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1. EDGE-COLORED GRAPHS
A (d+ 1)-colored graph is (Γ, γ), with:

� Γ = (V (Γ), E(Γ)) regular graph of degree d+ 1

� γ : E(Γ) → ∆d = {0, . . . , d} such that γ(e) 6= γ(f) for adjacent edges e, f ∈ E(Γ)
(edge-coloration)

A colored pseudocomplex K(Γ) is associated to (Γ, γ) :

from (Γ, γ) toK(Γ), if d = 3

Existence Theorem: Any orientable (resp. non-orientable) PL manifoldMd admits a bipartite
(resp. non-bipartite) colored graph (Γ, γ) representing it, i.e. such that Md ∼=PL |K(Γ)|.
The same result holds for singular d-manifolds. As a consequence, (d+1)-colored graphs
can be used to represent d-manifolds with boundary, too.

CP2 L(3, 1) S2×̃S1

2. G-DEGREE AND GEM-COMPLEXITY
For each (d + 1)-colored graph (Γ, γ) and for every cyclic permutation ε of ∆d, there
exists a regular embedding of Γ onto a suitable surface Fε.

Example: Regular embedding corresponding to ε = (green, red, blue, grey)

ρε(Γ) = 2, with Γ representing the Poincaré homology sphere

� regular genus of Γ with respect to ε: ρε(Γ) = genus(Fε) (or its half, if Fε is non-
orientable, i.e. Γ non-bipartite).

� G-degree of Γ: ωG(Γ) =
∑d!

2
i=1 ρε(i)(Γ)

where the ε(i)’s are the cyclic permutations of ∆d up to inverse.

� G-degree of a PL d-manifoldMd:

D(Md) = min
{
ωG(Γ) / |K(Γ)| ∼=PL Md

}
� gem-complexity of a PL d-manifoldMd:

k(Md) = min
{

1
2

(#V (Γ))− 1 / |K(Γ)| ∼=PL Md
}

3. COLORED TENSOR MODELS
A (d+ 1)-dimensional colored tensor model is a formal partition function

Z[N, {αB}] :=

∫
f

dTdT

(2π)Nd
exp(−Nd−1T · T +

∑
B

αBB(T, T )),

where T belongs to (CN )⊗d, T to its dual and B(T, T ) are trace invariants obtained by
contracting the indices of the components of T and T .
In this framework, colored graphs naturally arise as Feynman graphs encoding tensor
trace invariants:

Example (quartic invariant):

Q(T, T ) =
∑N
i1,...,id=1
j1,...,jd=1

T i1,i2,...,idTj1,i2,...,idT j1,j2,...,jdTi1,j2,...,jd

• White (black) vertices for T ( T )

• Edges colored by the position of the index

1/N-expansion of the free energy:

1

Nd
logZ[N, {tB}] =

∑
ωG≥0

N
− 2

(d−1)!
ωGFωG [{tB}] ∈ C[[N−1, {tB}]],

where the coefficientsFωG [{tB}] are generating functions of connected bipartite (d+1)-
colored graphs with fixed G-degree ωG.

4. RESULTS IN DIMENSION d

• If Γ is bipartite, ωG(Γ) < d!
2

=⇒ |K(Γ)| ∼=PL Sd

• The G-degree is finite-to-one within the class of PL manifolds. The same result holds
for singular manifolds with a fixed number of singularities.

• Suppose d even and d ≥ 4, then:
Γ bipartite or Γ representing a singular d-manifold =⇒ωG(Γ) ≡ 0 mod (d−1)!

5. RESULTS IN DIMENSION 3
• For any 3-manifold M3:

DG(M3) = k(M3)

• If Γ represents a prime, handle-free orientable (resp. non-orientable) 3-manifoldM3,
the topological classification ofM3 is known up to ωG(Γ) = 32 (resp. ωG(Γ) = 30).

• If Γ represents an orientable 3-dimensional singular manifold M3, the topological
classification of M3 is known up to ωG(Γ) = 6.

6. RESULTS IN DIMENSION 4
• For each Γ and for each pair (ε, ε′) of associated permutations of ∆4,

ωG(Γ) = 6
(
ρε(Γ) + ρε′ (Γ)

)
• For any PL 4-manifold M4:

DG(M4) = 6(k(M4)︸ ︷︷ ︸
PL

+χ(M4)︸ ︷︷ ︸
TOP

−2)

• If Γ represents an orientable PL 4-manifold M4 and ωG(Γ) < 48, then M4 is PL-
homeomorphic to S4, S3 × S1,CP2, #2(S3 × S1), #3(S3 × S1) or (S3 × S1)#CP2.

• If Γ represents a non-orientable PL 4-manifold M4 and ωG(Γ) < 36, then M4 is
PL-homeomorphic to S3×̃S1 or #2(S3×̃S1).

• PL 4-manifolds N and N ′ exist, so that DG(N#N ′) 6= DG(N) +DG(N ′)

• If Γ represents a simply-connected PL 4-manifold M4 and ωG(Γ) ≤ 527, then M4 is
TOP-homeomorphic to

(#rCP2)#(#r′ (−CP2)) or #s(S2 × S2),

where r + r′ = β2(M4) and s = 1
2
β2(M4), with β2(M4) ≤ 1

24
· ωG(Γ).

MOTIVATIONS AND TRENDS
From a “geometric topology” point of view, the theory of manifold representation

by means of edge-colored graphs has been deeply studied since 1975 and many results
have been achieved: its great advantage is the possibility of encoding, in any dimension,
every PL d-manifold by means of a totally combinatorial tool.
Edge-colored graphs also play an important rôle within colored tensor models theory,
considered as a possible approach to the study of Quantum Gravity: the key tool is
the G-degree of the involved graphs, which drives the 1/N expansion in the higher
dimensional tensor models context, exactly as it happens for the genus of surfaces in
the two-dimensional matrix model setting.
Therefore, topological and geometrical properties of the represented PL manifolds, with
respect to the G-degree, have specific relevance in the tensor models framework, show-
ing a direct fruitful interaction between tensor models and discrete geometry, via
edge-colored graphs.

In colored tensor models, manifolds and pseudomanifolds are (almost) on the
same footing, since they constitute the class of polyhedra represented by edge-colored
Feynman graphs arising in this context; thus, a promising research trend is to look for
classification results concerning all pseudomanifolds represented by graphs of a given
G-degree. In dimension 4, the goal has already been achieved - via singular 4-manifolds
- for all compact PL 4-manifolds with connected boundary up to G-degree 24.

In the same dimension, the existence of colored graphs encoding different PL mani-
folds with the same underlying TOP manifold, suggests also to investigate the ability of
tensor models to accurately reflect geometric degrees of freedom of Quantum Gravity.
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