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Abstract

The integration of Augmented Reality (AR) into daily surgical practice is withheld by the
correct registration of pre-operative data. This includes intelligent 3D model superposition
whilst simultaneously handling real and virtual occlusions caused by the AR overlay. Occlu-
sions can negatively impact surgical safety and as such deteriorate rather than improve
surgical care. Robotic surgery is particularly suited to tackle these integration challenges
in a stepwise approach as the robotic console allows for different inputs to be displayed
in parallel to the surgeon. Nevertheless, real-time de-occlusion requires extensive com-
putational resources which further complicates clinical integration. This work tackles the
problem of instrument occlusion and presents, to the authors’ best knowledge, the first-
in-human on edge deployment of a real-time binary segmentation pipeline during three
robot-assisted surgeries: partial nephrectomy, migrated endovascular stent removal, and
liver metastasectomy. To this end, a state-of-the-art real-time segmentation and 3D model
pipeline was implemented and presented to the surgeon during live surgery. The pipeline
allows real-time binary segmentation of 37 non-organic surgical items, which are never
occluded during AR. The application features real-time manual 3D model manipulation
for correct soft tissue alignment. The proposed pipeline can contribute towards surgical
safety, ergonomics, and acceptance of AR in minimally invasive surgery.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is propetly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
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1 | INTRODUCTION

Over the last decade, 3D models have entered oncologic surgery
as a means to achieve better outcomes in renal and hepatic
surgery [1, 2]. Nevertheless, the integration of 3D models into
the operative field has been lacking due to three main reasons.
Firstly, proper model alignment with the intraoperative anatomy
has proven to be a major challenge due to shifting of organs
during surgery and different patient positioning in surgery ver-
sus during computed tomography [2, 3]. Secondly, automated
organ registra-tion in a continuously moving surgical video
has been another major challenge for many years [4]. Thirdly,
3D model overlay obscures the surgical field, including sharp
surgical instruments which are manipulated, hence creating a
possible hazardous situation rather than facilitating surgery. The
latter occlusion problem has been a longstanding study topic
[5] which, if solved, would further advance various surgical
domains and applications [6]. Already in 2004, Fischer et al. [7]
proposed handling instrument occlusion in medical augmented
reality (AR) through identification of occlusion zones by cre-
ating a virtual map of the existing environment upfront. Four
years later, Kutter et al. [8] explored the design and implemen-
tation of a high-quality hardware system to enable real-time
volume rendering in AR applications. However, to ensure that
depth perception was not compromised, the authors needed to
apply video colour filtering to handle occlusion, as such limiting
its robustness due to the colout prior. Other approaches [9] for
occlusion management relied on tracking and 3D positioning of
the instrument within the AR environment, which in turn made
it prone to certain instruments’ directions. As such, previous de-
occlusion attempts were unsuccessful in detecting all surgical
items with sufficient robustness, whilst at the same time hav-
ing no prior knowledge of the objects’ orientations ot positions
inside the real-time surgical environment. Mote recent work [10]
showed the potential of deep learning binary instrument seg-
mentation for robust de-occlusion during AR surgery. However,
the reported latency reached up to 0.5 s and was considered
unfeasible for real-time surgical use.

In this work, a robust real-time binary segmentation pipeline
for non-organic items was developed and deployed during
three live robot-assisted surgeries: partial nephrectomy (RAPN),
migrated endovascular stent removal and liver metastasectomy.
Through the use of a state-of-the-art binary segmentation
method, as well as software and hardware level acceleration,
the pipeline efficiently tackles instrument occlusion caused by
the AR 3D model overlay in real-time and reduces delay to a
frame-by-frame latency of 13 ms. Qualitative surgical feedback
stated the resulting perceived end-to-end latency is acceptable
for real-time surgery.

2 | MATERIALS AND METHODS
2.1 | Non-organic binary segmentation

The binary segmentation data set contains 31,812 images on
which all non-organic items were manually delineated in the

annotation platform SuperAnnotate (Sunnyvale, CA, USA)
[11]. The 37 different non-organic items include robotic and
laparoscopic instruments, needles, wires, clips, vessel loops,
bulldogs, gauzes etc. The images were sampled uniformly
across 100 full- length RAPN procedures. The data set was
split on a procedural base into 24,087 images for training, 4545
images for validation, and 3180 images for testing. Different
encoder—decoder deep learning architectures were evaluated for
performance. A Feature Pyramid Network (FPN) architecture
[12] with EfficientNetV2 encoder backbone [13] was identified
as best performing in a separate optimization study. The model
was trained over 50 epochs with batch size 16 and image size
512 X 512 pixels, using Adam optimizer with a learning rate of
2.25x 10™* and a combination of focal and dice loss. The learn-
ing rate was reduced on plateau over five epochs with a factor
0.7 and an eatly stopping criterion was evaluated on the mean
Intersection over Union (IoU) with a patience of 15 epochs.
It is subsequently compared to other recent work in this field
(DeepLabV3+ architecture [10]), in terms of mean IoU and
processing time. Inference in the application pipeline requires
conversion to ONNX and subsequent TensorRT optimization .
This optimization allows for smaller precision, reduced latency
and model size, simplified network topology, reduced read and
write operations, and dynamic memory allocation to reduce
memory footprint. This type of optimization is necessary to
meet the real-time needs during surgery. A side-by-side perfor-
mance comparison of both architectures is performed for both
the original Pytorch model and the final implemented TensorRT
model. Both are evaluated for Floating Point (FP) 16 and FP32
precision.

3 | PIPELINE DEPLOYMENT

3.1 | Hardware framework

This integration addresses delays imposed by different serial
components whilst enabling the implementation of more
accurate but also heavier deep learning networks for image
segmentation. The Nvidia Clara AGX developer kit>® (Nvidia,
Santa Clara, California, USA) was identified as embedded
computing architecture for highly demanding video process-
ing applications. Live video capture was enabled through
a Deltacast DELTA-12G-elp-key capture card® (Deltacast,
Liege, Belgium). The card provides performance and effi-
cient 1/O, as well as a passive bypass, which safeguards
original video throughput in case of real-time software
malfunctioning;

! NVIDIA TensorRT: https://developer.nvidia.com/tensorrt.
2NVIDIA Developer Kits for medical devices: https://www.nvidia.com/en-gb/clara/

intelligent-medical-instruments/.

3 Clara AGX Product Brief with Technical details: https://resources.nvidia.com/en-us-
enabling-smart-hospitals-ai-ep/nvidia- clara-agx-dev?Ix=KWI E5&xs=301547.
4DELTA-12G-ELP-KEY 11 details: https://www.deltacast.tv/products /developer-

products/sdi-capture-cards/delta- 12g-elp-key-11.
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FIGURE 1 Schematic overview of the different steps and Graphical eXchange Format (GXF)-extensions in the segmentation application.

3.2 | Software framework

The intra-operative Al and AR application was developed
using the NVIDIA Holoscan SDK?, an extensible open-source
framework for implementing real-time, low-latency medical Al
applications. The pipeline was implemented through a com-
bination of existing Holoscan operators, extended with use
case tailored ones. Figure 1 displays a schematic overview of
the pipeline and corresponding operators. The pipeline can be
divided into four main blocks: pre-processing, inference, post-
processing, and visualization. The 1920 X 1080 p captured
frames are reformatted to serve as input to the segmenta-
tion model. For every frame, the alpha-channel information is
dropped, black borders are removed, and the frame is resized
to 512 X 512 pixels. The colour channels are normalized
with means and standard deviations detived from the binary
segmentation model training set.

After inference, a sigmoid activation is applied to the
512 X 512 X 2 output, yielding a 512 X 512 pixels binary
mask indicating whether the corresponding pixels make up
non-organic items or soft tissue. The 512 X 512 pixels seg-
mentation mask is subsequently resized to match the original
input resolution. The 3D model is rendered through Visualiza-
tion Toolkit (VTK)® and composited with the live full-quality
surgical video and segmentation mask to create the final image.
The 3D models ate manually segmented pre-operatively using
Mimics (Materialise, Leuven, Belgium) from a 4-phasic CT scan
sequence [14]. The models consist of separate Standard Triangle
Language (STL) files for different structures like parenchyma,
tumours, stents, arteries, veins, and other anatomical entities rel-
evant to the procedure (Figure 4f). All STL files can be toggled
with hot-keys during overlay and the transparency can be edited
in real-time. The 3D model requires manual alighment with the
surgical scene as can be seen in Figure 2a.

5 Holoscan SDK: https://github.com/nvidia-holoscan/holoscan-sdk.
¢ Visualization Toolkit (VTK): https://vtk.org/

4 | LIVE SURGERIES

The study was performed with patient consent under insti-
tutional review board approval (B6702020000442). Figure 2
displays the operating room setup during the live RAPN
procedure. The DELTA-12G-elp-key capture card, which is
integrated into the Holoscan box, receives the live video feed
through serial digital interface (SDI). The patient-specific 3D
model was preloaded onto the Clara AGX developer kit for ren-
dering inside the Holoscan application. The processed frames
were sent over DisplayPort-out into an active HDMI-splitter.
One of both HDMI-out signals was sent to a monitor through
which the users could continuously interact with the application.
The other signal was fed back with an HDMI-DVI cable into
the Intuitive Xi robotic system (Intuitive, California, USA) by
means of the DVI-TilePro-input (Figure 2c). As such, whenever
the surgeon enables the TilePro feature, perfectly aligned. Fur-
thermore, a keyboard and mouse were connected to the Clara
AGX developer kit to be able to manipulate and interact with
the 3D model as discussed above. Figure 2a shows the physical
experiment setup during the in-human procedure in the oper-
ating theatre. The Clara AGX developer kit and other hardware
were installed next to the surgical tower, allowing continuous
model alignment during the procedure and direct communica-
tion between the user and the surgeon whenever needed.

5 | RESULTS

5.1 | Non-organic binary segmentation

Table 1 summarizes the compatison of evaluation metrics of
the FPN model versus the DeepLabV3+ model [10] on an
identical test set of 1345 images derived from four distinct
RAPN procedures. The baseline model for the reported side-
by-side improvements is the DeepLabV3+ with FP32 precision,
implemented in Pytorch. The A mean IoU and A inference
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(a) Urologist performing 3D model alignment

(b) Video link to live demonstration.
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(c) Schematic overview of hardware setup

FIGURE 2

(b) Video link to live demonstration. (¢) Schematic overview of hardware setup and connection types.

Experiment setup overview. (a) Urologist performing 3D model alignment on the Clara AGX developer kit positioned next to the surgical tower.

TABLE 1 Performance comparison of (TensorRT optimized) DeepLabV3+ and FPN segmentation model architectures evaluated on Pytorch container.
mean IoU Inference time (ms) AToU A inference time (ms)
Model Precision Pytorch TensotRT Pytorch TensorRT Pytorch TensorRT Pytorch TensotRT
DEEPLAB FP32 0.90318 0.90318 48.6 20.4 N/A 0 N/A —28.2
DEEPLAB FP16 0.90317 0.90316 52.6 8.5 —0.00001 —0.00002 4 —40.1
FPN FP32 0.94621 0.94621 36 14.2 0.04303 0.04303 —12.6 —34.4
FPN FP16 0.94621 0.94623 40.5 5.1 0.04303 0.04305 —8.1 —43.5

FPN, feature pyramid network; IoU, intersection over union.

(a) Original image (b) DeepLabV3+ FP16

FIGURE 3

(c) DeepLabV3+ FP32

(e) FPN FP32

(d) FPN FP16

Segmentation performance of DeeplabV3+ and FPN models (TensorRT optimized). The yellow regions indicate true positive pixels, the red

regions indicate false-positive pixels, and the green regions indicate false-negative pixels. FPN, feature pyramid network.

time reflect stepwise improvements in segmentation quality
and inference time, with respect to this baseline. Changing
the model architecture to FPN resulted in increased mean
IoU while TensorRT optimization significantly reduced infer-
ence times, with the largest time reduction for FP16 precision.
Figure 3 provides an example of the improvement in segmenta-

tion quality in TensorRT. When compared to DeepLabV3+, the
FPN model reduced both false-positive and false-negative pixel
regions (respectively represented by red and green regions).
Switching to FP16 has no effect on segmentation petrformance
for both FPN and DeepLabV3+ architectures. The TensorRT
FPN model with FP16 precision was identified as the most
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(j) Robot console during tumor demarcation in liver metastasectomy

(i) Robot console during stent localization in endovascular stent removal

FIGURE 4 Illustration of different segmentation scenarios during three live surgeries. (a) Shows the AR pipeline applied in liver metastasectomy, endovascular

stent removal, and partial nephrectomy, with both enabled and disabled segmentation to illustrate de-occlusion of non-organic items. (c) Displays renorrhaphy after

tumour resection with AR inactive. (j, i, and b) Show the respective console views during surgery with two Tile Pro inputs. The tumour or stent localization and 3D

model alignment (left) is being validated by the ultrasound probe (right). (f) Shows an example of a patient-specific 3D model. (d, €) Show the 3D model overlayed

with the surgical scene with segmentation off and on respectively to illustrate segmentation performance on smaller non-organic items. (g, h) Display respectively

segmentation off and on during the application of surgical hemostatics. AR, augmented reality.

promising network for the live experiment. To profile the appli-
cation pipeline, the Nvidia Nsight Systems profiling tool” was
used. The experiments were run over 20 s at an input frame rate
of 80 frames per second. The resulting median processing time
for the application pipeline was less than 13 ms with an aver-
age GPU utilization of 42%. As such, the device still has GPU
bandwidth for additional workloads [15].

5.2 | Live demonstration and user feedback

Figure 2b shows a QR code with a link to a video containing
highlighted segments during surgery. During the RAPN, the
application was first enabled after the identification and iso-
lation of the renal artery. The 3D model ovetlay confirmed

7 NVIDIA Nsight Systems: https://docs.nvidia.com/nsight-systems/index.html.

the orientation of the kidney and tumour with respect to the
artery, providing initial support for navigation, as well as con-
firmation of clamping level with respect to possible earlier
bifurcations of the vessel. During this phase both our previous
solution [10] and current solution were simultancously visually
compared through separate Tile Pro inputs inside the console.
The surgeon (R.D.G) stated a significant improvement in pet-
ceived latency, where the latency of the current solution is small
enough for surgical adoption. Thereafter, the AR application
was enabled during tumour demarcation. Figure 4b displays the
surgeon’s console view, where the application is used in parallel
with the ultrasound probe. The resection margins and tumour
depth estimation are augmented by the 3D model overlay with
the segmented endoscopic ultrasound probe on top and as con-
firmed by the ultrasound imagery. Figure 4b also illustrates that
the application solely served as support next to the endoscopic
vision as not to impair or alter the surgeon’s original vision or
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decision. The application was not used during the time-critical
surgical phases for renal artery clamping and tumour resection.
After tumour resection and arterial unclamping, the application
was once more enabled during renorrhaphy. Figures 4d and
4e illustrate the model’s segmentation performance on sutut-
ing needles, wires, and hem-o-lok clips as other non-organic
materials. Finally, Figures 4g and 4h illustrate the performance
for gauze segmentation during hemostasis. The 3D setup was
experienced as easy to manipulate without prior knowledge by
the clinician performing the alignment (H.V.D.B.). The ability
to align the 3D overlay and toggle the tumout visibility added
insights regarding localization of the tumour bed, while the seg-
mentation effectively provided a sense of depth while suturing
the renal capsule. Automatic model alighment was reported to
be the major next clinical improvement. The second case entails
a robotic removal of a migrated endovascular stent, placed for
a nutcracker syndrome. This stent had migrated into the vena
cava inferior causing relapsing symptoms and danger of fur-
ther migration towards the right atrium. The stent was removed
and vena cava reconstruction with left renal vein transposi-
tion was petformed to treat the primary nut cracker syndrome.
Figure 4i displays the surgeon’s console view, with the endo-
scopic ultrasound depicted in the right lower TilePro window.
We note the validation of the stent location, represented by
the oval hyperreflective structure in the top of the ultrasound
image. The surgeon (K.D.) confirmed that the delay was neg-
ligible and acceptable for surgery, and that the AR Tile Pro
input was sufficiently informative and responsive to even be
used as the main screen during this phase of the surgery. Finally,
the AR pipeline was applied during a robotic liver metastasec-
tomy. Figure 4j shows the surgeon’s console view where tumour
demarcation and 3D model alignment are again validated using
ultrasound. The surgeon (M.D.) stated that, although this setup
solves the delay and de-occlusion problem, the application is
not yet applicable in liver surgery due to the organ’s deformative
nature which complicates 3D model alignment. As for the first
case, automatic model alignment with extension to deformable
registration was reported to be the next major clinical improve-
ment. All patients experienced a normal postoperative coutse
and recovery.

6 | CONCLUSION AND FUTURE WORK

This work presents the implementation of a robust novel real-
time approach for occlusion handling in surgical AR scenarios.
It shows that AR-induced instrument occlusion is a resolv-
able issue when integrating software directly in a dedicated
hardware pipeline. Our segmentation algorithm is shown to
transfer smoothly across three different robot-assisted renal
surgeries and the setup is applicable across Intuitive Xi sys-
tems, as shown in three different testing hospitals. Despite being
trained only on robot- assisted partial nephrectomy instrument
segmentation, the algorithm seems to generalize well across
other surgeries using similar instruments. This could facilitate
towards a broader AR adoption in robotic surgery. The subjec-
tive surgical feedback indicated that the application can bring

clinical value to several parts of the procedure and that the delay
is acceptable for real-time surgery. Specific perceived surgical
benefits include better insights into tumour localization below
the renal surface and corresponding arterial tree, together with
improved tumour delineation due to de-occlusion. The pipeline
is built on top of extensible open-source technologies, allow-
ing to replicate and translate the work to other challenges in
computer-assisted intervention (CAI) and surgical data science
(SDS) for real-time adoption in surgery. By solving the long-
standing problem of real-time instrument occlusion, the work
is a demonstrator for translational research from lab to opet-
ating room. Furthermore, by optimizing compute resources, a
frame latency of less than 13 ms and average GPU utilization
of 42% was achieved. These results reflect room for the inte-
gration of additional workloads such as parallel deep learning
inference pipelines. Future work resides in the implementation
of a parallel soft tissue segmentation pipeline for automatic
3D model alignment, and by extension non-rigid body reg-
istration. The system should be further evaluated on user
experience in a more formalized manner, by, for example, con-
structing a questionnaire and applying the pipeline in a greater
number of surgeries. Other future minor hardware improve-
ments include the use of the capture card SDI-out to further
reduce delays and enable continuous passive bypass for surgical
safety.
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