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• Explores issues in handling multiblock 
data in a highly complex industrial 
scenario. 

• Integration of multivariate local regres-
sion with a multiblock approach is 
proposed. 

• Good on-line quality prediction of 
different grade products obtained by 
ROSA and LW-MB-PLS. 

• LW-MB-PLS effectively reduces system-
atic prediction errors for specific 
products.  
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A B S T R A C T   

Background: The study explores the challenges of handling multiblock data of different natures (process and NIR 
sensors) for on-line quality prediction in a full-scale plant scenario, namely a plant operating in continuous on an 
industrial scale and producing different grade Acrylonitrile Butadiene Styrene (ABS) products. This environment 
is an ideal scenario to evaluate the use of multiblock data analysis methods, which can enhance data interpre-
tation, visualization, and predictive performances. In particular, a novel multiblock extension of Locally 
Weighted PLS has been proposed by the authors, namely Locally Weighted Multiblock Partial Least Squares (LW- 
MB-PLS). Response-Oriented Sequential Alternation (ROSA) has also been employed to evaluate the diverse 
block relevance for the prediction of two quality parameters associated with the polymer. Data are split in blocks 
both according to sensor type and different plant sections, and different models have been built by incremental 
addition of data blocks to evaluate if early estimation of product quality is feasible. 
Results: ROSA method showed promising predictive performance for both quality parameters, highlighting the 
most influential plant sections through the selection of data blocks. The results suggested that both early and late- 
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stage sensors play crucial roles in predicting product quality. A reasonable estimation of quality parameters 
before production completion has been achieved. On the other hand, the proposed LW-MB-PLS, while compa-
rable in predictive performances, allowed reducing systematic prediction errors for specific products. 
Significance: This study contributes valuable insights for continuous production processes, aiding plant operators 
and paving the way for advancements in online quality prediction and control. Furthermore, it is implemented as 
a locally weighted extension of MB-PLS.   

1. Introduction 

In a production process monitoring context, dealing with data from 
multiple sources is a quite common scenario [1–5], such as when 
analyzing the same sample with different instruments, to gain more 
comprehensive information about its features (e.g. in raw material 
characterization), or when sensors of different nature, typically 
measuring pressure, temperature, flows etc., are installed throughout a 
production line, aiming at analyzing the evolution of the product/pro-
cess in time [1]. Therefore, in these scenarios, data is not merely 
multivariate, but is also multi-source [5]. For instance, considering data 
acquired by two different techniques, such as Near Infrared (NIR) 
spectroscopy and Ultraviolet–Visible (UV–Vis) spectroscopy, the spec-
tral profiles are multivariate, as responses are captured at different 
wavelengths, and the sources are delineated by the two distinct spec-
troscopic methods [6]. Moreover, multi-source data may also be ac-
quired when operating under diverse conditions, such as when various 
batches of an industrial process yield data under distinct processing 
parameters [5,7,8]. In addition, the quality of the intermediate product 
can be monitored on-line trough spectroscopic techniques and one of the 
most used techniques is certainly NIR spectroscopy, due to its 
non-destructive nature, rapidity, and suitability to be implemented 
on-line, examples can be found in food process monitoring [9–12], 
pharmaceutical [13–16] and chemical [17–19] industry. The combined 
information of these diverse sensors can be employed both to monitor 
the process ongoing and to predict in real time the quality parameters of 
the products normally assessed by off-line laboratory analyses [20]. 

Dealing with multivariate and multi-source data without using the 
proper chemometric tools can lead to inappropriate interpretation of the 
results [21]. In this respect, multiblock data analysis methods might be 
highly valuable for harnessing complementary information from data 
generated through different sources [21,22]. These methods enable a 
deeper comprehension of information within this kind of data, 
improving data visualization, predictive performances and identifica-
tion of critical variables that significantly influence the models [21–26]. 
In the predictive context, Multiblock Partial Least Squares (MB-PLS) [27, 
28] was the first proposed and it is one of the most employed. This 
prevalence is largely attributed to its simplicity and integration into 
numerous instrument and statistical software platforms. However, 
several other methods have been developed, which are more focused on 
the interpretation of the role of the different blocks [22], such as high-
lighting the common [29,30] and/or specific information carried by 
each data block [31–33]. Sequential methods such as 
Sequential-Orthogonalized Partial Least Squares (SO-PLS) [23] or 
Response-Oriented Sequential Alternation (ROSA) [34] extract 
non-redundant information, most salient for prediction, from each 

different data block analyzed. 
In a preliminary study involving a continuous styrenic polymer 

production plant, the authors evaluated the predictive performances of 
MB-PLS and ROSA methods, and ROSA gave reliable prediction models, 
exhibiting solid predictive performance and offering a transparent un-
derstanding of the impact of each block on the results [35]. 

However, continuous processes carried out in industrial scale plants 
can be extremely complex not only because of their numerous sensors of 
different nature, but also because different products can be manufac-
tured in the same production line at different times, by changing oper-
ational conditions and formulations without interrupting production. In 
such instances, the plant requires time to adapt to the new conditions, 
often resulting in the production of non-compliant products. As well as 
the distinct features of each product introduce additional sources of 
variance which may lower the prediction performance of the model, as 
well as because a consistently different range of the parameters to be 
predicted can take place. On the other hand, computing a separate 
prediction model for each product type would not be efficient. For 
instance, attempting to predict the quality of a product that has not been 
produced for a significant period might lead to inaccuracies due to the 
lack of process evolution information over time. In this scenario, local 
regression methods can help in improving the model robustness, as they 
focus on creating models that adapt to the local characteristics of the 
data rather than assuming a global relationship, considering information 
regarding the process evolution at the same time. This allows for a more 
flexible and nuanced representation of complex patterns [36]. 
Notwithstanding, to the authors’ knowledge, a method that integrates 
multivariate local regression with a multiblock approach has not been 
proposed yet. 

Hence, in the present work, we afford to build a single real-time 
predictive model, for a new campaign, from the same styrenic produc-
tion plant, encompassing two production years, and data collected on 
several different products produced within the same production line/ 
campaign without interruptions. To this aim, we developed a novel 
multiblock extension of the local regression method Locally-Weighted- 
PartialLeast Squares (LW-PLS) [36], namely Locally-Weighted Multi-
block Partial Least Squares (LW-MB-PLS). The prediction capability of 
this method has been evaluated and compared to the one obtained with 
ROSA and Multiblock Partial Least Squares (MB-PLS). This process 
constitutes an ideal benchmark for developing real-time predictions at 
plant scale, showing the features highlighted above, i.e. a high number 
of diverse process sensors together with four NIR probes, so that the 
resulting data, also split according to the different sections of the plant, 
led to diverse data blocks, together with smooth formulation transition 
to make several different products. 

Fig. 1. Schematic representation of the ABS production line. The green blocks represent the six different sections into which the PS have been divided, whereas the 
gray bars and the red arrows represent the positions where the four on-line NIR probes were placed. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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2. Materials and methods 

2.1. Process and sampling 

The data collection was conducted in an Acrylonitrile Butadiene 
Styrene-(ABS) full scale industrial production plant, which operates in 
continuous, owned by Versalis company (ENI group). The process in-
volves the production of nine different ABS types, which slightly differ in 
formulation and/or operative conditions. These products will be 
referred to as “product 1–9”. The process can be described by consid-
ering six different sections, as shown in Fig. 1. In the first one, called 
“PRE REACTION”, the monomers, namely styrene, butadiene and 
acrylonitrile, are mixed together. In the following three called “REAC-
TION 1”, “REACTION 2” and “REACTION 3”, the monomers react, 
starting to form ABS polymer. In the last two sections, indicated as 
“DEVO” and “END”, take place the removal of the residual monomers 
and the cut of the final product, respectively. In each section between 5 
and 30 Process Sensors (PS) that measure temperatures, flow rates, 
pressures, and motor speeds are installed, for a total of 118 sensors. 
Furthermore, along the process line, four NIR probes are also installed. 
The first two, referred to as “NIR PRE-1” and “NIR PRE-2”, are placed at 
the beginning and at the end of PRE REACTION section, before the 
occurrence of the reaction, to monitor the reagents before and after their 
mixture. The third NIR probe is located between REACTION 1 and RE-
ACTION 2 sections, to inspect the state of the reaction. Finally, a fourth 
NIR probe is placed in the END section, at the very end of the process, 
just before the product is cut. A schematic representation of the pro-
duction line is displayed in Fig. 1. 

In the current work were considered and analyzed process and NIR 
sensor data acquired on-line from this plant in the period January 2020 
to April 2022, as well as quality data collected off-line and analyzed by 
the company laboratory in the same period. 

2.2. ABS quality parameters 

Due to confidentiality agreements with the company, the specific 
names of the two distinct ABS quality parameters considered in this 
study will remain undisclosed, and they will be denoted as “Quality 
Parameter 1” (QP1) and “Quality Parameter 2” (QP2). QP1 and QP2 are 
evaluated through offline analyses of ABS samples, specifically, the final 
product. This is done three times a day for QP1 and two times a day for 
QP2. QP1 and QP2 provide insights into the physical attributes of the 
product. The first one provides information about the fluid dynamic 
behaviour of the polymer, with the corresponding reference values 
expressed in grams, whereas QP2 determines the resistance of the 
product to impacts, and it is expressed in Joule. The company estab-
lished upper and lower threshold values for both parameters for every 
ABS product. If either of these values falls outside the specified limits, 
the end product is deemed to be of lower quality and will be sold at a 
reduced price. Throughout the duration of this study, a total of 2184 
tests were conducted, evenly distributed over time, to assess QP1, while 
1349 tests were carried out for QP2. The values for QP1 ranged from 1.6 
to 11.1 g (the values have been transformed with logarithm as a pre-
processing during model calculation), while QP2 values spanned from 
4.1 to 38.9 J. 

2.3. NIR measurements 

Spectra were collected on-line from the four distinct acquisition 
points using a Matrix FT-NIR spectrometer (Bruker Optics, Milan, Italy). 
The instrument was equipped with optical fibers (length of 100 m and a 
diameter of 600 μm). These fibers were linked directly to the acquisition 
sites on the process pipe through HT immersion probes (Drawing-no. 
661.2350_1, Hellma GmbH and Co. KG, Müllheim, Germany). The 
acquisition was conducted in transmission mode, spanning the spectral 
range of 12,500 to 4000 cm− 1, with a nominal resolution of 4 cm− 1 (64 

scans per sample). 

2.4. Data analysis 

The collected data was organized into ten different data blocks, 
categorized based on data type and the acquisition area in the process. 
Specifically, PS measurements were arranged into five data blocks, each 
corresponding to a specific area of the plant. On the other hand, NIR 
spectra were divided into four blocks, each associated with a single 
optical probe. Fig. 1 provides the names and abbreviations (which will 
be used henceforth) of all the blocks, along with their respective posi-
tions within the plant. This also serves as an indication of their temporal 
sequence, given the continuous nature of the process. 

2.4.1. Data synchronization 
For each applied multiblock technique, the data blocks used for the 

analysis were constructed following the chronological progression of the 
ABS production process, considering the placement of the various sen-
sors throughout the production line. In simpler terms, each data point 
within the datasets corresponds to information gathered at distinct time 
points, yet it is accurately associated with the same processed material, 
ensuring data synchronization. The time delay between the various 
plant sections, indicating the duration for the same material to transfer 
from one section to another, has been determined using the flow rate 
values derived from the pumps installed throughout the plant. These 
specific PS provide information on the material flow (in kg h− 1) passing 
through a reactor or tank. With knowledge of their volumes and the 
assurance that they are consistently full, it becomes feasible to approx-
imate the time required for the material to traverse from one section to 
another. 

2.4.2. Single block data preprocessing 
Each data block underwent distinct preprocessing. Specifically, 

autoscaling was applied to each PS data block in order to make all the 
variables to have unit variance, considering their different nature and 
scales. While, in each NIR data block, spectra were cut in order to 
consider only the spectral range from 6500 to 5000 cm− 1, which dis-
plays spectral bands attributable to either reactants or products, and 
then treated with Standard Normal Variate (SNV) for the analysis of QP1 
and with Savitzky-Golay First Derivative (1D) using a 15 points window 
for the analysis of QP2. 

2.4.3. Multiblock methods 
To create predictive models for the two parameters under consider-

ation in this study and to evaluate which data blocks are most crucial for 
their estimation, two multiblock methods were examined, i.e. Response- 
Oriented Sequential Alternation (ROSA) and a newly developed multi-
block implementation of Locally Weighted Partial Least Squares 
regression (LW-MB-PLS), which will be described in the following sec-
tions. The results of the latter were also compared with MB-PLS. 

2.4.3.1. Response-Oriented Sequential Alternation. Response-Oriented 
Sequential Alternation (ROSA) is a multiblock regression approach 
introduced by Liland et al. [34], based on Partial Least Squares (PLS) 
regression. ROSA operates as a sequential algorithm, computing a PLS 
component at time from a single block, in this way the method is 
invariant to block-scaling (blocks are just mean-centered) distinguishing 
it from multiblock PLS (MB-PLS), and also to block ordering, dis-
tinguishing it from other sequential multiblock methods such as 
Sequential Orthogonal-PLS [23]. These characteristics enable ROSA to 
handle numerous blocks of varying dimensions. Additionally, ROSA 
boasts high computational efficiency. In fact, it bypasses the need for 
iterative convergence in optimizing criteria, and it only deflates the 
response variable rather than all the blocks. 

Specifically, each PLS component is selected from a single block, 
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choosing the block which gives a single PLS component with the smallest 
prediction residuals with respect to the other candidate blocks. Subse-
quent components are constrained to be orthogonal to the subspace 
spanned by the previously selected components, ensuring orthogonality 
in scores and loadings. 

The main steps of the ROSA algorithm are described by the following 
equations:  

wb = Xb
T* y                                                                                   (1)  

tb = Xb * wb/norm(Xb * wb)                                                          (2)  

rb = y - tb (tb
Ty)                                                                             (3) 

where Xb represents a single data block, and wb, tb, and rb denote block 
weights, scores, and residuals, respectively. The first component, or 
Latent Variable (LV), is chosen from the bth-block, resulting in the 
smallest residuals (rb). The scores (t1) are set equal to the tb of the 
victorious block. The corresponding weights and scores are subse-
quently normalized and orthogonalized with respect to the preceding 
LVs, beginning from the second LV onwards. The y-loadings (q) are then 
calculated according to Equation (4):  

qa = yT ta                                                                                      (4) 

ta are the previously selected scores for the ath LV. For the calculation of 
subsequent LVs, steps 1 to 4 are repeated updating y with y-residual 
relative to the winning block (rb_winning). 

The X-loadings (P) and PLS regression coefficients (b) (potentially 
including a constant term b0) can be computed using equations (5)–(7), 
once the optimal number of LVs has been determined, and the corre-
sponding scores, weights and y-loadings are gathered in matrices T, W, 
and q.  

P = XT T                                                                                       (5)  

b = W(PTW)− 1q                                                                            (6)  

b0 = ym-xm*b                                                                                (7) 

Here, xm is a vector containing the mean of every variable of X, whereas 
ym is the mean of y. In ROSA, every chosen LV carries information 
exclusively from the winning bth-block (the one with the smallest re-
siduals as per equation (3)), and all LVs are orthogonal. It is crucial to 
emphasize that all blocks are always considered as candidates at every 
step of the algorithm. Consequently, successive LVs may contain infor-
mation from the same previously chosen block or from a different one. 

2.4.3.1.1. Selection of model dimensionality. To determine the 
model’s complexity, i.e. the number of PLS components, venetian blinds 
cross-validation with ten cancellation groups was employed. Cross- 
validation has been implemented by applying the same samples split-
ting to each block, prior to single block preprocessing. 

2.4.3.2. Locally Weighted Multiblock Partial Least Square regression (LW- 
MB-PLS). The Locally Weighted Partial Least Squares (LW-PLS) method 
[36,37] is an extension of PLS designed to provide accurate predictions 
even in the presence of complex data structures, such as clusters and 
non-linear relationships [37–39] between independent variables (X) and 
dependent variables (Y). In this study, we employed a K-Nearest 
Neighbors Locally Weighted (KNN-LW) [36] strategy. For a single data 
set (only one block) this involves selecting from the calibration set the k 
nearest neighbors to each new observation to be predicted. These 
neighbors are then weighted based on a function [36] that considers a 
dissimilarity (di), measure, e.g. using metrics like the Euclidean distance 
or Mahalanobis distance, between the selected k neighbors and the 
observation to be predicted. The weight function f(di) is defined as:  

f(di) = exp(-di*/(h*σ(d*))                                                              (8) 

where di * represents the normalized dissimilarity of the ith neighbor 

(among the k nearest), σ(d*) is the standard deviation of the vector d* 
(holding the dissimilarity values of all the k nearest neighbor) and h is a 
parameter influencing the shape of the weighting function f. A higher 
value of h reduces the impact of dissimilarity on the weights. Once the 
weights are determined, a local PLS model is then calculated, where to 
each neighboring calibration sample is assigned a different weight ac-
cording to equation (8). Both X and Y are mean-centered, and, similarly 
to standard PLS, the XY covariance between X-scores and Y-scores is 
maximized, as well the scores of different components are constrained to 
be orthogonal. The locally weighted PLS model can be expressed by the 
equations:  

Cov(ta,ua) = ta
TDua                                                                        (9)  

ta
TDtk=uaDuk = 0 for a∕=k                                                            (10) 

Where ta and ua are the X-scores and Y-scores vectors for the ath LV, 
respectively, whereas the D matrix holds the local weights for each 
sample. In terms of regression modeling, the predictions for new samples 

( ̂̂Y ) are obtained using the equation ̂̂Y = XB, where B holds the 
regression coefficients. 

We propose in this work a straightforward implementation to extend 
this locally weighted approach to the multiblock case, i.e. the develop-
ment of Locally Weighted Multiblock Partial Least Square regression 
(LW-MB-PLS), maintaining the core of both methods and computational 
efficiency. The proposed algorithm first performs a low-level data fusion 
of all blocks by concatenation and applying block scaling. This ensures 
that a single block of data does not dominate the others solely due to a 
larger number of variables. Then, the locally weighting scheme is 
applied to the fused data set. This ensures a unique set of neighbors for 
each new sample to be predicted, and a single set of weights to be 
optimized by tuning the h parameter. A possible counter side of this 
unique selection could be that, hypothetically, if the neighbors, for a 
given sample, were calculated independently for each block of data, they 
could not necessarily be the same and thus this might result in a sub- 
optimal local model. However, we are convinced that the optimization 
of both the weights and the number of neighbors can compensate for 
that providing good predictive performance while maintaining a simpler 
model. 

2.4.3.2.1. Tuning of model parameters. The various parameters, such 
as the number of latent variables (a), the number of nearest neighbors 
(k), and the shape factor (h), were optimized through Cross-Validation. 
The set of values explored for each parameter are reported in Table 1, 
and all possible combinations were tested. The optimal values were then 
established by inspection of the corresponding Mage plot [32]. This plot 
is employed to identify the optimal combination of factors (i.e., those 
yielding the lowest prediction error) for the input blocks [40]. 

2.4.3.2.2. Evaluating the block salience. To assess the contribution of 
each block to the LW-MB-PLS model, analogously to what proposed by 
Westerhuis et al. [28] we calculated the explained variance for each 
block. In addition, VIP values for each block (VIPb) were obtained by 
summing the VIP values of the variables belonging to the block. In this 
case for VIPb a significance threshold equal to the number of variables in 
a block was used, considering the threshold of one usually set for each 
single variable. However, since a specific model is used for each sample 
to be predicted, both parameters attain a different value per block and 
sample, allowing studying if and how the local models vary when 
different grade products are considered. 

Table 1 
Parameters considered for optimization in Cross-Validation with their respective 
tested values.  

Parameter Values 

Number of LVs (a) 1, 2, 3, 4, 5 
Number of nearest neighbors (k) 100, 200, 300, 400, 500, 600 
Shape factor (h) 0.1, 0.2, 0.5, 1, 2, 4  
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2.4.3.3. Model building. The data at hand was first split into calibration 
and validation sets for both QP1 and QP2. To evaluate the models under 
conditions simulating real-time application, the validation set was 
constituted of observation pertaining to production period successive to 
the calibration one. However, as explained in the following, two distinct 
time windows were considered to take into account that instrumentation 
maintenance occurred soon after the 2021 summer stop. Hence, the 
calibration sets consisted of data gathered from January 11th, 2020 to 
January 23rd, 2021 and from September 22nd to February 6th, 2022 
(approximately 70 % of the total data), whereas the validation sets 
encompassed data from January 24th, 2021 to June 8th, 2021 and from 
February 7th, 2022 to April 30th, 2022. Furthermore, it should be noted 
that the plant was not operational from June 9th to July 24th, 2020, and 
from June 9th to September 22nd. Consequently, no data was recorded 
during these periods. The data partitioning into calibration and valida-
tion sets was performed in this way because after the summer 2021 
production stop, the source of the NIR spectrometer was changed. 

The preprocessing applied to the different NIR data blocks have been 
described in section 2.3, whereas to each PS block was applied 
autoscaling, as explained in section 2.4. 

In the case of QP1 models, the PS blocks DEVO and END were treated 
as a combined block (DEVO-END). This decision stemmed from the fact 
that the plant experts were primarily concerned with understanding 
how PS affects QP1 values in the final stages of the process. Determining 
the individual significance of DEVO or END areas for predicting this 
parameter was neither useful nor meaningful. Consequently, QP1 
models only incorporated nine blocks. 

However, for QP2, all ten original blocks were retained, as in this 
scenario, maintaining the final PS blocks as distinct entities can offer 
valuable insights. Moreover, in the case of QP2 models, data pertaining 
to product type 9 was excluded. The choice was motivated by the lower 
production entity of this specific product and the significantly higher 
QP2 values observed in comparison to all others, making the resulting 
models less effective. 

The reliability of the predictive models was assessed using the root 
mean square error in prediction (RMSEP) as well as compared with the 
root mean square error in cross-validation (RMSECV). The CV-ANOVA 
[41] approach was employed to assess which are the models that give 
significantly different RMSECV and RMSEP. This was carried out by two 
approaches: i) comparing models obtained using the same technique but 
computed with different blocks used for model building, and ii) 
comparing models obtained using different techniques but computed 
with the same blocks used for model building. This approach allowed for 
the investigation of the significance of both the prediction method uti-
lized and the different starting data blocks employed. 

For ROSA method, the importance of each variable within a block 

was evaluated by inspecting the PLS regression coefficients and the 
Variable Importance in Prediction (VIP) values [42,43]. For what con-
cerns LW-MB-PLS block explained variance and VIP block values were 
employed to assess the influence of each block in the ultimate predictive 
model. Although PLS weights were also examined, the associated figures 
are omitted for brevity, as the insights gleaned from them were com-
parable to those obtained from the regression coefficients. 

2.5. Software 

The chemometric analyses were conducted utilizing routines and 
toolboxes integrated into the MATLAB environment (the Mathworks 
Inc., Natick, MA, USA). 

The ROSA method, including options for venetian blind cross- 
validation, VIP calculation, and validation sample response prediction, 
was implemented by the authors in MATLAB based on the code outlined 
in Ref. [34]. 

The LW-MB-PLS algorithm was developed and implemented in 
MATLAB by the authors starting from the code provided in Ref. [36]. 

3. Results and discussion 

The following sections present the outcomes of the prediction models 
generated using both ROSA and LW-MB-PLS methods, utilizing different 
number of blocks, following the process timeline. Initially, ROSA results 
will be examined, followed by the LW-MB-PLS results. The concluding 
section will offer a comparative analysis of the two methods. 

3.1. ROSA results 

The first ROSA prediction models were built involving all the 
available blocks (9 for QP1 and 10 for QP2). After inspecting the 
RMSECV values (the maximum number of explored LVs was 20), 13 LV 
for QP1 model and 11 LVs for QP2 were selected. As described in section 
2.4.3.1, ROSA algorithm selects a winning block for each LV, in this case 
providing information on which are the most influent sections of the 
plant for the prediction of the parameters under study. 

A weakness of ROSA is that it uses the global minimum of residuals to 
select a “winner block” for each component, while there may be other 
blocks with residuals that are not statistically significantly different. To 
investigate this issue, we performed a trial on the ROSA model with all 
blocks by forcing a different block selection for the first component, 
selecting in turn each of the blocks with equivalent residuals. As shown 
in Fig. S1 of Supplementary Material, none of these alternative models 
was significantly better in term of RMSEP, while some were worse. 
However, the choice of the first block influences which blocks enter the 

Fig. 2. ROSA model (using all the available blocks) for QP2 prediction. The winning block selected for each LVs is shown in correspondence of the component 
number. The left bar reports the time order of the blocks along the process. 
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model at later components and the number of components giving the 
lowest RMSECV. Finding an algorithmic solution to improve this aspect 
will be the objective of a dedicated work. 

In Fig. 2 is reported the number of times and the order in which the 
blocks have been selected by the algorithm for each consecutive LV in 
the case of QP2 model building. It can be observed how the most picked 
block is END, a predictable outcome since in that area the product can be 
considered complete. Furthermore, DEVO has been chosen two times, 
hence the PS blocks ascribable to the final part of the plant have been 
selected six times out of eleven components. Nonetheless, the first 
selected block is REACTION 3, selected again for the fifth LV, proving 
that information retained by sensors in that specific area of the process 
are important to predict QP2 values. A similar observation applies to the 
REACTION 1 sensors, which analyze a product that is far from being 
completed, highlighting that even sensors operating in the early stages 
offer valuable insights. It can be also easily observed how there is only 
one NIR among the winning block, that is NIR END, indicating that the 
NIR spectra collected at the very end of the process, referring to an 
almost finished product, carry information on the specific QP2 quality 

parameter, which cannot be gathered by NIR spectra acquired at earlier 
production phases. 

This model yielded a RMSEP of 2.04 J, and Fig. 3a shows a uniform 
distribution of predictions for the objects in the validation set, all falling 
within the expected range of QP2. In Fig. 3b the same plot is colored 
according to the eight different ABS products, highlighting how each 
product covers a specific part of QP2 range values. For instance, prod-
ucts 2 and 8 presents QP2 values around 10 J, whereas product 6 shows 
only QP2 values higher than 25. On the other hand, product 3 is the most 
produced one and its values fall between 15 and 25 J. Product 1 presents 
few samples scattered all around the QP2 range. Actually, this product 
serves as intermediate between the productions of other two ABS 
products that requires a change in formulation and/or in plant settings. 
Consequently, during a specific time frame, the ABS produced may be 
labeled as a different product, but it is anticipated that results for this 
product will be somewhat unstable. 

Section 3.3 is devoted to a thorough comparison of ROSA and LW- 
MB-PLS results, anyhow it is anticipated that the corresponding LW- 
MB-PLS model using all available data blocks show equal performance 

Fig. 3. Plots of predicted vs measured values of QP2 obtained by the ROSA model using all the available blocks. In (a) Samples are colored according to calibration 
(gray) and validation (black) and in (b) according to ABS product type. 

Fig. 4. Regression coefficients for REACTION 1 (a), REACTION 3 (b), DEVO (c), END (d) and NIR END (e). The red diamonds indicate variables with VIP scores 
exceeding one. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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in terms of RMSEP (Table 3 and Table S1 of Supplementary Material) 
while showing less systematic deviations for product 2 and 5 (Fig. S2 of 
Supplementary Material). 

In Fig. 4a to e are displayed the PLS regression coefficients linked to 
the five blocks selected by ROSA. The red diamonds indicate variables 
with VIP scores exceeding one, and it’s noticeable that nearly all the PS 
present in each block reach it, except for a few sensors in the Reaction 1 
block (Fig. 4a, variables number 4, 15,16) and in the DEVO block 
(Fig. 4c, variables number 2, 6, 8, 10, 13, 18–23, 26, 27, 30). On the 
other hand, no wavelengths show VIP scores higher than one (Fig. 4e), 
suggesting that the NIR contribution for the prediction of QP2 is lower 
than the one provided by PS blocks. The specific names of the PS must 
remain undisclosed in compliance with the confidentiality agreement 
with the company. However, the type of sensor can be disclosed, it is 
evident that, for the two PS blocks, namely REACTION 1 and REACTION 
3 (Fig. 4a and b, respectively), temperature sensors (number 1, 14 in 
Fig. 4a, 3 and 5, 6, 7, 8 in Fig. 4b) exhibited notably higher regression 
coefficients compared to others. Similarly, in DEVO and END blocks 
(Fig. 4c and d, respectively), pressure sensors (number 1, 4, 14 in Fig. 4c 
and 19 in Fig. 4d) and temperature sensors (number 3, 9, 16, 24 in 
Fig. 4c, 23 and 24 in Fig. 4d) displayed elevated regression coefficient 
values. In general, variables that show VIP scores higher than one, but 
low regression coefficient absolute values are influent just for few LVs, 
meaning that overall their influence is not highly significant. This in-
formation may allow the plant operators to understand which are the 
specific critical sensors of the plant to keep monitored in order to obtain 
a final product inside its threshold limits for QP2. In fact, an uncon-
trolled variation of one of these sensors could heavily influence the 
quality of the final product. 

For the sake of brevity, results obtained by ROSA using all blocks on 
QP1 are not displayed, but similar results have been obtained. In this 
case, 13 LVs, according to minimum RMSECV, were used to build the 

model, obtaining an RMSEP of 0.74 g, and the algorithm selected no NIR 
blocks. On the other hand, the DEVO-END block resulted winner 10 
times out of 13, meaning that the estimation of QP1 strongly relies on 
the PS data at the end of the process. The other selected blocks were 
REACTION 2 (1 time, fifth LV) and REACTION 3 (2 times, first and tenth 
LVs). 

While the current results are already promising in terms of prediction 
performance, two further aspects warrant exploration: firstly, the po-
tential to achieve reasonably accurate QP1 and QP2 predictions before 
the product is complete. In particular, company was interested in testing 
prediction models without relying on late-stage sensors, namely RE-
ACTION 2, REACTION 3, DEVO, END and NIR END. Secondly, whether 
relying solely on spectral or process sensors could suffice for a reliable 
estimation of this quality parameter. In pursuit of this, in addition to the 
comprehensive dataset encompassing all blocks, different ROSA models 
were constructed using different datasets assembled as follow: 
comprising only the blocks preceding the END zone; exclusively PS data; 
and exclusively NIR data (both with and without the spectra contained 
in the NIR-END block). The models built in this manner and their 
respective outcomes are presented in Table 2. 

The models that presented the best performance prediction in terms 
of RMSEP are the ones which starts with all the available blocks, and 
lowering the number of blocks generally increase the prediction error 
significantly (p < 0.05). This is an expected result, as more information 
is available and especially that related to the almost finished product, it 
is possible to observe that for QP1 the data blocks related to NIR are 
always systematically discarded, whereas for QP2 the NIR REACTION 
and the NIR END blocks are selected at least one time. To confirm that, 
the models built starting only with NIR blocks lead to the worst results. 
These findings can be understood in the context that QP1 and QP2 are 
not strictly correlated with the chemical composition of ABS. Instead, it 
assesses the performance of the end-product through mechanical and 
physical tests. As a result, these product quality parameters are more 
susceptible to variations occurring during processing, which may 
introduce substantial changes even if the chemical composition remains 
constant. In general, RMSEP values for models that excluded blocks 
associated with the final stages of the process were found to be higher, 
although still deemed acceptable by process operators. This clearly 
demonstrates the feasibility of obtaining reasonable estimates for both 
QP1 and QP2 values before the ABS production process reaches 
completion. Consequently, two potential approaches emerge for the 
real-time prediction and control of QP1 and QP2: 1) leveraging both 
types of data to gain a more precise understanding of crucial process 
areas and sensors throughout the production plant; or 2) exclusively 
utilizing PS data for more streamlined data management and to mitigate 
the impact of noise in the data. Both approaches are extremely relevant 
for the company. On one hand, it is crucial to obtain accurate predictions 
of the quality parameters in order to significantly reduce the off-line 
analyses, saving workforce and reducing wastes. On the other hand, 
simplifying the data management is equally important in order to make 
the interpretation of the results more accessible to all the plant 
operators. 

3.2. LW-MB-PLS results 

The data analysis using the LW-MB-PLS method followed the same 
workflow as that employed with the ROSA method. The first inspected 
model was the one built with all the available blocks and, in this case, 
results obtained using QP1 as Y are described. Fig. 5a shows the Måge 
plot used to assess which is the combination of h and k parameters that 
provided the lowest RMSECV for a specific LV. Combinations that pro-
vided very high RMSECV values were not included in order to improve 
the figure clarity. It emerges that on the Pareto front are present only 
combinations with h spanning the higher values tested (1–4) while 
almost all k values are present (except the smallest value of 100) and 
there is not an interaction between h and k (similar low RMSECV values 

Table 2 
Results obtained by applying ROSA.  

Blocks used for model buildinga LVs RMSECV (g) RMSEP (g) 

QP1 
NP1,PR,NP2,R1,NR,R2,R3,DE,NEb 13 0.55a 0.74a 

NP1,PR,NP2,R1,NR,R2,R3 6 0.72b 0.81b 

NP1,PR,NP2,R1,NR,R2 10 0.75bc 0.83bc 

NP1,PR,NP2,R1,NR 8 0.83c 0.86cd 

PR,R1,R2,R3,DE 13 0.55a 0.74a 

PR,R1,R2,R3 6 0.72b 0.81b 

PR,R1,R2 10 0.74bc 0.85cd 

PR,R1 8 0.83c 0.86cd 

NP1,NP2,NR,NE 11 0.84c 0.89d 

NP1,NP2,NR 7 1d 1.19e 

NP1,NP2 6 1.12e 1.27f 

Blocks used for model buildinga LVs RMSECV (J) RMSEP (J) 
QP2 
NP1,PR,NP2,R1,NR,R2,R3,D,E,NE 11 1.62a 2.04a 

NP1,PR,NP2,R1,NR,R2,R3,D 9 1.82b 2.46b 

NP1,PR,NP2,R1,NR,R2,R3 7 1.92bc 2.62b 

NP1,PR,NP2,R1,NR,R2 8 2.04c 3.52d 

NP1,PR,NP2,R1,NR 11 2.11c 3.93e 

PR,R1,R2,R3,D,E 13 1.67ab 2.06a 

PR,R1,R2,R3,D 12 1.75ab 2.12a 

PR,R1,R2,R3 12 1.85b 2.67b 

PR,R1,R2 13 2.25d 2.69b 

PR,R1 13 2.33d 3.25c 

NP1,NP2,NR,NE 12 1.59a 2.57b 

NP1,NP2,NR 10 2.18cd 3.28c 

NP1,NP2 11 2.45e 3.4cd 

In a column, values with the same letter are not statistically different between 
each other (p > 0.05). 

a Block names in bold indicate which blocks have been selected by ROSA. 
b D = DEVO, DE = DEVO-END, E = END, NE=NIR END, NP1––NIR PRE 1, 

NP2––NIR PRE 2, NR––NIR REACTION, PR=PRE REACTION, R1=REACTION 1, 
R2=REACTION 2, R3=REACTION 3 
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Fig. 5. (A) Måge plot for the LW-MB-PLS QP1 model. The point label report first the value of h, then that of k. The points on the Pareto front have labels in bold; (b) 
QP1 values vs time, colored by ABS product. Circles refer to calibration samples, whereas triangles refer to validation samples. The samples represented by the filled 
circles denote the selected neighbors to build the predictive model for the sample depicted by the black triangle (which belong to Product 6 type). Non-filled symbols 
represent samples that have not been selected by the model as neighbors. 

Fig. 6. Time evolution of the measured (colored filled squares) and predicted values (black non-filled circles) of QP1 for the January–June 2021 validation period. 
The predictions were obtained by means of the LW-MB-PLS model that employed all the available data blocks. Blue and red dashed lines represent the warning 
thresholds and the actual low-quality threshold, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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are attained either by small or high k notwithstanding which value of h). 
The most influential parameter is the number of LVs, in fact there is a 
clear error increase after 3 LV. Among the combinations attaining a 
similar RMSECV value, the more parsimonious one, in term of both 
number of LVs and neighbors, was selected. The minimum RMSECV 
corresponds to the following settings: one LV, 300 neighbors (k) and an h 
value of 1. 

Moreover, the neighbors selected by the algorithm using the 
Euclidean distance in PCA space for a given sample (exploring several 
different samples) were inspected to assess if the neighborhood included 
samples that shares the same type of product or products with similar 
QP1 values. As an example, in Fig. 5b is displayed a plot of all the QP1 
values obtained in the lab (reference method) versus production time, 
where the 300 neighbors of validation sample number 544 (black filled 
triangle of March 7, 2022) are represented by the filled circles. It is 
noticeable that a significant portion of the samples chosen by the algo-
rithm as neighbors belongs to the same ABS product category as the 
sample to be predicted. In the same way, the majority of QP1 values 
align closely with the QP1 value exhibited by the sample to be predicted. 
This means that the chosen sample is predicted using almost only sam-
ples similar to it, without considering very different samples that could 

negatively influence the prediction performances. 
The model obtained this way presented a RMSEP of 0.75 g. The 

prediction trend can be observed Fig. 6. Here, the predicted values of 
QP1 obtained by the LW-MB-PLS model using all available blocks are 
represented by the black non-filled circles squares, whereas the filled 
squares colored according to the different product types represent the 
QP1 reference values obtained from the off-line laboratory analysis. The 
Figure specifically displays data from January to June 2021, which 
corresponds to data included in the validation set. The model’s predicted 
values cover a range very close to that of the validation set, following the 
production changes. Indeed, even in the event of a formulation alter-
ation or a shift in plant operational parameters, the model nicely tracks 
the trend in predictions. Blue and red dashed lines represent the two 
thresholds set by the company to assess if a product is under specifica-
tion or not. Specifically, blue line represents a warning value, where the 
product is still considered of high quality but close to the out of specific 
threshold represented by the red line. Obviously, these thresholds vary 
according to the different ABS products. The predictions follow the trend 
of the reference analysis when they fall above the thresholds, even if 
sometimes it seems that the model underestimates some of these values. 

For comparative purposes, analogously to Fig. 6, Fig. S3 

Fig. 7. The results shown refer to validation and prediction sets, i.e. covering the whole production time, for QP1. Explained variance for each block (a) and block 
VIPs (b) related to the LW-MB-PLS model built with all the available data blocks; values are shown in coded color according to the color bar. Colored lines at the top 
and the bottom of the figure indicate the product grade, whereas the dashed black lines indicate a product change. On the right of the figures, for comparison, are 
shown the results of the MB-PLS model computed with the same blocks. In (b), dark gray areas indicate a significant VIP value for the specific block. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(Supplementary Material) show the prediction versus time for QP1 ob-
tained by the ROSA model when all available blocks are considered for 
model building. The general trend is similar, however for some products 
and time periods there is evidence of systematic errors, even if the entity 
is inside the warning thresholds, hence acceptable. The only exception is 
in April where the product 3 sample which is far above the thresholds is 
well predicted by LW-MB-PLS (Fig. 6) and not by ROSA (Fig. S3). 

3.2.1. Role of the single block in the local models used for predictions 
Fig. 7a and b represent the explained variance for each block and 

block VIPs of the inspected model (i.e. QP1, all available block), 
respectively. At the top and bottom edge of the figures there is a line 
colored according to each product, while the dashed black lines indicate 
a product change. The samples shown are order per production time and 
comprise both validation and prediction sets (before and after the pro-
duction stop). The right part of the figures also shows, for comparison, 
the explained variance per block from the MB-PLS model computed with 
the same blocks. In general, comparing the figures, it can be noticed that 
in the LW-MB-PLS model there is a certain consistency between the VIP 
values, or the explained block variance, for the same type of product. 
Therefore, depending on the product, the blocks relevance changes (e.g., 
for products 2, red, block NE is contributing to the model, explained 
variance above 70 %, while for product 3, yellow, it is not), and some-
times also for the same product with time (i.e. block R1 and NR are much 
contributing for product 8 in the time period June 2022 (about 500 as 
sample number in Fig. 7a) while not in late May 2021 (about 400 as 
sample number in Fig. 7a). Noteworthy, between the two time periods 
the production stop took place. In addition, considering the VIP values, 
although the NIR blocks contribute a lot to the model for some products/ 

periods, for the same products/periods the VIPs are below the signifi-
cance threshold, which means that these blocks contribute to compo-
nents that explain a small percentage of QP1. This is consistent with the 
fact that ROSA does not select them. 

Also in this case, different models were calculated considering 
different combinations of data blocks. However, the results will be 
summarized in the next section for a comparison with the ones obtained 
by ROSA. 

3.3. Comparison between the multiblock methods 

The results obtained with LW-MB-PLS are summarized in Table 3. As 
in the case of ROSA method, the models that exhibited the most accurate 
predictive performance in terms of RMSEP are those computed with all 
available blocks, and reducing the number of blocks tends to increase 
the prediction error significantly (p < 0.05) for both QP1 and QP2, 
except for QP1 when the excluded blocks are the NIR ones (i.e. the 
models holding all process sensors blocks and all but the last DE, have 
same performance). Thus confirming that these are not relevant for 
predicting QP1. In general, the same consideration done in section 3.1 
can be confirmed here. Table 3 also shows the results obtained with 
standard MB-PLS, which in most cases show higher RMSEP values than 
those obtained with LW-MB-PLS. 

The differences among predictive performance for the three 
methods, ROSA, LW-MB-PLS and MB-PLS, were evaluated according to 
ANOVA conducted by considering the error in prediction, as detailed in 
section 2.4.3.3. The results are shown in Table S1 of Supplementary 
Materials. Generally, MB-PLS shows significantly worse prediction per-
formances than the other two methods in almost any case (i.e. blocks 
used for model building), with few exceptions where it performs equally 
to LW-MB-PLS. In the case of QP1 it is observable how ROSA and LW- 
MB-PLS demonstrate similar performance mostly when NIR blocks are 
not present in the considered blocks for model building. On the other 
hand, when NIR data are present together with process sensor data, LW- 
MB-PLS provides significantly higher RMSEP values than ROSA, which 
does not select the NIR blocks (or select just one of them). Thus, con-
firming that NIR blocks are not important for predicting QP1, and could 
add noise in the model, the only exception is the LW-MB-PLS model built 
with all available blocks whose performance does not differ from ROSA. 
When only NIR blocks are given to build the model again ROSA performs 
better when it selects only few of them, while performs equally when it 
selects all of them. Concerning QP2, for which NIR data are generally 
useful for improving the predictions, ROSA performs better when NIR 
blocks are involved as model building blocks (the only exception also in 
this case being when all blocks are available). LW-MB-PLS gives equal or 
better performance when only process sensors are involved (the only 
exception is when only the first two, PR and R1, are considered). In 
general, ROSA performs better when noisy blocks are present because it 
can select only few of the blocks and only non-redundant information. 
However, authors observed that for some ABS products LW-MB-PLS 
helped in decreasing a systematic error in prediction that in ROSA was 
quite evident. 

This can be appreciated by looking at Fig. 8a and b, where the final 
portion of the validation period corresponding to February–April 2022 
for QP1 is reported. Here, the adoption of LW-MB-PLS reduced the 
model bias, making the prediction trend more accurate. The mean pre-
diction error is equal or slightly lower for ROSA, meaning that LW-MB- 
PLS outperforms ROSA for the prediction of certain products, such as 
product 3 in the figure, but for other ABS products the performances are 
worse. 

In conclusion, a first general remark is that ROSA and LW-MB-PLS 
are based on different methodology. LW-MBPLS, being based on 
MBPLS, does not provide a clear extraction of the common and 
distinctive information retrievable from each blocks, since block 
importance is evaluated only in term of block weights in the final model. 
On the other hand, ROSA aims at retrieving unique complementary 

Table 3 
Results obtained through LW-MB-PLS and MB-PLS.  

Blocks for model building LVs RMSECV 
(g) 

RMSEP 
(g) 

MB-PLS RMSEP 
(g) 

QP1 
NP1,PR,NP2,R1,NR,R2,R3, 

DE,NEa 
1 0.62a 0.75a 0.82a 

NP1,PR,NP2,R1,NR,R2,R3 1 0.64ab 0.91bc 0.99b 

NP1,PR,NP2,R1,NR,R2 1 0.67ab 0.97c 0.97b 

NP1,PR,NP2,R1,NR 1 0.73bc 1.28d 0.97b 

PR,R1,R2,R3,DE 2 0.57a 0.78a 0.80a 

PR,R1,R2,R3 1 0.59a 0.77a 0.87a 

PR,R1,R2 2 0.63ab 0.85b 0.84a 

PR,R1 1 0.67ab 0.85b 1.05b 

NP1,NP2,NR,NE 2 0.74c 1.34d 2.15d 

NP1,NP2,NR 3 0.81d 1.67e 2.64e 

NP1,NP2 3 0.98e 1.31d 1.26c 

Blocks for model building LVs RMSECV 
(J) 

RMSEP 
(J) 

MB-PLS RMSEP 
(J) 

QP2 
NP1,PR,NP2,R1,NR,R2,R3, 

D,E,NE 
3 1.5a 2.13a 2.37a 

NP1,PR,NP2,R1,NR,R2,R3, 
D 

2 1.67ab 3.12b 3.66c 

NP1,PR,NP2,R1,NR,R2,R3 3 1.7bc 3.11b 3.17bc 

NP1,PR,NP2,R1,NR,R2 4 1.72bc 3.45b 4.07d 

NP1,PR,NP2,R1,NR 4 1.86c 4.35c 4.64fg 

PR,R1,R2,R3,D,E 2 1.61ab 2.1a 2.74b 

PR,R1,R2,R3,D 2 1.57ab 2.3a 7.14 
PR,R1,R2,R3 1 1.68ab 2a 3.92cd 

PR,R1,R2 1 1.67ab 2a 2.06a 

PR,R1 1 2.57e 4.06c 4.25de 

NP1,NP2,NR,NE 4 1.57ab 3.8bc 4.14d 

NP1,NP2,NR 4 2.32d 4.36c 4.51f 

NP1,NP2 4 2.5e 4.98d 4.78g 

In a column, values with the same letter are not statistically different between 
each other (p > 0.05). 

a D = DEVO, DE = DEVO-END, E = END, NE=NIR END, NP1––NIR PRE 1, 
NP2––NIR PRE 2, NR––NIR REACTION, PR=PRE REACTION, R1=REACTION 1, 
R2=REACTION 2, R3=REACTION 3 
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information by applying block orthogonalization w.r.t. to the previous 
extracted component before going for next component, whereas MBPLS 
does not remove already used information in a block. From an appli-
cative point of view, which is the one concerned in this paper, we may 
observe that both methods provide models with good predictive capa-
bility. ROSA has the advantage of furnishing a single model, hence being 
very easy to implement in real-time scenario (only the b coefficients 
need to be stored and used for prediction). LW-MBPLS requires the 
calculation of the distances between the sample to be predicted and all 
the calibration samples (slow step) and the fit of a PLS model with the 
selected neighbors before the prediction step (fast step). Another 
appealing feature of ROSA is to filter out redundant information among 
blocks that may guarantee models that are more robust. However, the 
method is dependent on the choice of the winner block and often several 
block share similar error, therefore this aspect needs further investiga-
tion. However, in cases such as the process studied with multiple 
product grades, or in presence of non-linearities, a local approach is 
required to reduce systematic errors. 

4. Conclusions 

This paper investigated the application of two multiblock regression 
methods, namely Response Oriented Sequential Alternation (ROSA) and 
Locally-Weighted Multiblock Partial Least Squares (LW-MB-PLS), a 

novel extension of Locally-Weighted-Partial Least Squares, for online 
prediction of quality parameters (QP1 and QP2) in a full-scale styrenic 
polymer production plant. The study expanded on previous research by 
incorporating a larger dataset covering all products manufactured by the 
plant and introduced a new multiblock approach (LW-MB-PLS). The 
analysis of the results revealed valuable insights into the predictive ca-
pabilities of these methods. 

The ROSA method demonstrated promising predictive performance 
for both QP1 and QP2, with the selection of influential blocks providing 
information about critical sections of the plant. The importance of sen-
sors in early and late stages of the process was highlighted, and the 
impact of specific sensors on the final product quality was elucidated. 
The results indicated the feasibility of obtaining reasonable estimates for 
QP1 and QP2 values before the completion of the production process, 
offering potential approaches for real-time prediction and control. On 
the other hand, the LW-MB-PLS method, while generally exhibiting 
comparable predictive accuracy, demonstrated effectiveness in reducing 
systematic errors for certain products. The computational efficiency of 
ROSA was acknowledged, although LW-MB-PLS presented advantages 
in mitigating bias in predictions for specific ABS products. 

From an applicative point of view, both methods are implementable 
for real time predictions. LW-MBPLS can be recommended when 
nonlinearity is observed, or as in the present case when different grade 
of products must be handled. ROSA is especially fast and can be used to 

Fig. 8. Time evolution of the measured (green squares) and predicted values (black diamonds) of QP1 for the final portion of February–April 2022 validation period 
by ROSA (a) and LW-MB-PLS (b). The predictions were obtained by means of the models that employed all the available data blocks. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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sequentially assess the relevance of each block, in addition it may bring 
to more robust model by filtering redundant information among blocks. 
In perspective, ROSA can be used in the process-understanding phase to 
exploit the possible scenarios and then if a prediction bias is observed it 
can be resorted to local modelling using only the most salient block. 
However, a drawback of ROSA, which require further investigation, is 
how to deal with blocks showing similar error in the selection phase. 

Overall, this study contributes to the understanding of multiblock 
regression techniques in the context of continuous production processes, 
providing valuable insights for plant operators and paving the way for 
further advancements in online quality prediction and control. 
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