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Abstract

The variational method is used to obtain the ground- and first-excited states for soft-Coulomb

central potential, 1/
√
r2 + d2, characterized by a bias distance d, taken into account as a fixed pa-

rameter. Applications are presented for spatially indirect excitons, i.e. photo-generated electron-

hole (e-h) bound pairs, where the two charges are kept separated in two different regions of a

heterostructure. We consider one- or two-dimensional systems, namely quantum wires or wells,

respectively, and compare the results with numerical calculations obtained by finite-difference di-

agonalization of the Hamiltonian. An explicit example is given for GaAs-based heterostructures.

1



I. INTRODUCTION

Finding the eigenstates of an hydrogen atom is a fundamental application in elementary

quantum mechanics. The hydrogenic problem has also important applications in semicon-

ductor physics.1 Indeed, the same Schrödinger equation with a bare Coulomb potential

∼ 1/r, but with a crystal renormalized mass and electric charge, is used to estimate 1)

the electronic states of a shallow impurity and 2) the excitonic states, i.e. the bound state

formed by an electron, excited to the conduction band through the gap, and its hole left in

the valence band.2 It is relevant that exact analytical solutions of the hydrogenic problem

exist also in 2D and 1D.3 This is not only an academic exercise in quantum mechanics, but

also a problem of great interest, since in semiconductor heterostructures, such as quantum

wells and quantum wires, the dynamics of the carriers can be effectively frozen by quantum

confinement in one or more directions.

Unlike the hydrogenic problem with the bare Coulomb interaction, exact solutions of

the Schrödinger equation do not exist for the soft-Coulomb potential V (r) ∼ 1/
√
r2 + d2,

obtained from the bare Coulomb potential 1/r by including the parameter d as a fixed bias

distance. This potential is commonly used in semiconductor physics since 1) it overcomes

divergence issues, which arise, in one-dimensional systems, in the bare Coulomb potential at

the origin, r = 0, and where d in this case is taken as a fixed cut-off parameter being of the

order of the confinement lateral extension, and 2) it represents the coupling of an electron

confined in a layer to a hole (or to a ionized impurity) sitting in a different layer, a distance

d apart (see Fig. 1). Such an excitonic state is called spatially indirect exciton (SIX). The

physics of SIXs has been widely investigated due to their intrinsic bosonic character for

the observation of macroscopic quantum condensates,4,5 as well for new classes of opto-

electronic devices: the intrinsic coupling of e-h pairs to photons, and the extended lifetime

and permanent dipole of SIXs – due to the non vanishing separation d between the two

charges – allows for long-path exciton transport (see, e.g., Ref. 6).

Of course, the solution of the Schrödinger problem with the soft Coulomb potential in 1D

or 2D can be found numerically with limited effort, e.g., by direct discretization of space on

a grid, but of course it lacks the greater physical intuition given by a closed-form analytical

solution.7

In this paper we propose a variational approach of the Schrödinger problem with soft
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FIG. 1. Sketch of the hydrogen-like model for low-dimensional systems, if the two particles sit in

different layers, separated by a vertical distance d. 1D (left) and 2D (right) configurations.

Coulomb potential. The variational approach is typically taught in undergraduate courses

due to both its simplicity and its capacity to provide approximate but transparent solutions

to quantum equations, including complex many-body problems, exploiting ones physical

intuition of the problem. Furthermore, from the semiconductor physicist’s standpoint, the

variational approach has been successfully adopted to study excitonic effects and more com-

plex excitation (biexcitons, trions) in low dimensional systems, like, e.g., carbon nanotubes

or quantum dots.8–11 Therefore, we expected it to be suitable for the study of SIXs in

semiconductor heterostructures as well.

In this paper we exploit the soft character at short range of the interaction potential

using simple harmonic oscillator eigenstates as ansätze; this leads to a simple analytical

treatment but with very accurate results. We do so both in 1D and 2D and for the ground

and first excited states. The variational approach is typically used for the ground state, but

it can also be used for excited states if a set of mutually orthogonal and normalizable trial

functions is exploited.12 Excited states are required if optical matrix elements or response

functions need to be calculated in an approximate fashion.

We provide the implicit equations for the variational parameters which can be au-

tonomously used by undergraduate students with a mathematical software or easily program-

med.13 We also provide their numerical solution and analyze the accuracy of the variational

solutions down to the d→ 0 limit. As an application to semiconductor physics, we provide

the binding energies of SIXs in GaAs-based coupled quantum wires and wells.

In Sec. II, after a short summary on the variational method, we exploit it to find the

equations whose solutions are the optimal variational parameters; these are then used to

obtain the variational eigenenergies and the related eigenfunctions, for 1D and 2D systems.
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Section III is subdivided in two subsections: in Sec. III A we report the results of the

variational method in dimensionless units, with the energies expressed in effective Rydbergs

and the lengths in Bohr radii, while in Sec. III B we give explicit values concerning GaAs-

based systems. A comparison is performed between the eigenenergies/states obtained within

the variational and the numerically exact diagonalization of the Hamiltonian. Finally, in

Sec. IV, we draw the main conclusions about the present work.

II. METHOD

The variational method is usually exploited to find the ground state of a quantum Hamil-

tonian. The method still holds to find excited eigenstates if a proper choice of mutually

orthogonal, nomalized, trial functions is provided.12

The variational method is here adopted within its undergraduate-course formulation:

1. Choose a trial function (ansatz ) φi(r; βi), dependent on the variational parameter βi

and on the coordinates r, for the i−th state.

2. Calculate the expectation value

εi(βi) ≡ 〈φi(βi)|H|φi(βi)〉

=

∫
φ∗
i (r; βi)Hφi(r; βi)dr

(1)

of the Hamiltonian H on the state φi

3. Solve the equation
∂εi
∂βi

= 0 (2)

to find the specific (optimal) value βi for which εi has an extremum.

In what follows, we apply – for one- and two-dimensional systems – the variational method

to a Hamiltonian (m is the reduced effective mass of the system)

H = −~2∇2

2m
+ V (r) (3)

characterized by the soft Coulomb potential

V (r) = −k 1√
r2 + d2

(4)

4



where d is the bias separation (or softening parameter), and k is the Coulomb constant.

Here we take k ≡ e2/(4πε0εr) where ε0 is the dielectric permittivity in vacuo, and εr the

relative dielectric permittivity of the material.

A. One-dimensional systems

In 1D, the Hamiltonian in Eq. (3) is

H = − ~2

2m

d2

dx2
+ V (x), (5)

where

V (x) = −k 1√
x2 + d2

. (6)

By taking the ground state of the 1D quantum harmonic oscillator,

φ0(x) =

(
β0
π

)1/4

e−β0x
2/2, (7)

as the normalized ansatz ground state, we have

ε0 =
~2

4m
β0 − k

√
β0
π
ed

2β0/2K0

(
d2β0

2

)
(8)

where β0 is the variational parameter, and K0 is the modified Bessel function of second kind

of order 0.

The derivative of ε0 with respect to the variational parameter is

∂ε0
∂β0

=
~2

4m
− k

2
√
β0π

exp

(
d2β0

2

)[(
1 + d2β0

)
K0

(
d2β0

2

)
− d2β0K1

(
d2β0

2

)]
, (9)

K0 and K1 being modified Bessel functions of second kind of order 0 and 1, respectively.

We exploit the variational method to minimize ε0: The optimal parameter is obtained

from the solution of the transcendent equation ∂ε0/∂β0 = 0, which can be re-written more

compactly as
et0/2√
t0

[
(1 + t0)K0

(
t0
2

)
− t0K1

(
t0
2

)]
=

√
π

2

aB
d

(10)

where aB ≡ 4πε0εr~2/(e2m) = ~2/(mk) is the effective Bohr radius, and t0 ≡ d2β0 is a

dimensionless quantity.

Analogously, the first excited state can be computed through the variational principle,

with the ansatz

φ1(x) =

(
β1
π

)1/4

(
√

2β1x)e−β1x
2/2, (11)
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giving

ε1 =
3~2

4m
β1 − k

√
β1U

(
1

2
, 0, d2β1

)
, (12)

where U is the Tricomi confluent hypergeometric function.14 Hence, we have

∂ε1
∂β1

=
3~2

4m
+

k

2
√
πβ1

d2β1e
d2β1/2

[
(2d2β1 + 3)K0

(
d2β1

2

)
− (2d2β1 + 1)K1

(
d2β1

2

)]
, (13)

leading to the following equation for the optimal β1:
15

1√
t1

[
U

(
1

2
, 0, t1

)
− t1U

(
3

2
, 1, t1

)]
=

3

2

aB
d

(14)

where t1 ≡ d2β1.

The solution to Eqs. (10) and (14) are the optimal variational parameters β0 and β1

as functions of the bias distance d and the material parameters m and εr. They can be

obtained – numerically – with the aid of standard computational tools, like Wolfram Alpha

or Mathematica.13,16

The substitution of the optimal values for β0 and β1 in Eqs. (8) and (12) gives the

variational ground- and first-excited-state energies, ε0 and ε1, respectively.17

B. Two-dimensional systems

For the 2D case, the pair interaction is

V (x, y) = −k 1√
x2 + y2 + d2

(15)

The ansatz ground state is

φ0(x, y) =

(
β0
π

)1/2

e−β0(x
2+y2)/2, (16)

from which

ε0 =
~2β0
2m
− k
√
πβ0 e

d2β0 erfc
(
d
√
β0

)
, (17)

where erfc = 1− erf is the complementary error function. We thus have

∂ε0
∂β0

=
~2

2m
+ kd

[
1−
√
π (1 + 2d2β0) e

d2β0 erfc
(
d
√
β0
)

2d
√
β0

]
, (18)

6



after which the extremal condition is given by

√
π (1 + 2t0) e

t0 erfc
(√

t0
)

2
√
t0

=
1

2

aB
d

+ 1. (19)

The first excited eigenstates can be represented by the following ansätze

φ1x(x, y) =

(
β1
π

)1/2

(
√

2β1x)e−β1(x
2+y2)/2 (20)

and

φ1y(x, y) =

(
β1
π

)1/2

(
√

2β1y)e−β1(x
2+y2)/2 (21)

which are, by symmetry, degenerate, and mutually orthogonal.

The expectation value of the energy on one of these states is

ε1 =
~2β1
m
− k

2

√
πβ1

[
2
d
√
β1√
π

+
(
1− 2d2β1

)
ed

2β1 erfc
(
d
√
β1

)]
, (22)

and its derivative with respect to the variational parameter β1 is

∂ε1
∂β1

=
~2

m
− k

{
d

2

(
1 + 2d2β1

)
+ ed

2β1erfc
(
d
√
β1

)√ π

16β1

[
1− 4d2β1

(
1 + d2β1

)]}
. (23)

Therefore, the extremal condition reads

(1 + 2t1) + et1erfc
(√

t1
) √π

2
√
t1

[1− 4t1 (1 + t1)] =
2aB
d

(24)

One could in principle go on with higher levels than the first excited state, taking as

ansätze the higher eigenfunctions of the quantum harmonic oscillator Hamiltonian. The

variational principle still holds, since such states are mutually orthogonal. The explicit

derivation is straightforward, and not reported here.

III. RESULTS

A. Dimensionless analysis

By adopting the effective Bohr radius, aB, and the effective Rydberg, Ry ≡ me4/(32π2ε20ε
2
r~2) =

k/(2aB), as units for length and energy, respectively, we can obtain material-independent

expressions for the optimal variational parameters and eigenenergies.

7



In what follows we shall use capital letters D ≡ d/aB and Li ≡ li/aB = 1/(aB
√
βi), to

denote the dimensionless bias separation and the width of the variational states, respectively,

in units of aB.

It is straightforward to show that the 1D variational eigenenergies Eqs. (8), (12) can be

recast as

ε0 =
Ry

L0

{
1

2L0

− 2√
π
e(D/L0)2/2K0

(
(D/L0)

2

2

)}
, (25)

and

ε1 =
Ry

L1

{
3

2L1

− 2U

(
1

2
, 0, (D/L1)

2

)}
, (26)

respectively.

Analogously, for the 2D case we have that Eqs. (17) and (22) are recast into

ε0 =
Ry

L0

{
1

L0

− 2
√
πe(D/L0)2erfc(D/L0)

}
, (27)

and

ε1 =
Ry

L1

{
2

L1

−
[
2
D

L1

+
√
π
(
1− 2(D/L1)

2
)
e(D/L1)2erfc(D/L1)

]}
. (28)

The optimal values for Li = Li(D), solution of the variational problem, are given in

Fig. 2(top). Fig. 2(bottom), we show instead the eigenenerigies εi obtained within the

variational method (solid lines), and numerically (dashed lines). The latter are obtained

via numerical diagonalization of the Hamiltonian, written in second-order-accurate, finite-

difference shape. For the numerical calculations, we used ARPACK libraries,18 and a spatial

grid of density ≈ 7 point/aB for each axis. We see that the variational method gives results

for εi which depart from the exact ones only for D � 1. Moreover, for D = 0, where V (r)

reduces to the true-Coulomb potential, exact solutions exist both in 1D19 and in 2D20:(1D)→ εi = −Ry/i2

(2D)→ εi = −Ry/(i+ 1/2)2
(29)

with i = 0, 1, 2, . . ..

Note that the ground-state energy for 1D systems diverges for vanishing D, while, in

2D, it is −4Ry. The red thin (thick) arrow in Fig. (2) indicates the D = 0 energy for the

first excited state for 1D (2D) system, ε1(D = 0) = −1 Ry (−4/9 Ry). While numerical

calculations are able to reproduce the correct results at D = 0, the variational method

overestimate it by ≈ 20%.
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FIG. 2. Top panel: behavior of 1D (thin lines) and 2D (thick lines) variational spatial extension

for the ground state, L0 (black), and the first excited state, L1 (red), as a function of the bias

distance D. Bottom panel: behavior of variational (solid), and numerical (dashed) energy levels ε0

(black) and ε1 (red) as a function of D, in 1D (thin) and 2D (thick). The thin (thick) red arrow

points at the D = 0 energy limit for the first excited state for 1D (2D) system, i.e. ε1 = −1 Ry

(−4/9 Ry).

In practice, for coupled quantum wires and wells in experimentally attainable regimes,

D � 0, and usually ≈ 1.4,5,21
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As it is intuitive due to the weaker confinement, the binding energy of the 2D states is

smaller with respect to 1D systems. In any case, even for 2D systems, not only the ground

state, but also the first excited state energy is well reproduced within the variational model.

The accurate description of the energy behavior in the region far from D = 0 does not

necessarily imply a priori an accurate description of the eigenfunctions. The latter is impor-

tant whenever response functions have to be computed, as the knowledge of the eigenstates

is required, e.g., for the computation of transition matrix elements, in perturbation theory,

etc.. Figure 3 shows the variational (solid) and the numerical (dashed) eigenfunctions, for

the ground (black) and the first excited (red) states, at three different values for D, namely

D = 0.5 (left), 1 (center), and 2 (right). The top (bottom) row displays 1D (2D) results. In

the 2D case, the slice of the wave functions at y = 0 is displayed. Since φ1y(x, y = 0) = 0,∀x,

only φ1x(x, y = 0) is shown.

-10 0 10
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B
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φ
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(x
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y
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 0
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-10 0 10
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B
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-0.4

0

0.4

0.8

φ
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(x

)

D = 0.5 D = 1 D = 2 

FIG. 3. Ground (black) and first excited (red) states for different bias distances D = 0.5 (left), 1

(center), and 2 (right). Variational (solid), and numerical (dashed) wave functions. Top row: 1D

system (coupled quantum wires); Bottom row: 2D system (coupled quantum wells), slice at y = 0.

Figure 3 exposes how the variational states are in good agreement with the numerically

exact states in each of the cases presented here, which characterize a wide range of experi-

mental regimes for coupled-quantum-wires and -wells systems. Note that, as D is increased,

the eigenfunctions broaden, as it is natural due to the weaker Coulomb interaction.
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B. Results for GaAs-based heterostructures

We now specialize to the case of GaAs-based systems, widely adopted for the experi-

mental realization of coupled quantum wires and wells poor in defects. As mentioned in

the Introduction, these are the mostly exploited systems for the study and the propaga-

tion of Wannier-Mott spatially indirect excitons, which can be modeled in a hydrogen-like

fashion,22 the electron and the hole being separated thanks to an external electrostatic field,

by a minimum bias distance d along the growth axis of the heterostucture. The distance

d can be thought of as the center-to-center separation between the two wires (1D) or wells

(2D), grown in an insulating AlGaAs matrix. We take typical GaAs parameters, namely

εr = 12.9, and a reduced effective mass m = (m−1
e +m−1

h )−1 = 0.042m0, since me = 0.067m0,

and mh = 0.111m0 are the electron and hole effective masses, respectively.17

In Fig. 4 we report the characteristic length parameters li (top), as well as the relative

motion energy levels εi (bottom), i = 0, 1. We show the values from both exact numerical

diagonalization and the variational method. The energies εi can be obtained by expressing

the results of Sec. III A in terms of the effective Rydberg and Bohr radius for an electron-hole

pair in GaAs, namely aB = 16.34 nm and Ry = 3.416 meV. The separation d is varied from

10 to 20 nm, since this is the standard range of d in typical GaAs-based devices.4,21

IV. CONCLUSIONS

We applied the variational method in 1D and 2D to obtain the ground and the first excited

states for a Hamiltonian characterized by a soft-Coulomb potential V (r) ∼ 1/
√
r2 + d2,

dependent on the parameter d, which represents a bias distance. The first eigenstates of the

quantum harmonic oscillator, chosen as trial functions, provide an accurate description of

the exact eigenfunctions – which we have numerically computed via a finite-difference solver

– whenever d is greater than a few tenths of the effective Bohr radius of the system; this

is the typical condition in experimentally attainable regimes. The variational eigenenergies

are in good agreement with their numerical equivalent, as well. All in all, the variational

method provides a clear, analytical description of the physical problem related to the soft-

Coulomb potential, at a very good level of accuracy, and within the typical background of

undergraduate courses on quantum mechanics.
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devices. Legend as in Fig. 2.
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