMCW (SFCW) radar. Then, for
a given bandwidth, Rmax can be raised by increasing N , i.e. by adopting an higher
sampling rate at the receive side.

The bandwidth of the radiated signal plays a fundamental role in radar-based moni-
toring of vital signs. In fact, a larger bandwidth results in a better range resolution, i.e.
in an improved ability to discriminate multiple targets in range as well as to generate
a more detailed image of an extended target. Since the bandwidth is usually a fraction
of the carrier frequency, this consideration has motivated the adoption of operating fre-
quencies that fall in the mmwave spectrum, i.e. that belong to the frequency range19

(30, 300) GHz. The selection of an higher operating frequency (i.e., of a shorter wave-
length λ) has various implications. First of all, it leads to an higher phase sensitivity,
that is to faster changes in the received signal phase observed in the presence of the
small movements to be detected in vital signs monitoring (see (4.11)-(4.13)). This is
certainly beneficial, provided that the phase ambiguity problem does not arise (i.e.,
that the observed phase variations remain within the range (−π, π)). The last problem
can be circumvented by increasing the sampling rate of the received signal; this has
also a beneficial effect on the maximum range at which a target can be detected, as
already mentioned above. A change in the operating frequency of the radar has also a
significant impact on the penetration depth of the radiated EM waves through human
tissues [206]. Readers should keep in mind that: a) microwave signals are partially
reflected and partially absorbed by the human skin [265]; b) the attenuation of the
reflected EM field increases with its frequency; c) the penetration through human skin,
instead, decreases with frequency (for instance, the skin penetration depth is 2.7 mm
at 10 GHz and just 0.5 mm at 60 GHz [266, 267]); d) the EM wave reflection due to
body tissues becomes stronger as the operating frequency increases; e) the quality of
the echo of a mmwave radar is negligibly affected by the thickness of the clothes of the
monitored subject [268]. Based on these results we can state that, when a mmwave
radar device is employed in vital signs monitoring of a still subject, the phase and
amplitude fluctuations observed in its received signal really originate from the chest
and skin displacement stimulated by his/her cardio-pulmonary activity.

The displacement resolution can be defined as the minimum measurable displace-
ment over two consecutive frames transmitted by the considered radar device (such
frames are separated by a time interval lasting T0 s; see Subsection 4.4.2). Based on
(4.41), the displacement ∆Rk,k+1 experienced by a point target between the k-th frame
and the subsequent (i.e., the (k + 1)-th) frame can be expressed as

∆Rk,k+1 =
λ

4π
∆ψk,k+1, (4.58)

where ∆ψk,k+1 is the phase variation observed in the electromagnetic echo. If δb,M
denotes the maximum chest displacement due to breathing (see Subsection 4.3.2), the
inequality

∆Rk,k+1

T0
≥

2δb,M
TBR

(4.59)

19The corresponding wavelengths range from 1 millimeter and 10 millimeters
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should be satisfied to achieve a sufficient resolution in detecting chest movements. The
last inequality can be rewritten as

T0 ≤
TBR
2δb,M

Rk,k+1 (4.60)

or, equivalently, as

T0 ≤
TBR
2δb,M

λ

4π
∆ψ̂k,k+1, (4.61)

thanks to (4.58). If we assume that δb,M is equal to 4λ (where λ ∼= 4 mm, if the
employed radar system operates at 77 GHz) and keep in mind that20 the inequality
∆ψk,k+1 < 2π must be satisfied to avoid any phase ambiguity, from (4.61) it is easily
inferred that

1

T0
≥ 16

TBR
, (4.62)

so that the selected frame rate must be substantially higher than the breathing fre-
quency. Similar considerations can be formulated for the displacement due to heart
activity; the only difference being represented by the fact that TBR is replaced by THR.
Then, achieving sufficient accuracy in the estimation of BR and HR requires the selec-
tion of a proper frame rate 1/T0. In practice, as already mentioned in Subsection 4.3.1,
typical values of BR at rest range from 10 to 25 acts/min (i.e., from 0.2 and 0.4 Hz),
whereas those of HR from 50 to 100 acts/min (i.e., from 1 to 1.67 Hz); under stress
conditions, the BR and HR increase up to 40 acts/min (0.67 Hz) and 180 acts/min (3
Hz), respectively. Therefore, based on (4.62), the frame rate should be on the order
of 25 Hz at rest and 45 Hz under stress. It is also worth mentioning that, whatever
the selected frame rate, a sufficiently long observation time is required to generate rea-
sonably accurate estimates of vital signs through spectral analysis. In practice, using
a commercial MIMO radar, such estimates should be extracted from the radar mea-
surements acquired on a time interval that covers at least three periods of breathing
(and, consequently, about ten periods of heartbeat), i.e. lasting at least 10 s at rest;
this unavoidably introduces some latency in vital sign estimation.

Let us focus now on the angular resolution. This parameter plays an important
role when a MIMO radar is employed to detect the vital signs of multiple people,
characterized by different angular coordinates. The achievable angular resolution is
strictly related to the number of virtual channels NV made available by the employed
radar system. If this system is endowed with a single ULA characterized by NV equally
spaced channels, the angular resolution ∆θ can be evaluated as

∆θ =
λ

2d(NV − 1)

180◦

π
, (4.63)

where d is the distance between two adjacent virtual elements; for instance, if d = λ/4,
the resolution is equal to 2/(NV − 1) rad.

In our measurement campaigns performed in an hospital environment (see Sub-
section 4.6.2), two colocated FMCW radars, namely the IWRxx43 TI radar [82] and

20This expression is valid if the arctan2(·) operator is employed, as illustrated in Subsection 4.5.1.
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Figure 4.15: Photos of: a) the IWRxx43 radar front end; b) both sides of
the Position2Go module.

the Position2go (P2G) FMCW radar21 [269] have been employed. The former device
is manufactured by Texas Instrument and operates at the frequency f0 = 77 GHz,
whereas the latter one is manufactured by Infineon and operates at the frequency
f0 = 24 GHz; the difference in their transmission frequencies allowed us to assess the
potential advantages originating from the use of higher frequencies and/or from the
exploitation of frequency diversity. The front-end of these devices is shown in Fig.
4.15. It is important to note that in our application TF = 60 s, i.e., the duration of
each transmitted frame is equal to that of the whole observation interval and the chirp
duration T0 = T + TR is characterised by a long reset time, since TR > T .

The TI radar is endowed with an array composed by NT = 3 (NR = 4) TX (RX)
antennas (see Fig. 4.15-a)); therefore, it makes available a virtual array consisting
of NV = 3 · 4 = 12 (virtual) antenna elements (see (1.8)); these elements form two
different horizontal ULAs composed by NHULA1 = 8 and NHULA2 = 4 virtual channels;
therefore, only NV ULA = 2 aligned channels are available along the vertical direction.
The horizontal (i.e., azimuthal) resolution and the vertical (i.e., elevation) resolution
are ∆θ ≃ 16.6◦ and ∆ϕ = 45◦, respectively (see eq. (4.63)). In our work, the following
values of the radar parameters have been selected: a) frequency slope µ = 86 MHz/µs;
b) overall number of samples per chirp N = 256; c) ADC sampling frequency fs = 9
MHz; d) chirp duration T0 ≈ 60 msec. These choices entail that: 1) the bandwidth of
the radiated signal is B = µT ≃ 2.45 GHz, since the ramp up time is T = N/fs = 18.4
µs; 2) the maximum unambiguous distance is Rmax ≃ 15.67 m (see (4.57)).

The P2G radar is equipped with an array composed by NT = 1 transmit and
NR = 2 receive antennas (see Fig. 4.15-b)). Therefore, a virtual array of NV = 1 ·2 = 2
virtual elements (see (1.8)), forming an horizontal ULA, is available. In our work, the
following values of the radar parameters have been selected: a) µ = 0.78 MHz/ms;
b) overall number of samples per chirp N = 256; c) ADC sampling frequency fs = 1
MHz; d) chirp duration interval T0 ≈ 60 msec. In this case, the ramp up time is

21Detailed descriptions of these devices are available at https://www.ti.com/tool/IWR1843BOOST
and at https://www.infineon.com/cms/en/product/evaluation-boards/demo-position2go/, re-
spectively.

https://www.ti.com/tool/IWR1843BOOST
https://www.infineon.com/cms/en/product/evaluation-boards/demo-position2go/
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Figure 4.16: Photos of both sides of the XM112 UWB radar.

T = N/fs = 256 µs, the bandwidth of the radiated signal is B = 200 MHz and the
maximum unambiguous distance is Rmax = 192 m. Therefore, this radar device can be
employed for long-range applications, but achieves a lower range resolution than the
TI IWR1843 radar.

A short measurement campaign was also conducted in an office environment (see
Subsection 4.6.2). In that case, a XM112 pulsed coherent (PCR) UWB radar has been
employed (see Fig. 4.16). This device, manufactured by Acconeer22, operates at the
frequency f0 = 60 GHz and is of SISO type. Its PRI T0 is equal to 76.9 psec, its
transmission frame consists of Nc = 621 pulses and its range resolution is equal to 0.5
mm. In our acquiring our measurements from the XM112 UWB radar, a minimum
(maximum) range Rm = 50 cm (RM = 80 cm) have been assumed, since the distance
of the monitored subject from the radar itself always belonged to the interval [Rm,
RM ].

4.6.2 Data acquisition

The typical differences between the datasets analysed in the technical literature about
radar-based monitoring of vital signs concern (see Table 4.6 in Section 4.7):

a) the overall number of subjects involved in the data acquisition procedure;

b) the heterogeneity of the acquired dataset and, in particular, the positions of the
involved subjects with respect to the employed radar (e.g., sitting, lying down,
etc.) and their physical conditions (e.g., in a rest condition, under strain, sleeping,
etc.).

The overall number of subjects ranges from few units to a few dozens. Readers
should keep in mind that the analysis of deterministic and ML methods do not usually
require a large number of measurements, whereas that of DL techniques needs large and
heterogeneous datasets. For instance, the measurements analysed in [270] have been

22See https://www.acconeer.com/company/ for further details.
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acquired from ten people (more precisely, six males and four females), whose distance
from the employed radar system ranged from 20 to 80 cm. On the contrary, a much
larger dataset was needed to train and test an LSTM network in [271]. In the last case,
the overall acquisition time of the whole dataset is equal to 18900 s (corresponding to
approximately five hours); moreover, the acquired measurements refer to 30 different
subjects.

The heterogeneity of the acquired dataset can be improved by observing the con-
sidered subjects in different positions (e.g., in front of the radar with the chest facing
towards the antennas, or on its left/right side), but always at a fixed distance from
the employed radar systems, [213]. Subjects can also be placed at different distances
from radar systems, but, in this case, their angular coordinates should not change (e.g.,
see [270, Sect. III]).

The measurements analysed in most of the technical literature refer to people
breathing at rest. However, especially in last years, contactless systems based on radar
technology have been employed for HR and BR monitoring of subjects in different
breathing conditions. For instance, the measurements of the dataset employed in [272]
have been acquired in apnea, during the Valsalva maneuver23 and in two different
positions (tilt-up and tilt-down).

The selection of proper reference sensors represents another important technical
issue to be considered before starting a measurement campaign. In fact, the data
collected from reference sensors are always required for the validation of determin-
istic algorithms [273], [248], or for training LB methods [262]. In the measurement
campaigns described in the technical literature, various medical instruments, like elec-
trocardiographs and wearable sensors, have been used. Wearable sensors include elastic
bands with built-in electrodes [274], micro-electro-mechanical-systems (MEMS), pulse-
oximeters or Bragg-gratings sensors [275]. Most of the commercially available wearable
sensors are easy to use, since they provide excellent user interfaces and application
programming interfaces (APIs) for Python or MATLAB programming environments.
However, an important issue to be taken into consideration before selecting a specific
reference sensor is the possibility of accurately synchronizing the timing of its measure-
ments with that of the data provided by the employed radar device.

A long measurement campaign is being conducted at the Cardiology Division, De-
partment of Biomedical, Metabolic and Neural Sciences at the University of Modena
and Reggio Emilia (Hospital of Modena) on healthy adult volunteers; the experimen-
tal setup adopted in this case is shown in Fig. 4.17. The two FMCW radar sensors
described in the previous subsection are mounted on a wooden bar, which, in turn,
is put on a tripod. Moreover, their antenna arrays are oriented towards the chest of
each subject, always lying down a bed, whose upper part is slightly tilted. The typical
vertical (horizontal) distance dh (dv) between the radars (the tripod) and the subject
under test is approximately equal to 75 cm (50 cm); our tripod allows to move up or
down the radars, so that the distance between them and the monitored subject can be
modified. In our measurements, different positions are being considered for the subject
under test. In practice, he/she is sitting or lying down on the bed with different tilting
angles; in the first case, his/her movements are very small and this makes the estima-

23The Valsava maneuver is performed by moderately forceful attempted exhalation against a closed
airway; this can be practically implemented by expiring against a closed glottis.
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Figure 4.17: Photo of the setup employed in our measurement campaigns
conducted in an hospital; both the IWRxx43 and the Position2Go radars
are used.

tion of HR and BR potentially very accurate, whereas, in the second one, the tension
of his/her muscles may affect the estimation of vital sign parameters. In our setup, the
reference sensor is the Shimmer3 device manufactured by Shimmer [276]. This device,
controlled by means of a simple user interface, is able to send data over a Bluetooth
connection and is equipped with five electrodes (right hand side mid-axillary, left hand
side mid-axillary, right leg, left leg, V1; see [276, p. 6, Fig. 3-2]), that need to be placed
in specific positions of the chest of the subject under test. In our acquisitions, the ref-
erence electrocardiogram (ECG) signal is read from the voltage difference between the
left leg and right hand side mid-axillary (LL-RA) electrodes. The breathing signal,
instead, is generated by measuring the impedance between these two electrodes; in
practice, these electrodes are used to inject a weak high frequency (10 kHz) alternating
current in the chest tissues and the voltage variations due to chest displacement are
measured. Then, an estimate of the chest impedance variations is obtained by comput-
ing the ratio between the measured voltage and the injected current; finally, breathing
dynamics are inferred from such variations (further details about this method can be
found in [277]).

Thanks to the availability of a proper API, Shimmer3 measurements can be easily
synchronized in time with those acquired through the IWRxx43 radar or the P2G radar,
so that data acquisition can be accomplished in real time. In fact, the Shimmer3 device
offers the possibility of sharing the time reference (namely, the CPU timestamp) with
our radar devices; this has allowed us to synchronise the reference and the probing
signals with great accuracy. As already mentioned above, in our experiment, each data
acquisition refers to an observation interval lasting TF = 60 s. However, since the
radars and the reference sensor are characterized by different frame rates, the samples
of each of the two signals (namely, the ECG and breathing signals) provided by the
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Figure 4.18: Photo of the setup employed in our measurement campaign
conducted in an university laboratory.

Shimmer3 sensor are stored in a sequence of vectors, each having size Nc,S = 15317,
whereas the received signal samples provided by the IWRxx43 (P2G) radar are stored
in a 3D matrix of size N×NV ×Nc,TI = 256×4×997 (N×NV ×Nc,P2G = 256×2×933).
It is also worth mentioning that, in general, if the construction of a dataset requires
that acquisitions originating from the given reference sensor and those coming from the
employed radar device have the same length, a subsampling or upsampling procedure
can be adopted for the reference or the radar signals.

Independently of the nature of the algorithm to be tested on the acquired measure-
ments, it is highly recommended to build up a reasonably large dataset, since the chest
dynamics of distinct subjects can exhibit very different characteristics. Moreover, in
our measurement campaigns, in order to guarantee a sufficient variability in the gen-
erated dataset, the subjects under test are being observed in different conditions. In
practice, the following conditions are considered in our data acquisitions: a) breath-
ing normally, at rest; b) during inspiratory (expiratory) apnoea (for as long as he/she
could, ending the acquisition with normal breathing); c) hyperventilating (for as long
as he/she could); d) during the Valsalva maneuver; e) after making an effort. In the
last case, the subject under test is required to move up a step and down from it for at
least one minute).

As already mentioned in the previous subsection, an additional measurement cam-
paign has been also conducted in a different environment and, in particular, in one of
the research laboratories of the Department of Engineering "Enzo Ferrari". The exper-
imental set-up adopted in this case is shown in Fig. 4.18. An XM112 IR-UWB radar
has been mounted on a small tripod, which, in turn, has been positioned on an office
desk in front the chest of the monitored subject (sitting on chair at an horizontal dis-
tance dh approximately equal to 70 cm). Our measurements have been acquired from
five healthy subjects; the resulting dataset consist of N̄ = 45 waveforms, each referring
to an observation interval that lasts TF = 60 sec and represented by Nc,AC = 5926
complex samples. The Shimmer3 device has been employed again as a reference sensor
and its output has been synchronized with that of that of the XM112 device. The data
collected by the reference sensor have been stored in a vector of size Nc,S = 15317,
assuming an average frame rate equal to 100 samples per second.
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4.6.3 Numerical results

In this subsection the estimation methods described in Subsection 4.5.1 are applied to
the measurements acquired through our three radar devices described in Subsection
4.6.1. Our objective is estimating the BR and HR in the following two scenarios: 1) a
single subject lying down on a bed at a distance Rref = dv = 0.75 cm from the radar
sensor (see Fig. 4.17); 2) a single subject sitting on chair at an horizontal dh=70 cm cm
from the radar sensor (see Fig. 4.18). In our study, emphasis is put on the extraction
of HR from radar measurements, since this represents a substantially more challenging
task than BR estimation.

Let us focus now on the first scenario. In this case, the signal samples acquired
through the four (two) VAs of the IWRxx43 (P2G) radar in the k-th chirp interval, with
k = 0, 1, ..., Nc,x − 1 and x = TI (P2G) are processed by a beamforming algorithm [8];
this allows to constructively combine the echoes impinging on the RX array along a spe-
cific direction and to produce a single N -th dimensional column vector xk; this vector
feeds the range estimation and bin selection block shown in Fig. 4.8. The processing
accomplished by the last block is based on (4.42) (a tape meter is used to compute the
reference range Rref). Moreover, this block produces the couple (l̂ [k], ψ̂[k]), consisting
of the bin index l̂ [k] and the phase estimate ψ̂[k], for any k. It is worth mentioning
that: a) that an estimate R̂[k] of the target range is evaluated as

R̂[k] = l̂ [k]Km, (4.64)

where
l̂ [k] = arg max

lm≤l̄≤lM
|X[l, k]|2, (4.65)

X[l, k] is defined by (4.42), lm = 21, lM = 33, Km = 32.6 m (lm = 2, lM = 3,
Km = 2.6 m) for x = TI (x = P2G); b) N0 = 512 and Rm = 0.65 m, RM = 1 m
have been selected for both radar systems. Note that R̂[k] (4.64) does not necessary
coincide with the reference range Rref , since:

a) Some errors are unavoidably introduced in the range measurement procedure. In
fact, it not easy to identify exactly the point of the chest on which the beam
radiated by the employed radar is focused, since the antennas of both radar
devices are not highly directive.

b) The range estimate R̂[k1] computed in the k1-th chirp interval may be slightly
different24 from the estimate R̂[k2] obtained in the k2-th chirp interval, with
k1 ̸= k2.

The elements of the unwrapped phase vector

ψ̂ ≜ [ψ̂[0], ψ̂[1], ..., ψ̂[Nc,x − 1]]T , (4.66)

computed on the basis of the measurements that have been acquired through the TI
(P2G) radar in a single observation interval, are represented by the red (green) line in

24Note that, in principle, information about chest displacement are contained in the sequence
{R̂[0], R̂[1], ..., R̂[Nc,x − 1]}, but, in general, its elements are too noisy for a reliable detection of vital
signs.
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Figure 4.19: Representation of the normalized unwrapped phase extracted
from our IWRxx43 radar measurements (red line) and P2G radar measure-
ments (green line). The breath signal acquired through our reference sensor
is also shown (blue line).

Fig. 4.19 (note that in order to ease the interpretation of these results, the elements
of the two phase vectors have been normalised25); in this case, AD followed by DC
offset removal and phase unwrapping is employed. The results illustrated in Fig. 4.19
deserve the following comments: a) the two radar signals represent the dynamics of the
chest due to both breathing and cardiac activities; b) the phase trajectories computed
on the basis of the measurements provided by the two radars overlap, even if these
devices operate at different frequencies, and exhibit similar evolutions as the signal
provided by our reference sensor (Shimmer3; see the blue line appearing in Fig. 4.19).
The amplitude spectrum generated by applying an FFT of order N ′

0 = Nc,S = 15317
to each of the signals represented in Fig. 4.19 is shown in Fig. 4.20. These results
evidence that: a) the spectral peak associated with breathing (in correspondence of 21
acts/min) is much larger than the one related to heart beat (visible at approximately 61
acts/min); b) the second order harmonic of breathing is clearly visible at approximately
21× 2 = 42 acts/min, whereas its third harmonic is expected at 21× 3 = 63 acts/min.

The heart signal can be extracted from the unwrapped phase through band-pass
filtering [212]. In this case, a fourth order band-pass Butterworth is used to select
the spectral components whose frequencies belong to the interval [0.91 Hz, 3 Hz]; its
output is shown, for both radars, in Fig. 4.21 (the ECG signal generated by the
reference sensor is also represented). Note that, in the considered observation interval,
the peak-to-peak period of the radar waveforms is comparable to the normal to normal
(NN) peak interval characterizing the ECG signal26. However, the heart and the ECG
signal are not perfectly aligned; this suggests that the heart frequency, i.e. the distance
between two consecutive peaks, is not completely stable during the observation time.
This is confirmed by the amplitude spectrum of the bandpass filter output generated

25A min-max normalization has been applied to the vector ψ̂ (4.66); the k-th element ψ̄[k] of the
normalised phase vector is evaluated as ψ̄[k] = (ψ̂[k] − min(ψ̂))/(max(ψ̂) − min(ψ̂)), with k = 0, 1,
..., Nc,x − 1.

26In an ECG signal, NN intervals are represented by the time intervals between adjacent peaks
resulting from sinus node depolarizations
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Figure 4.20: Representation of the amplitude spectrum of: a) the breath
signal acquired through our reference sensor (blue line); b) the normalized
unwrapped phase extracted from our IWRxx43 radar measurements (red
line) and P2G radar measurements (green line).

in response to the two radar signals; the resulting two spectra are represented in Fig.
4.22, where the amplitude spectrum of the response of the same band-pass filter to the
breathing signal acquired by the reference sensor is also shown. Note that, in all these
amplitude spectra, three spectral peaks are visible between 60 and 70 acts/min, i.e. in
the frequency range in which the spectral contribution due to heartbeat is expected.
This is due to the fact that: a) the third order harmonic of the breathing signal is close
to the fundamental frequency of the heart beat, so that the spectral contribution of
the former signal may partially overlap with that of the latter one; b) as suggested by
the time-domain signals shown in Fig. 4.19, the HR changes during our observation
interval (lasting 60 s) and this entails some spectral broadening. In principle, the last
phenomenon can be mitigated by reducing the duration of the observation interval over
which spectra are computed; however, an excessive shortening of this interval may lead
to an inaccurate estimation of the frequency components due to heart activity.

Let us take into consideration now the second scenario. The signal processing
chain employed in this case is represented by Fig. 4.7. The elements of a normalised
unwrapped phase vector ψ̂ (4.66), referring to a single observation interval and available
after DC offset removal, are shown, together with the breath signal generated by our
reference sensor, in Fig. 4.23. From these results it is easily inferred that: a) the phase
evolution follows the dynamic of the chest of the monitored subject; b) the dynamic
of heart manifests itself as small fluctuations in the observed phase. The amplitude
spectra generated by applying an FFT of order N ′

0 = Nc,S = 15317 to each of the
signals appearing in Fig. 4.23 are shown in Fig. 4.24. The estimate of the BR,
b̂r = 13.8 acts/min, is easily found by identifying the position of the main spectral
peak; the amplitude of this peak is higher than that of the peak originating from heart,
which is visible at the frequency ĥr = 78 acts/min. Note also that, similarly to what
has been observed in the first scenario, in the amplitude spectrum three spectral peaks
are visible between 70 and 80 acts/min, i.e. in the frequency range in which the spectral
contribution due to heartbeat is expected. This is mainly due to the fact that the HR
changes during the observation interval. In our signal processing chain, a fourth order
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band-pass Butterworth filter has been employed to extract the heart signal from the
unwrapped phase. This filter allows us to select the spectral components belonging
to the interval [0.91, 3] Hz; its output is shown in Fig. 4.25, where the ECG signal
generated by our reference sensor is also represented. Note that, in the considered
observation interval, the peak-to-peak period of the radar waveform is comparable to
the NN peak interval characterizing the ECG signal.
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Figure 4.21: Representation of the heart signal (normalized unwrapped
phase) extracted from our IWRxx43 radar measurements (red line) and
P2G radar measurements (green line). The ECG signal acquired through
our reference sensor is also shown (blue line).
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Figure 4.22: Representation of the amplitude spectrum of: a) the heart
signal acquired through our reference sensor (blue line); b) the normalized
unwrapped phase extracted from our IWRxx43 radar measurements (red
line) and P2G radar measurements (green line).

Finally, it is worth pointing out that the use of a band-pass filter represents a
conceptually simple solution to the problem of extracting the HR components from the
phase signal provided by a radar device. Actually, this filter needs to be adapted to the
specific conditions of the patient under test. If his/her BR increases unexpectedly (e.g.,
in the case of hyperventilation), the spectral components associated with the breathing
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Figure 4.23: Representation of the normalized unwrapped phase extracted
from our XM112 radar measurements (red line). The breath signal acquired
through our reference sensor is also shwon (blue line).
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Figure 4.24: Representation of the amplitude spectrum of: a) the breath
signal acquired through our reference sensor (blue line); b) the unwrapped
phase extracted from our XM112 radar measurements (red line).

activity may not be canceled by this filter and may overlap with the components due
to heart beat.

4.6.4 Estimation accuracy

Let us suppose that an N̄ -dimensional set D ≜ {(b̂r , ĥr , br , hr); r = 0, 1, ..., N̄ − 1},
where b̂r and ĥr denote the estimates of the BR br and of HR hr, respectively, is
available after that all our radar-based measurements have been processed. Then, the
accuracy achieved in vital sign estimation can be assessed by evaluating the mean
absolute error (MAE)

ε̂m,x ≜
1

N̄

N̄−1∑
i=0

|x̂r[i]− xr[i]|, (4.67)
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Figure 4.25: Representation of the heart signal (normalized unwrapped
phase) extracted from our XM112 radar measurements (red line). The ECG
signal acquired through our reference sensor is also shown (blue line).

the peak absolute error (PAE)

ε̂x ≜ arg max
0≤i≤N̄−1

|x̂r[i]− xr[i]|, (4.68)

and the root mean square error (RMSE)

ε̄x ≜

√∑N̄−1
i=0 (x̂r[i]− xr[i])2

N̄
, (4.69)

where x = b (x = h) if BR (HR) is considered. Other relevant parameters are repre-
sented by the correlation of variation (CV)

γ̄x ≜
ε̄x

1
N̄

∑N̄−1
i=0 x̂r[i]

(4.70)

and the Pearson coefficient

ρx ≜

∑N̄−1
i=0 (x̂r[i]− x̄r)√∑N̄−1
i=0 (x̂r[i]− x̄r)2

∑N̄−1
i=0 (xr[i]− x̄′r)√∑N̄−1
i=0 (xr[i]− x̄′r)

2

, (4.71)

where

x̄r =
1

N̄

N̄−1∑
i=0

x̂r[i], (4.72)

x̄′r =
1

N̄

N̄−1∑
i=0

xr[i] (4.73)

x = b (x = h) if BR (HR) is considered and xr[i] represents the BR (HR) provided by
the adopted reference sensor. Note that value of the parameter ρx (4.71) falls in the
interval [−1 , 1]; a positive (negative) unitary value is found when the two available
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Table 4.4: Root mean square error (ε̄x), peak absolute error (ε̂x), mean
absolute error (ε̂m,x), correlation of variation (γ̄x) and Pearson coefficient
(ρx) referring to the BR (HR) estimates {b̂r} ({ĥr}) computed on the basis
of the data set acquired in our first scenario (the measurement unit, m.u.,
is specified for each parameter).

Errors m.u. TI Radar P2G Radar

(ε̄b , ε̄h) acts/ min (0.75 , 1.90) (1.15 , 1.70)

(ε̂b , ε̂h) acts/min (2.80 , 4.80) (5.50 , 4.00)

(ε̂m,b , ε̂m,h) acts/min (0.45 , 1.60) (0.60 , 1.40)

(γ̄b , γ̄h) % (4.40 , 3.24) (6.80 , 2.90)

(ρ̄b , ρ̄h) % (90 , 82) (84 , 85)

datasets (namely, the dataset generated through the employed radar device and that
acquired from the reference sensor) exhibit a positive (negative) correlation, whereas a
null value means that they are completely uncorrelated.

Typical values of the MAE, the RMSE, the CV and the Pearson coefficient evalu-
ated in radar-based monitoring of vital signs can be found in [211, 248, 278]. In those
manuscripts, a reasonable estimation accuracy is achieved if: a) the MAE and RMSE
for BR (HR) estimation are in the order of some acts (beats) per minute; b) the CV
is close to 5% for both BR and HR estimation; c) the Pearson coefficient is greater
than 70%. It is also important to remember that estimation accuracy can be improved
through the development of a proper measurement setup; for instance, a small laser
device can be employed to verify that the employed radar device is really pointing
toward the center of the chest of the patient under test. Another relevant technical
issue to be taken into consideration is represented, as already mentioned in the pre-
vious subsection, by the availability of an accurate synchronization between the radar
and the reference sensor; unluckily, if the radar and reference devices have independent
local clocks, full synchronization cannot be achieved and an accurate evaluation of the
parameters defined above is not possible.

Let us analyse now some results obtained on the basis of a limited set of the mea-
surements acquired in the first scenario described in Subsection 4.6.2 (and involving the
IWRxx43 and P2G FMCW radars, and the Shimmer3 reference sensor). We assume
that:

a) All our measurements have been acquired from 13 young healthy subjects lying
down on a bed and each of them refers to an observation interval lasting 60 s.

b) The HR and BR estimates have been computed by resorting to the processing
chain described in Fig. 4.7 and in Subsection 4.5.1.

c) The size of the dataset DTI (DP2G) referring to the IWRxx43 (P2G) radar is
N̄ = 45 (on the average, three distinct measurements have been acquired from
each subject).
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Figure 4.26: Representation of 45 couples {(br, b̂r)}; the BRs estimated
through a IWRxx43 (P2G) radar are identified by a red (blue) marker.
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Figure 4.27: Representation of 45 couples {(hr, ĥr)}; the HRs estimated
through a IWRxx43 (P2G) radar are identified by a red (blue) marker.

The values of MAE, PAE, RMSE and CV evaluated on the basis of the available
datasets are listed in Table 4.4, whereas the pairs {(br , b̂r)} ({(hr , ĥr)}) are repre-
sented on a Cartesian plane in Fig. 4.26 (Fig. 4.27) for both the IWRxx43 and P2G
FMCW radars. Moreover, in Figs. 4.26 and 4.27, the lines generated through a lin-
ear fitting of the available pairs are also shown. These results deserve the following
comments:

a) The estimates of BR and HR evaluated through both our radar devices are rea-
sonably accurate;

b) Radar based-estimates are highly correlated with the measurements provided by
our reference sensor.

c) The IWRxx43 radar achieves a better accuracy on BR estimation than the P2G
radar; on the other hand, the latter device outperforms the former one in HR
estimation.
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d) The accuracy of the HR estimates is worse than those of BR estimates, since the
latter rely on stronger and cleaner spectral information (see fig. 4.22 and 4.24).
Note also that the RMSEs and peak errors of HR are in the order of few acts/min.

As far as the last issue is concerned, it is important to keep in mind that: a) the HR
frequency may overlap with (or be very close to) the third order harmonic of breath; b)
the displacement due to heart is very small and may be not fully detected by our radar
devices, if they are not accurately oriented towards the chest of the subject under test.

Let us analyse now some results obtained on the basis of all the measurements
acquired in the second scenario described in Subsection 4.6.2 (and involving the XM112
UWB radas and the Shimmer3 reference sensor). We assume that the HR and BR
estimates have been computed through the processing chain described in Fig. 4.7
and in Subsection 4.5. The pairs {(br, b̂r)} and {(hr, ĥr)} obtained in this case are
represented in Fig. 4.28, whereas the corresponding values of the parameters defined
in this subsection are listed in Table 4.5. Comments similar to those expressed for the
first scenario also apply to these results. In fact, the estimation errors estimated in the
last case are comparable with those listed in Table 4.4 and referring to the two FMCW
radars we employed.

Table 4.5: Root mean square error (ε̄x), peak absolute error (ε̂x), mean
absolute error (ε̂m,x), correlation of variation (γ̄x) and Pearson coefficient
(ρx) referring to the BR (HR) estimates {b̂r} ({ĥr}) computed on the basis
of our data set acquired in our second scenario (the measurement unit,
m.u., is specified for each parameter).

Errors m.u. XM112

(ε̄b , ε̄h) acts/ min (0.87 , 1.32)

(ε̂b , ε̂h) acts/min (4.1 , 3.9)

(ε̂m,b , ε̂m,h) acts/min (1.32 , 1.75)

(γ̄b , γ̄h) % (10.1 , 2.38)

(ρ̄b , ρ̄h) % (78.8 , 97.5)

4.7 Applications of the Radar Technology to Vital Signs
Monitoring

In this section, we propose a synopsis of the technical literature concerning the following
specific issues: a) the monitoring of HR and BR; b) the experimental setups adopted
in vital sign monitoring; c) the monitoring of heart sounds.

4.7.1 Heart rate and breath rate monitoring

The use of radar systems for monitoring HR and BR has been investigated by several
research groups, whose work has allowed to assess the performance achieved by different
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Figure 4.28: Representation of 45 couples {(br, b̂r)} and {(hr, ĥr)} esti-
mated on the basis of the measurements acquired through a XM112 UWB
radar.

radar prototypes operating at distinct frequencies and radiating heterogeneous signals.
As far as the use of the radar technologies described in Subsection 4.4.1 is concerned,
it is worth mentioning that:

a) Continuous wave Doppler radars operating at 2.4 GHz, at 5.8 GHz and at 24
GHz have been employed to measure respiration, heartbeat, or motion activity
in [140,188,200,279], in [280] and in [211,259,281], respectively. In [282], instead,
a 24 GHz CW radar sensor is employed for cuffless blood pressure measurement,
whereas, in [283], a dual radar system operating at 5.8 and 120 GHz is adopted to
measure respiration, heartbeat, HRV, blood pressure, and other vital parameters.

b) Frequency modulated continuous wave radars operating in the C and X bands, at
24 GHz, at 60 GHz, at 77 GHz, and at 122 GHz have been used to simultaneously
estimate of the the vital parameters of multiple people in [213, 284], [285], in
[278,286], in [222,248] and in [287], respectively.

c) Stepped frequency continuous wave radars operating at frequencies lower than
3 GHz and in the X band are have been exploited for the estimation of the
vital signs parameters of single or multiple people in [164, 288] and in [289, 290],
respectively.

d) Impulse radio UWB radars operating in the C, X and E bands and having large
bandwidths (2 − 3 GHz) have been employed to measure vital parameters with
high accuracy in [212,249,262,291–293].

Model-based (MB) and LB methods have been employed for the processing of the
measurements provided by the above mentioned radar systems; moreover, such mea-
surements have been acquired over population of different sizes. Essential information
about the adopted processing methods and the size of the involved population are sum-
marised in Table 4.6; note that, in this table, the size Np of the population (low, L,
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medium, M, or high, H) on which it has been tested have been specified27. Some details
about the most important processing methods and the main results achieved through
their use are provided below.

Continuous wave Doppler radars - Three novel deterministic techniques for estimat-
ing vital signs have been developed in [279], where a radar system operating at 2.4 GHz
has been tested on a (single) human subject located at a fixed distance. These tech-
niques are based on: a) the FFT processing of the time-domain phase signal estimated
through AD (see the block diagram represented in Fig. 4.7 and in Subsection 4.5.1);
b) the computation of the autocorrelation of the phase vector ψ̂ (4.28) to estimate the
period of the time-domain phase signal; c) the FFT processing of the above mentioned
autocorrelation. The last two techniques are shown to achieve a better accuracy than
the first one. Other interesting results are offered by [188], in which a deterministic
method based on the block diagram appearing in Fig. 4.7 is adopted to process the
measurements acquired through a mmwave Doppler radar. In that manuscript it is
shown that the HR estimated on the basis of an ECG is highly correlated with that
estimated on the basis of the measurements acquired through the devised radar system.

Some potential benefits originating from the use of ML methods are illustrated
in [140], where the problem of recognizing and classifying breathing disorders of var-
ious patients during their sleep is investigated. Five ML techniques, namely, SVM,
linear discriminant analysis (LDA), K-NN, decision tree (DT) and ensemble learning
techniques, trained on a manually selected set of features, are tested; the obtained re-
sults evidence that all the considered techniques are able to achieve an high accuracy
in the classification of breathing disorders.

Frequency modulated continuous wave radars - In [286] the BR and HR of a single
person have been measured through an FMCW radar and an ECG; moreover, a video
camera has been also used to inspect the chest dynamics of the patient under test.
A dataset composed by the measurements acquired from six different people has been
used for validating the adopted signal processing methods. Two different methods have
been tested, one based on the FFT (similar to the one described by the block diagram
shown in Fig. 4.7), the other one based on the computation of the autocorrelation
of the phase vector ψ̂ (4.28). The obtained results have evidenced that: a) both BR
and HR can be accurately extracted from radar measurements; b) the estimation of
HR in the presence of the respiration harmonics can be challenging. Methods similar
to the ones employed in [286] have been successfully exploited in [287] and in [278],
for simultaneously estimating the vital signs of multiple people and for identifying the
vital parameters of ten subjects that experience different sleep scenarios, respectively.
In [285], a system for measuring blood pressure is described; results on human subjects
reveal that radar-based arterial pulse detection is very promising for future applications
in blood pressure detection and monitoring.

Stepped frequency continuous wave radars - An FFT-based estimation method, sim-
ilar to the one described in Subsection 4.5.1, has been employed in [164,288] to estimate
the BR and HR of multiple subjects in a room; these subjects have been sitting on
a chair or lying down in a bed, and have been characterized by different orientations.
In [164], radar-based estimates have been compared with the HR and BR estimates

27In this table, the population size is low, medium or high if 1 < Np ≤ 10, 10 < Np ≤ 20 or Np > 20,
respectively.
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Table 4.6: Classification of the references cited in Subsections 4.7.1 and
4.7.2 on the basis of: a) the size of the acquired dataset (L, M and H
correspond to 1 < Np ≤ 10, 10 < Np ≤ 20 and Np > 20, respectively,
where Np denotes the overall number of acquisitions); b) the position of
the subject/subjects under test; c) the employed radar technology; d) the
category of the adopted signal processing method.

Ref. no. Dataset Subject position Radar technology Freq. Signal proc.
size sitting lying down other CW FMCW SFCW UWB GHz MB LB

[279] H ✓ ✓ 2.4 ✓

[280] H ✓ ✓ 5.8 ✓

[188] L ✓ ✓ 2.4 ✓

[140] M ✓ ✓ 2.4 ✓

[259] M ✓ ✓ 24 ✓

[281] M ✓ ✓ 24 ✓

[211] L ✓ ✓ 24 ✓

[200] L ✓ ✓ 2.4 ✓

[282] L ✓ ✓ 2.4 ✓

[283] L ✓ ✓ 5.8,120 ✓

[285] M ✓ ✓ 60 ✓

[286] L ✓ ✓ 24 ✓

[287] L ✓ ✓ ✓ 122 ✓

[248] L ✓ ✓ 77 ✓

[213] L ✓ ✓ 5.8 ✓

[278] M ✓ ✓ 24 ✓

[284] L ✓ ✓ 10 ✓

[288] M ✓ ✓ 0.3-1.3 ✓

[164] M ✓ ✓ 2.4 ✓

[289] L ✓ 9.0 ✓

[290] L ✓ 5.8 ✓

[222] L ✓ ✓ ✓ 77 ✓

[249,291] L ✓ ✓ 6.8 ✓

[292] L ✓ ✓ ✓ 4.3 ✓

[293] H ✓ ✓ 94 ✓

[212] H ✓ ✓ 7.25 ✓

[262] H ✓ ✓ 79 ✓
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provided by a contact reference sensor. The employed radar system has been shown to
achieve the best performance when the chest of the subject under test is in front of it;
however, even if this condition is not met, radar-based estimates are still sufficiently
accurate. In [288], the performance of radar-based monitoring in scenarios in which ob-
stacles, characterised by different shapes and materials (like walls), are placed between
the radar and the subject under test are evaluated. Finally, an SFCW radar system
has been employed in [289, 290] to simultaneously estimate the vital signs of multiple
people. It is also worth mentioning that the estimation method devised in [290] con-
sists in applying a CWT to the phase vector ψ̂ (4.28) in order to separate the breath
contribution from the one due to heart.

Impulse radio UWB radars - An FFT-based estimator (similar to the one described
by the block diagram of Fig. 4.7) and an estimator based on autocorrelation of the
phase vector ψ̂ (4.28) have been employed in [293] and [292], respectively, where the
raw data acquired through an IR-UWB radar system have been processed to extract
the vital signs of different subjects. The accuracy achieved by an IR-UWB radar
system in vital sign estimation has been compared with that of an FMCW radar system
in [222]; the latter system is shown to outperform the former one thanks to its ability
to perform clutter suppression. Note that, as shown in [291], noise and clutter affecting
the measurement acquired through an IR-UWB radar can be mitigated by means of
Kalman filtering.

4.7.2 Radar setups in real world scenarios

Radar systems can be potentially exploited for remote monitoring of vital signs as
conveniently and as easily as wearable devices in heterogeneous scenarios. Readers
should not forget, however, that essential requirements for their adoption in real world
applications are represented by their ease of use and accuracy. Various results about the
accuracy of radar systems for vital sign monitoring in real world (and often challenging)
scenarios can be found in [211, 213, 248, 278, 284] and [294]; note that [213], [248] and
[278] concern FMCW radar systems, whereas [211, 284] and [294] CW Doppler and
IR-UWB radars, respectively. More specifically, the use of radar systems in an hospital
for measuring the vital signs of patients has been investigated in [211,213,248], whereas
more challenging scenarios have been taken into consideration in [278,284,294]. The use
of a IR-UWB radar for through the wall BR and HR estimation has been proposed for a
single subject and multiple subjects in [295] and [296], respectively. A brief description
of the experimental setup adopted in the measurement campaigns conducted by the
authors of the manuscripts cited above and of the main results extracted from their
experimental data is provided below.

a) The use of a MIMO FMCW radar in an hospital bedroom has been investigated
in [248]. The radar device has been positioned on the ceiling of a room, in front
of the bed on which a static subject was lying down; moreover, the monitored
subject was facing up the radar during the data acquisition process, that lasted
40 min. A good correlation between the BR and HR acquired through a reference
sensor and their estimates provided by the radar system has been found. Note
that the scenario considered in this case is that of a typical hospital room in
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which vital signs monitoring concerns patients at rest; for this reason, this task
is accomplished in the absence of random movements of their chests.

b) An FMCW radar endowed with a custom array of antennas has been employed
to estimate the vital signs of a person sitting on a chair in [213]. The analysed
measurements have been acquired on five subjects (three males and two females),
not suffering from any cardiac or respiratory pathology, and whose age ranged
from 25 to 63 years. These subjects have been positioned in front of the radar
with different orientations (their chest, their left, their back and right side facing
the radar antenna). The employed system has been able to accurately detect BR
and HR, regardless of chests patient orientation towards the radar antenna.

c) A custom-designed CW radar system placed under a bed mattress has been em-
ployed in [211] to continuously measure the vital parameters of various patients
without restricting their movements. The developed system has been able to de-
tect the activity of each patient (i.e., entering the bed, getting out of it, or moving
inside it) and to continuously measure his/her vital signs in different positions.

d) An FMCW radar has been employed for the estimation of the vital signs of a
person experiencing different sleep conditions in [278]. In this case, the radar
device has been positioned on the ceiling of a room in front of the bed on which
a static patient was lying down in different positions or was performing simple
activities; this allowed to emulate real-life sleep conditions. The measurements
have been acquired on eleven patients (whose age ranged from 25 to 55 years);
a good correlation has been found between the radar-based estimates of vital
signs and those provided by a reference device. These results, together with
those illustrated in [211], have evidenced that radar-based systems can be very
useful in various healthcare applications (e.g., in the study of sleep apnoea, in
the monitoring of bedridden patients and, more in general, in the monitoring of
hospitalized patients).

e) The use of a dual-frequency28 CW microwave radar for vital sign estimation
inside an ambulance has been studied in [284]. The measurements have been
acquired on eight healthy male subjects whose age ranged from 21 to 24 years.
Each of the subjects was lying down on a stretcher contained inside an isolator;
therefore, his respiratory and cardiac activities were monitored from outside the
isolator. The employed radar system has been able to measure the HR and
BR of the monitored subject with good accuracy, in both static and dynamic
conditions of the ambulance. Note that the innovative method proposed for vital
sign detection could be very useful in other scenarios (e.g., in the monitoring of
infectious patients).

f) Various results about the use of an IR-UWB radar system for monitoring the BR
of six neonates29 in a neonatal intensive care unit have been illustrated in [294].
In all the experiments, the employed radar system has been covered with a white

28The considered radar system operated at both 10 GHz and 24 GHz.
29In this case, the subjects under test were two males and four females with a median gestational

age of 38 weeks and a median birth weight of 3100 g.
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plastic cap and has been hung at the end of a specially designed arm placed on
the top of a tripod; moreover, it has been placed at a distance of 35 cm from the
chest of each subject. Each of the neonates has been placed in a supine position
inside an open-air crib, and his/her torso has been covered with a blanket. An
high accuracy has been achieved, despite the small movements of the babies under
test.

g) Some results about the use of IR-UWB radar systems in vital sign monitoring
have been illustrated in [295] and [296]. In particular, in [295], an IR-UWB mono-
static radar system operating at 4.3 GHz and having a bandwidth (resolution) of
2.3 GHz (6.5 cm) has been employed for vital signs estimation of a single sub-
ject located behind: 1) a gypsum wall, 2) a wooden door, 3) a brick wall; 4) a
load bearing concrete wall. Three different methods have been proposed for ex-
tracting vital signs from radar measurements, namely: 1) a DFT-based method
for BR estimation; 2) a clutter reduction technique based on the singular value
decomposition (SVD); 3) a STFT for analysing the temporal evolution of the
spectral components of the received signal. The numerical results provided in
the manuscript cited above confirm that the proposed methods are achieve simi-
lar performance in the considered scenario. In [296], instead, a MIMO IR-UWB
radar, equipped with an array of 10 × 10 physical elements and operating at a
centre frequency of 2 GHz, is employed to detect the vital signs of three male
adults (having different heights and weights), sitting in front of the radar system
at a distance that does not exceed 2.5 meters; both line-of-sight conditions and
the presence of a wall hiding them are considered. A simple FFT processing has
been considered. The obtained numerical results evidence that a MIMO IR-UWB
radar can achieve through-wall detection of multiple subjects, and estimate their
BR and HR, provided that their body movements are quite small.

4.7.3 Heart sounds monitoring

Currently, the standard reference tool for continuous cardiac monitoring is electrocar-
diography; it requires touch-based wiring of patient skin. In clinical practice, a series of
pathological processes would certainly benefit from contactless monitoring; these condi-
tions may include patients with an infections or a sepsis (e.g., infected by SARS CoV-2),
or patients with mental disorders that do not allow conventional monitoring according
to cardiology settings. In cardiac intensive units or in intermediate care units, contin-
uous monitoring of heartbeat is a common practice, because detection and prevention
of critical states of health can lead to timely therapeutic interventions, with the result
of a better outcome. In fact, several cardiac conditions could be immediately harmful
and potentially fatal (e.g., cardiac arrhythmias, heart attacks, acute heart failure, and
stroke), thus requiring prompt detection of cardiac or respiratory anomalies. Recently,
in the field of radar-based systems for vital signs monitoring, an effort has been made
to take a step forward and, in particular, to detect heart sounds [271, 272, 297]. The
classification of normal or abnormal heart sounds has been investigated in [297]. In that
manuscript, it has been shown that the heart signal recorded by a custom-designed CW
radar system is highly correlated with the signal registered by a phonocardiograph, used
as reference. Based on this correlation, each period of the recorded radar signal can be
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divided in the different temporal phases of the cardiac activity, namely into systole and
diastole (see Subsection 4.3.1); this procedure is called heart sound segmentation. After
recognizing systole and diastole in the received radar signal, a reliable detection of nor-
mal or abnormal heart sounds can be accomplished using an Long Short Time Memory
(LSTM) network for heart sound segmentation; this has been shown in [271], where
an heterogeneous dataset of recorded heart sounds and vital signs acquired through a
CW Doppler radar has been used [272]. The measurements of this dataset originate
from multiple subjects in different positions of their bodies and in various conditions,
such as during breath-holding, during speaking and after post-exercise. The obtained
results have evidenced that more than 90% of the recordings were of high quality, and
that the correlation between radar and ECG signals was almost perfect. As far as the
impact of body position is concerned, it has been found that, in general, heart sounds
can be detected in almost all the considered positions; however, the measurability at a
certain position changes from subject to subject. This is partly due to the fact body
anatomy, and in particular, heart position inside chest, may exhibit some variations
from person to person.

Further analysis should be performed to achieve solid results, as these represent
only preliminary data about the innovative radar-based detection of heart sounds. This
technology could lead to a new way of non-invasive cardiac monitoring and could be
revolutionary in the cardiology settings. Currently, during medical visits, cardiologists
use a stethoscope for heart evaluation; this tool allows them to check for sounds which
may indicate pathological changes in the heart or the heart valves. However, the validity
of the assessment strongly depends on the experience of the physician. An objective,
operator-independent and automated analysis of heart sounds accomplished through
radar technology would be very useful; note also that, in this case, the availability of
large datasets for big data analysis would be very useful.

4.8 Current Trends

In this section, the most relevant trends in the ongoing research activities on radar
systems for vital signs monitoring are described. In particular, we focus on research
activities related to: a) the techniques for the compensation of random body movements
(RBMs); b) the impact of body orientation on the detection of vital signs and the
quality of their estimates; c) the detection of HRV; d) the exploitation of radar-based
monitoring for user identity authentication.

4.8.1 Compensation of random body movements and impact of body
orientation

The random body movements (RBMs) of any person affect the estimate of his/her
vital signs provided by radar devices. These movements, in fact, modulate the radar
waveform both in its amplitude and frequency, so distorting the received echoes. This
may significantly affect the quality of the estimates of vital signs generated by radar
systems. Consequently, RBMs may represent an important obstacle to the adoption of
radar technology in certain scenarios. It is also worth mentioning that, if a mmwave
radar device is employed, the eye blinking of the monitored subject may be detected as
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a large RBM, resulting in a significant degradation in the quality of the received signal
phase; the impact of this disturbance can be substantially mitigated through the use
of MIMO radars, since these are able to steer their beam towards his/her chest [207].

Recently, two approaches to motion compensation have been proposed. The first
approach is an hardware RBM compensation acting at RF front-end level and, con-
sequently, limiting the risks of saturating radar transceivers in the presence of strong
echoes [206]. The second one, instead, consists in accomplishing a digital compensa-
tion after demodulation; this can be implemented more easily and lends itself to a more
precise control. For this reason, in the remaining part of this subsection, we focus on
the last approach only.

One of the easiest strategies to extract the (weak) vital sign components from the
radar measurements and removing the distortion due to RBMs is represented by digi-
tal filtering. However, this solution is optimal only when the statistical characteristics
of the filter input match prior information on which the design of the filter is based;
unluckily, such characteristics are normally unknown. For this reason, a more robust
solution has been proposed in [298], where an adaptive noise cancellation (ANC) recur-
sive algorithm is employed, in combination with polynomial fitting, in a CW Doppler
radar system. It is important to point out that: a) polynomial fitting is used to re-
construct the signal components due to RBMs and that must be subtracted from the
overall signal provided by the radar receiver; b) this strategy allows to achieve RBM
compensation when a single radar system is used and does not require additional sen-
sors. The use of a multi-radar system for cancelling RBMs have been proposed in [205].
In this case, two CW Doppler radar systems have been put on opposite sides with re-
spect to the body of the monitored subject; when his/her body was leaning towards
one of the radars, it moved away from the other one [205], so that the distance between
each radar and the body changed in an opposite manner. Based on this consideration,
it has been shown that RBMs can be cancelled by combining the measurements pro-
vided by the two radars. The main drawbacks of a multi-radar approach consists in
an increase of system complexity, cost and power consumption and in the need of a
larger room for the experimental setup. A different approach to RBM compensation
relies on the use of an hybrid system including radar and camera [299]. In this case,
the information provided by the camera has been used to compensate for the phase
distortion due to body movements. Unluckily, this approach has been shown to work
well when body movements are regular and deterministic.

As its can be easily inferred from our previous analysis, RBM compensation should
be considered as an open research problem since few solutions are available in the
technical literature.

Another open research problem mainly concerns the impact of body orientation on
the detectability of HR and BR, and on the quality of their estimates. The breathing
movement and the heart dynamics can be detected not only if the radar is positioned in
front of the chest of the monitored subject, but also when his/her body has a different
orientation with respect to the other radar itself, even if some degradation is experienced
in the estimation of vital signs [213]. Some interesting methods for correctly estimating
BR and HR in the presence of different body orientations have been proposed in [212]
and [300]. In particular, the use of an ANN for fusing measurements coming from
three different radar sensors, distributed as endpoints of an equilateral triangle, and
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for compensating the effect of body orientation is investigated in [212]. The obtained
results show that the network is able to achieve a 95% score in the classification of six
different body orientations and to compensate for them; moreover, an accurate estimate
of HR is obtained for every body orientation. The method developed in [300] is also
based on the exploitation of a neural network for the compensation of body orientation
in the estimation of BR and HR; however, the employed mm-wave radar, mounted on
a robot system, allows to acquire four different sitting poses and 180 minutes of data.

4.8.2 Heart rate variability

The HR estimated by means of a radar system represents a measure of the overall num-
ber of heartbeats observed over a given time interval (e.g., over one minute). However,
we should not forget that, within a certain observation interval, the temporal distance
between two adjacent heartbeats may not remain constant. This phenomenon, known
as HRV, is related to heart-brain interactions and is regulated by the autonomic ner-
vous system [301,302]. More specifically, HRV reflects beat-to-beat changes in peak RR
intervals30, which depend on the interrelation between sympathetic and vagal tones.
In fact, the sinus node, the principal heart’s pacemaker, has its own intrinsic activity;
however, several external and internal stimuli altering the autonomic balance influence
the final HR [303].

Heart rate changes may originate from a variety of conditions such as mental or
physical stress, cardiac or noncardiac diseases, or pharmacological or invasive treat-
ments; the respiration-related fluctuation of HR, known as respiratory sinus arrhyth-
mia, is probably the most commonly investigated component of HRV.

The autonomic nervous system imbalance with increased sympathetic and decreased
vagal tone has been proven to be associated with higher risk of cardiac mortality. There-
fore, HRV has become an important and recognized tool in identifying patients at risk
of cardiovascular death [304], and can be considered as a indicator for both physiologi-
cal conditions and pathological processes, such as depression, diabetic neuropathy and
heart failure. Moreover, it can be exploited to monitor post-surgery and post-infarction
patients in order to assess the risk of ventricular tachyarrhythmias leading to sudden
cardiac death.

Nowadays, different methods can be employed to measure HRV; these include a
series of simple bedside reflex tests and more advanced computer-based algorithms for
detecting spontaneous peak RR interval changes. The accomplished analysis is usually
based on long-term (usually 24 hours) Holter ECG recordings or short-term (usually few
minutes) ECG recordings, and aims at avoiding any influence from external stimuli that
could affect autonomic nervous tone [305]. In general, an accurate analysis of HRV may
require a long observation interval in a clinical environment or in home-care scenarios.
The assessment of this phenomenon is based on the evaluation of various time-domain
and frequency-domain features (see [278, Tab. 2, Par. 2.6]). Time domain features aim
at quantifying the variability in inter-beat intervals (also called NN peak intervals31)

30The RR interval represents the time elapsed between two successive R-waves of the QRS signal on
the electrocardiogram. It is a function of intrinsic properties of the sinus node as well as autonomic
influences.

31In the case of a CW radar system, a NN interval can be defined as the temporal distance between
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and include the standard deviation of normal to normal peak intervals (SDNN)

SDNN ≜

√∑N̄
i=1

(
∆t(i) −∆t̄

)2
N̄

(4.74)

and the root mean square successive difference of intervals (RMSSD)

RMSSD ≜

√∑N̄
i=2

(
∆t(i) −∆t(i−1)

)2
N̄ − 1

; (4.75)

here, N̄ is the total number of beats detected in the heart signal, ∆t(i) is the duration
of the time interval between the (i+ 1)-th detected beat and the previous beat, and

∆t̄ ≜

∑N̄
i=1∆t

(i)

N̄
(4.76)

is the average duration of the interval between two consecutive beats. If an estimate
of the probability density function (in the form of a probability mass function, pmf) of
the NN peak intervals is available, a further meaningful feature is represented by the
triangular index (TRI), defined as

TRI =
N̄

PNN,max
, (4.77)

where PNN,max is the maximum of the above mentioned pmf [301].
Frequency domain features are usually evaluated through FFT processing, and refer

to the low frequency or to the high frequency band. The former band accounts for
modulations whose period ranges from 7 s to 25 s, whereas the latter one refers to
shorter periods. The presence of a significant component in the HF band is typically a
symptom of stress or anxiety.

Radar-based estimation of HRV may represent an appealing and challenging alter-
native to ECG for monitoring the physical and mental status of patients. However,
as far as we know, this topic is addressed by few manuscripts in the technical litera-
ture [188,200,278,287,306,307]. More specifically, various results about the use of CW
Doppler radars for analysing HRV and drowsiness can be found in [188,306] and [200],
respectively. The other manuscripts, instead, involve FMCW radars. In particular, an
FMCW radar operating in the K-band has been employed in [278] to monitor HRV in
eleven patients of different ages during their sleep. The obtained results evidence that
the time and frequency features extracted from the radar signal are correlated with
those evaluated on the basis of the measurements acquired from a reference sensor.
The effect of the coupling between breathing and heartbeat signals on HRV has been
investigated in [287]; in this case, an FMCW radar operating at 122 GHz has been
used. Finally, a completely novel approach based on deep learning (and, in particular,
on LSTM neural networks) has been proposed in [307] to accurately estimate HRV,
by analysing the data collected by a custom-designed, six-port, CW Doppler radar
operating at 24 GHz.

two consecutive maxima of the phase vector ψ̂ available at the output of the bandpass filter appearing
in the block diagram of Fig. 4.7.
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4.8.3 Vital sign-based authentication

The capability of radars to accurately estimate the vital signs of a person is attractive
not only for monitoring the health status of a patient and detect possible diseases,
but also for user identity authentication. Nowadays, many people are used to log-in
in their own smartphones by simply looking at their camera or thanks to their finger-
print. These approaches can be classified as what you are methods, since they make
use of personal traits (biometrics) that are hard to reproduce or mimic. Within this
category, facial recognition represents a less robust user authentication method with
respect to other physiological biometrics, such as fingerprints or iris scans [308, 309].
Authentication methods exploiting radar-based identification of vital signs, instead,
are gaining attention because, unlike other physiological biometric-based approaches
(e.g., ECG), they do not require direct contact between the human body and the sen-
sor. Moreover, an identity authentication system based on the recognition of breath
or heart traits may be sufficiently robust and reliable, since, as evidenced by various
studies, the respiratory personality is unique and is preserved over long periods in adult
humans at rest [310,311]. This can be related to the fact that the physiological struc-
ture (e.g., the strength of the diaphragm and intercostal muscles and volume of the
thoracic cavity) and the respiratory motions associated with chest movements have
specific characteristics for each person.

The use of a CW Doppler radar device for heart-based and breathing-based user au-
thentication has been investigated in [308] and [312–314], respectively. All the proposed
methods make use of ML classification algorithms fed by a set of features extracted
from the phase vector ψ̂ (4.28). More specifically, in [312] three different sets of fea-
tures have been used. The most relevant features of the first set are the BR b̂r (see
Subsection 4.5.1), the breathing depth, the average speed of exhale and the average
speed of inhale. The other two sets of features, instead, aim at monitoring the ratio of
inhale and exhale breathing areas, and the breathing mechanism right after and before
the apex (full lung volume). Moreover, it has been shown that a K-NN algorithm,
trained over a dataset consisting of measurements lasting 60 s and acquired over six
different subjects, is able to recognize the breathing pattern of different people with a
good classification score. Better classification results can be obtained by means of a
SVM classifier, as shown in [313,314].

Despite these positive results, respiratory-based identity authentication is far from
being mature and requires extensive analysis and investigation. In fact, people need to
be authenticated under various mental or physical states. Therefore, potential varia-
tions occurring in the normal breathing pattern of a person must be taken into account;
ignoring them could reduce the identification accuracy, as observed in [314]. For this
reason, an heart-based authentication approach has been proposed in [308]. In this
case, the heart signal extracted from the phase vector ψ̂ (4.28) has been segmented in
different periods, each encompassing a small number of cardiac cycles; within each pe-
riod, a set of eight features has been manually extracted. The results obtained through
an SVM classifier trained on the data acquired over 78 different subjects have confirmed
that an authentication method based on radar-based recognition of cardiac motion is
really feasible.
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4.9 Conclusions

Nowadays, a significant body of literature is available in the field of radar-based mon-
itoring of vital signs. This chapter has offered a broad introduction to this field with
the aim of explaining some fundamental concepts, technologies, methods and results
to a wide audience. We really hope that our overview of the available radar technolo-
gies, of the employed signal processing methods and of the specific applications being
considered in medicine will stimulate the interest in radar-based monitoring of vital
signs. We believe that radar technology is now mature enough for being taken into
account in the medical field. However, there is still ample room for the development
of accurate and computationally efficient estimation techniques, and for their imple-
mentation on commercial hardware platforms. Readers should also keep in mind that
most of the results available in the technical literature refer to a very limited human
population and, usually, to healthy subjects. In fact, studies about the monitoring
of real patients in realistic medical scenarios are still scarce. Despite this, it has be-
come clear that radar systems can represent a viable alternative to wearable sensors
or the only possible option in some critical scenarios, where contactless monitoring is
absolutely required. Furthermore, the technological improvements and the advances
in processing techniques achieved in recent years have made it possible to overcome
various limitations. Therefore, thanks to their capability of continuous and contact-
less detection, radars may revolutionise patient monitoring in hospitals and in other
healthcare facilities in the near future.



5. Conclusions, considerations and future
work

In this thesis various deterministic and machine learning methods for MIMO radar
systems have been investigated. First of all, it has been shown that target detection and
estimation method, dubbed RASCA and based on a serial estimation and cancellation
approach, can outperform other well known techniques (e.g., MUSIC or other FFT-
based techniques) in the presence of closely spaced targets at the price of a limited
computational cost. Moreover, the RASCA method, thanks to its structure, lends itself
to a parallel implementation. All the described methods have been tested resorting
to both synthetically generated data and measurements acquired through commercial
radars working in the W band, and their accuracy has been assessed.

Secondly, the use of machine learning and deep learning techniques in the processing
of radar data has been explored. Our results have evidenced that these techniques can
be exploited to successfully solve simple bidimensional tracking problems or recognize
various human activities.

Finally, vital signs monitoring by means of MIMO FMCW radars has been studied.
Our results have shown that good accuracy can be achieved in breath and heart rate
estimation in well controlled environments (e.g., for people lying in an hospital bed);
however, radar-based estimation of vital signs may be seriously affected by the presence
of random body movements.

Future research work should focus on:
a) the application of a serial estimation and cancellation approach to other radar

systems. In this thesis, only FMCW radars have been taken into considerations.
b) The exploitation of machine learning and deep learning techniques in various

automotive applications.
c) The development of new techniques for mitigating the impact of random body

movements in the estimation of vital signs.
Finally, it worth stressing that in all our tests were carried commercially available

hardware has been employed; this suggests that radar technology is now mature enough
to be be applied to a number of real world use cases. Despite this, the problem of the
large computational power required to process the large amount of data generated by
MIMO radars still remains; note that,moving such data from radar ADCs to processing
units greatly increases system complexity (and cost). Unluckily, at the moment, real
time execution of the techniques described in this thesis requires a computational power
larger than that provided by the embedded systems currently available on the market.
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