
20/04/2024 05:45

Memory interference characterization between CPU cores and integrated GPUs in mixed-criticality
platforms / Cavicchioli, R.; Capodieci, N.; Bertogna, M.. - (2017), pp. 1-10. (Intervento presentato al
convegno 22nd IEEE International Conference on Emerging Technologies and Factory Automation, ETFA
2017 tenutosi a cyp nel 2017) [10.1109/ETFA.2017.8247615].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:



Memory Interference Characterization between CPU
cores and integrated GPUs in Mixed-Criticality

Platforms

Roberto Cavicchioli, Nicola Capodieci and Marko Bertogna
University of Modena And Reggio Emilia, Department of Physics, Informatics and Mathematics, Modena, Italy

{name.surname}@unimore.it

Abstract—Most of today’s mixed criticality platforms feature
Systems on Chip (SoC) where a multi-core CPU complex (the
host) competes with an integrated Graphic Processor Unit (iGPU,
the device) for accessing central memory. The multi-core host
and the iGPU share the same memory controller, which has to
arbitrate data access to both clients through often undisclosed
or non-priority driven mechanisms. Such aspect becomes crit-
ical when the iGPU is a high performance massively parallel
computing complex potentially able to saturate the available
DRAM bandwidth of the considered SoC. The contribution of
this paper is to qualitatively analyze and characterize the conflicts
due to parallel accesses to main memory by both CPU cores
and iGPU, so to motivate the need of novel paradigms for
memory centric scheduling mechanisms. We analyzed different
well known and commercially available platforms in order to
estimate variations in throughput and latencies within various
memory access patterns, both at host and device side.

I. INTRODUCTION

Modern Systems on Chips (SoCs) integrate within a single
chip substrate many functionalities that are usually fabricated
as distinct entities on more traditional designs, such as laptops
or desktop computers. Examples of these integrated function-
alities commonly featured in embedded boards are represented
by the CPU complex (i.e Multi-Core processors), the integrated
GPU and their respective memory interfaces. Each core of the
CPU complex and the iGPU can process tasks in parallel as
they are independent compute units. However, contention may
occur at the memory interface level. More specifically, CPU
cores and the iGPU might share common cache levels, hence
experiencing self-eviction phenomena. In addition, the system
memory (usually DRAM) also represents a contented resource
for all memory controller clients experiencing cache misses at
their Last Level Cache (LLC). It is mandatory to accurately
measure the impact of such contention in mixed-criticality
platforms, as memory contention poses a significant threat to
Worst Case Execution Times (WCETs) of memory bounded
applications, as will be shown in this study. The contribution
of this paper is to provide accurate measurements of both intra
CPU complex memory interference and iGPU activity. We will
show how such interference impacts throughput and latency
both on the host side and iGPU device.

The ultimate purpose of this analysis is to highlight the
need for accurate memory-centric scheduling mechanisms to
be set up for guaranteeing prioritized memory accesses to
Real-Time critical parts of the system. Special emphasis will
be put on the memory traffic originated by the iGPU, as it

represents a very popular architectural paradigm for computing
massively parallel workloads at impressive performance per
Watt ratios [1]. This architectural choice (commonly referred
to as General Purpose GPU computing, GPGPU) is one of the
reference architectures for future embedded mixed-criticality
applications, such as autonomous driving and unmanned aerial
vehicle control.

In order to maximize the validity of the presented results,
we considered different platforms featuring different memory
controllers, instruction sets, data bus width, cache hierarchy
configurations and programming models:

i NVIDIA Tegra K1 SoC (TK1), using CUDA 6.5 [2] for
GPGPU applications;

ii NVIDIA Tegra X1 SoC (TX1), using CUDA 8.0; and

iii Intel i7-6700 SoC featuring HD 530 Integrated GPU, using
OpenCL 2.0 [3].

This paper is organized as follows: section II presents an
up-to-date brief review on previous studies regarding memory
contention in integrated devices. Section III includes a thor-
ough description of the platforms that are being characterized.
Section IV describes the experimental framework and the
obtained results. Section VI concludes the paper.

II. RELATED WORK

As soon as the processors industry introduced the concept
of Multi-Core CPUs, memory contention was observed to
become a potential bottleneck, mostly due to bus contention
and cache pollution phenomena [4]. Later studies [5], [6],
[7] successfully identified methodologies to bound the delay
times of Real Time tasks due to memory access contention.
Memory arbitration mechanisms have been recently proposed
to decrease the impact of memory contention in the design of
critical applications, implementing co-scheduling mechanism
of memory and processing bandwidth by multiple host cores
[8]. Examples of such memory arbitration mechanisms are
represented by MEMGUARD [9], BWLOCK [10] and the
PREM execution model [11]. The previously cited contri-
butions are instrumental to our work, because they aim at
understanding the location of the contention points within
the memory hierarchy with respect to the platforms we used
in our tests. Moreover, such contention points might differ
according to the analyzed COTS (Commercial Off The Shelf)
systems, hence the need to qualitatively characterize the re-
cently commercialized platforms we used in our experiments



(detailed in the next section). Since the integrated GPU of the
observed SoCs are most likely used to perform computations
with strict Real Time requirements, it is important to estimate
the impact of unregulated CPU memory accesses during the
execution of Real Time GPU applications. It is also trivial
to understand that the iGPU, in a mixed-criticality system can
execute non critical applications during the same time windows
in which one or more CPU cores are executing Real Time
tasks, hence the need to observe the impact of unregulated
GPU activity towards CPU memory access latencies. CPU and
GPU co-run interference is a topic that was not treated in the
previously cited works, but was briefly explored in [12]. In a
simulated environment, the authors of this latter contribution
highlighted a decrease of instruction per cycle w.r.t. CPU
activity together with a decrease in memory bandwidth on
the GPU side. In our contribution, we therefore promise more
accurate measurements on commercially available SoCs.

III. SOCS SPECIFICATIONS AND CONTENTION POINTS

In this section, we provide the necessary details on the
platforms we selected for our analysis. This is instrumental
for understanding where memory access contention might
happen for each SoC. The preliminary investigation of plau-
sible contention points will help us better understanding the
experimental results to identify future solutions [13]. The
delays due to the private memory of the iGPU is not considered
in this study, focusing only on the memory shared with the
CPU complex. Private memory contention may be a significant
issue for discrete GPUs that feature a significant number of
execution units (i.e., Streaming Multiprocessors in NVIDIA
GPUs). Today’s iGPUs, however, are much smaller than their
discrete counterparts. As a consequence, parallel kernels are
typically executed one at a time, without generating contention
at private memory level.

Another important abstract component at iGPU side is the
Copy Engine (CE), i.e., a DMA used to bring data from CPU
to GPU memory space. In discrete devices, this basically trans-
lates into copying memory from system DRAM through PCIe
towards the on-board RAM of the graphics adapter (Video
RAM, VRAM). In case of embedded platforms with shared
system DRAM, using the CE basically means duplicating
the same buffer twice on the same memory device. Both
CUDA and OpenCL programming models specify alternatives
to the CE approach to avoid explicit memory transfers and
unnecessary buffer replications, such as CUDA UVM (Unified
Virtual Memory [14]) and OpenCL 2.0 SVM (Shared Virtual
Memory [15]). However, these approaches introduce CPU-
iGPU memory coherency problems when accessing the same
shared memory buffer, so that avoiding copy engines does
not necessarily lead to performance improvements1 For this
reason, we will characterize the contention originated in both
CE- and non-CE-based models.

A. NVIDIA Tegra K1

The NVIDIA Tegra K1 [16] is an hybrid SoC featured in
the NVIDIA Jetson Development board. It is the first mobile
processor to have the same advanced features and architecture

1Visible as results of these experiments https://github.com/Sarahild/
CudaMemoryExperiments/tree/master/MemCpyExperiments

as a modern desktop GPU while still using the low power
draw of a mobile chip (365 GFlops single precision peak
performance at < 11 W). The most relevant parts of this
platform and notable contention points are visible in Figure
1(a).

The K1 SoC consists of a quad-core 2.3GHz ARM Cortex-
A15 CPU (32kb I-cache + 32kb D-cache L1 per core, 2MB L2
cache common to all cores); ARM A15 belongs to the ARMv7-
A family of RISC processors and features a 32bit architecture.
Although not shown in the picture, an ARM Cortex A15
shadow-core is also present for power saving policies. We
consider all cores be clocked at their maximum operative
frequencies. A single CPU core can utilize the maximum band-
width available for the whole CPU complex which amounts to
almost 3.5 GB/s for sequential reading operations. The iGPU is
a Kepler generation “GK20a” with 192 CUDA cores grouped
in a single Streaming Multi-processor (SM). As visible from
Figure 1(a), the compute pipeline of an NVIDIA GPU includes
engines responsible for computations (Execution Engine, EE)
and engines responsible for high bandwidth DMA memory
transfers (Copy Engine, CE), as explained in [2] and [17]. In
the TK1 case, the EE is composed of a single SM which is able
to access system memory in case of L2 cache misses. The CE
is meant to replicate CPU visible buffers to another area of the
same system DRAM that is only visible to the GPU device. It
does that by exploiting high bandwidth DMA transfers that can
reach up to 12 GB/s out of the 14 GB/s theoretical bandwidth
available by the system DRAM. Therefore, the GPU alone
is able to saturate the available system DRAM bandwidth.
Specifically regarding the system DRAM, the K1 features 2GB
of LPDDR3 64bit SDRAM working at (maximum) 933MHz.

The first contention point is represented by the LLC for
the CPU complex. This cache is a 16-way associative cache
with a line size of 64B. Contention may happen when more
than one core fills the L2 cache evicting pre-existing cache
lines used by other cores. Another contention point for LLC
is indicated as point 3 in Figure 1(a), and it is due to coherency
mechanisms between CPU and iGPU when they share the same
address space. In the GK20a iGPU, such coherence is taken
care in a unclear and undisclosed software mechanisms by the
(NVIDIA proprietary) GPU driver. Hardware cache coherence
mechanisms take place only at CPU complex level.

The remaining contention points (2 and 4 in Figure 1(a))
are represented by memory bus and EMC (Embedded Memory
Controller) for accessing the underlying DRAM banks. Such
contention is of uttermost importance as it is caused by parallel
memory accesses of single CPU cores and the iGPU. We refer
to [18] for finer grained discussions regarding the effect of
bank parallelism in DRAM devices.

B. NVIDIA Tegra X1

The NVIDIA Tegra X1 [19] is a hybrid System on Module
(SoM) featured in the newest NVIDIA Jetson Development
board. It is the first mobile processor to feature a chip powerful
enough to sustain the visual computing load for autonomous
and assisted driving applications, still presenting a contained
power consumption (1 TFlops single precision peak perfor-
mance drawing from 6 to 15 W). Also for this platform, the
most relevant components and notable contention points are
shown in Figure 1(b).
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Fig. 1: A simplified overview of the Tegra K1 (a) and X1 (b) SoCs, with notable memory access contention points numbered
from 1 to 4: (1) contention on L2 cache shared by the 4 cores; (2) contention on bus to central memory from different clients;
(3) coherency protocol on LLC; (4) access arbitration on main memory controller.

The X1 CPU and GPU complex consists of a quad-core
1.9GHz ARM Cortex-A57 CPU (48kb I-cache + 32kb D-cache
L1 per core, 2MB L2 cache common to all cores); ARM
A57 belongs to the ARMv8-A family of RISC processors
and features a 64bit architecture. Even if not visible in the
Figure, the CPU complex features a big.LITTLE architecture,
with also four ARM Cortex A53 little cores for power saving
purposes. As for the K1, we will not analyze the performance
of this board under power saving regimes. A single CPU
core can utilize the maximum bandwidth available for the
whole CPU complex, which amounts to almost 4.5 GB/s for
sequential reading operations. The iGPU is a Maxwell second
generation “GM20b” with 256 CUDA cores grouped in two
Streaming Multi-processors (SMs). The L2 is twice the size of
its Kepler based predecessor. The EE and CE can access central
memory with a maximum bandwidth close to 20 GB/s. As
with the K1, also this high performance iGPU can saturate the
whole DRAM bandwidth. The system DRAM consists of 4GB
of LPDDR4 64bit SDRAM working at (maximum) 1.6GHz,
reaching a peak ideal bandwidth of 25.6 GB/s. With relation
to the contention points, there are no substantial differences
with the K1.

C. Intel i7-6700

The Intel i7-6700 processor presents noticeable differences
between the two boards described in the previous paragraphs.
This SoC features a quad-core CPU complex with Hyper-
Threading (HT) technology built above the well known x86
64 bit CISC architecture. Technical points of interests for this
platform are depicted in Figure 2.

This specific processor belongs to the Skylake (6th genera-
tion) of Intel CPUs. Such processors are common for desktop
or laptop configurations, with a SoC power consumption
around 65W, higher than in the previously described boards.
Another peculiar difference refers to the cache hierarchy,
where, unlike the ARM based design, L2 cache is not shared
among physical cores. This is an architectural choice that Intel
adopts since the Nehalem generation (released in late 2008).
L2 cache is shared between two logical cores of the same
physical computing unit. According to Intel HyperThreading’s

proprietary design [20], a number of logical cores that is
twice the number of the physical cores is made available to
the operating system. Hence, 8 threads can be scheduled to
run concurrently. This is allowed by exploiting aggressive out
of order execution policies and other optimization techniques
aimed at improving the instruction level parallelism of a single
physical core. However, HyperThreading is also known to
increase the competition for shared memory resources [21].
Figure 2 shows the interconnections between the iGPU, each
CPU core, and the interface to the Memory Controller (MC),
Display Controller (DC) and PCI express bus (PCIe). In our
experimental setup, the i7 interfaces with 16GB of 64bit DDR4
DRAM clocked at 2133 MHz, allowing the CPU complex
to reach a theoretical bandwidth of 34 GB/s, resulting in
a measured bandwidth of 29 GB/s using Intel MLC2 for
sequential reads. Both the CPU complex and the iGPU reach
the memory controller through the SoC ring interconnection
fabric depicted in Figure 2. The iGPU in this SoC is an
Intel HD 530 belonging to the 9Gen Intel graphic architecture
[22]. Differently from the NVIDIA architectures, the compute
pipeline is composed of an execution engine composed of a
slice, divided into three sub-slices. Each of these partitions
relies on 8 Execution Units (EU from 0 to 7 as shown in
Figure 2). Another difference w.r.t. the previous solutions is
represented by the cache hierarchy, where the LLC is shared
between the CPU and the GPU, with related coherency HW
mechanisms. A cache miss in the GPU L3 will imply using the
SoC ring interconnect to access CPU L3, and, if needed, the
external memory controller. Moreover, as detailed in [22], L1
and L2 cache are read-only caches only used for the graphics
pipeline, not representing a significant contention point. The
HD 530 also has an abstraction of a Copy Engine used to
replicate data from a CPU-only visible address space to a
space accessible by the iGPU. However, thanks to the CPU-
GPU shared cache level, the best practices of using the iGPU
in such designs is to exploit the unified memory architecture
(SVM model in OpenCL 2.0).

2Intel Memory Latency Checker v. 3.1 available at
https://software.intel.com/en-us/articles/intelr-memory-latency-checker



Fig. 2: A simplified overview of the Intel i7-6700 Skylake with notable contention points: (1) represents contention on shared
L3 cache among all CPU cores; (2) contention on the shared CPU-iGPU LLC; (3) parallel access to system DRAM by all the
presented actors. (1) and (2) also include coherency overhead for CPU and iGPU traffic.

IV. EXPERIMENTAL SETTING

We are interested in measuring the effect of memory
interference as indicated by the previously detected contention
points, both at CPU and iGPU side. Latencies variations of
single memory accesses are highlighted. Idle latencies of single
CPU cores are first measured, before adding the interference
from the other cores, and then also from the GPU (CE,
EE and unified memory models). On the iGPU side, we
measure the variation of execution times of tasks using the
CE, EE and unified memory models. Once again, the case
with no interference is first measured, before then adding the
interference from the different cores within the CPU complex.
Another key parameter to vary was the memory access pattern
for the CPU complex. For both the measured core and the
interfering cores, we considered either sequential memory
accesses, exploiting the hardware pre-fetching abilities of the
CPU, or random accesses. On the GPU side, only sequential
accesses were profiled, since (i) CE memory transfers are
inherently sequential, and (ii) typical memory access patterns
on the EE side are also sequential to allow the lock-step
mechanism to work at the maximum efficiency. Different
measuring tools have been used in our experiments. The
Intel MLC (Memory Latency Checker v3.1) was used for
the i7-6700 to calculate the available theoretical and practical
bandwidths. For all platforms, we used LMBench [23] and a
custom-made program to measure latencies with (i) sequential,
(ii) variable, and (iii) random stride reads, with all possible
interfering memory access patterns, both in read and write.

Summarizing, the following tests have been performed:

Test Case A: intra CPU complex interference.

A1: the observed core reads sequentially within a variable
sized working set (henceforth sequential read), while the
other cores are interfering sequentially (henceforth, sequential
interference). Each iteration performs a memcpy of 100MB,
so to involve every element within the CPU complex memory
hierarchy.

A2: the observed core reads with a random stride within a
variable sized working set (henceforth random reads), while
the interfering cores performs sequential interference.

A3: the observed core reads sequentially, while the other cores
iteratively read 64B with a random stride within a 128MB
array (random interference). The array size has been chosen
to statistically prevent fetching already cached data.

A4: the observed core performs random reads, while the
interfering cores performs random interference.

Test Case B: iGPU interference to CPU.

B1: the observed core reads sequentially, while the GPU
accesses memory according to different paradigms:

- launching a copy kernel3 between GPU buffers;

- launching a copy kernel involving unified memory located
buffers (CUDA UVM for X1 and K1, OpenCL SVM for the
i7);

- copying a buffer by means of the copy engine, using pinned
memory; and

- zeroing a device buffer.

B2: the observed core reads randomly, while the GPU activity
is the same as B1.

Test Case C (CPU interference to iGPU).

C1: the GPU accesses memory according to the different
paradigms detailed in test case B, while the host cores perform
the interfering patterns described in A1.

C2: same as above, but host cores perform the interfering
patterns described in A3.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the test cases
identified above for each considered platform.

A. Latencies on Tegra K1

Test Case A measures the impact on latencies due to shared
L2 and shared memory bus to system DRAM (points 1, 2 and 4

3A copy kernel is a GPU program that performs an element-wise data copy
between two buffers.



in Figure 1(a)), without accounting for GPU activity. Working
Set Size (WSS) goes from 1kB to 25MB.

Figure 3 (a) and (b) show the average latency for se-
quentially accessing one word (32 bit) varying the WSS, for
subtests A1 and A2, i.e., with sequential interference. In all test
cases, memory latencies with a random access pattern are only
slightly higher than with a sequential access, showing limited
burst capabilities. A significant performance degradation is
noticeable for WSS larger than L1 size in all interfered cases
(Interf 1 to 3, in both graphs). The maximum gap between
the interfered and non-interfered cases can be noticed for
WSS slightly comparable to L2 size. This is explained by
the cache evictions performed by interfering cores, reducing
the useful cache blocks available for the measured core. After
the L2 boundary, the measured latency converges to a delay
proportional to the number of interfering cores, both for
sequential and random reads. With three interfering cores, a
performance loss of about 72% and 84% is measured with
respect to the non-interfered setting, for sequential and random
reads respectively.

A similar behavior is obtained for random interfering
patterns, as shown in Figure 3 (d) and (e) for subtests A3
and A4. In this case, delays are more weakly proportional
to the number of interfering cores. Both for sequential and
random reads, the latency introduced by interfering cores is
smaller than in the previous cases: with three interfering cores,
a performance loss of about 60% and 75% is measured with
respect to the non-interfered setting, for sequential and random
reads respectively.

Summarizing the results of Test Case A, the interfering
sources are perfectly consistent with the contention points
identified in Figure 1(a). The bandwidth available to each
core of the CPU complex when accessing system DRAM is
fairly distributed among cores in the sequentially interfered
scenario, while a less fair distribution happens in the randomly
interfered one. The largest delay is measured for random reads
and sequentially interfering tasks. This can be motivated by
the re-ordering mechanism implemented at EMC level, which
tends to favor sequential accesses with respect to random ones.

Results for Test Case B are shown in Figure 3 (c) and (f),
measuring the interference from the iGPU to the CPU complex
(points 2,3 and 4 in Figure 1(a)). Only one core is observed,
while the remaining ones are inactive. Memory access patterns
for the observed CPU core are sequential (subtest B1) and
random (subtest B2), while only sequential interference is
considered from the iGPU.

In Figure 3 (c) and (f), we notice that differently from Test
Case A, performance degradation mostly takes place after the
CPU L2 boundaries. This happens because separate caches
are adopted at CPU and iGPU level. The highest performance
degradation is observed with the memset operation, where the
iGPU causes the observed core to experience a 426% higher
delay. Smaller degradations are measured for the memcpy
(377%) and UVM/CUDA kernel operations (220%). This
shows that memset operations saturate to a larger extent the
memory bandwidth, while UVM and CUDA kernel operations
are not able to fully exploit the available memory bandwidth
from the iGPU side. Interestingly, UVM and CUDA kernel
memory transfers impose the same interference to the observed

core. The cache coherency traffic due to UVM is not noticeable
in this setting. This is because the CPU accesses different
memory region than those accessed at iGPU side, without
triggering coherency traffic. Implementing a test case that
highlights the effect of coherency traffic between CPU and
iGPU would require using recent versions of the NVIDIA
CUDA proprietary profiler (nvprof)4, which allows a more
accurate analysis of page faults handling with UVM. For space
constraints, we postpone UVM related tests to a future work.

Results of Test Case C are shown in Figure 3 (g) and (h),
measuring the interference from CPU cores to iGPU tasks. As
can be noticed comparing the histograms, sequentially interfer-
ing tasks cause more visible delays to iGPU activities than with
random interfering patterns. Performance deterioration ranges
from a minimum of 7% (CUDA UVM with one interfering
core) to 35% (CUDA memset with 2 or 3 interfering sequential
cores) in the sequential case, and from 3 to 12% in the random
case. This is consistent with the observation made about the
re-ordering features of the EMC engine, prioritizing sequential
accesses over random strides.

Only a limited increase in the execution times of GPU tasks
is measured when increasing the number of interfering CPU
cores, showing that a single CPU core is able to almost fully
utilize the available memory bandwidth. A larger increase with
the number of cores is noticeable in the memset and memcpy
cases, because these commands exploit the memory bus in
both read and write directions, allowing a higher bandwidth
utilization.

B. Latencies on Tegra X1

The second NVIDIA-based platform share the same archi-
tectural paradigm of the K1 platform. Thus, the same memory
contention points highlighted in Test Cases A, B and C are
involved. Results are shown in in Figure 4.

The first noticeable difference w.r.t. Tegra K1 is related
to the much better performance for sequential reads (up to
15ns and 150ns for the X1 and K1, respectively). Random
read delays are instead comparable for both platforms. This
shows significantly improved burst transfer features in the X1
architecture, allowing a tenfold improvement with respect to
random access patterns (as we will detail also in Section V-D).

The contention points identified in section III-B are con-
firmed in the experiments. Results for Test Case A shown in
insets (a) and (b) present a trend comparable to that shown for
the K1, with large performance deterioration occurring with
working set sizes between L1 and L2, and a linear degradation
increasing the number of cores. Latency spikes are visible in
subtests A1 and A3 (insets (a) and (d)) around L2 boundaries.
The origin of such spikes, that were not observed in the K1
case, is not clear, and it will be investigated in future works.

Results for Test Case B are shown in Figure 4 (c) and
(f). The effect of unregulated iGPU activity is similar to the
K1 case, with two notable differences: (i) the presence of the
spikes in the sequential case, as in the previous experiment; and
(ii) a much larger performance gap between the two extreme

4For more info see https://devblogs.nvidia.com/parallelforall/
beyond-gpu-memory-limits-unified-memory-pascal/



(a) A1 (b) A2 (c) B1

(d) A3 (e) A4 (f) B2

(g) C1 (h) C2

Fig. 3: Test results for Tegra K1: WSS [Byte] (log) vs. Latencies [ns]. Vertical lines in (a)-(f) correspond to L1 and L2 size.

situations, i.e., sequential non-interfered reads (15-18 ns) and
random reads with CUDA memset interference (463 ns).

In Figure 4 (g) and (h), we see the effect of CPU activity
over iGPU related tasks (Test Case C). The relative impact
on iGPU execution times is larger than the one observed with
the K1. In case of three sequentially interfering cores, CUDA
memset and memcpy execution times increase by 52% (it was
30% in the K1 case). This is mostly due to the enhanced mem-
ory bandwidth of the CPU cluster in the X1 platform, together
with the more aggressive prefetching mechanisms in the A57’s,
as will be shown in section V-D. With random interference,
the deterioration is somewhat smaller (12%), although not as
small as it was in the K1 case (24%), confirming the largest
memory bandwidth utilized by the CPU cluster in the X1.

C. Latencies on i7-6700

Interpreting the results on the i7 is much more difficult
than the previous solutions: the x86 architecture is substantially
more complex than the RISC based architectures analyzed so
far. This implies having much more aggressive and counter
intuitive optimization strategies for prefetching, speculative
execution and other mechanisms (e.g., System Mode Manage-
ment [24] and non trivial cache mapping policies [25]) that
are not analyzed in this paper but that might affect the results.

Still, some meaningful aspects can be identified. Experi-
ments for Test Case A are depicted in Figure 5. The latencies
with no interference are significantly smaller than in the
previous SoCs. For sequential reads, increasing the working
set size beyond L3 only adds a few ns with respect to the
latency measured within L1 (from 1 to 4/5 ns). For random
reads, a significant performance decrease (about 11x) can
be noticed for WSS beyond L3. Increasing the number of



(a) A1 (b) A2 (c) B1

(d) A3 (e) A4 (f) B2
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Fig. 4: Test results for Tegra X1: WSS [Byte] (log) vs. Latencies [ns]. Vertical lines in (a)-(f) correspond to L1 and L2 size.

interfering cores, contention on L1 and L2 is almost absent
in case of random interference (A3 and A4), while it is
more noticeable in case of sequential interference (A1 and
A2). When reaching L3 boundaries, a dramatic performance
deterioration takes place, with latencies increasing up to 17x
for sequential reads, and up to 6x for random reads, both with
sequentially interfering cores. A smaller impact on relative
performance deterioration is noticed when the interfering cores
performs random reads.

The uneven spacing between the lines in the graph is due to
the fact that half of the cores are not physical cores, but logical
cores enabled by Intel HyperThreading technology. These
logical cores share resources with a corresponding physical
core, competing for L1 and L2 access. Therefore, logical cores
do not add significant contention in system DRAM w.r.t. their
physical counterparts [20], [21].

Experiments for Test Case B related to iGPU interference

are shown in Figure 5 (c) and (f). As already pointed out
in section III-C, a larger impact on latencies is expected
due to the cache shared between the CPU complex and the
iGPU. Somewhat unexpectedly, a performance deterioration
is observed already with WSS smaller than L2. However, as
pointed out in III-C, L2 is not shared with the GPU. The
observed deterioration is instead due to the HW coherency
mechanisms between L2 and L3, where this latter cache level
is shared with the interfering GPU. Such effect was not
observed on Tegra based platforms, as NVIDIA solutions rely
on different SW controlled cache coherency mechanisms, and
there are no shared caches between the CPU complex and the
iGPU.

Test Case B shows that the interference at L2 boundaries
is already so severe that it almost matches the interference
experienced when accessing system DRAM, especially for
sequential reads (B1). Differently from the previous boards,
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Fig. 5: Test results for I7-6700. Black vertical lines in (a)-(f) correspond to L1, L2 and L3 CPU cache sizes

there is no big difference in performance deterioration when
changing the nature of the interfering programs running on
the iGPU, with the OpenCL equivalent of the memset (clEn-
queueFillBuffer) slightly dominating the interference caused
by other operations. Even in this case, it is difficult to isolate
the effect of cache coherency caused by SVM for the same
reasons discussed when treating CUDA UVM in Tegra-based
architectures.

Figure 5 (g) and (h) show the behavior of the HD530
iGPU in case of unregulated CPU complex memory operations
(Test Case C). In case of sequentially interfering cores, relative
execution times of iGPU tasks may increase up to more than
200% for all GPU programs. A much smaller interference
is instead observed in case of randomly interfering cores.
Similarly to NVIDIA architectures, the most affected iGPU
activities are OpenCL memset and memcpy. As observed in
Test Case A, the height of adjacent bars are pairwise similar,
due to the fact that half of the interfering cores are logical

cores.

D. Prefetching mechanisms

The results from the previous test cases motivated us to
analyze the prefetching mechanisms exploited in the three
different SoCs. The substantially different behaviors expressed
when the CPU was interfering or being interfered highlighted
that prefetching plays a key role in performance degradation in
memory contention scenarios. We stress that in all the tested
environments, we left the HW prefetching mechanisms to the
default SoC value5. We therefore tried to infer the prefetching
mechanisms of the analyzed platforms by having a single core
reading data from system DRAM at an increasing stride to
identify read latency variations that depend on the number of
pre-loaded LLC lines. Stride values for this test do not exceed

5According to ARM a15 and a57 reference manual, L2 cache prefetching
can pre-load 0, 2, 4, 6 or 8 cache line after a LLC miss.



the page size value (4096B) as LLC prefetchers work between
memory page boundaries.

The experimental results are shown in Figure 6 (a). Note
that the leftmost point in the graph corresponds to the latency
measured in the previous experiments with a non-interfered
sequential read with a large WSS, while the rightmost points
converge to the latency measured for random accesses. For
the Tegra K1, varying the strides leads to no latency vari-
ation, showing very limited pre-fetching features. This is in
accordance with the small performance gap observed between
sequential and random reads in the experiments described in
Subsection V-A.

A specular situation is observed with the X1, where a
latency degradation occurs increasing the strides, especially
beyond 512B. This is consistent with an L2 prefetch size of 8
lines (8*64B = 512B, with 64B being the cache line size). An
even higher degradation is observed for larger strides, until
reaching the size of DRAM row buffers (2 kB). No further
increase in the latency is observed for strides beyond the row
buffer size.

The Intel platform is again the most difficult to interpret,
due to the presence of multiple prefetching mechanisms at
different memory hierarchy levels, which are only partially
disclosed in the related documentation [26]. These aggressive
prefetching mechanisms allow lower latencies at CPU side in
case of sequential reads (around 5ns). Increasing the strides, a
10x latency increase is observed with a stride of 256B, after
that no further increase is observed.

E. Combined interference

In the previous experiments, we separately analyzed the
interfering impact of CPU cores and iGPU. We conducted
further experiments to analyze whether the above described
interfering effects are additive when a CPU task may be simul-
taneously interfered by CPU cores and iGPU. We measured the
delay experienced by a CPU task that is sequentially interfered
by two cores, while another core iteratively sends memset
commands to the iGPU (see Figure 6 (b)).

We hereafter outline only the results for the X1 platform.
The observed latencies were up to 115 ns in case of sequential
reads, and up to 600 ns in case of random reads. These
numbers are in line with the results expected for an additive
contribution of (i) the A57 sequential read idle latency of 15-
18 ns, plus (ii) the delay of 40 ns due to two sequentially
interfering cores (see Figure 4 (a)), plus (iii) the delay of 50-
60 ns due to the iGPU memset (see Figure 4 (c)). A similar
calculation leads to 600 ns in case the observed core performs
random reads. Another interesting effect is observed in both the
random and sequential case, where the latency delay caused by
the iGPU memset is experienced already within L2 boundaries.
This was not observed in Test Case B because CPU L2 is not
shared with the iGPU. By adding two CPU interfering cores,
evictions at L2 level caused by the CPU interference cause the
observed core to resort to main memory sooner than the L2
cache size, while DRAM bandwidth is already saturated by
iGPU activity.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a fairly complete overview on
memory interference effects of Multi-Core CPUs and iGPU.
We identified the main contention points in three different
commercially available SoCs, taking accurate measurements
of CPU read latencies and iGPU task execution times under
various stress situations. Our contribution makes it evident
that the detrimental effect on latencies escalates even more in
presence of iGPU activity. We also showed how CPU activities
may increase iGPU task execution times. We discovered how
hardware prefetching, related memory access patterns and
different iGPU activities play an important role in performance
degradation. Also, we showed how unified CPU-iGPU cache
levels have a larger impact in the measured delays than with
separated caches. As a future work, We plan to implement a
memory server that acts as a memory access arbiter to avoid
the dramatic latencies reported in this paper. Such a server,
likely to be implemented at hypervisor level, takes inspiration
from recently introduced mechanisms, such as MEMGUARD
and PREM, but revisited in order to take into account hetero-
geneous architectures featuring high-performance iGPUs.
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