
Encapsulation of a hexairon SMM by a tridecadentate N-based ligand

<u>Alessio Nicolini</u>^{a*}, Biagio Anderlini^a, John F. Berry^b, Rodolphe Clérac^c, Mathieu Rouzières^c, Trey C. Pankratz^b, Andrea Cornia^a

- a. Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia & INSTM, I-41125 Modena, Italy
- b. Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- c. Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France * email: <u>alessio.nicolini@unimore.it</u>

The new tridecadentate proligand H_{6L} (Fig. 1, left) was designed and synthesized with the idea of using its dipyridylamine-like branches to assemble new Extended Metal Atom Chains (EMACs) [1,2]. To this aim, H_6L was refluxed with 1.6 molar equivalents of $[Fe_2(Mes)_4]$ in toluene for 3 h in strictly anaerobic and anhydrous conditions (HMes = mesitylene). After work-up, beautiful X-ray quality crystals of complex $[Fe_6O_2(OH)(H_3L)L]$ (1) were obtained from THF/Et₂O in substantial (48%) yield. The formula and structure of 1 were inferred by combined use of EA, ESI-MS, and X-ray crystallography. The complex (Fig. 1, right) crystallizes in a trigonal space group and contains two crystallographicallyequivalent tripodal ligands that entrap an Fe/O core. The latter is severely disordered by rotation around the trigonal axis and was modelled as a central Fe₅(μ_5 -O) cluster *plus* a sixth, half-occupancy Fe center (Fe3) residing in the tren-like aliphatic pockets of the tripodal ligands. Significantly, the shortest Fe–Fe distances in the central pentairon unit (2.629(2) Å) are suggestive of Fe-Fe bonds. Two additional O atoms, O2 and O2^{III}, lie on opposite sides of the Fe₅(μ ₅-O) moiety and are at hydrogenbond distance from pyridine N atoms. Based on Bond Valence Sum (BVS) analysis, the structure of the Fe/O core was then modelled as $[Fe(\mu_3-O)Fe_5(\mu_5-O)(\mu-OH)]$. BVS calculations, charge-balance considerations, and Mössbauer spectra suggest that **1** is a valence-delocalized $Fe_4^{II}Fe_2^{III}$ species. DC magnetometry establishes a room temperature χT value of 27.4 cm³ K mol⁻¹, which is well above the Curie constant for noninteracting, valence-localized centers ($C = 22.6 \text{ cm}^3 \text{ K mol}^{-1}$ for 4 high-spin Fe²⁺ ions with g = 2.15 and 2 high-spin Fe³⁺ ions with g = 2.00). The χT product increases slightly with cooling, reaching a maximum of ~30 cm³ K mol⁻¹ at ~25 K. These results indicate predominant ferromagnetic interactions in **1**, which shows slow magnetic relaxation detectable even in zero field ($U_{\text{eff}}/k_{\text{B}}$ = 49 K, τ_0 $= 4 \cdot 10^{-10}$ s).

Figure 1: Structures of H₆L (left) and **1** (right; color code: orange, Fe; red, O; blue, N; dark grey, C; light grey, H). Potential OH…N_{py} interaction is highlighted with light grey dots.

References:

[1] J. F. Berry, Extended Metal Atom Chains. In *Multiple Bonds Between Metal Atoms*, Cotton, F. A. *et al.*, Eds.; Springer Science and Business Media: New York, USA, 669-706 (2005).
[2] A. Nicolini *et al.*, Dalton Trans. 50, 7571 (2021)