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Topology, Oxidation States, and Charge Transport in Ionic
Conductors

Paolo Pegolo,* Stefano Baroni,* and Federico Grasselli*

Recent theoretical advances, based on a combination of concepts from
Thouless’ topological theory of adiabatic charge transport and a newly
introduced gauge-invariance principle for transport coefficients, have
permitted to connect (and reconcile) Faraday’s picture of ionic
transport—whereby each atom carries a well-defined integer charge—with a
rigorous quantum description of the electronic charge-density distribution,
which hardly suggests its partition into well defined atomic contributions. In
this paper, these progresses are reviewed; in particular, it is shown how, by
relaxing some general topological conditions, charge may be transported in
ionic conductors without any net ionic displacements. After reporting
numerical experiments which corroborate these findings, a new connection
between the topological picture and the well-known Marcus–Hush theory of
electron transfer is introduced in terms of the topology of adiabatic paths
drawn by atomic trajectories. As a significant byproduct, the results reviewed
here permit to classify different regimes of ionic transport according to the
topological properties of the electronic structure of the conducting material.
Finally, a few recent applications to energy materials and planetary sciences
are reported.

1. Introduction and Outlook

Ever since topology entered the field of condensed matter
physics, it has proven to be a powerful tool in the classification of
exotic states of matter. Many progresses have been made in the
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past decades in understanding how topo-
logical invariants can be computed from
the electronic structure of crystalline ma-
terials, and it was recently made clear
how topological effects are not an excep-
tion, but rather something that can be
found in most known materials.[1] Static
topological effects have been thoroughly
investigated;[2–7] at the same time, dy-
namical effects were studied ever since
the seminal works of Thouless and
Niu,[8,9] with the introduction of the con-
cept of Thouless’ pumps. Despite exten-
sive works in the theory of topological
quantum numbers related to the adia-
batic evolution of a quantum state (see,
e.g., refs. [10, 11]), the link between topol-
ogy and the charge transport properties
of ionic conductors has been only re-
cently established. The starting point is
a proper definition of the microscopic
current,[12,13] for which the first crucial
distinction to be made is between metals
and electronically insulating systems.
The electric current induced in a

metal by an applied bias is carried by
delocalized conduction electrons, and charge can thus flow
even at fixed ions. But charge flow is not limited to met-
als: in ionic conductors the electrons are bound to adiabat-
ically follow the ionic motion and no charge can be trans-
ported as long as the positions of the ions are clamped.
Nonetheless, when ions are allowed to move, charge can be
macroscopically displaced. Daily-life examples range from sim-
ple salt water, to solid and liquid electrolytes employed in Li-
ion batteries, or to the molten salts used as heat exchang-
ers in power plants. Due to their large electronic bandgap,
ionic conductors are in general transparent to visible light and
possess a negligible fraction of “free” conduction electrons.
The propensity of a material to transport charge is encoded in

its electrical conductivity, 𝜎. This transport coefficient accounts
for the relaxation of small off-equilibriumfluctuations of the elec-
tric current, as well as for the response of the latter to a small ap-
plied electric field. The modern theory of transport processes in
extended systems was started by Onsager in the thirties[14,15] and
has been given a solidmathematical foundation back in the fifties
with the Green–Kubo (GK) theory of linear response.[16–19] This
theory provides a rigorous and elegant way to cast the computa-
tion of transport coefficients into the evaluation of equilibrium
microscopic fluctuations of suitably defined fluxes, thus making
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it accessible to equilibrium molecular dynamics (MD) simula-
tions. In the case of the electric flux, J, the associated transport
coefficient, that is, the electrical conductivity, fulfills the relation

𝜎 = V
3kBT ∫

∞

0
⟨J(t) ⋅ J(0)⟩dt (1)

where kB is the Boltzmann constant, T is temperature, and V is
the volume of the system, here assumed to be isotropic, and ⟨⋅⟩
denotes an equilibrium average over the initial conditions of a
molecular trajectory. This formula expresses the electrical con-
ductivity as the time-integral of the equilibrium fluctuations of
the electric flux, which amounts to saying that the transport co-
efficient is proportional to the product of the variance of the fluc-
tuations of the flux times their autocorrelation time 𝜏J,

[20] that
is, the time it takes for the fluctuations to regress to equilib-
rium: 𝜎 ∝ ⟨|J|2⟩𝜏J.
In a purely classical setting,[21] the electric flux is just the sum

of the atomic velocities times their charges

J = e
V

N∑
𝓁=1

Q𝓁Ṙ𝓁(t) (2)

where R𝓁 and Q𝓁 indicate the position and the charge of the 𝓁th
atom, respectively, e is the electronic charge, andN the number of
atoms. When a quantum mechanical picture of the interatomic
forces is adopted, the situation is not nearly as clear: in this case,
the ionic cores do possess a well-defined positive integer charge,
whereas the continuous nature of the electronic charge-density
distribution poses a challenge to a mathematically rigorous and
physically meaningful identification of the valence contribution
to the ionic charges. The impasse is resolved by realizing that
the electric flux is the time-derivative of the macroscopic polar-
ization, J = Ṗ, and by evaluating this time derivative using the
chain rule. In order to do so, one defines the atomic Born effec-
tive charges[13,22]

𝗭∗
𝓁 = 1

e
𝜕P
𝜕R𝓁

(3)

where R𝓁 is the position of the 𝓁th atom, and one concludes that
the electric flux can be cast in the same form as in the classical
case, provided the time-independent, integer-valued, scalar ionic
charges are replaced by the time-dependent, real-valued tensor,
Born effective charges[23,24]

J(t) = e
V

N∑
𝓁=1

𝗭∗
𝓁(t) ⋅ Ṙ𝓁(t) (4)

It is immediate to realize that, since the effective charges are
in general nonzero, due to the local variations of the atomic or
molecular dipoles, so are the fluctuations of the flux, even when
the system is made of neutral molecules, such as in the case of,
for example, pure, undissociated water. The question then natu-
rally arises as to how come nonvanishing flux fluctuations give
rise to the vanishing electrical conductivity of pure water or other
mixtures of neutral moieties.
In the literature, one can find ab initio simulations employing

both the rigorous quantum mechanical definition of the electric

flux of Equation (4),[24–26] as well as others where integer charges
are assigned to atoms in motion.[27–29] Both approaches lead to
satisfying results: while in the former case this is, of course, to
be expected, since it makes use of the exact formulæ, the latter
could be thought reasonable in strongly ionic cases—where elec-
tronic polarization effects are allegedly small and effective charge
tensors could possibly be approximated to integer multiples of
the identity—but questions might arise in all the other cases,
where covalent effects are not negligible.[30] Instead, for reasons
that have been baffling until they were recently demystified, in-
teger charges were found to work even in nonionic systems. A
notable example is provided by ref. [24], where the electrical trans-
port properties of partially dissociated H2O—a phase of water
occurring at high-temperature and high-pressure conditions—
are investigated. In that paper, the authors noticed that “interest-
ingly, the use of predefined constant charges can yield the same
conductivity as is found with the fully time-dependent charge
tensors”. Even more interestingly, the values of those charges
are what chemical intuitions would suggest for the oxidation
states (OSs) of hydrogen (+1) and oxygen (−2). As a coronation
of this, the use of other possibly significant scalar quantities,
such as Bader[31] or Mulliken[32] charges, the average of the di-
agonal of the Born effective charges over the constituents of the
system,[33] or even the effective charges coming from the elec-
trostatics in empirical force fields[34,35]—despite having been ef-
fectual on occasions[33,36,37]—is in principle wrong, and does not
work in general.[24]

In this Review, we analyze the existing literature on the
subject[23,30,38] to highlight that these apparent coincidences are
by no means such, but are instead the deep manifestation of the
topological properties of the insulating state, which ismaintained
as the ions are allowed to diffuse adiabatically through macro-
scopic distances. By leveraging Thouless’ quantization of particle
transport,[8] we first show that, under suitable topological con-
ditions, every atom in an ionic conductor can be characterized
by an integer topological charge, which is the same for all the
atoms of a same chemical species, and whose properties closely
echo those of the atomic OSs.[23] The combination of this finding
with a recently introduced gauge-invariance principle for trans-
port coefficients allows us to shed light onto the alleged coinci-
dences reported above. It was shown that, whenever the topol-
ogy of the insulating state permits to define species-dependent
OSs, the electrical conductivity resulting fromGK formula, Equa-
tion (1), when the electric flux is defined in terms of these charges
is the same that would result from the use of the Born effective
charges.[23]

The theory was also extended to two other different situations
where a unique, species-dependent attribution of OSs is not pos-
sible, giving rise to charge transfer mechanisms that are not
accompanied by a net ionic displacement. The first such situa-
tion occurs when not all the atoms of the same chemical species
have the same OS.[39] In the second, OSs are not well-defined
at all, which results in a nontrivial ionic transport regime, me-
diated by the adiabatic motion of localized electronic charge not
bound to any specific atom.[38] The topology of the system un-
der consideration determines which of these cases occurs. For
these charge-transfer mechanisms, we establish a new connec-
tion with the Marcus–Hush theory of electron transfer,[40,41] pro-
viding a common picture for charge-transfer reactions and the
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conditions which allow charge to flow without ionic mass trans-
port.
The first sections of this work are devoted to reviewing recent

theoretical advances in the role of topology in the theory of charge
transport in ionic conductors. After a brief summary of the theory
of ionic transport in electronically insulating liquids, outlined in
Section 2, the deep connection between charge transport and the
theory of polarization will be discussed in Section 3.[23,30] With
these tools, and under suitable conditions on the topology of the
system, a rigorous definition of OSs will be given, together with
its effect on the transport properties of ionic conductors, in Sec-
tion 4.[23] The following Section 5 is devoted to the case of in-
dependent electrons, where a picture in terms of Wannier func-
tions (WFs) is particularly insightful.[42] Then, in Section 6, the
topological conditions that allowed to define OSs will be relaxed,
and the consequences of this will be extensively analyzed.[38,39] In
Section 7, we present a newly introduced link between the topo-
logical description of charge transport and theMarcus–Hush the-
ory of charge transfer reactions. In Section 8, we report on some
practical applications, while Section 9 contains our conclusions.

2. Charge Transport in Ionic Conductors

A material can be thought of as a collection of classical nuclei
and quantum electrons. Ionic transport in an electrolytic cell is
the transfer of a charged nucleus from one electrode to the other
after it has traversed the electrolyte solution, driven by an elec-
tric field. Consequently, electrons are pumped in the same direc-
tion through the electrolyte, and externally through the circuit, to
maintain charge neutrality in the cell.
To model charge transport in a closed quantum system, one

must adopt periodic boundary conditions (PBCs), as they are the
only ones able to sustain a steady-state flux.[43] The constituents
of the system are therefore supposed to be contained in a cube of
side L and volume V = L3, and whose opposing faces are identi-
fied because of PBCs. The three coordinates x, y, and z, can thus
be mapped to a triplet of angles 𝝋 = 2𝜋(x, y, z)∕L.
The central quantity in ionic transport is the electrical (ionic)

conductivity, 𝜎, expressed, in the GK formalism, by Equation (1).
In a purely classical atomistic model of a liquid, the expression of
the electric flux is given by Equation (2). The values of {Q𝓁} are
usually chosen to reproduce in some way the physical properties
of the system of interest, depending on the problem at hand. The
values of the (static) atomic charges range from integer numbers
in the case of ionic compounds to real numbers in the case, for ex-
ample, of partial charges in molecules.[44,45] While any purposely
chosen value might make sense from the point of view of the
electrostatics of the particular model, charge transport requires
the charges to be integers, as it will be shown in the following;
using real-valued atomic charges evaluated from static calcula-
tions would lead to an error of principle when computing the
conductivity of an electronically insulating material.
When the quantum nature of electrons is taken into account

one needs to resort to Equation (4), where Born effective charge
tensors replace the scalar atomic charges. The evaluation of the
GK formula, Equation (1), from first principles requires the com-
putation of Born effective charges along a MD trajectory, using
either linear-response theory[46] or a Berry-phase approach.[47]

In the case of ionic conductors in an electrolytic cell, however,
it is known since Faraday’s times that when N members of a
given chemical species (be they atomic or molecular moieties)
pass from one electrode to the other, the charge that is trans-
ported is a specific integer multiple of the elementary charge, e,
times N.[30,48] In this way, it is experimentally possible to mea-
sure an integer charge pertaining to each member of the chem-
ical species at hand. It is important to notice that the measure-
ment is intrinsically dynamical, in that it requires the motion of
nuclei across amacroscopic distance, given by the size of the elec-
trolytic cell. The integer charge measured by Faraday is an exam-
ple of OS. In chemistry, OSs are integer numbers widely used
to describe redox reactions, electrolysis, and many electrochem-
ical processes. In spite of their fundamental nature, they have
long eluded a rigorous quantum-mechanical interpretation. In
fact, they are usually determined according to an agreed set of
rules,[49,50] their simplest—and official—definition being, for an
atom, “the charge of this atom after ionic approximation of its
heteronuclear bonds” (verbatim from the IUPAC Gold Book[51]).
Yet, being measurable quantities, at least in the electrolytic cell
setup, they are expected to have a rigorous quantum-mechanical
definition which must reflect the fact that ionic conductors carry
integer charges over macroscopic distances.

3. Charge Transport and the Theory of Polarization

3.1. Single-Point Berry Phase

In a completely general way, the modern theory of
polarization[47,52] allows one to write the electric current as
an elegant expression that involves the time derivative of a
phase angle. We shall adopt the notation of ref. [30], where the
many-body generalization of the theory introduced in ref. [23] is
presented. This allows to move from an independent-electron
picture to a fully many-body one, in a way analogous to how
ref. [9] upgraded the original Thouless’ paper[8] to its many-body
formulation. In this way, the results we present in this subsec-
tion are exact in the adiabatic limit at any level of theory, and
their applicability is only limited by the approximations adopted
when explicit numerical calculations are done. Let |Ψ(t)⟩ be the
instantaneous adiabatic ground state of a quantum system with
N nuclei and Nel electrons. The adiabatic electric flux that takes
into account PBCs is[30,53,54]

J(t) = e
2𝜋L2

d
dt

lim
L→∞

Im log 𝖟(t) (5)

𝔷𝛼(t) = ⟨Ψ(t)|ei 2𝜋L (∑N
𝓁=1 Z𝓁 R̂𝓁,𝛼−

∑Nel
j=1 r̂j,𝛼

)|Ψ(t)⟩ (6)

where
∑Nel

j=1 r̂j is the position operator of the electrons, and each
nuclear species, S, characterized by an atomic number ZS, has a
position operator given by

∑NS

𝓁=1 R̂𝓁 , with
∑

S NS = N. The index
𝛼 = x, y, z indicates the Cartesian component. Since the exponen-
tial operator in Equation (6) is unitary, its expectation value is a
complex number of atmost unitmodulus. The sheet of the Im log
function, which features a branch-cut singularity in the complex
plane, is chosen so that J is continuous in time. A triplet of phase
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a b

Figure 1. Sketch of the path drawn by 𝔷𝛼 in the complex plane during the
time-evolution of the system. a) For a general nuclear trajectory, the path
is open. b) If the initial and final configurations of the nuclei are the same,
then also 𝔷 returns to itself: the path in the complex plane is closed.

angles

𝜸(t) = lim
L→∞

Im log 𝖟(t) (7)

is thus defined, and its electronic component is known in the
literature as the single-point Berry phase.[53] In terms of 𝜸(t), the
electric flux takes the compact form[30]

J(t) = e
2𝜋L2

𝜸̇(t) (8)

The dipole displaced along a trajectory of the system, that
is, 𝚫𝝁(t) = L3 ∫ t

0 J(t
′)dt′, is thus given by

𝚫𝝁(t) = eL
𝚫𝜸(t)
2𝜋

(9)

with 𝚫𝜸(t) = 𝜸(t) − 𝜸(0). Equation (9) says that, as a consequence
of the adiabatic evolution of the system, the dipole displaced is
proportional to a vector of accumulated phase angles—one com-
ponent per Cartesian direction.
Pictorially, Δ𝛾𝛼(t) represents the angle spanned by 𝔷𝛼 in the

complex plane, and Δ𝛾𝛼(t)∕(2𝜋) is the number (in general non-
integer) of rotations that 𝔷𝛼 makes around the origin. If the adia-
batic ground state returns to itself after a time 𝜏, |Ψ(𝜏)⟩ = |Ψ(0)⟩,
the system’s evolution is cyclic, and the accumulated angle is an
integer multiple of 2𝜋; therefore, the transported charge is an in-
teger multiple of the elementary charge. The two scenarios—the
case of a generic trajectory, and the one where the trajectory is
cyclic—are visualized in Figure 1: on the one hand (a), a general
dynamics of the system traces open paths in the complex plane;
on the other hand (b), the same initial and final adiabatic ground
states imply that also 𝖟 returns to itself. The latter situation de-
fines the number of windings around the origin of the complex
plane as a topological invariant, since deforming the path traced
by 𝖟 does not change its winding number, provided that the path
itself does not cross the origin. This condition, that is, |𝔷𝛼(t)| ≠ 0,
for all 𝛼 and for each t, amounts to saying that the system stays in-
sulating during the entire dynamics.[30,55] In fact, according to the
celebrated theory of Resta and Sorella, 𝔷 is related to whether the
system is insulating ormetallic, itsmodulus tending to 1 frombe-
low in insulators, and to 0 from above inmetals, up to the leading
order in 1∕L.[56]

3.2. Born–Oppenheimer Approximation

Let us now focus on a model liquid where the nuclei are classi-
cal particles, while electronsmaintain their quantum nature. The
adiabatic limit here takes the form of the Born–Oppenheimer ap-
proximation: at each time, the electronic wavefunction obeys a
time-independent Schrödinger equation whose one-body poten-
tial term is determined by the instantaneous nuclear coordinates,
{R𝓁(t)}. Equation (5) and (6) keep their form, but |Ψ(t)⟩ is replaced
by the purely electronic ground state, and the operators R̂𝓁 are
replaced by the classical nuclear positions R𝓁 . Under these con-
ditions, the electric flux is given by Equation (4), where the fact
that the polarization depends on time only through the nuclear
coordinates is made explicit. In the L → ∞ limit, Equation (5) is
equivalent to Equation (4), but only the latter is manifestly addi-
tive in the nuclear contributions. It is then expedient to define
3N quantities, 𝛾𝓁,𝛼 , one for each nucleus and Cartesian direction,
such that[30]

𝛾̇𝓁,𝛼(t) =
2𝜋
L

∑
𝛽

𝖹∗
𝓁,𝛼𝛽 (t)Ṙ𝓁,𝛽 (t) (10)

𝛾𝓁,𝛼(t) = ∫
t

0
𝛾̇𝓁,𝛼(t

′)dt′ (11)

In this way, the total accumulated phase angle is decomposed into
a sum of contributions from each nucleus, that is

𝚫𝜸(t) =
N∑

𝓁=1
𝜸𝓁(t) (12)

The emergence of the topological invariants described above
has deep consequences on the charge transport properties of
ionic conductors and, in particular, on the electrical conductiv-
ity. The electrical conductivity can be written in a form which is
equivalent to the GK formula, Equation (1), called the Einstein–
Helfand (EH) relation[57]

𝜎 = 1
3L3kBT

lim
t→∞

⟨|𝚫𝝁(t)|2⟩
2t

(13)

where𝚫𝝁 is the displaced dipole defined in Equation (9). Any two
expressions of 𝚫𝝁 that differ by a bounded vector result in the
same electrical conductivity: the most general form of this state-
ment, which holds for any transport coefficient, takes the name
of gauge invariance of transport coefficients.[23,58–61] Simply put,
gauge invariance says that transport coefficients are largely in-
dependent of the detailed expression of the local representation
of the conserved quantity, be it mass, energy or, as in the present
case, charge. By leveraging this concept, it can be shown that, un-
der suitable hypotheses on the topology of the system, it is pos-
sible to assign integer, constant OSs, {q𝓁}, to each one of the N
atoms, and that the resulting electrical conductivity, 𝜎′, given by
Equation (13) with the dipole displacement defined by

𝚫𝝁′(t) =
N∑

𝓁=1
e q𝓁 ∫

t

0
Ṙ𝓁(t

′)dt′ (14)
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Figure 2. Different types of ACSs, according to the metallic regions they feature. The central cell is framed in light blue, while the dotted lines represent
the sides of one of its periodic replicas. Metallic regions are depicted in dark red. The black lines are paths in the ACS. a) An ACS where SA holds
everywhere. b) Metallic walls surround an adiabatic domain, where SA holds locally. c) Here, SA is broken, in that there exist trivial loops that encircle
metallic regions.

has the same value as the fully quantum-mechanical definition
based on Equation (4), which employs time-dependent Born ef-
fective charge tensors. In formulæ

lim
t→∞

⟨|𝚫𝝁(t)|2⟩
2t

= lim
t→∞

⟨|𝚫𝝁′(t)|2⟩
2t

(15)

which is to say 𝜎 = 𝜎′.[23] This equation is valid in the thermody-
namic limit L,N → ∞ at fixed density.

3.3. Paths and Topology

Before proving Equation (15) in the next section, we make some
considerations on the topology of the paths generated by the adi-
abatic dynamics of the nuclei, as these aspects have crucial reper-
cussions on the charge transport properties of the system. The
space of all the coordinates of the nuclei—namely, the atomic
configuration space (ACS)—is topologically equivalent to a 3N-
dimensional torus, since we adopt PBCs in all the three Carte-
sian coordinates of each of the N nuclei, independently. We are
interested in those paths whose endpoints are a periodic image
of one another, since it is for these that the adiabatic ground state
returns to itself and the theorems on quantization of charge can
be invoked. We focus on adiabatic paths, that is, paths in the ACS
that never cross a metallic region, so to keep the evolution adia-
batic. In this light, it is expedient to define the adiabatic space
as the ACS deprived of the regions where the system is metallic.
Different types of charge transport in insulators arise, depending
on whether the classification of paths of the adiabatic space coin-
cides with that of the total ACS, and, if they differ, how they do so.
We outline the characteristics of these paths with reference to the
situations sketched in Figure 2. If each path whose endpoints are
replicas of one another can be uniquely specified, up to deforma-
tions which do not imply cuts or “exiting the space,” by the tuple
of 3N integers, n = (n1x, n1y,… , nNz), representing the number
of cells spanned by each atom in each Cartesian direction, then
strong adiabaticity (SA) holds in the adiabatic space.[23,38] This
means that a trivial loop in the ACS (i.e., a path whose endpoints
belong to the same cell and coincide, and is thus characterized
by n = 0) is also a trivial loop in the adiabatic space, and can be
shrunk to a point without crossing any metallic region. The eas-
iest situation is whenever there are no metallic regions for any
configuration of the nuclei: this is the case sketched in a 2D ACS

in Figure 2a. Notice that, in higher dimensions, the complete in-
sulation of the ACS is not necessary for SA: for instance, remov-
ing a metallic point (or even a ball) from a 3D torus preserves SA
of the resulting adiabatic space.
In other cases, there might be metallic regions in the ACS

that partition the full adiabatic space into disconnected adiabatic
domains,[38] playing the role of “walls” that the system would
need to cross if it were to pass from one adiabatic domain to the
other. The classifications of paths on the ACS and on the adia-
batic space no longer coincide, since paths with some n are not
allowed in the entire adiabatic space, as they would imply cross-
ing ametallic region. Nevertheless, if all the adiabatic trivial loops
can still be shrunk to a point without closing the gap, the same
considerations made above for the case where SA holds every-
where are still valid within a given adiabatic domain.[38] This sit-
uation is sketched in Figure 2b. Here, SA holds in each adiabatic
domain, but not on the whole ACS, due to the presence of metal-
lic walls.
The situation is instead totally different whenever there exist

adiabatic trivial loops in the ACS which, despite entirely belong-
ing to the adiabatic space, cannot be shrunk to a point without
crossing ametallic region.[23,38] Here, adiabatic paths that are con-
nected are not necessarily equivalent to one another, which im-
plies that two paths characterized by the same tuple n may be
topologically different. This is shown in Figure 2c. Here, SA does
not hold anymore.
Whether SA holds or not has profound consequences on the

definition of OSs and on the transport properties of insulating
systems. In the following section we shall see that only when SA
is not dropped the quantum theory of charge transport can be
reconciled with Faraday’s description, where each atom can be
endowed with a well-defined integer charge, and Equation (15)
holds.[23,38]

3.4. Homotopy and Homology in Charge Transport

Two given paths are considered topologically equivalent, or ho-
motopic, if they can be deformed one into another without cuts
nor exiting the manifold they belong to.[62] Closed paths starting
and ending at the same (base) point—that is, loops—can be clas-
sified accordingly, and the set of the equivalence classes of loops
under homotopy, together with the operation of concatenation,
is called the fundamental group of the manifold, which incor-
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Figure 3. A punctured 2-torus retracts to a figure eight. a) The punctured
2-torus is represented as a square whose opposite sides are identified (as
in PBCs) with a hole in it. b) Since we are interested in the topology of the
manifold, the hole can be continuously expanded. c) The blue sides are
glued together. d) Finally, the red sides are glued together. The resulting
manifold, whose fundamental group is no longer Abelian, can be retracted
to a “figure eight”. Its fundamental group, ℤ ∗ ℤ differs from that of the
2-torus, ℤ × ℤ. Nevertheless, its abelianization, that is, the first homol-
ogy class, is ℤ × ℤ, and the “elementary loops” coincide with those of the
torus. In this way, charge transport properties are not altered by a single
puncture of the 2-torus.

porates information on the presence of important features (like
“holes” or “handles”) of the manifold.[62] The fundamental group
can be commutative (Abelian) or not. For instance, the funda-
mental group of the (3N-dimensional) torus is Abelian, since it is
isomorphic toℤ3N . Nonetheless, whenwe “puncture” it (as it hap-
pens when we remove metallic regions from the ACS), the fun-
damental group of the new manifold (that we named adiabatic
space in Section 3.3) may change,[62] which is exactly what hap-
pens when SA is broken.[38] This new fundamental groupmay be
no longer Abelian. In spite of this, the total transported charge is
expressed as a line integral that can be split into the commutative
sum of integrals, each computed over a piece of the original path.
Therefore, it is not strictly necessary that two loops are homo-
topic to transport the same integer charge. In fact, it is sufficient
that they are homologous, that is, that they share the same, pos-
sibly repeated, “elementary loops,” with no further restrictions
on the sequence in which these are taken. More rigorously, to
understand if two paths transport the same charge, one must in-
spect whether they are represented by the same element of the
so-called first homology group, which is the “abelianization” of
the fundamental group.[62] The use of concepts from homology
theory is also used in topological data science applied to mate-
rials science.[63–66] An example of the difference between homo-
topy and homology is shown in Figures 3 and 4; a single metallic
region in a 2D ACS in PBCs is enough to change its topology
from a simple torus to a “figure-eight” (see Figure 3): the funda-
mental group changes from the Cartesian product ℤ × ℤ, which
is Abelian, to the free product ℤ ∗ ℤ, which is not Abelian.[67]

Nonetheless, the first homology group remains the same, and

Figure 4. Sketch of a 2D ACS whose adiabatic space is isomorphic to a
punctured torus. A single hole is sufficient to change the topological prop-
erties of the manifold, as it changes, for example, its fundamental group
(see Figure 3). Nonetheless, the black path can be continuously deformed
(the deformationmap is represented by the gray, dotted, arrows) to the red
one without closing the gap: it is evident that the charge transported along
the latter is zero, since the charges transported along each side of the
square cancel out with those transported along the opposite side, which
is just the same path traversed in reverse.

the transported charge along a path that encircles the metallic
region is zero, as it can be deformed to a squared path whose op-
posing faces transport charges which manifestly cancel out with
one another, as shown in Figure 4. The black loop and any trivial
loop that shrinks to the gray point are homologous, despite they
are not homotopic, as they cannot be continuously deformed into
one another without crossing the metallic region. Notice that two
points need to be removed from a 2-torus to change the first ho-
mology group, and make it nontrivial from the transport point
of view, as reported below for the linear H+

3 cation discussed in
ref. [38].

4. Topological Foundation of the Oxidation States

Under the condition of SA in the whole ACS, let us now charac-
terize the integer charges appearing in Equation (14). We follow a
Gedankenexperiment, proposed for the first time by Pendry and
Hodges.[68] We displace a single nucleus, say the 𝓁th, from its ini-
tial position to the same position in an adjacent replicated cell. To
perform this task, the other ions are allowed to move out of the
way provided their final positions coincide with the initial ones
and the electronic gap never closes along the path.[23,30] Thou-
less’ theorem[8] (and the many-body generalization thereof[9]) en-
sures that the total charge displaced along this trajectory is an in-
teger multiple of the elementary charge: as it is also expressed
by Equation (9) in the case of a cyclic path, this integer number
is the winding number of 𝔷𝛼 around the origin of the complex
plane (with 𝛼 the Cartesian direction along which the nucleus
has moved). Let q𝓁,𝛼 be this number, which we call the topolog-
ical charge of the 𝓁th atom along direction 𝛼. We remark that,
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for any static configuration taken from such artificial evolution,
these topological charges cannot be defined. A necessary ingredi-
ent for their characterization is the dynamic displacement of the
selected atom.
An operation of this kind was used by Jiang et al.[39] in the

case of crystalline solids, where the system is periodic and lattice
translations bear physical meaning. More generally, the values
of the topological charges are independent of the macroscopic
size of the system closed under PBCs. This validates the proce-
dure also for disordered systems.[23] Moreover, in an electrolytic
cell, it is possible to map the physical system to a spatially pe-
riodic one, as the electrodes are connected to one another by a
wire.[30]

In order to establish an equivalence between topological
charges and OSs, three features ascribed to the latter must occur
in {q𝓁,𝛼}: i) the topological charges have to be path-independent,
ii) their value must coincide for equivalent atoms, and iii) they
must be isotropic, that is, independent of the specific Cartesian
direction by which the atom ismoved. The first condition is easily
proved under SA: consider two different paths having the same
endpoints; by the very definition of SA, two such paths can be
deformed into one another without ever leaving the insulating
state, that is, without any component of 𝖟 passing through the
origin of the complex plane. The second condition can be proved
by invoking the additivity of integrals:[23,30] take any two nuclei,
labeled 𝓁′ and 𝓁′′, of the same species S, that is, with the same
atomic number, Z; the phases, separately accumulated by each
of them in a cyclic path that brings them to their replica in the
adjacent position along Cartesian direction 𝛼, yield topological
charges q𝓁′ ,𝛼 and q𝓁′′ ,𝛼 . Since SA holds, the initial positions of the
two nuclei can be exchanged without crossing a metallic state.
Let the nucleus 𝓁′ i) exchange position with 𝓁′′, then ii) be trans-
ported to its periodic replica, and finally iii) exchange positions
again with the replica of 𝓁′′ belonging to the same cell where 𝓁′

is found after step (ii). In this path, the nucleus 𝓁′ transports a
net charge equal to q𝓁′′ ,𝛼 , since the first particle exchange—step
(i)—cancels out with the second—step (iii). At the same time,
this path shares the same endpoints with the paths where only
𝓁′ is moved to its periodic replica, where a charge equal to q𝓁′ ,𝛼
is transported. Therefore, q𝓁′ ,𝛼 = q𝓁′′ ,𝛼 and the topological charge
only depends upon the nuclear species: q𝓁′ ,𝛼 = qS(𝓁′),𝛼 . The third
condition, isotropy, is proved by first noticing that, under SA, the
dipole displaced along a supercell vector is parallel to the displace-
ment vector;[39] then, the result simply follows from additivity by
equating the dipoles displaced by L along any two Cartesian direc-
tions in sequence, say x̂ = (1, 0, 0) and ŷ = (0, 1, 0), to the dipole
displaced along the sum of the two directions, (1, 1, 0). We con-
clude that q𝓁,𝛼 = q𝓁 and q𝓁′ = q𝓁′′ . In this way, we proved that the
set of topological charges {q𝓁} meet all the requirements for what
chemistry would call OSs of the chemical species in the ionic con-
ductor.
We are now in the position to prove Equation (15), which is

most compactly delivered by Resta’s many-body formulation.[30]

Let us evaluate Equation (13) with the expression for the dipole
displacement given by Equation (9)

𝜎 = e2

6𝜋L2kBT
lim
t→∞

⟨|𝚫𝜸(t)|2⟩
2t

(16)

After a long enough time t, which is implicit in the t → ∞ limit,
the angles 𝚫𝜸(t) accumulated between the initial and final con-
figurations, respectively {R𝓁(0)} and {R𝓁(t)}, will be much larger
than 2𝜋. By the same token, the nuclei are expected to be in differ-
ent periodic cells with respect to the one they started in. Given the
final configuration, one could always imagine artificially moving
each of the nuclei from {R𝓁(t)} to the periodic replica of {R𝓁(0)}
in the same cell they are placed at time t. Let us indicate with 𝜹𝜸

the additional phase accumulated during this last portion of tra-
jectory; since it results from displacing all the nuclei within the
same cell, it is assured that 𝛿𝛾𝛼 has an upper bound. The trajec-
tory defined in this way is periodic in PBCs, and therefore the
transported charge is an integer multiple of e. From the defini-
tion of 𝜸𝓁 of Equation (11), it follows that each nucleus trans-
ports exactly q𝓁 elementary charges. It is precisely the same as if
the phases accumulated by each nucleus had been computed as

𝜸′
𝓁(t) =

2𝜋
L
q𝓁R𝓁(t) (17)

their sum being denoted by 𝚫𝜸′(t); that is, it is equivalent to com-
puting the electrical conductivity using𝚫𝝁′(t). The electrical con-
ductivity computed with 𝚫𝜸′(t) = 𝚫𝜸(t) + 𝜹𝜸 reads

𝜎′ = e2

3L2kBT
lim
t→∞

1
2t

[⟨||||𝚫𝜸(t)2𝜋

||||
2
⟩

+

⟨||||𝜹𝜸(t)2𝜋

||||
2
⟩

+ 2
⟨𝚫𝜸(t) ⋅ 𝜹𝜸(t)

4𝜋2

⟩]

(18)

For long times, each Δ𝛾𝛼 is much larger than 𝛿𝛾𝛼 , which is
bounded: we conclude that the second and third terms in Equa-
tion (18) do not contribute. This long-time limit may also be
probed in general by inspecting whether |𝚫𝜸| ≫ 2𝜋. This proves
the theorem of Equation (15).
In this section, we have demonstrated that, under SA, each nu-

cleus carries an integer charge over macroscopic distances which
can uniquely be identified with the atomic OS of its species.
The OS of a given chemical species is the same for every nu-
cleus of that species; moreover, OSs are additive and independent
of atomic positions. The consequence of these facts is that the
electrical conductivity of the material can be computed from the
dipole displacement given by the sum over nuclei of the atomic
OSs times their velocities. Charge transport is purely convective;
the only mechanism by which charge can be transported is mass
diffusion. This transport regime is referred to as trivial.

4.1. Numerical Experiments

A demonstration of the quantization of the charge carried by nu-
clei in an emblematic liquid electrolyte is shown in ref. [23] and
rediscussed here. The reader is referred to that paper for tech-
nical and methodological details on the simulation. A system of
molten KCl is modeled through a 64-atoms—32 per species—
cubic simulation cell with a side L = 14.07Å.Nuclei are described
as classical particles, while the quantum nature of electrons is in-
cluded in a mean-field sense through density-functional theory
(DFT) in the Perdew–Burke–Ernzerhof (PBE) flavor.[69]

A configuration is drawn from an ab initio molecular dynam-
ics (AIMD) simulation equilibrated at 1200K and used as a ref-
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Figure 5. Pendry–Hodges Gedankenexperiment under SA. In the simula-
tion cell there is a stoichiometric melt of 32 K and 32 Cl atoms. K and Cl
nuclei are the pink and cyan spheres, respectively. The larger spheres are
the nuclei in evidence. a–c) Periodic MEPs of a K nucleus (in red) in the z
direction (a); of a cation along ẑ (in red) and of an anion along ŷ and ẑ (in
blue) b); of two cations along ẑ with an interchange between the two. d)
The charge transported along each direction in the three paths is shown
in units of the elementary charge. The path coordinate goes from 0 at the
initial configuration to 1 at the final one. This picture is generated using
data taken from ref. [23].

erence. From this configuration, the topological OSs are mea-
sured via an implementation of the Pendry–Hodges Gedanken-
experiment (see Section 4). Different nuclei are randomly cho-
sen and displaced from their initial position to a nearby peri-
odic cell along minimum energy paths (MEPs), that is, with the
other atoms moving out of the way to minimize the total energy
of the system via the nudged elastic bands method.[70] The dis-
placed charge is obtained by integrating the electric flux as given
by Equation (4), with the Born effective charges being computed
at each step of the trajectory via density-functional perturbation
theory (DFPT).[46] Three versions of this experiment are carried
out, as illustrated in Figure 5 by the MEPs in the simulation cell

(top panels) and a plot of the respective transported charges (bot-
tom panels): the displacement of a single K nucleus to one of its
periodic images (Figure 5a,d); the displacement of a K nucleus
to its replica in direction ẑ, and a Cl nucleus to its replica in the
cell in direction ẑ + ŷ at the same time (Figure 5b,d); the displace-
ments of two different K nuclei in direction ẑ at the same time
with inversion of their final positions—that is, the former ends
in the periodic replica of the initial position of the latter, and vice
versa (Figure 5c,d). The experiments confirm what is exposed in
Section 4: as onewould expect from chemistry, K nuclei displace a
charge equal to +e, while Cl nuclei −e, in whatever direction they
are moved. This means that qK = +1, and qCl = −1. The charge
transported along the directions other than the onewheremotion
happened are exactly zero. Furthermore, charge displacement is
additive: when a pair of K and Cl atoms is moved in the same di-
rection, there is no net charge transport. The case where the two
nuclei are moved and their positions interchanged is also reveal-
ing: while each of the two paths alone is not periodic, their con-
catenation is, since it is the displacement of a nucleus to its peri-
odic replica two cells apart, rather than one. Each of the two dis-
placements would carry two elementary charges over a length of
two sides of the cell, resulting in a charge of 4e for the cyclic path,
that is, 2e for half the path, when positions are interchanged.

5. Polarization and Wannier Functions

In the case of independent (e.g., Kohn–Sham) electrons, the in-
sulating singlet ground state of a system of N nuclei and Nel
electrons can be written as a Slater determinant of Nel∕2 dou-
bly occupied Bloch orbitals. Equivalently, the same wavefunc-
tion can be written on a basis of WFs by means of a unitary
transformation, whose positions are referred to as Wannier cen-
ters (WCs), {R(W)

j }.[42] The electronic charge density is thus par-
titioned into localized contributions. While this partitioning is
gauge-dependent, that is, bothWFs andWCs are nonunique, the
sum of the WCs in the central cell is gauge-independent, and it
happens to be equal to the total polarization.[47] The total electric
current, that is[30,38]

J(t) = e
L3

[
N∑

𝓁=1
Z𝓁Ṙ𝓁 − 2

Nel∕2∑
j=1

Ṙ(W)
j

]
(19)

assumes a classical-like expression. In this picture, the Pendry–
Hodges Gedankenexperiment assumes the intuitively clear
meaning: a nucleus, when displaced along a direction of the
torus, drags some of the WFs, thus transporting an even number
of electrons. The resulting OS is the bare charge of the nucleus
minus twice the number of transported WFs.[30,38] The situation
can also be clearly visualized by looking at the trajectory of the nu-
clei and theWCs in the central cell (see also Figure 6 and refs. [39]
and [38]).

6. Breaking of Strong Adiabaticity

In nature, chemically relevant situations occur where different
atoms of the same species feature different OSs depending, for
example, on the local chemical environment.
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Figure 6. Pendry–Hodges Gedankenexperiment when SA does not hold.
In the simulation cell there is a nonstoichiometric melt of 33 K nuclei,
depicted as pink spheres, and 31 Cl nuclei, in cyan. The green sphere rep-
resents the WC associated with the excess lone pair. The larger spheres
are the particles in evidence. a,b) Periodic MEPs of the same K nucleus
(in red) in the x direction, starting and ending in the same points in two
nearby cells: while for one path the K nucleus drags the WC along its mo-
tion (a), in the other it does not (b). c) The charge transported along each
direction for the two paths is shown in units of the elementary charge. The
path coordinate goes from 0 at the initial configuration to 1 at the final
one. This picture is generated using data taken from ref. [38].

There are circumstances where a meaningful topological defi-
nition of OSs is still possible. This is the case exemplified by Fig-
ure 2b: strongly adiabatic domains are completely separated by
metallic regions. OSs can be uniquely assigned to nuclei within
the same domain, and the properties of OSs discussed above re-
main valid. For instance, in ref. [39] the authors found that two
OSs for the same atomic species (bismuth) coexist in BaBiO3,
where Bi atoms in the octahedral sites feature OSs equal to +3 or
+5, depending on their distance to the O atoms placed in the ver-
tices of the octahedra. Nonetheless, we remark that the exchange
of the two Bi atoms cannot be possible without crossing ametallic
region. The same mechanism is present in ferrous–ferric aque-
ous solutions,[71] where the charge transfer turning Fe(II) into
Fe(III) and vice versa can only be accomplished via a nonadia-
batic charge transfer. Another remarkable case where the SA of
an insulating system is globally dropped, but the OSs of its nuclei
can still be defined, is represented by the insulating subsystem of
metal–insulator interfaces,[72] where the system is metallic along
some Cartesian directions and nonmetallic along others.
A completely different situation occurs when the breaking of

SA is accompanied by the presence of metallic regions that can
be encircled by closed adiabatic paths, as pictured in Figure 2c.[38]

In this case, charge transport can no longer be topologically clas-
sified in terms of the number of cells spanned by each nucleus

along each direction, encoded in n, and the very concept of OS
loses much of its topological meaning. In fact, there can be triv-
ial loops in the ACS (i.e., with n = 0) that cannot be shrunk to
a point without ever crossing a metallic region. This amounts
to saying that 𝖟 (or some Cartesian component thereof) rotates
once around the origin of the complex plane, where the system
is metallic, even if the configuration does not move to a different
periodic replica in the ACS. Thouless’ theorem can still be lever-
aged to conclude that the dipole displaced along such a path is
quantized but, at variance with the strongly adiabatic case, it is
possibly nonzero, whereas the atomic net displacements vanish
because n = 0.
The repercussion of this paradigmatic situation to macro-

scopic electrical conduction is that charge transport is no more
completely correlated to mass transport. This transport regime
is somehow intermediate between insulating andmetallic behav-
iors: while the system is always insulating and the charge motion
is uniquely dictated by the adiabaticmotion of the ions, in this sit-
uation a net charge transfer is possible even without the need for
a net mass diffusion; we call this regime nontrivial transport.[38]

6.1. Numerical Experiments

One of the hallmarks of the breaking of SA is the possibility to
pump charge without any net mass displacement. In ref. [38] this
is demonstrated via two toy-model systems—namely, the linear
H3

+ cation in PBCs and the neutral K3Cl complex. In these sim-
ple cases, it is easy to locate (and visualize) the regions of the ACS
where the system is gapless. Nuclear trajectories can then be de-
vised to be loops that encircle such a region, without ever cross-
ing it. In both these toy-model systems, the result—the pump-
ing of −2 electronic charges—confirms that an electron pair is
transported even if the nuclei return to their initial position in
the original cell, and no net ionic displacement occurs.
Besides these two proofs of concept, another clear example of

the breaking of SA is given in ref. [38] for the more realistic case
of the nonstoichiometric molten KCl with additional K atoms.
This system is modeled through the same simulation cell as for
the stoichiometric case, but with an unbalanced proportion of K
and Cl atoms; that is, 33 K atoms and 31 Cl atoms. An AIMD
simulation of this nonstoichiometric molten salt is carried out,
and the system is checked to stay insulating during the whole
dynamics—in an independent electron framework, this means
that the spectral gap stays open.
We repeat the Pendry–Hodges experiment on a configuration

drawn from the K33Cl31 AIMD simulation.[38] A typical configu-
ration is chosen as a reference; a single K nucleus is driven along
two different paths to its periodic replica in an adjacent cell, the
other nuclei being let free to adjust their position at each step of
the trajectory. Themeasured topological charges are not the same
along the two paths: they are equal to +e in one case, and to −e
in the other.[38] This means that the two paths cannot be continu-
ously deformed into one another without crossing a regionwhere
the gap closes. In other words, SA is broken, and topological OSs
are ill-defined.
Of course, one cannot expect the dynamics of a many-body in-

teracting system to return to its initial position in any finite time.
What is observed in physical AIMD simulations, however, is the
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presence of an electron pair, dissolved among the ions, that is
rather free to diffuse. Localized electron pairs are often referred
to as bipolarons.[73–76] A single bipolaron is found to contribute
the most to the electrical conductivity of K33Cl31, which turns out
to be almost five times larger than the one of the stoichiometric
melt.[38] Notably, the bipolaronic current is largely uncorrelated
from the ionic one. This confirms that the breaking of SA allows
adiabatic charge transport without the need for mass convection.

7. Charge-Transfer Reactions

Electron transfer (ET) reactions are a class of chemical reactions
that involve the exchange of charge between compounds, that
is, from a reactant state to a product state. The first successful
attempts to provide a theory of electrochemical reactions are due
to Marcus[40] and Hush.[41] In their seminal works, they were
able to address thematter of outer-sphere electron transfer—that
is, where the reacting species remain separated during the whole
process—with a particular focus on the role of the solvent reorga-
nization, rather than a detailed account of electronic interactions
which, at the time, could not be included in a quantitative treat-
ment due to the complex nature of the calculations involved. We
summarize below the main elements of this theory.
A typical Marcus–Hush scenario involves two reacting part-

ners in proximity. There usually is a free energy barrier separat-
ing reactants and products. In fact, the initial and final states bear
different charges, and reactant and product states are solvated.
Therefore, a reorganization of the environment is required for
the electron to overcome the barrier and the ET to happen. The
situation can be understood as a two-state system:[77] a reactant
and a product state. A simple way to incorporate the effect of the
solvent is through a linearly responding heat bath. The Hamil-
tonian which represents this system is the spin-Boson Hamilto-
nian, that is

Ĥ = −1
2
ℏΔ𝜍̂x −

1
2
ℏ𝜖𝜍̂z +

1
2
𝜇(t)𝜍̂z + ĤR (20)

where {𝜍̂𝛼} are the Pauli matrices; Δ and 𝜖 are the hopping rate
and onsite bias, respectively; 𝜇(t) describes the collective bath
mode coupled to the electronic system and can be thought of
as a fluctuating dynamical polarization energy due to the local
environment,[77] and its properties are entirely contained in its
correlation function; ĤR is the Gaussian reservoir associated to
the solvent. When the bath is purely adiabatic, which is the con-
dition we are interested in, the bath correlation function reduces
to a constant, 2kBTΛ, whereΛ can be understood as the reorgani-
zation energy of the solvent. The contribution of the bath to the
Hamiltonian in Equation (20) plays no role, and what remains
reduces to (in matrix form)[78]

Ĥ = ℏ

2

(
𝜇
ℏ
− 𝜖 −Δ

−Δ 𝜖 − 𝜇
ℏ

)
(21)

The eigenstates of Ĥ—that is, the electronic adiabatic states—are
easily found to have eigenvalues

E±() = ±ℏ

2

√
Δ2 + (𝜖 − 𝜇∕ℏ)2 (22)

Figure 7. Parallel between our topological theory and Marcus–Hush ET
theory. a) ACS with strongly adiabatic domains separated by metallic re-
gions (left) and PESs with p ≫ 1, signaling nonadiabatic charge transfer
(right). b) ACS where SA is broken (left) and PESs with p ≳ 1, where adia-
batic charge transfer is possible.

Averaging over the bath fluctuations, one obtains the adiabatic
potential energy surfaces (PES), F±, as a function of the mean
polarization energy 𝜇 [77]

F±() = 𝜇22

4Λ
± ℏ

2

√
Δ2 + (𝜖 − 𝜇∕ℏ)2 (23)

When there is no onsite bias, that is, reactant and product are
solvated with the same energy, 𝜖 = 0. The adiabatic surfaces are
qualitatively different according to the parameter p = Λ∕(ℏΔ),
where the electronic coupling ℏΔ can be thought of as the unit of
energy. Doing so also for the polarization energy, that is, defining
𝜙 = 𝜇∕(ℏΔ), Equation (23) becomes

F±(𝜙) =
ℏΔ
2

(
𝜙2

2p
±
√
1 + 𝜙2

)
(24)

The reactant and product states are located at ∓𝜙0, respectively,
where 𝜙0 =

√
p2 − 1. In the adiabatic limit, the electronic cou-

pling is so large that p is of order 1 or lower. When p < 1 there
are no environmental fluctuations; both surfaces feature a single
minimum, therefore no electron is transferred. For p ≳ 1, there
are two minima in the ground adiabatic surface, separated by a
barrier whose height depends on p. The electronic coupling is
still large, but there are sufficient environmental fluctuations to
allow an electronic transfer. At the opposite limit, p ≫ 1, there
is the nonadiabatic transfer, when the fluctuations are so large
with respect to the electronic coupling that the gap between F−
and F+ is very small, and the electron has a large probability
of jumping to the higher energy surface, invalidating the Born–
Oppenheimer approximation.
The two regimes p ≳ 1 and p ≫ 1 outlined above where ET

can happen can be understood from our perspective as pictured
in Figure 7. In the two panels, on the left there is a sketch of
the ACS with the central cell circled in light blue, and a periodic
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replica on its right, like those in Figure 2. On the right there are
the PESs—the black ones are the Marcus parabolas representing
diabatic states, the green one is the adiabatic ground state, and
the blue one is the adiabatic excited state. The red horizontal line
represents the average energy of the system, the shaded area be-
ing the entity of thermal fluctuations, that is, of the order 2kBT .
In panel (a), the ACS features metallic walls that cannot be

bypassed. OSs are well defined only within a given adiabatic do-
main and, for a given nuclear species, they can be different for
different adiabatic domains. Charge can be transferred only by
crossing a metallic region, that is, by breaking adiabaticity. Any
electron transfer is nonadiabatic: since the electronic coupling
between reactant and product states is too low with respect to the
reorganization energy, p ≫ 1, and the adiabatic energy surfaces
practically coincide with the diabatic ones. This phenomenon is
observed in physical systemwhere atoms of the same species fea-
ture different OSs, such as the paradigmatic case of the ferrous-
ferric exchange in water[71]

Fe2+(aq) + Fe3+(aq) ⇌ Fe3+(aq) + Fe2+(aq) (25)

For the exchange to happen, the system must pass through a
point where the electronic levels are degenerate, and adiabatic-
ity is lost. Panel (b) displays an ACS where SA is broken and
there aremetallic regions that can be encircled by adiabatic loops.
Therefore, there exist adiabatic paths, sharing the same end-
points, that cannot be deformed into one another without ever
crossing a metallic region, as well as trivial loops in the ACS
which can pump an integer charge to another cell without any
net displacement of the nuclei. As we proved in Section 6, this
implies that a topological, unique definition for the atomic OSs
is not admitted, and the adiabatic motion of an erratic, localized
electronic charge can be observed. In the Marcus picture, this is
exactly what happens in the intermediate adiabatic regime, p ≳ 1.
Electron transfer can happen as an effect of nuclear fluctuations
within the Born–Oppenheimer approximation, since the adia-
batic surfaces are sufficiently separated. This is observed, for ex-
ample, in nonstochiometric molten salts, where charge is mainly
transported by localized electronic charge (polarons or lone pairs)
diffusing through the system[38] by means of an activatedMarcus
process mediated by the nuclear thermal motion.

8. Applications

Besides giving a solid framework for the topological classifica-
tion of ab initio charge transport in electronic insulators, the the-
ory exposed so far has direct applications to the simulation of
charge transport via AIMD. In fact, by formally justifying the use
of OSs in the calculation of the electric charge fluxes entering the
Green–Kubo formula, our theory dramatically reduces the com-
putational load needed to extract the ab initio 𝜎, since it avoids the
cumbersome task of computing Born effective charge tensors for
each atom, along the simulation. In the first part of this section
molten salts are used to validate the general method and eluci-
date the differences between SA and its breaking; we then show
some relevant applications in the fields of planetary and energy
materials, where the use of integer charges in the definition of
the electric flux has been successfully employed.

Figure 8. MSDDs of molten salts computed with different definitions of
the electric flux. a) The case of stoichiometric KCl: both the exact elec-
tric flux and the topological flux yield the same electrical conductivity. This
picture is generated using data taken from ref. [23]. b) The case of nonsto-
ichiometric K-KCl melt: the topological flux plus the lone pair contribution
are equivalent to the exact definition of the electric flux. The topological
flux alone yields a value of 𝜎 much lower than the correct one. The cross-
correlation term is compatible with zero: the ionic and lone-pair contribu-
tions are uncorrelated to one another. This picture is generated using data
taken from ref. [38].

8.1. Validation of the Method

A numerical experiment on the validity of Equation (15) was
given in ref. [23] for molten KCl. The electrical conductivity was
computed from the time-series of the electric flux, both the ab
initio one, J, given by Equation (4) and employing Born effective
charge tensors, and the “topological” flux, J′, where charges are
the topological OSs computed as described in Section 4. The val-
ues of 𝜎 and 𝜎′ were found to be 3.2 ± 0.2 S cm−1 in both cases,
so that the two formulæ perfectly agree, even on the statistical
uncertainty of the measure. A plot of the mean square displaced
dipole (MSDD), whose slope yields the value of the electrical con-
ductivity (see Equation (13), is shown in Figure 8a. The reported
values have been also checked with a cepstral analysis,[79,80] im-
plemented in SporTran.[81,82] The MSDD of the difference of the
fluxes given by the two formulæ is also shown: its slope is com-
patible with zero.
The nonstoichiometric molten salt Kx(KCl)1−x, with x ≃ 0.6,

was treated in ref. [38]. There, the electrical conductivity was esti-
mated both by computing the electric flux as the time-derivative
of the total polarization (equivalent to Equation (4)), and by using
the flux given by the sum of the topological flux and the contri-

Ann. Phys. (Berlin) 2022, 2200123 2200123 (11 of 15) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

bution due to the diffusing electronic lone pair, J′′, that is

J′′ = J′ − 2eṘ(W)
lp (26)

where R(W)
lp is the WC of the (doubly occupied) WF associated

with electronic lone pair (hence the subscript lp). The elec-
tronic lone-pair contribution is the most relevant to the value of
electrical conductivity, as shown in Figure 8b.Moreover, ionic and
lone-pair contributions are found to be largely uncorrelated to
one another, as evidenced by the cross-correlation term (in red in
Figure 8b), −2e⟨𝚫R(W)

lp ⋅ 𝚫𝝁′⟩, which has a vanishing asymptotic
slope. This is a macroscopic manifestation of the fact that charge
can be transported even without a net mass displacement.

8.2. Water at Extreme Conditions

Water at high-pT conditions is a major constituent of celes-
tial bodies formed far enough from their host star for water to
condense.[83] In the mantle of ice giants, like Uranus and Nep-
tune, water is present as a partially dissociated conducting liq-
uid, which is thought to be responsible for the magnetic fields
of these celestial bodies via a dynamo mechanism.[84] At typical
pressures and temperatures of interest of the outer core, instead,
(e.g., 240GPa and 5000K at half the radius of Uranus), water is in
the super-ionic phase, that is, the oxygen ions occupy the sites of
a crystalline lattice, while protons are free to diffuse in liquid-like
fashion.[85,86]

Detailed knowledge of the transport properties of different
phases of H2O occurring at high-pT conditions is key to any
quantitative evolutionary model of water-rich celestial bodies. In
spite of the steady progress in diamond-anvil-cell and shock-wave
technologies, the experimental investigation of transport proper-
ties of materials at planetary conditions is still challenging.[86]

In the specific case of H2O, the electrical conductivity is only
known with large uncertainties along the Hugoniot curve on a
limited portion of the pT diagram.[87,88] Computer simulations
may be our only handle on the properties of matter at physical
conditions that cannot be achieved in the laboratory. In particular,
AIMD simulations allow to accurately simulate the bulk proper-
ties of super-ionic water.[24,89] The electrical conductivity can be
obtained at the same computational cost of an equilibriumAIMD
simulation thanks to Equation (15), that is, by using the electric
flux defined as

J′(t) = − 2e
L3

∑
𝓁∈O

Ṙ𝓁 +
e
L3

∑
𝓁∈H

Ṙ𝓁 (27)

instead of the true electric flux (Equation (4)) which would re-
quire the computationally demanding on-the-fly calculation of
Born effective charge tensors.[90]

In refs. [90] and [91] Equation (27) was exploited to character-
ize the electrical conductivity of different phases of water which
are expected to be present in the icy giants Uranus and Neptune.
Also in this case, the fully quantum-mechanical (DFPT)[92–94] cal-
culation of the charge flux gives an electrical conductivity which
coincides with that obtained via J′(t) in Equation (27).
This procedure has been also successfully applied to the supe-

rionic phases of nanoconfined water.[95]

Figure 9. A pictorial description of the three charge-transport mecha-
nisms described in this review. The “dockers” represent the atoms, while
the boxes the charge they carry. a) Trivial transport: SA holds everywhere,
each ion carries its own charge, that is, its OS, and charge transport can-
not occur without a net mass displacement. b) The presence of metallic
“walls” allows charge transport without mass displacement, but the price
to pay is that these charge transfers are nonadiabatic. c) Nontrivial adia-
batic transport: SA does not hold, and charge can be adiabatically trans-
ported without a net ionic displacement, just like for dockers exchanging
their boxes without going around.

8.3. Solid-State Electrolytes

Solid-state electrolytes (SSEs) are attractive materials for Li-ion
batteries as they in principle could allow to design and build safer
batteries. Ionic conductivity is one of the most desired properties
for this class of materials. When ionic correlations are negligible,
as in the case of “dilute” systems, the Nernst–Einstein approxi-
mation is good enough to allow to estimate 𝜎 without resorting
to the computation of Born effective charges. In general, how-
ever, there might be sufficiently strong correlations among the
mobile ions and the fixedmatrix or evenmore than one diffusing
species. For all these reasons, the calculation of 𝜎 through the GK
formula, which is in principle correct, is the only one that yields
reliable results. The use of integer topological OSs allows also in
this case to significantly reduce the computational demand of the
estimation of transport properties in SSEs.[96–98]

9. Conclusions

In this article we presented a review of recent advances in the
theoretical description of charge transport in electronically insu-
lating materials. We have shown that topological quantization of
adiabatic charge transport and the gauge-invariance principle of
transport coefficients can be combined to give a profound insight
in themechanisms of charge transport in thesematerials. In fact,
we are able to group thesemechanisms in threemain classes, de-
pending on the topological properties of the adiabatic space, that
is, the atomic configuration space (ACS) deprived of the regions
where the system becomes metallic. These three classes are pic-
torially described in Figure 9, where the atoms are represented
by “dockers,” while the charge is represented by the boxes they
carry. Figure 9a depicts the case where strong adiabaticity (SA)
holds on the entire adiabatic space: each atom/ion (effectively)
carries its own charge, its OS, which is the same for atoms of
the same species. In this situation, charge transport is additive
and can only be accompanied by a net (macroscopic) displace-
ment of the massive atoms. Figure 9b, instead, represents the
case where the global adiabiatic space is subdivided into SA do-
mains, separated by metallic “walls:” for each domain, SA holds,
each atom can still be labeled with an OS, additivity holds and
charge can only be transported with a net displacement of the
nuclei; nevertheless, atoms of the same species belonging to dif-
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ferent domains are no longer required to possess the sameOS. In
fact, atoms of different domains can “pass” charge among them-
selves, but only through a nonadiabatic electron transfer; only in
this way can charge transfer occur without a net ionic displace-
ment in the case of Figure 9b. Finally, Figure 9c depicts the case
where SA is broken: it is no longer possible to uniquely assign
OSs to the atoms through a formal topological procedure, like
in the Pendry–Hodges Gedankenexperiment. In this situation,
which is typical, for example, of nonstoichiometric, yet nonmetal-
lic, molten salts, an adiabatic, macroscopic charge transport can
occur without a net atomic displacement. This is pictorially rep-
resented by the dockers exchanging their burden among them-
selves, but staying in their spot, without a net displacement.

Acknowledgements
This work was partially funded by the EU through the MaX Centre of
Excellence for supercomputing applications (Project No. 824143) and
by the Italian Ministry of Research and education through the PRIN
2017 FERMAT grant. F.G. acknowledges funding from the European
Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie Action IF-EF-ST, grant agreement No. 101018557
(TRANQUIL). The authors thank Federico Berti for a critical reading of
the manuscript.

Open access funding provided by Ecole Polytechnique Federale de Lau-
sanne.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
No new data were created or analyzed for this study.

Keywords
charge transport quantization, electrical conduction, Green–Kubo theory,
ionic conductors, topological quantum numbers

Received: March 21, 2022
Revised: July 15, 2022

Published online:

[1] M. G. Vergniory, B. J. Wieder, L. Elcoro, S. S. Parkin, C. Felser, B. A.
Bernevig, N. Regnault, Science 2022, 376, eabg9094.

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Phys.
Rev. Lett. 1982, 49, 405.

[3] M. V. Berry, Proc. R. Soc. Lond. A. Math. Phys. Sci. 1984, 392, 45.
[4] F. D. M. Haldane, Phys. Rev. Lett. 1988, 61, 2015.
[5] Y. Hatsugai, Phys. Rev. Lett. 1993, 71, 3697.
[6] C. L. Kane, E. J. Mele, Phys. Rev. Lett. 2005, 95, 146802.
[7] M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
[8] D. J. Thouless, Phys. Rev. B 1983, 27, 6083.
[9] Q. Niu, D. J. Thouless, J. Phys. A: Math. Gen. 1984, 17, 2453.
[10] L. Privitera, G. E. Santoro, Phys. Rev. B 2016, 93, 241406.
[11] M. M. Wauters, A. Russomanno, R. Citro, G. E. Santoro, L. Privitera,

Phys. Rev. Lett. 2019, 123, 266601.

[12] R. Resta, Ferroelectrics 1992, 136, 51.
[13] R. Resta, Rev. Mod. Phys. 1994, 66, 899.
[14] L. Onsager, Phys. Rev. 1931, 37, 405.
[15] L. Onsager, Phys. Rev. 1931, 38, 2265.
[16] M. S. Green, J. Chem. Phys. 1952, 20, 1281.
[17] M. S. Green, J. Chem. Phys. 1954, 22, 398.
[18] R. Kubo, J. Phys. Soc. Jpn. 1957, 12, 570.
[19] R. Kubo, M. Yokota, S. Nakajima, J. Phys. Soc. Jpn. 1957, 12, 1203.
[20] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, Vol. 31,

Springer, Berlin, Heidelberg 1985.
[21] J.-P. Hansen, I. R. McDonald, Theory of Simple Liquids: With Applica-

tions to Soft Matter, Academic Press, San Diego, CA 2013.
[22] P. Ghosez, J.-P. Michenaud, X. Gonze, Phys. Rev. B 1998, 58, 6224.
[23] F. Grasselli, S. Baroni, Nat. Phys. 2019, 15, 967.
[24] M. French, S. Hamel, R. Redmer, Phys. Rev. Lett. 2011, 107, 185901.
[25] T. Sun, R. M. Wentzcovitch, Chem. Phys. Lett. 2012, 554, 15.
[26] Y.-y. Zhao, E. Tsuchida, Y.-K. Choe, T. Ikeshoji, T. Oshima, M.

Rikukawa, A. Ohira, J. Phys. Chem. C 2016, 120, 13398.
[27] M. French, T. R. Mattsson, R. Redmer, Phys. Rev. B 2010, 82, 174108.
[28] J. O. Nilsson, O. Y. Vekilova, O. Hellman, J. Klarbring, S. I. Simak, N.

V. Skorodumova, Phys. Rev. B 2016, 93, 024102.
[29] A. Marcolongo, N. Marzari, Phys. Rev. Mater. 2017, 1, 025402.
[30] R. Resta, J. Chem. Phys. 2021, 155, 244503.
[31] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Interna-

tional Series of Monographs on Chemistry, Clarendon Press, Wotton-
Under-Edge 1990.

[32] R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833.
[33] J. Sun, B. K. Clark, S. Torquato, R. Car, Nat. Commun. 2015, 6, 8156.
[34] T. Dufils, N. Sator, B. Guillot, Chem. Geol. 2018, 493, 298.
[35] T. Dufils, N. Sator, B. Guillot, Chem. Geol. 2020, 533, 119300.
[36] N. Goldman, E. J. Reed, I.-F. W. Kuo, L. E. Fried, C. J. Mundy, A. Curi-

oni, J. Chem. Phys. 2009, 130, 124517.
[37] V. Rozsa, D. Pan, F. Giberti, G. Galli, Proc. Natl. Acad. Sci. USA 2018,

115, 6952.
[38] P. Pegolo, F. Grasselli, S. Baroni, Phys. Rev. X 2020, 10, 041031.
[39] L. Jiang, S. V. Levchenko, A. M. Rappe, Phys. Rev. Lett. 2012, 108,

166403.
[40] R. A. Marcus, J. Chem. Phys. 1956, 24, 966.
[41] N. S. Hush, J. Chem. Phys. 1958, 28, 962.
[42] N. Marzari, D. Vanderbilt, Phys. Rev. B 1997, 56, 12847.
[43] R. Resta, in (Ed: E. Pavarini, E. Koch, R. Scalettar, R. M. Martin) The

Physics of Correlated Insulators, Metals, and Superconductors. Modeling
and Simulation, Vol. 7, Forschungszentrum Jülich, Zurich 2017.

[44] K. C. Gross, P. G. Seybold, C. M. Hadad, Int. J. Quantum Chem. 2002,
90, 445.

[45] H. Heinz, U. W. Suter, J. Phys. Chem. B 2004, 108, 18341.
[46] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys.

2001, 73, 515.
[47] D. Vanderbilt, Berry Phases in Electronic Structure Theory, Cambridge

University Press, Cambridge 2018.
[48] M. Faraday, Phil. Trans. R. Soc. 1834, 124, 77.
[49] A. Walsh, A. A. Sokol, J. Buckeridge, D. O. Scanlon, C. R. A. Catlow,

Nat. Mater 2018, 17, 958.
[50] H. Raebiger, S. Lany, R. Resta, A. Zunger,Nat. Precedings 2009, https:

//doi.org/10.1038/npre.2009.4012.1
[51] A. D.McNaught, A. Wilkinson, Compendium of Chemical Terminology,

Vol. 1669, Blackwell Science, Oxford 1997.
[52] D. Vanderbilt, R. D. King-Smith, Phys. Rev. B 1993, 48, 4442.
[53] R. Resta, Phys. Rev. Lett. 1998, 80, 1800.
[54] R. Resta, J. Phys.: Condens. Matter 2000, 12, R107.
[55] R. Resta, S. Sorella, Phys. Rev. Lett. 1999, 82, 370.
[56] R. Resta, Riv. Nuovo Cimento 2018, 41, 463.
[57] E. Helfand, Phys. Rev. 1960, 119, 1.
[58] A. Marcolongo, P. Umari, S. Baroni, Nat. Phys. 2015, 12, 80.

Ann. Phys. (Berlin) 2022, 2200123 2200123 (13 of 15) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org
https://doi.org/10.1038/npre.2009.4012.1
https://doi.org/10.1038/npre.2009.4012.1


www.advancedsciencenews.com www.ann-phys.org

[59] R. Bertossa, F. Grasselli, L. Ercole, S. Baroni, Phys. Rev. Lett. 2019,
122, 255901.

[60] S. Baroni, R. Bertossa, L. Ercole, F. Grasselli, A. Marcolongo, Hand-
book of Materials Modeling: Applications: Current and Emerging Mate-
rials, Springer, Cham 2020, pp. 809–844.

[61] F. Grasselli, S. Baroni, Eur. Phys. J. B 2021, 94, 160.
[62] A. Hatcher, Algebraic Topology, Cambridge University Press, Cam-

bridge 2001.
[63] T. Nakamura, Y. Hiraoka, A. Hirata, E. G. Escolar, Y. Nishiura, Nan-

otechnology 2015, 26, 304001.
[64] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, Y.

Nishiura, Proc. Natl. Acad. Sci. USA 2016, 113, 7035.
[65] T. Ichinomiya, I. Obayashi, Y. Hiraoka, Phys. Rev. E 2017, 95, 012504.
[66] M. Buchet, Y. Hiraoka, I. Obayashi, inNanoinformatics, Springer, Sin-

gapore 2018, pp. 75–95.
[67] ℤ × ℤ or, equivalently, ℤ2, is the group of ordered pairs

with the commutative operation of sum. It is Abelian, since
(n,m) + (p, q) ≡ (p + n, q +m) = (p, q) + (n,m). Instead, the free
product ℤ ∗ ℤ is for instance represented by the group of two
letters (and their inverse), with the noncommutative operation of
justapposition, where order matters, as in natural language, where
being “OK” differs from being “KO”!

[68] J. B. Pendry, C. H. Hodges, J. Phys. C: Solid State Phys. 1984, 17, 1269.
[69] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
[70] G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113,

9901.
[71] J. Hudis, R. Dodson, J. Am. Chem. Soc. 1956, 78, 911.
[72] M. Stengel, N. A. Spaldin, Phys. Rev. B 2007, 75, 205121.
[73] A. Selloni, R. Car, M. Parrinello, P. Carnevali, J. Phys. Chem. 1987, 91,

4947.
[74] E. S. Fois, A. Selloni, M. Parrinello, R. Car, J. Phys. Chem. 1988, 92,

3268.
[75] A. Selloni, E. S. Fois, M. Parrinello, R. Car, Phys. Scr. 1989, T25, 261.
[76] E. Fois, A. Selloni, M. Parrinello, Phys. Rev. B 1989, 39, 4812.
[77] U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore

2011.
[78] B. Carmeli, D. Chandler, J. Chem. Phys. 1985, 82, 3400.
[79] L. Ercole, A. Marcolongo, S. Baroni, Sci. Rep. 2017, 7, 15835.
[80] A. Marcolongo, L. Ercole, S. Baroni, J. Chem. Theory Comput. 2020,

16, 3352.
[81] L. Ercole, R. Bertossa, S. Bisacchi, S. Baroni, Comput. Phys. Commun.

2022, https://doi.org/10.1016/j.cpc.2022.108470.
[82] L. Ercole, R. Bertossa, S. Bisacchi, S. Baroni, SporTran: A code to

estimate transport coefficients from the cepstral analysis of a multi-

variate current stationary time series 2017–2022, https://github.
com/sissaschool/sportran.

[83] K. Lodders, Astrophys. J. 2003, 591, 1220.
[84] M. Kivelson, K. Khurana, C. Russell, R. Walker, J. Warnecke, F. Coro-

niti, C. Polanskey, D. Southwood, G. Schubert, Nature 1996, 384,
537.

[85] C. Cavazzoni, G. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, M.
Parrinello, Science 1999, 283, 44.

[86] M.Millot, S. Hamel, J. R. Rygg, P.M. Celliers, G.W. Collins, F. Coppari,
D. E. Fratanduono, R. Jeanloz, D. C. Swift, J. H. Eggert, Nat. Phys.
2018, 14, 297.

[87] A. Mitchell, W. Nellis, J. Chem. Phys. 1982, 76, 6273.
[88] V. Yakushev, V. Postnov, V. Fortov, T. Yakysheva, J. Exp. Theor. Phys.

2000, 90, 617.
[89] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 2016, 93,

022140.
[90] F. Grasselli, L. Stixrude, S. Baroni, Nat. Commun. 2020, 11, 3605.
[91] L. Stixrude, S. Baroni, F. Grasselli, Planet. Sci. J. 2021, 2, 222.
[92] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,

D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso,
S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C.
Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F.
Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbrac-
cia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys.: Condens.
Matter 2009, 21, 395502.

[93] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococ-
cioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Del-
ugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R.
Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura,
H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, et al., J. Phys.: Condens.
Matter 2017, 29, 465901.

[94] P. Giannozzi, O. Baseggio, P. Bonfá, D. Brunato, R. Car, I. Carnimeo,
C. Cavazzoni, S. deGironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti,
N. Marzari, I. Timrov, A. Urru, S. Baroni, J. Chem. Phys. 2020, 152,
154105.

[95] V. Kapil, C. Schran, A. Zen, J. Chen, C. J. Pickard, A. Michaelides,
arXiv:2110.14569 2021.

[96] E. Gilardi, G. Materzanini, L. Kahle, M. Döbeli, S. Lacey, X. Cheng,
N. Marzari, D. Pergolesi, A. Hintennach, T. Lippert, ACS Appl. Energy
Mater. 2020, 3, 9910.

[97] G.Materzanini, L. Kahle, A.Marcolongo,N.Marzari, Phys. Rev.Mater.
2021, 5, 035408.

[98] P. Pegolo, S. Baroni, F. Grasselli, npj Comput. Mater. 2022, 8, 24.

PaoloPegolograduated inPhysics at theUniversity of Trieste.He is currently a Ph.D. student in The-
ory andNumerical Simulationsof CondensedMatter at SISSA, Italy, under the supervisionof Prof.
StefanoBaroni.His research focuses on ab initio theory of heat and charge transport in electronic
insulators, in particular in solid-state-electrolytes.

Ann. Phys. (Berlin) 2022, 2200123 2200123 (14 of 15) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org
https://doi.org/10.1016/j.cpc.2022.108470
https://github.com/sissaschool/sportran
https://github.com/sissaschool/sportran


www.advancedsciencenews.com www.ann-phys.org

StefanoBaroni is professor of theoretical condensed-matter physics at SISSA, “Scuola Internazionale
Superiore di Studi Avanzati,” in Trieste. In the late nineties hehasbeen thedirector of CECAM, the
“Centre EuropéendeCalcul Atomique etMoléculaire,” then in Lyon.He is a fellowof theAmerican
Physical Society.He is best known for pioneeringdensity-functional perturbation theory in the study
of lattice vibrations and electronic excitations andothermethodological innovations in electronic-
structure theory andquantumMonteCarlo. Recently, hismain research interests havemoved toward
the theory andnumerical simulationof transport in condensedmatter.

FedericoGrasselli earnedhis Ph.D. degree inPhysics andNanosciences from theUniversity of
Modena andReggio Emilia, Italy, workingon indirect excitonsunder the supervisionof Prof.Guido
Goldoni.Hehasbeenpostdoc fellow inProf. StefanoBaroni’s groupat SISSA, Italy, where he con-
tributed to advancements in the ab initio theory of heat and charge transport in electronic insulators,
with applications toplanetarymaterials.He is currentlyMarie Skłodowska-Curie fellow in the Labora-
tory of Computational Science andModeling (COSMO), led byProf.MicheleCeriotti, at EPFL, Switzer-
land.

Ann. Phys. (Berlin) 2022, 2200123 2200123 (15 of 15) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.ann-phys.org

