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Abstract 

 
In this paper we use the Diebold Yilmaz (2009 and 2012) methodology to construct an index of 

connectedness among five European stock markets: France, Germany, UK, Switzerland and the 

Netherlands, by using volatility risk premia. The volatility risk premium, which is a proxy of risk 

aversion, is measured by the difference between the implied volatility and expected realized 

volatility of the stock market for next month. While Diebold and Yilmaz focus is on the forecast 

error variance decomposition of stock returns or range based volatilities employing a stationary 

VAR in levels, we account for the (locally) long memory stationary properties of the levels of 

volatility risk premia series. Therefore, we estimate and invert a Fractionally Integrated VAR 

model to compute the cross forecast error variance shares necessary to obtain the index of total 

connectedness and the net contribution of each series to total connectedness.  

The results show that, over January 2000-August 2013, the index of total connectedness among 

volatility risk premia has been relatively stable with an increasing role played by France and with a 

positive (but decreasing) role played by Germany and the Netherlands. Non EMU countries such as 

the UK and Switzerland are negative net contributors to the index. 
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1. Introduction   

In this paper we construct an index of co-movements in risk aversion among five European 

markets: UK, Germany, Switzerland, France, and the Netherlands, by focusing on the volatility 

risk premium of each country. We follow Buraschi et al (2014) to construct the daily volatility risk 

premium as the difference between a risk neutral measure of expected volatility formulated at 

time t for the next 30-days (derived from model-free implied volatility extracted from a panel of 

index options, and proxied by the market volatility index) and future (next month) physical 

expectation of volatility (extracted from realized square log-returns over next month). The choice 

of the countries under investigation is made in order to have both EMU and non EMU countries 

and is based on the availability of a volatility index traded in each country (the only country 

excluded is Belgium since its market volatility index VBEL has been traded only for a limited time 

period and it is not traded nowadays). Since the volatility risk premium represents compensation 

for providing volatility insurance, it can be considered a better proxy for risk aversion (see 

Muzzioli, 2013;  Bekaert and Hoerova, 2014)  than measures based only on implied volatility 

(commonly known as proxies of market fear). We follow Diebold-Yilmaz (2009, 2012) approach 

to construct an index of co-movements: both an index of total connectedness and of directional 

connectedness are computed.  As Diebold and Yilmaz (2014) argue, the connectedness framework 

provide a unifying framework for a variety of systemic risk measures, including the CoVaR 

approach of Adrian and Brunnermeier (2008) and the marginal expected shortfall approach of 

Acharya et al. (2010). W h i l e  Diebold-Yilmaz (2009 and 2012) focus on the variance 

decomposition of a stationary VAR (fitted to stock returns or range based volatilities), we 

concentrate on the estimation of Fractionally Integrated VAR, FIVAR, model, given the (locally) 

stationary long memory properties of the series under investigation
1
. More specifically, we provide 

evidence of regime shifts (in the mean) contaminating the long memory stationary features of the 

                                                           
1
 Although Diebold and Yilmaz (2014) focus is on long memory daily realized volatilities (computed using intraday 

data), they still use a stationary VAR fitted to the levels of the series.  



3 
 

volatility risk premia, by following a two stage approach suggested by Qu (2011). In the first 

stage we employ the Qu (2011) test for the null of long memory stationarity versus the alternative 

of structural breaks. The rejection of the null leads to the second stage of the analysis which 

investigates whether the structural breaks contaminate either a short or a long memory time series. 

In particular, we employ the Lavielle and Moulines (2000) methodology, robust to the presence of 

strongly dependent processes. This method allows detecting endogenously the number of regime 

shifts (in the mean). Then we fit an ARFIMA(p,d,q) to estimate and make inference on the 

fractional integration parameter d for the different time series segments.  

When turning our focus on multivariate analysis, we follow Do et al. (2013) to invert the FIVAR 

model to obtain the moving average coefficients necessary to compute the forecast error variance 

decomposition necessary to obtain the index of total connectedness and of total directional 

connectedness for the proxies of risk aversion. 

The structure of the paper is as follows. Section 2 describes the issue of long memory and 

structural breaks, the Fractionally Integrated VAR model and corresponding moving average 

representation; Section 3 describes the Diebold-Yilmaz (2009, 2011) methodology; Section 4 

focusses on the empirical evidence and section 5 concludes. 

 

 

2. Long memory and multivariate analysis 

A long-memory process is characterized by a spectral density which is unbounded at the origin 

and by an autocorrelation function decaying at a hyperbolic rate at long lags. A series is stationary 

long memory if the fractional differencing parameter (required transforming the series into a short 

memory stationary process) d is between -0.5 and 0.5. If the fractional differencing parameter d is 

greater than 0.5 and less than 1, then the series is non stationary long memory. 

 

Evidence of long memory in volatility measures is well documented. The studies of Baillie et al. 

(1996), Andersen and Bollerslev (1997), Comte and Renault (1998) give evidence of long-run 
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dependencies, described by a fractionally integrated process, in GARCH, realized volatilies, and 

stochastic volatilities models, respectively. More recently, empirical studies show that the 

volatility implied from option prices exhibits properties well described by fractionally integrated 

process (see Bandi and Perron, 2006 and Christensen and Nielsen, 2006).  Evidence of a stationary 

long memory in the variance risk premium is found in studies where there is evidence of fractional 

cointegration between implied and realized volatilities (see Bandi and Perron, 2006; Christensen 

and Nielsen, 2006; Bollerslev et al., 2013 among the others) of an order, greater than zero and 

lower than the degree of fractional integration for each volatility series.  

 

The use of multivariate long memory models to financial time series has been recently advocated by 

Andersen et al. (2001), employing a VAR model to fractionally differenced exchange rates; by 

Cassola and Morana (2008) who employ a Vector Autoregressive Model with a common factor 

following an ARFIMA process to explore co-movements among Euro short term interest rates. 

Moreover, Bollerslev et al. (2013) use a co-fractional VAR to model long run and short run 

dynamics of realized variance, implied variance and stock return in the US market.  

 

2.1 Long memory, structural breaks and volatility risk premium 

The full sample estimation of the fractional integration parameter d is based on the local Whittle 

estimator. More specifically, we focus on the local Whittle function suggested by Kunsch (1987) 

defined over the frequency domain, implying the minimization of the profiled likelihood function:  
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where Ij is the sample periodogram at the j
th

 Fourier frequency ωj = 2πj/T, with j=1,…,T/2, and T is 

the sample size. The maximum number of frequencies ω involved in the estimation of the fractional 

integration parameter is given by m. 

 

In this paper we account for the spurious effects of structural breaks in detecting long memory time 

series we employ a two stage approach suggested by Qu (2011). In the first stage, we use the W 

statistics developed by Qu (2011) to test for the null of stationary long memory vs the alternative of 

structural breaks described either as a regime change or a smoothly varying trend. The W test 

statistics is based on the derivatives of the profiled local Whittle likelihood function and it does not 

require the specification on the way structural breaks occur under the alternative hypothesis. 

Moreover, as suggested by Qu (2011), we employ a "prewhitening" procedure that reduces the short 

memory component (which might spuriously affect the values of the W test statistics) while 

maintaining the same limiting distribution for the test. The "prewhitening" procedure involves the 

selection of  low order ARFIMA(p,d,q) model and filtering the series using the estimated 

autoregressive and moving average coefficients. If the comparison of the test statistics with 

tabulated critical values (see Qu, 2011) leads to rejection of the null, then, in a second stage, we 

employ the method of Lavielle and Moulines (2000) to detect multiple points for strongly 

dependent processes. In particular, Lavielle and Moulines (2000) suggest that segmentation of a 

time series is based on the minimization of a penalty function (measuring the difference between 

the actual series and the segmented series). Given the focus on volatililty risk premia we are 

interested in time series segmentation only in terms of mean shifts. In particular, the best number of 

segments K is given by the last value of K for which the second derivative of a standardized penalty 

function is greater than a threshold S, which according to numerical experiments, is set equal to  

0.75 (see Lavielle, 2005). 
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2.2 Fractionally Integrated VAR, FIVAR 

The multivariate long memory we use in this study is a Fractionally Integrated VAR process 

FIVAR(d,p): 

 

ttyLDLA )()(            (1) 

 

where yt  is a time series vector of k endogenous variables, and εt is a kx1 vector of white noise 

disturbances with covariance matrix (not diagonal) Σ; 


p

i

i
ik LAILA

1

)( is the matrix of 

coefficients polynomial in the lag operator L and D(L) is kxk diagonal matrix characterized by k 

degrees of fractional integration d1, d2,…,dk : 
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where jd
L)1(  is the difference operator of order dj.  

 

2.3 Vector Moving Average  

If all the roots of the 0)(
1




p

i

i
ik zAIzA  fall outside the unit circle and all series are long 

memory stationary, that is 2/1jd , for j =1,2,..k, then the FIVAR model given by eq.(1) can be 

inverted in order to obtain the infinite order moving average representation: 
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where D(L)
-1

 is a diagonal matrix with the element of the main diagonal described as follows: 
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where Γ(.) is the gamma function and  𝜓0
(0)

= 1, 𝜓𝑖
(0)

= 0  for 𝑖 ≠ 1.  

 

Following Do et al. (2013), the Vector Moving Average representation is obtained in two steps.
2
 In 

first step we obtain the coefficient matrices i of the inverted AR components for the forecast 

horizon i. More specifically, we can rewrite a VAR(p) for the fractionally differenced vector  

zt = D(L)yt  as a first order system: 
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which can be written in compact form: 
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

A  is an kpkp matrix.  
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2
 The FIVAR inversion following Do et al. (2013) has been computed through Gauss 6.0 by the authors. 
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The selection matrix  
_

e  has k rows and kp columns 


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By expanding the multiplication of eq.(7), Do et al. (2013) show that the moving average 

coefficients for the forecast horizon h are: 
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Using the generalized impulse response approach of Pesaran and Shin (1998) and, under the 

assumption of multivariate Gaussian distribution for εt, the scaled (by one standard deviation) effect  

of a shock to the system (at time t) on the expected value of the kx1 vector y at time t+h is given by: 

 

 h
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3. Financial Connectedness 

Following Diebold and Yilmaz (2012 and 2014), the contribution of shock to market i to the 

variance of the H step ahead forecast error for market j, )(H
g
ij , is given by:  
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For ji  , the above expression describes the “cross variance shares” (that  is  the contribution of 

shock i to the variance of the forecast error of series j), while for i = j, the above expression 

captures the  “own  shares” (that  is  the contribution of shock i to the variance of the forecast error 

of the same series). Equation (10) describes the generic element i,j of the variance decomposition 

table. 

 

Since the sum of each row of the variance decomposition table is different from one, that is 

 
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K

j

g
ij H

1

1)( , Diebold and Yilmaz (2012) suggest to normalize each )(H
g
ij by the sum of each 

row of the variance decomposition table:  
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The total financial connectedness index is given by taking the ratio of total cross variance shares to 

the sum of the total of cross and own shares: 
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The index of total directional connectedness (see Diebold and Yilmaz, 2014) received by market i 

from the rest of the system is measured by the sum of row i of the variance decomposition table less 

the element measuring the own share in the i-th row: 
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The index of total directional connectedness (see Diebold and Yilmaz, 2014) transmitted from 

market j to the rest of the system is measured by the sum of column j of the variance decomposition 

table less the element measuring the own share in the j-th column: 
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As argued by Diebold and Yilmaz (2014), the “from”-connectedness measure described by eq.(12) 

is very similar to the marginal expected shortfall indicator of systemic risk proposed by Acharya et 

al. (2010). The “to”-connectedness measure described by eq.(13), measures the contribution of a 

single market (asset) to the system, in a fashion very similar to CoVaR indicator of systemic risk 

suggested by Adrian and Brunnermeier (2008). 

The index of net total directional connectedness (see Diebold and Yilmaz, 2014), useful to assess 

whether a market is net donor or recipient is given by difference between eq. (12) and (13).  

 

5. Data and empirical evidence  

Following Buraschi et al. (2013)
3
, the volatility risk premium is defined as:  

 

V R P ( t ) = I V ( t ) - R V ( t + 1 )  

 

Both addends are in percentage values, IV(t) is the risk neutral expectation at time t of volatility 

between t and t+1, proxied by the annualized implied volatility index of the stock market index; 

RV(t+1) is the square root of the annualized realized variance between t and t+1 of the stock 

market index return (obtained from the sum of squared log returns of 21 days occurring between t 

and t+1). All series a r e  obtained from DATASTREAM. The sample observed  at  daily  

frequency  runs  from  1/2/2000  till  29/08/2013  and  the  countries  under investigation are the 

UK, Germany, Switzerland, France and Netherlands, given that they are the only countries in 

Europe in which a volatility index for the underlying stock market index is traded. 

                                                           
3
 Differently from other papers in the “financial” literature (see e.g. Carr and Wu 2009) where the variance risk 

premium is defined as the difference between physical and risk neutral variance, here we follow the “econometric” 

literature where the variance risk premium is defined in the opposite way as the difference between risk neutral and 

physical variance. 
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In Figure 1 we can observe the plots of the time series under investigation. In particular, we can 

observe a synchronized behavior of the five series throughout the sample with a large negative peak in 

correspondence of the Lehman Brothers collapse (September/October 2008) 

In Table 1 we report descriptive statistics. The volatility risk premia are all positive on average, 

ranging from the lowest value of 2.567 for France to the highest value of 3.793 for UK on a 

percentage annualized basis. This means that “selling” volatility has been highly profitable on 

average over the 2000-2013 period. The findings are consistent with the literature (see e.g. Carr 

and Wu (2009), Bollerslev et al. (2014)) where a negative variance risk premium (if measured as 

the difference between physical and risk neutral variance, as opposite to our way of measuring it) is 

usually detected: in other words investors are willing to accept (gain) a significantly negative 

(positive) return being long (short) in a variance swap, in order to be hedged (in exchange to be 

exposed to) against peaks of variance.    

 
 

We turn now our focus on the long memory properties of the series under investigation using the 

full sample of daily observations. Visual inspection of the time series plots in Fig.1 would suggest 

the presence of level shifts which might “spuriously” affect the estimation results of the fractional 

integration parameter. The full sample estimation results are given in the first row of Table 2 and 

the large standard errors relative to the point estimates of d based on the minimization of the 

profiled likelihood function would suggest no evidence of long memory. In order to account for the 

role played by structural breaks, we employ Qu (2011) test for the null hypothesis that a given time 

series is a stationary long-memory process against the alternative hypothesis that it is affected by 

regime change or a smoothly varying trend.  The values of the W statistics (see first row of Table 2)  

compared to the tabulated critical values reported in the footnote to Table 2, suggest rejection of the 

null of long memory stationarity. Then, given the evidence of structural breaks we investigate 

whether they contaminate a short memory or a stationary long memory process. For this purpose, in 

the second stage of the analysis we detect the optimal number of time series segments based on 
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mean shifts through the minimization of a contrast function by Lavielle and Moulines  (2000) and 

by Lavielle (2005).  The optimal number of time series sub-samples for UK, Germany, Switzerland, 

France and Netherlands, is equal to 3, 11, 8, 5 and 3. From the estimation of the selected low order 

ARFIMA(p,d,q) model according to the BIC criterion, we can observe (see rows, in Table 2, under 

labels Breaks and d) that, for the UK, only the first sub-sample (running from the 1/2/2000 to 

18/9/2008) there is evidence of long memory stationarity, given that the lower bound for the 95% 

confidence interval for the parameter d is equal to 0.04 and  the point estimate is equal to 0.08. As 

for the German volatility risk premium, there is evidence of long memory stationarity over the 

sample period between 1/2/2000 and 21/6/2002, given that the lower bound for the 95% confidence 

interval for the parameter d does not fall below 0.128 and the point estimate varies between 0.141 

and 0.203. Then, the long memory stationary features are displayed over the following sub-samples: 

21/1/08 -18/2/08, 6/10/08-7/11/08, and 4/8/2011-3/9/2011, given that the lower bound for the 95% 

confidence interval for the parameter d does not fall below 10%. The volatility risk premium in 

Switzerland is the only one exhibiting long memory stationarity for most of the overall sample 

period with both the lower bound of the 95% confidence interval and the point estimation of the  

fractional integration parameter above 0.3 during the subsamples running from 11/09/01 to 

12/10/2001 and from 11/11/08 to 23/6/2009. The French volatility risk premium shows evidence of 

long memory stationary only over a short sub-sample period: 19/9/2008-5/11/2008, since the point 

estimates of the fractional integration parameter d is equal to 0.179 and the lower bound for the 

95% confidence interval is equal to 0.167. Finally, there is evidence of long memory stationary for 

the Dutch volatility risk premium over the 1/2/2000-6/11/2011 period, and they are more 

pronounced for the sub-sample running from 19/9/2008 to 6/11/2011. To summarize, from Table 2 

we can observe that only the French volatility risk premium can be considered as a short memory 

stationary process for most of the sample period under investigation.  
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We now turn our focus on the results concerning with the total connectedness among volatility risk 

premia. The analysis (both full sample and rolling) is based on the estimation of VAR model with 

2 lags (selected according to the Bayesian Schwarz criterion information).
4
 The plot of daily 

measures of total connectedness, starting on 1/01/2002 and ending on 29/8/2013 (see Fig. 2), based 

on the rolling analysis (using a window of size equal to 500 observations), shows values of the 

index ranging between 68% and 76%.  While, the plot of the time varying measure of the total 

index shows a relatively stable evolution over time around a mean value equal to 73.1% (see the full 

sample analysis results in Table 3), on the other hand, there is an high degree of heterogeneity in the 

indices of directional connectedness both across countries and over time: these latter findings are 

the object of the following discussion.  

 

We first focus on the full sample analysis results. The row sum of the pairwise connectedness 

measures results in the total directional connectedness “from others” to each one of the volatility 

risk premium. Similarly, the column sum of all pairwise connectedness measures results in the 

corresponding volatility risk premium total directional connectedness “to others”.  

 

More specifically, from Table 3, we can observe that EMU countries such as France, Netherlands 

and Germany are the countries with the lowest degree of directional connectedness from others 

(with values equal to 0.692, 0.676, 0.694, respectively) and with the highest degree of directional 

connectedness to others (with values of the index equal to 0.735, 0.916, 0.782, respectively). Non 

EMU countries such as Switzerland and UK are the countries with the highest degree of directional 

connectedness from others (with values of the index equal to 0.785 and 0.719 respectively) and 

lowest degree of directional connectedness to others (with values equal to 0.436 and 0.696 

respectively). Consistently with previous findings, we can observe (see Table 3) that France, 

                                                           
4
 It is important to observe that the full sample and rolling analysis is robust to different VAR order specifications 

(from 2 to 8 lags) and to different forecast horizon (2, and 5 days ahead). Results are available upon request. 
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Netherlands and Germany have a positive index of net total directional connectedness to others, 

(e.g. they are net donors); UK and, especially Switzerland are net recipients, since they have a  

negative index of net total directional connectedness to others.  

 

Inspections of time varying plots (see Fig 3-7) of net directional connectedness reveal interesting 

patterns. We first concentrate on non EMU countries. Figure 3, showing the time varying UK net 

contribution to volatility risk premia connectedness, suggests that, while UK is a net recipient on 

average (confirming the full sample analysis results), there has been a positive contribution 

between mid-October 2007 and end of June 2010 (that is during the period of financial turmoil 

involving sub-prime crisis, Lehman Brothers collapse, and the first Eurozone crisis, motivated by 

the EU’ failure to act to contain the Greek crisis) with a peak of 30% reached on 23/02/2010.  

Inspection of Figure 5 shows that Switzerland has been a negative net contributor to volatility risk 

premia throughout the period of investigation, with the highest value of the index, which is equal to 

0% recorded on mid-November 2008.   

We now describe the empirical findings for EMU countries. Inspection of Figure 4 shows that, on 

average, Germany is a positive net contributor to the European connectedness to volatility risk 

premia, although the rolling analysis shows a steady decrease throughout the 2002-2013 sample 

period analyzed.  In particular, there has been a steep decrease in the index from 80% to -10% 

during the period running from mid-May 2002 to December 2003, and then a steady rise with 

values of the index averaging 20% till August 2013, with the exception of the negatives values 

during the interval period running from mid-2009 to August 2011 (corresponding to the second 

Eurozone crisis period, August 2011, following troubles experienced by Italy and Spain). Figure 6 

shows that, since early 2006 France has become a positive net contributor to the European 

connectedness to volatility risk premia, with the highest values ranging between 20% and 40% 

during November 2010 – August 2013. Finally, inspection of Figure 7 shows that the Netherlands 

are a positive net contributor to the European connectedness to volatility risk premia.  In particular, 
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the rolling analysis shows a steady decrease of the index from 80% in January 2005 to 0% in June 

2007, a rebound till November 2010 (when the index reaches a value equal to 40%)  and a steady 

decrease toward zero 0 in the last part of the sample. 

 

Conclusions 

 
The focus of this paper is on co-movements between volatility risk premia, that is on proxies of stock 

market risk aversion among five European countries (UK, Germany, Switzerland, France, Germany 

and the Netherlands). We compute the index of total connectedness and total directional 

connectedness following Diebold-Yilmaz (2009, 2012) to measure co-movements. W h i l e  

Diebold-Yilmaz (2009 and 2012) rely on the variance decomposition of a stationary VAR (since 

they concentrate on stock returns or range based volatilities), we focus on the estimation of a 

Fractionally Integrated VAR, FIVAR, model, to account for the evidence of long memory in the 

volatility risk premia.  More specifically, in the first stage of the analysis, we find evidence that 

the series under investigation are long memory stationary contaminated by (unconditional 

mean) regime shifts. In a second stage of the analysis, we follow Do et al. (2013) to invert the 

FIVAR model giving the moving average coefficients necessary to obtain the forecast error 

variance decomposition table and to construct the pairwise, the total connectedness and the 

directional connectedness indices. The empirical evidence suggests that, over January 2000-August 

2013, the index of total connectedness among volatility risk premia has been relatively stable 

around 73%, with an increasing role played by France and with a positive (but decreasing) role 

played by Germany and the Netherlands. Non EMU countries such as the UK and Switzerland are 

negative net contributors to volatility risk premia connectedness, with a positive contribution of 

UK occurring between mid-October 2007 and end of June 2010. 
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Figure 1: volatility risk premia series 

  

 

 

Table 1: Descriptive Statistics  

 
                Descriptive Statistics 

 Mean Std Dev Min Max 

UK 3.793 6.638 -45.541 27.476 

GER 3.116 7.117 -44.853 32.181 

  SWI 3.111 7.251 -44.141 33.269 

FRA 2.567 7.427 -50.963 28.230 

NED 3.778 8.031 -54.207 30.640 

 
Note: The whole sample runs from 1/2/2000 to 29/08/2013.  
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Table 2: Long memory estimation results for the volatility 

risk premia. 

 
UK GER SWI 

Full 

sample 

estimate 

of d 

W 

stat 

 

Full 

sample 

estimate 

of d 

W 

stat 

 

Full 

sample 

estimate  

of d 

W 

stat 

 

 
0.111 

[0.094] 

1.461 0.082 

[0.085] 

1.424 0.222 

[0.132] 

1.960 

Breaks d Breaks        d Breaks    d 
1feb00 

18sep08 

0.080 

[0.046; 
0.114] 

1feb00 

10sep01 

0.194 

[0.177; 
0.214] 

1feb00 

10sep01 

0.139 

[0.119; 
0.159] 

19sep08 

  6nov08 
0.023 

[0.014; 

0.033] 

11sep01 

 8oct01 
0.203 

[0.193; 

0.213] 

11sep01 

12oct01 
0.350 

[0.336; 

0.364] 
7nov08 

29aug13 
0.000 

[0.091; 

-0.091] 

9oct01 

21jun02 

0.141 

[0.128; 

0.153] 

15oct01 

14jun02 
0.050 

[NA; 

NA] 
  24jun02 

19aug02 
0.000 

[-0.39; 

0.392] 

16jun02 

16aug02 
0.109 

[0.101; 

0.118 
  20aug02 

18jan08 

0.033 

[0.002; 

0.065] 

19aug02 

24sep08 
0.054 

[0.022; 

0.086] 
  21jan08 

18feb8 
0.156 
[0.144; 

0.168] 

25sep08 
10nov08 

0.159 
[0.148; 

0.169] 
  19feb08 

3oct08 
0.000 
[NA; 

NA] 

11nov08 
23jun09 

0.378 
[0.364; 

0.393] 
  6oct08 

7nov08 
0.181 

[0.163; 
0.199] 

24jun09 

29aug13 
0.161 

[0.133; 
0.188] 

  8nov08 

3aug11 
0.059 

[0.033; 
0.086] 

  

  4aug11 

2sep11 
0.106 

[0.096; 

0.116] 

  

  5sept11 

29aug13 
0.000 

[-0.13; 

0.134] 

  

 

 
 
 
 
 

 

   
 

Note: The entries in the first row (columns 1, 3 and 5) are the full sample Local Whittle point estimate of the fractional 

integration parameter d (standard errors in parenthesis). The entries in the first row (columns 2, 4 and 6) are the values 

of the W statistics developed by Qu (2011) for the  null hypothesis that a given time series is a stationary long-memory 

process against the alternative hypothesis that it is affected by regime change or a smoothly varying trend. The tabulated 

critical values for 10% and 5% level of significance are 1.118 and 1.252, respectively (see Qu, 2011). The remaining 

rows (under the Breaks label) give the breakpoints (in the mean) describing each time series segment. The  optimal 

number of segments (for instance, this number is equal to 3 for UK) is obtained using the method of minimizing a 

contrast function by Lavielle and Moulines  (2000) and by Lavielle (2005). The remaining rows (under the d label) give 

the sub-sample estimates of the fractional integration parameter d (95% confidence interval bands in parenthesis) fitting 

the best ARFIMA(p,d,q) according to the BIC criterion. 
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Table 2 cont’d: Long memory estimation results  

for the volatility risk premia. 

 
FRA NETH 

Full 

sample 

estimate 

of d 

W 

stat 

 

 

Full 

sample 

estimate 

of d 

W 

stat 

 

 
0.102 

[0.093] 

1.459 0.082 

[0.098] 

1.424 

Breaks d Breaks        d 
1feb00 

18sep08 

0.060 

[0.025; 
0.095] 

1feb00 

18sep08 

0.099 

[0.064; 
0.134] 

19sep08 

5nov08 
0.179 

[0.167; 
0.192] 

19sep08 

4nov11 
0.132 

[0.121; 
0.144] 

6nov08 

6may10 
0.000 

[NA; 

NA] 

7nov11 

29aug13 
0.000 

[-0.07; 

0.076] 
7may10 

3jun10 
0.000 

[-0.05; 

0.059] 

  

4jun10 
29aug13 

0.000 
[-0.09; 

0.092] 

  

 

 

 

Table 3: Full-Sample Connectedness Table; forecast horizon = 10 days 

 

 
UK GER SWIS FRA NED FROM 

UK 0.280 0.187 0.113 0.180 0.238 0.719 

GER 0.159 0.305 0.113 0.196 0.225 0.694 

SWI 0.186 0.209 0.214 0.167 0.222 0.785 

FRA 0.168 0.196 0.097 0.307 0.230 0.692 

NED 0.182 0.189 0.112 0.191 0.323 0.676 

TO 0.696 0.782 0.436 0.735 0.916 0.713 

NET -0.022 0.087 -0.348 0.043 0.240  

 
Note: We follow Diebold-Yilmaz (2014) in the description of the Full-Sample Connectedness Table.  
The full sample VAR(2) analysis stars is Feb 2, 2000 through August 29, 2014. The ij-th entry of the 
upper-left 5x5 sub-matrix gives the ij-th pairwise directional connectedness: the percent of h-day-ahead  
forecast error variance of country i due to shocks from country j. The rightmost ("FROM") column  
gives total directional connectedness (from): row sums (from all others to i). The bottom ("TO") 
row gives total directional connectedness (to); i.e., column sums (to all others from j). The bottom ("NET")  
row gives the difference in total directional connectedness (to-from). The bottom-right element (in boldface)  
is total connectedness (mean "from" connectedness, or equivalently, mean "to" connectedness). 
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Figure 2: total financial connectedness (rolling estimation; window size = 500); forecast horizon = 10 days 

 

 

Figure 3: net contribution to total financial connectedness from UK (rolling estimation; window size = 500);  

forecast horizon = 10 days 

 

 

Figure 4: net contribution to total financial connectedness from Germany (rolling estimation; window size = 

500); forecast horizon = 10 days 
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Figure 5: net contribution to total financial connectedness from Switzerland (rolling estimation;  

window size = 500); forecast horizon = 10 days 

 

 
 

Figure 6: net contribution to total financial connectedness from France (rolling estimation;  

window size = 500); forecast horizon = 10 days 

 

 

Figure 7: net contribution to total financial connectedness from Netherlands (rolling estimation;  

window size = 500); forecast horizon = 10 days 
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