

Contents lists available at ScienceDirect

Pharmacological Research

journal homepage: www.elsevier.com/locate/yphrs

Endothelial dysfunction in long-COVID: New insights from the nationwide multicenter LINCOLN Study

ARTICLE INFO

Keywords
COVID-19
Arginine
Ascorbic acid
Oxidative stress
Endothelial dysfunction
Survey

We thank Drs. Hung and Wei for their interest in our work on Coronavirus disease 2019 (COVID-19) and long-COVID.

Of course, we concur on the fact that several factors, including vaccination, virus strains, lifestyle, and body mass index, can influence the risk of developing long-COVID [1,2]; however, these points are not pertinent to our study, since, as we previously clarified [3], we did not investigate the risk of long-COVID: in fact, all patients who completed the LINCOLN (<u>L</u>-Arginine and Vitamin <u>C</u> improve Long-COVID) survey had long-COVID when the questionnaire was administered [4]. Moreover, in Italy, where the study was conducted, > 90 % of the population has received at least two doses of COVID-19 vaccine.

The treatments, namely L-Arginine + Vitamin C to improve

endothelial function and to reduce oxidation, respectively [5,6], vs alternative treatment, had been started in all patients at least 28 days after the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) negativization. Nevertheless, performing the analysis in patients who specifically experienced the onset of long-COVID symptoms 28 days after the negativization (Table 1), our findings are confirmed (Table 2). It is also worth noting that the physicians who administered the questionnaire – please see appendix in [4] – considered only persistent symptoms. When examining the effort perception (modified Borg scale), we also observed a significantly lower value in the arm treated with L-Arginine + Vitamin C compared to the alternative treatment (1.1 \pm 0.8 vs 5.2 \pm 1.5, p < 0.0001), indicating a better tolerance.

Table 1
Main characteristics of the two populations of patients who experienced the onset of long-COVID symptoms 28 days after the SARS-CoV-2 negativization. Data are mean ±SD or percentages.

	Alternative treatment ($n = 266$)	L-Arginine + Vitamin C (n = 460)	p
Age (y)	57.0 ± 16.4	55.0 ± 16.0	0.102
Male sex (%)	49.6	47.0	0.488
Hospitalization for COVID-19 (%)	10.2	10.4	0.903

 Table 2

 Survey results in the two groups of patients who experienced the onset of long-COVID symptoms 28 days after the SARS-CoV-2 negativization.

		Alternative treatment	L-Arginine + Vitamin C	p
	Absent (%)	0.8	94.3	
Asthenia	Mild (%)	7.1	5.2	< 0.0001
	Severe (%)	92.1	0.4	
	Absent (%)	7.5	71.5	
Dyspnea	Mild (%)	53.0	28.5	< 0.0001
	Severe (%)	39.5	0.0	
	Absent (%)	29.7	85.9	
Chest tightness	Mild (%)	45.5	13.9	< 0.0001
	Severe (%)	24.8	0.2	
	Absent (%)	66.5	87.4	
Dizziness	Mild (%)	26.6	11.3	< 0.0001
	Severe (%)	7.1	1.3	
	Absent (%)	64.7	87.6	
Gastrointestinal disorders	Mild (%)	24.1	12.0	< 0.0001
	Severe (%)	11.3	0.4	
	Absent (%)	38.7	82.2	
Headache	Mild (%)	43.2	16.3	< 0.0001
	Severe (%)	18.0	1.5	
	Absent (%)	56.4	87.2	
Anosmia	Mild (%)	30.8	11.5	< 0.0001
	Severe (%)	12.8	1.3	
	Absent (%)	33.5	82.0	
Concentration difficulty	Mild (%)	45.5	16.7	< 0.0001
	Severe (%)	21.1	1.3	
	Absent (%)	44.0	81.1	
Sleeplessness	Mild (%)	36.1	17.4	< 0.0001
	Severe (%)	19.9	1.5	

Declaration of Competing Interest

None.

References

- [1] C.H. Sudre, B. Murray, T. Varsavsky, et al., Attributes and predictors of long COVID, Nat. Med. 27 (2021) 626–631.
- [2] D. Adeloye, O. Elneima, L. Daines, et al., The long-term sequelae of COVID-19: an international consensus on research priorities for patients with pre-existing and new-onset airways disease. Lancet Respir. Med. 9 (2021) 1467–1478.
- [3] V. Trimarco, R. Izzo, P. Mone, B. Trimarco, G. Santulli, Targeting endothelial dysfunction and oxidative stress in Long-COVID, Pharmacol. Res. 184 (2022), 106451.
- [4] R. Izzo, V. Trimarco, P. Mone, et al., Combining L-Arginine with vitamin C improves long-COVID symptoms: the LINCOLN Survey, Pharmacol. Res. 183 (2022), 106360.
- [5] J. Gambardella, W. Khondkar, M.B. Morelli, X. Wang, G. Santulli, V. Trimarco, Arginine and endothelial function, Biomedicines 8 (2020) 277.
- [6] M.B. Morelli, J. Gambardella, V. Castellanos, V. Trimarco, G. Santulli, Vitamin C and cardiovascular disease: an update, Antioxidants 9 (2020) 1227.

Valentina Trimarco^a, Raffaele Izzo^{b,*}, Alessandro Zanforlin^c, Francesco Tursi^d, Francesco Scarpelli^e, Pierachille Santus^f, Alfio Pennisi^g, Girolamo Pelaia^h, Chiara Mussi^f, Simone Mininni^f, Nunzia Messina^k, Giuseppe Marazzi^f, Mauro Maniscalco^m, Mario Mallardoⁿ, Giovanni Fazio^o, Antonio Diana^p, Massimo Capra Marzani^g, Teresita Aloè^r, Pasquale Mone^s, Bruno Trimarco^a, Gaetano Santulli^{b,s,t,**}

^a Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University, Naples, Italy

^b Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy

^c Health Authority of South Tyrol, Bolzano, Italy

^d Codogno Hospital, ASST Lodi, Lodi, Italy ^e Trani Hospital, Trani (BT), Italy

f "Luigi Sacco" University Hospital, Milan, Italy

^g Catania Hospital, Catania, Italy

^h Department of Health Science, Magna Graecia University, Catanzaro, Italy ⁱ Department of Biomedical and Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy

j Associazione Scientifica Interdisciplinare Aggiornamento Medico (ASIAM)

Florence, Italy ^k ASL Napoli 1, Naples, Italy

¹San Raffaele Hospital, Rome, Italy

^m Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy

ⁿ "San Gennaro" Hospital, Naples, Italy

° Palermo Hospital, Palermo, Italy

^p Aversa Hospital, Aversa, Caserta, Italy

^q Alessandria Hospital, Alessandria, Italy

^r "San Martino" Hospital, Genoa, Italy

s Department of Medicine, Albert Einstein College of Medicine, New York,
NY, USA

^t Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, USA

* Corresponding author.

** Correspondence to: Departments of Medicine and Molecular Phaarmacology, Albert Einstein College of Medicine, New York, NY. E-mail addresses: rafizzo@unina.it (R. Izzo), gsantulli001@gmail.com (G. Santulli).