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Abstract

Quantum computers hold promise to improve the efficiency of quantum simulations of materials

and to enable the investigation of systems and properties more complex than tractable at present

on classical architectures. Here, we discuss computational frameworks to carry out electronic

structure calculations of solids on noisy intermediate scale quantum computers using embedding

theories, and we give examples for a specific class of materials, i.e., spin defects in solids. These are

promising systems to build future quantum technologies, e.g., computers, sensors and devices for

quantum communications. Although quantum simulations on quantum architectures are in their

infancy, promising results for realistic systems appear to be within reach.
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I. INTRODUCTION

Quantum simulations of the physical properties of molecules and solids on classical com-

puters are routinely used to tackle many problems in materials science and chemistry [1–6].

These simulations are aimed at understanding a variety of complex systems, in diverse fields

such as catalysis [7, 8] and quantum information science [9–11], as well as at generating

data for computations based on machine learning and artificial intelligence [12–14]. The

use of quantum computers promises to improve the efficiency of quantum simulations and

to enable the adoption of high level theories for systems more complex than tractable at

present [15–19].

A fundamental step in the calculation of the electronic structure of molecules and solids at

the quantum-mechanical level of theory is the solution of the time-independent Schrödinger

equation describing interacting electrons in the field of the nuclei; such solution provides

the basis for the evaluation of numerous properties, including total and excitation energies

and optimized geometries. A common strategy adopted on the quantum hardware avail-

able at present, namely noisy intermediate scale quantum computers (NISQ), is that of

writing the electronic structure problem in terms of second-quantized Hamiltonians, whose

parameters are determined on a classical computer from quantum chemistry [20] or density

functional theory (DFT) and many-body perturbation theory [21, 22] (MBPT) calculations.

The Hamiltonian is then represented in terms of qubits and quantum gates, using, for in-

stance, the Jordan-Wigner transform [23], the parity encoding [24, 25], the Verstraete-Cirac

mapping [26] or the Bravyi-Kitaev transform [24]; these mappings are implemented in sev-

eral open-source codes (e.g., Qiskit [27], OpenFermion [28]). Finally, the lowest eigenvalues

of the Hamiltonian are computed with an algorithm compatible with the number of available

qubits and circuit depths of the hardware. Topics of active research include the study of

the scaling of the algorithms used in the diagonalization of the Hamiltonian, for example

variational quantum eigensolver (VQE) [29, 30] and quantum phase estimation [31], with

specific attention to the dimensionality of the problem and whether shallow or deep circuits

are employed [32].

Progress has been reported in the past decade in solving the Schrödinger equation for

molecular systems on quantum computers [29, 33–57] ranging from simple ions, including

H3
+ and HHe+ to molecules such as water, alkali hydrides and hydrogen chains with up
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to 12 atoms, for which Hartree-Fock solutions have been recently published [51]. An in-

teresting summary of calculations of molecular systems on quantum computers is given in

Ref. [6], which also discusses the algorithms used to solve the molecular Hamiltonian in

second quantization.

Recently progress has also been reported in quantum computations of model Hamiltoni-

ans, such as the Hubbard [58–62] and Heisenberg Hamiltonians [35, 62, 63], infinite hydrogen

chains [64, 65], and a two-dimensional electron gas in a strong magnetic field (Hamiltonian

describing quantized Landau levels) [66, 67]. Most of these calculations have been carried

out on a quantum simulator (i.e., the quantum computer is simulated on a classical one),

with just few examples [59, 60, 62, 63] using quantum hardware. In addition, periodic

Hubbard models have been solved on quantum simulators [68–75] either within dynamical

mean field theory (DMFT)[76–80] or density matrix embedding theory (DMET) [81–86],

with three recent examples of DMFT [87–89] and DMET [54, 90] calculations reported on

quantum computers as well. DMFT and DMET are powerful approaches [76–80] to map the

strongly-correlated states of a solid onto a self-consistent quantum impurity problem [71].

A review of algorithms used for DMFT and DMET calculations of strongly correlated sys-

tems is presented in Ref. [91]. In addition, quantum simulations have been applied to solve

tight-binding Hamiltonians of weakly correlated solids [92–94] on quantum simulators and

quantum computers.

For most molecular and solid-state systems, the solution of the electronic structure prob-

lem using the full many-body Hamiltonian is still out of reach on both classical and near term

quantum architectures, due to the large size of the Hilbert space. Interestingly, there are

myriad of important problems in condensed matter physics, materials science and chemistry

that can naturally be formulated in terms of active regions surrounded by a host medium,

for example point defects in materials, active site of catalysts, molecular adsorbates on sur-

faces and nanostructures embedded in condensed systems, including matrices or solvents, to

name a few. In addition strongly correlated states arising from d and f orbitals in oxides

and other solids may be described by an active space embedded in a condensed medium.

Hence, all of these problems may be addressed using embedding theories [79, 81–86, 95–112]

which separate the electronic structure problem of an active region from that of the periodic,

host environment. In particular, using embedding theories, one may define second-quantized

Hamiltonians and formulate the electronic structure problem of active regions in solids in a
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FIG. 1. From materials to devices and back again: the bottom and top arrows indicate quantum

simulations of materials carried out on a classical or quantum computer, respectively, leading to

the prediction and design of components for quantum architectures; the latter may then be used to

perform quantum simulations (as indicated by the middle arrow) and in turn improve predictive

capabilities for materials and devices.

fashion similar to that of molecular systems.

In this perspective we discuss frameworks to carry out quantum-mechanical calculations

for solids on near-term quantum computers using embedding theories, with examples on a

specific class of materials, i.e., spin-defects in solids (see Fig. 1), for which calculations of

ground and excited state properties on a quantum computer have been recently reported.

A spin-defect, i.e. a point defect with specific spin properties [9], is a promising system

to realize a qubit and hence to build future quantum technologies, e.g., computers, sensors

and novel devices for quantum communications [10, 11, 48, 113–116]. We discuss hybrid

classical/quantum calculations of the electronic structure of spin defects and we envision

a general feedback loop, where quantum simulations of materials properties on a quantum

device may lead to the prediction of new materials and properties for the design of improved

quantum devices, which will in turn lead to enhanced property predictions (see Fig. 1). We

conclude with a discussion of current open challenges.
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FIG. 2. A summary of quantum embedding theories used in condensed-matter physics

and quantum chemistry. Density-based theories encompass density-functional-theory-in-density-

functional-theory (DFT-in-DFT) and wavefunction-in-DFT (WF-in-DFT) embedding [95–97]

schemes. Density-matrix embedding theory (DMET) [81–86] employs the density matrix (γ)

to define an embedding protocol. Green’s (G) function-based methods include quantum defect

embedding theory (QDET) [98–100], self-energy embedding theory (SEET) [101–103], dynamical

mean-field theory (DMFT)+GW [104–109], and DMFT+DFT [79, 110] embedding.

II. QUANTUM EMBEDDING THEORIES

As mentioned in the introduction, quantum embedding theories are frameworks to solve

the time-independent Schrödinger equation for a system of electrons by separating the prob-

lem into the calculation of the energy levels or density of a so-called active space (or “frag-

ment”, “impurity”) and those of the remaining environment. Each part of the system is

described at the quantum-mechanical level [117, 118], with the active space being treated

with a more accurate and computationally more expensive theoretical method than the en-

vironment [117]. In contrast, quantum embedding models describe only the active space

with quantum-mechanical methods, while employing a classical description for the environ-

ment [118–121].

The three key ingredients of a quantum embedding theory are the strategy used to parti-

tion the full system into active space and environment, the computational method adopted
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to describe the two portions, and the approximation for the interaction between active space

and environment [122]. As illustrated in Fig. 2, we can classify embedding theories by iden-

tifying the key quantity used to realize the embedding [117, 118]. In density functional

embedding theory (DFET), the active space is defined by a region in real space and the

density of the system is partitioned into that of the active region and of the environment.

DFT calculations for the environment yield an exchange-correlation embedding potential

[95–97, 123] which then enters the Schrödinger equation for the active space; such equa-

tion is solved with a high-level quantum-chemical method. In density matrix embedding

theories [81–86, 124–126], the active space is again defined by selecting a specific region of

real space. However, the electronic structure of the active space is determined by solving a

Schrödinger equation at a high level of theory with additional bath orbitals which account for

the interaction with the environment. This framework is commonly known as the quantum

impurity problem due to its similarity with the Anderson impurity problem [127]. The bath

orbitals are obtained from a low-level calculation of the full system with an additional one-

particle operator; the latter is constructed to satisfy the condition that the density matrix

at the low- and high-level of theory be identical.

In Green’s function embedding theories, such as dynamical mean-field theory embed-

ding (DMFT+DFT [79, 110] and DMFT+GW [104–109]) or self-energy embedding theory

(SEET) [101–103], the dynamical and non-local self-energy of the active space is expressed

as a sum of terms evaluated at a high and low level of theory, with an additional double

counting term. DMFT based methods and SEET approaches differ by the choice of high- and

low-level methods and by the technique used to separate the terms of the total self-energy

of the system.

Recently, we proposed a Green’s function based quantum embedding theory for the cal-

culation of defect properties in solids [98–100], which we call quantum defect embedding

theory (QDET). Note that the term defect here is not restricted to defects in solids and

simply denotes a small guest region embedded in a large host condensed system. Similar

to all Green’s function based methods, in QDET the active space is defined by a set of

single particle electronic states. The set includes the states localized in proximity of the

defect or impurity and, in some cases, contains additional single particle orbitals belonging

to the host material. Within QDET, one constructs an effective Hamiltonian in second

quantization which operates on the active space, using a potential which includes the ef-
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fect of the environment through an effective many-body screening term. The Hamiltonian

is solved using a full configuration interaction (FCI) approach, thus including correlation

effects between the electronic states of the active space.

The vast majority of calculations for model solids or materials carried out on quantum

simulators or quantum computers, have adopted Green’s function embedding theories. Few

exceptions include tight-binding Hamiltonians [92, 93] and the infinitely coordinated Bethe

lattice Hubbard model treated within DMET [90]. Therefore it is instructive to compare

in detail Green’s function based quantum embedding theories before describing quantum

computations, and such comparison is presented in the next section.

A. Comparison between Green’s function based quantum embedding theories

As discussed below, although in principle QDET, DMFT+GW and SEET are related

methods, these three frameworks target vastly different properties and hence applications,

and can handle systems of different sizes.

Dynamical Mean Field Theory was originally proposed to solve interacting lattice mod-

els, such as the Hubbard and the periodic Anderson model [77, 128]. Building on the

original formulation, the framework commonly known as DMFT+GW aims at describ-

ing correlated bands in periodic solids, e.g., transition-metal compounds with correlated

3d- and lanthanides with correlated 4f -bands [80, 129], for example SrVO3 [106, 130–132],

La2CuO4, and NiO [107]. The approach is designed to yield thermodynamical properties

and charged excitations, which can be obtained from the one-body Green’s function. Cur-

rent DMFT+GW calculations on classical computers can tackle cells of the order of 5-20

atoms and dense grids of k-points.

Within this approach, the states of a chosen active space (e.g., the 3d bands in tran-

sition metal compounds [80, 129]) are mapped onto an effective impurity problem, which

by construction reproduces the Green’s function of the active space. The impurity and the

states of the full solid are connected through a so called hybridization self-energy ∆, which

is determined self-consistently by requiring the impurity Green’s function be identical to the

local Green’s function of the active space. The influence of the environment on the active

space is described within MBPT, using a diagrammatic expansion of the self-energy (Σ) in

terms of the screened Coulomb potential W . Vertex corrections are usually neglected and
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hence Σ = iGW [133–137], where G is the Green’s function [107, 108, 131, 132, 138, 139].

Within DMFT+GW , the self-energy of the active space is given by the sum of the DMFT

and GW self-energies plus a double counting term. The latter is necessary to remove the

contribution of diagrams that are contained in both the GW and DMFT self-energies. Ad-

ditionally, the interaction within the active space is screened by the polarizability of the

environment, and evaluated, e.g., by using the constrained random-phase approximation

(cRPA) method [140–142].

Various schemes have been proposed in the literature to evaluate the dynamical screening,

as well as the charge self-consistency [143, 144], and double counting terms [108, 139, 145].

While early implementations assumed the local interactions to be static within DMFT, dy-

namical interactions are now included in DMFT+GW [105] calculations. These interactions

may be computed using quantum Monte Carlo (QMC) solvers [128, 146–148] or exact di-

agonalization (ED) [149] methods; however, the implementation of QMC and ED solvers

has been only reported for approximate dynamically screened interactions [105, 132, 150].

An approximation to DMFT+GW was introduced more than twenty years ago [79, 110],

where the environment is described by DFT instead of many body perturbation theory; the

approach is now known as DMFT+DFT. The combination of DMFT for a correlated sub-

space of orbitals and DFT for the remaining non-correlated states in the solid has become a

widespread technique to study strongly correlated systems [80, 151]. An exact double count-

ing scheme has been derived [152] for DMFT+DFT, although approximate double counting

schemes are most often employed in the literature [79, 153–155].

While DMFT+GW targets the properties of solids, SEET was originally introduced to

describe correlated states in molecular systems. However, an extension to periodic systems

has recently been proposed [103, 156, 157], and applied to hydrogen chains, and to unit

cells of oxides with 2 to 5 atoms, including SrVO3, SrMO3, MnO and NiO. SEET yields

ground state properties at zero temperature, for example total energies. In (SEET) [101,

102, 158, 159] an active space is defined by a subspace of the full electronic Hilbert space,

and is used to separate the independent-particle Green’s function G0 into that of the active

space and its environment. Using the Dyson equation G = G0 +G0ΣG, where G is the full

Green’s function, one then defines an impurity problem for the active space, with an explicit

hybridization term (∆) with the environment. The interaction within the active space is

given by the bare Coulomb potential. The self-energy of the active space is obtained as
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the sum of the impurity self-energy, the self-energy computed at a low-level of theory (e.g.,

GW [133–136]) and a double counting term. The quantum impurity problem is solved by

FCI [102, 158, 160].

Finally, QDET is designed to determine correlated electronic states of active regions in

periodic solids, e.g., those of point defects embedded in a periodic crystal, and to obtain

neutral excitations within the active space, for example the excited states of a spin defect

with localized single particle states within a host crystal. The approach has recently been

applied to defects in diamond and silicon carbide [98–100], as well as hexagonal BN [161],

with periodic cells containing between 215 atoms and 511 atoms. The specific steps of a

QDET calculation are summarized in Fig. 3). After performing a (hybrid) DFT calculation

for the full solid using a plane-wave basis set, an active space is defined by selecting a

number of Kohn-Sham states (e.g., by choosing four localized orbitals in the proximity of

the negatively-charged nitrogen vacancy center (NV– ) in diamond as in Ref. [98]). The

reduced polarizability χR and screening WR are calculated without explicit summations

over empty states (for example using the WEST code [162–165]). This is an important

feature which makes QDET scalable to large supercells. Using the reduced screening as well

as a double counting correction, an effective potential and an effective Hamiltonian Heff are

derived, describing the states belonging to the active space in the field of the environment

(the rest of the crystal). For a given active space, Heff is unique. Note that screening effects

may be evaluated either within the RPA or explicitly taking into account the derivative of

the exchange-correlation potential (fxc) [98]. We also note that an exact double counting

correction within the G0W0 approximation, which is fully consistent with those employed in

DMFT+GW , has been rigorously derived, implemented and tested for QDET [166].

In the following, we clarify the connection between DMFT+GW , SEET, and QDET with

an instructive example, and we discuss how correlation effects are treated by the different

methods. We consider a set of localized electronic states of a defect in an insulator or

semiconductor in the dilute limit (i.e. in the limit where there is a single defect within the

crystal and hence no interaction between defects is present). This specific case is known as

the quantum impurity problem in the atomic limit [105, 167, 168]. Ground and excited states

of some of these defects are of interest for the realization of qubits, that are building blocks

of quantum technologies, including quantum sensing, computing, and communication [10,

11, 48, 113–116]. While defect states in semiconductors do not form correlated bands and
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hence are not commonly studied using DMFT-based frameworks, they represent a useful

example to illustrate similarities and differences between methods.

Consider a supercell of a periodic solid in real space and assume the reciprocal space

is sampled using only the Γ=(0,0,0) point. The mapping of the active space (localized

electronic states of the mean-field Hamiltonian) to the impurity problem is exact and the

hybridization vanishes, i.e., ∆ = 0. As such, a single, non-self-consistent solution of the

impurity problem yields the electronic states of the active space. Assuming the interac-

tions to be instantaneous, the solution of the impurity problem can be obtained by exact

diagonalization, which is equivalent to full configuration interaction (FCI). Under these

specific conditions, the DMFT+GW and QDET frameworks are identical. However, the

properties that can be computed using these two frameworks and their respective regimes

of validity do differ, due to the different approximations adopted in practice when carrying

out calculations. Most notably, the two methods differ in their treatment of the impurity

Hamiltonian: DMFT+GW targets correlated bands in crystalline solids, where the onsite

repulsion U is the dominant term; hence the effective impurity Hamiltonian is commonly

approximated by the Anderson impurity model [127] which only includes density-density

repulsion terms. Some multi-orbital implementations of DMFT have been proposed in the

literature, however they are rather challenging, from a computational standpoint [169, 170].

QDET, on the other hand, is specifically designed to compute neutral excitations of local-

ized correlated states, where the treatment of exchange interactions is crucial (for example

in multiplet excitations), and therefore no approximations to the effective Hamiltonian are

applied.

For a defect in a periodic supercell, both QDET and SEET obtain the self-energy as the

sum of a quantum impurity self-energy, the GW self-energy, and a double counting term.

If the active space is chosen to be a subset of the quasi-particle states obtained from the

GW calculation of the full system, then the hybridization term vanishes; in this case the

SEET+GW framework reduces to the atomic impurity problem for the active space and be-

comes similar to QDET. The main difference resides in the screening of the interaction in the

active space which is the bare Coulomb potential in SEET+GW ; it is instead the screened

Coulomb interaction within QDET. This difference also leads to different expressions for the

double counting correction to the active-space self-energy [102].

In summary in the atomic limit, that is in the case of a single defect embedded in a
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FIG. 3. Layout of materials simulations using the quantum defect embedding theory (QDET)

of Ref. [98–100] on a classical and quantum computer. In the second and fourth panel from the

left, representative single particle and many body states are shown, respectively. The term WE

(see text) denotes the screening that the environment exerts on the active space. The effective

Hamiltonian Heff describes the active space (see text).

surrounding host with which it does not hybridize, the DMFT+GW and QDET methods

coincide. SEET and QDET also turn out to be similar frameworks in the case of zero

hybridization, however they differ by the type of interactions (bare or screened) entering the

total potential acting on the active space.

III. QUANTUM EMBEDDING ELECTRONIC STRUCTURE CALCULATIONS

ON A QUANTUM COMPUTER

By reducing the complexity of electronic structure calculations of solids, quantum em-

bedding theories lend themselves to possible implementations on quantum computers, which

hold promises to reduce the exponential scaling of FCI or ED calculations. Although quan-

tum advantage for useful chemistry and physics problems has not yet been demonstrated,

the use of quantum hardware is expected to eventually pave the way to implement algo-

rithms with a polynomial instead of exponential scaling as a function of the system size for
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FIG. 4. Schematic representation of a quantum simulation: A second-quantized Hamiltonian is

mapped to a spin Hamiltonian with a qubit representation. In the current NISQ era, the calculation

with physical qubits requires noise mitigation and algorithm corrections (see text). In the future,

quantum error correction is expected to lead to a logical qubit representation, and in turn to

quantum advantage.

the solution of the time independent Schröedinger equation. Indeed, in a classical computer

N classical bits can represent one N -bit number, but N quantum bits (qubits) can repre-

sent 2N bit numbers on a quantum computer, providing a powerful memory scaling. Hence,

it is interesting to explore how to obtain ground and excited states of second-quantized

Hamiltonians and how to evaluate spectral functions on a quantum computer (see Fig. 4).

The computational complexity of quantum-embedding calculations based on Green’s

functions is determined by the size of the active space. In DMFT for example, the large

Hilbert space of correlated 4f or 5f orbitals (14 partially occupied states) makes the study of

lanthanide and actinide compounds numerically challenging. Similar challenges arise when

the correlated orbitals of several atomic sites are included in the active space in cellular

DMFT [171, 172] (CDMFT). In CDMFT calculations reported so far on classical hardware,

typically one uses supercells or clusters with up to 100 sites [173, 174], and the maximum

number of sites strongly depends on the temperature of the system. In QDET and SEET,

large Hilbert spaces may arise from systems with a large number of localized defect states
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or from active regions containing, for example, multiple defects.

At present, SEET, DMFT+GW or DMFT+DFT calculations of solids have not yet

been implemented on quantum computers. Recently, first-principles DMFT calculations for

La2CuO4 have carried out on a quantum emulator [175]. However, model Hamiltonians

derived within DMFT have been diagonalized both on quantum simulators [68, 69, 71, 72]

and quantum hardware [87–89]. Note that the Hubbard and Heisenberg model Hamilto-

nians considered so far for quantum computations are finite-site models with typically 2

sites or orbitals, which can be directly encoded on quantum hardware; instead, the infinite

Hubbard lattice cannot be directly encoded and DMFT has been used to map the infinite

lattice to a finite-size problem. DMFT calculations on quantum computers have so far been

performed only for the single-band Hubbard model on the Bethe lattice [87–89]. These cal-

culations, using either the variational quantum eigensolver (VQE) [87, 89] or explicit time

evolution techniques [88] to obtain the impurity Green’s function, have shown that quantum

computing can yield results in good agreement with known analytical limits. However, the

quantum noise of NISQ-era hardware leads to erroneous contributions to the self-energy Σ,

which may prevent the DMFT calculation from converging [87, 88]. Thus, regularization

by applying sum rules [87] or by approximations to Σ(ω) [88] are currently required. The

noise can introduce unphysical poles in the spectral function, which in turn prevents DMFT

calculations from reaching self-consistency. [68, 70, 72, 73, 87–89, 176].

Seminal applications of quantum embedding theories to realistic materials on a quantum

computer have been carried out using QDET. Ma et al. [99] reported calculations of the

strongly correlated states of the NV– in diamond on a NISQ computer using a minimum

model, and they obtained results consistent with those of quantum emulators, the latter

coinciding with the results of classical calculations. However, the energies obtained on a

quantum computer turned out to be slightly higher than those computed with a quantum

emulator, due to hardware noise.

Recently, Huang et al. calculated the excitations of the NV– defect in diamond and the

neutral divacancy (VV0) in 4H-SiC [177] on a quantum computer within QDET using a

combination of variational quantum eigensolver (VQE) [29] and quantum subspace expan-

sion (QSE) [178] algorithms. They found that hardware noise leads to poor conservation of

the number of electrons, thus violating the variational principle. A post-selection of results

enforcing particle conservation was shown to significantly improve the accuracy of the cal-
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culations. An additional error reduction was obtained through a zero noise extrapolation

scheme (ZNE) [42, 179], an error mitigation scheme that doesn’t require additional qubits.

Calculations on quantum computers using quantum embedding methods have been per-

formed on a variety of quantum hardware, including IBM superconducting qubits [87, 88, 98,

177], ion trap quantum qubits at the University of Maryland [87], and the quantum cloud ser-

vice by Rigetti [89]. Generally, the calculations are performed using 4 qubits [87, 88, 98, 177],

with the exception of Ref. [89] which employed 2 qubits.

In spite of encouraging results on quantum computers, establishing which algorithms are

better suited to obtain many-body energies of electronic states of solids on NISQ hardware

remains an open problem [177, 180]. For example, recent papers have proposed alternative

methods to find the eigenstates of a Fermionic Hamiltonian that are not based on the vari-

ational principle and therefore do not involve an optimization procedure [62]. In particular,

Ref. [181] proposed an algorithm to prepare approximate ground states with shallow circuit

and, interestingly, just one parameter to define trial wave-functions.

IV. OUTLOOK

In conclusion, we have discussed several quantum embedding theories[79, 81–86, 95–110]

which are promising frameworks for quantum simulations of heterogeneous solids on near

term quantum computers. Although limited to few systems (spin defects in semiconductors),

the results obtained so far on quantum hardware indicate that quantum simulations of

strongly-correlated sites in periodic systems are within reach for NISQ quantum computers.

Spin qubits [9] represent just one of the possible applications of quantum embedding theories,

which may in principle be applied to a variety of localized highly-correlated states, including

those found in solvated ions and nanostructures, adsorbates on surfaces and catalytic sites

at surfaces and interfaces.

The verdict is not yet out, on whether quantum computers will substantially improve the

scaling of algorithms in use in classical computers to diagonalize the Hamiltonian of active

sites or to compute spectral functions of realistic materials beyond model Hamiltonians.

Several estimates [6, 29, 33, 70, 87, 182] point at a few hundreds logical qubits as the

requirement to reach quantum advantage in terms of algorithmic scaling. Although the

relatively small number of logical qubits is encouraging, all algorithms in use today require

15



large gate counts of at least millions of error-corrected gates [72, 182], going beyond the

capability of current NISQ hardware [183] for the implementation of hundred logical qubits.

Further development of improved quantum algorithms and error-mitigation will therefore

be crucial to demonstrate improved scaling on NISQ machines.

In addition, since the lowest achievable scaling of quantum computational algorithms has

not yet been fully determined, the size of the active space for which quantum simulations

become advantageous over classical ones is still unknown. Fault-tolerant error correction

schemes[184, and references therein], necessary to apply quantum simulations to realistic

materials and to obtain full quantum advantage, are an active and yet relatively new field of

research and questions regarding which kind of schemes might be needed to achieve chemical

accuracy are still open questions. Furthermore, for all hybrid simulations where data are

moved from classical to quantum computers, communication schemes need to be carefully

engineered in order to avoid transfer bottlenecks.

Finally, we note that here we just briefly addressed the problem of solving the time-

independent Schrödinger equation for electrons in solids, namely a basic electronic structure

problem at fixed ionic coordinates. The calculations of additional properties of materials,

including structural stability [185], electron-phonon interaction [186] and finite-temperature

properties [187, 188] remain, as of yet, largely unexplored on quantum computers.
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[115] V. Ivády, I. A. Abrikosov, and A. Gali, npj Computational Materials 4, 1 (2018).

[116] C. P. Anderson, A. Bourassa, K. C. Miao, G. Wolfowicz, P. J. Mintun, A. L. Crook, H. Abe,

J. U. Hassan, N. T. Son, T. Ohshima, and D. D. Awschalom, Science 366, 1225 (2019).

[117] Q. Sun and G. K.-L. Chan, Accounts of Chemical Research 49, 2705 (2016).

[118] L. O. Jones, M. A. Mosquera, G. C. Schatz, and M. A. Ratner, Journal of the American

Chemical Society 142, 3281 (2020).

[119] H. Lin and D. G. Truhlar, Theoretical Chemistry Accounts 117, 185 (2006).

[120] B. Wang, K. R. Yang, X. Xu, M. Isegawa, H. R. Leverentz, and D. G. Truhlar, Accounts of

Chemical Research 47, 2731 (2014).

[121] S. Pezeshki and H. Lin, Molecular Simulation 41, 168 (2015).

[122] N. He and F. A. Evangelista, The Journal of Chemical Physics 152, 094107 (2020).

24

http://dx.doi.org/10.1021/acs.jpclett.7b00689
http://dx.doi.org/10.1088/1367-2630/aa5d34
http://dx.doi.org/ 10.1021/acs.jctc.8b00927
http://dx.doi.org/ 10.1021/acs.jctc.8b00927
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1088/0953-8984/26/17/173202
http://dx.doi.org/10.1103/PhysRevB.94.201106
http://dx.doi.org/10.1103/PhysRevB.94.201106
http://dx.doi.org/10.1038/npjquantmats.2016.1
http://dx.doi.org/10.1038/npjquantmats.2016.1
http://dx.doi.org/ 10.1103/PhysRevMaterials.1.043803
http://dx.doi.org/ 10.1103/PhysRevMaterials.1.043803
http://dx.doi.org/10.1103/PhysRevB.66.085120
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://arxiv.org/abs/2010.05441
http://dx.doi.org/ 10.33774/chemrxiv-2021-0nmwt
http://dx.doi.org/ 10.33774/chemrxiv-2021-0nmwt
http://dx.doi.org/10.1038/srep20803
http://dx.doi.org/ 10.1103/PhysRevMaterials.1.075002
http://dx.doi.org/10.1038/s41524-018-0132-5
http://dx.doi.org/10.1126/science.aax9406
http://dx.doi.org/10.1021/acs.accounts.6b00356
http://dx.doi.org/10.1021/jacs.9b10780
http://dx.doi.org/10.1021/jacs.9b10780
http://dx.doi.org/10.1007/s00214-006-0143-z
http://dx.doi.org/10.1021/ar500068a
http://dx.doi.org/10.1021/ar500068a
http://dx.doi.org/10.1080/08927022.2014.911870
http://dx.doi.org/10.1063/1.5142481


[123] T. P. Gujarati, M. Motta, T. N. Friedhoff, J. E. Rice, N. Nguyen, P. K. Barkoutsos, R. J.

Thompson, T. Smith, M. Kagele, M. Brei, B. A. Jones, and K. Williams, arXiv:2203.07536

[quant-ph] (2022), arXiv:2203.07536 [quant-ph].

[124] B. T. G. Lau, G. Knizia, and T. C. Berkelbach, The Journal of Physical Chemistry Letters

12, 1104 (2021).

[125] Z.-H. Cui, T. Zhu, and G. K.-L. Chan, Journal of Chemical Theory and Computation 16,

119 (2020).

[126] Z.-H. Cui, H. Zhai, X. Zhang, and G. K.-L. Chan, arXiv:2112.09735 [cond-mat] (2022),

arXiv:2112.09735 [cond-mat].

[127] P. W. Anderson, Physical Review 124, 41 (1961).

[128] P. Werner and A. J. Millis, Physical Review Letters 99, 146404 (2007).

[129] F. Nilsson and F. Aryasetiawan, Computation 6, 26 (2018).

[130] R. Sakuma, P. Werner, and F. Aryasetiawan, Physical Review B 88, 235110 (2013).

[131] F. Petocchi, F. Nilsson, F. Aryasetiawan, and P. Werner, Physical Review Research 2,

013191 (2020).

[132] J. M. Tomczak, P. Liu, A. Toschi, G. Kresse, and K. Held, The European Physical Journal

Special Topics 226, 2565 (2017).

[133] L. Reining, WIREs Computational Molecular Science 8, e1344 (2018).

[134] G. Onida, L. Reining, and A. Rubio, Reviews of Modern Physics 74, 601 (2002).

[135] L. Hedin, Journal of Physics: Condensed Matter 11, R489–R528 (1999).

[136] F. Aryasetiawan and O. Gunnarsson, Reports on Progress in Physics 61, 237 (1998).

[137] D. Golze, M. Dvorak, and P. Rinke, Frontiers in Chemistry 7, 377 (2019).

[138] S. Choi, P. Semon, B. Kang, A. Kutepov, and G. Kotliar, Computer Physics Communications

244, 277 (2019).

[139] J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and S. Biermann, EPL (Europhysics

Letters) 100, 67001 (2012).

[140] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein,

Physical Review B 70, 195104 (2004).

[141] F. Aryasetiawan, J. M. Tomczak, T. Miyake, and R. Sakuma, Physical Review Letters 102,

176402 (2009).

[142] T. Miyake and F. Aryasetiawan, Physical Review B 77, 085122 (2008).

25

http://arxiv.org/abs/2203.07536
http://dx.doi.org/10.1021/acs.jpclett.0c03274
http://dx.doi.org/10.1021/acs.jpclett.0c03274
http://dx.doi.org/10.1021/acs.jctc.9b00933
http://dx.doi.org/10.1021/acs.jctc.9b00933
http://arxiv.org/abs/2112.09735
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRevLett.99.146404
http://dx.doi.org/10.3390/computation6010026
http://dx.doi.org/10.1103/PhysRevB.88.235110
http://dx.doi.org/10.1103/PhysRevResearch.2.013191
http://dx.doi.org/10.1103/PhysRevResearch.2.013191
http://dx.doi.org/ 10.1140/epjst/e2017-70053-1
http://dx.doi.org/ 10.1140/epjst/e2017-70053-1
http://dx.doi.org/10.1002/wcms.1344
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1088/0953-8984/11/42/201
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.3389/fchem.2019.00377
http://dx.doi.org/ 10.1016/j.cpc.2019.07.003
http://dx.doi.org/ 10.1016/j.cpc.2019.07.003
http://dx.doi.org/ 10.1209/0295-5075/100/67001
http://dx.doi.org/ 10.1209/0295-5075/100/67001
http://dx.doi.org/ 10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevLett.102.176402
http://dx.doi.org/10.1103/PhysRevLett.102.176402
http://dx.doi.org/10.1103/PhysRevB.77.085122


[143] A. Hampel, S. Beck, and C. Ederer, Physical Review Research 2, 033088 (2020).

[144] S. Bhandary and K. Held, Physical Review B 103, 245116 (2021).

[145] J. Lee and K. Haule, Physical Review B 95, 155104 (2017).

[146] E. Eidelstein, E. Gull, and G. Cohen, Physical Review Letters 124, 206405 (2020).

[147] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Computer Physics Communications 200,

274 (2016).

[148] P. Werner and A. J. Millis, Physical Review Letters 104, 146401 (2010).

[149] D. Medvedeva, S. Iskakov, F. Krien, V. V. Mazurenko, and A. I. Lichtenstein, Physical

Review B 96, 235149 (2017).

[150] P. Werner and M. Casula, Journal of Physics: Condensed Matter 28, 383001 (2016).

[151] R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, Reports on Progress in Physics 82, 012504

(2018).

[152] K. Haule, Physical Review Letters 115, 196403 (2015).

[153] K. Haule, C.-H. Yee, and K. Kim, Physical Review B 81, 195107 (2010).

[154] K. Haule, T. Birol, and G. Kotliar, Physical Review B 90, 075136 (2014).

[155] A. van Roekeghem, T. Ayral, J. M. Tomczak, M. Casula, N. Xu, H. Ding, M. Ferrero,

O. Parcollet, H. Jiang, and S. Biermann, Physical Review Letters 113, 266403 (2014).

[156] C.-N. Yeh, S. Iskakov, D. Zgid, and E. Gull, Physical Review B 103, 195149 (2021).

[157] S. Iskakov, C.-N. Yeh, E. Gull, and D. Zgid, Physical Review B 102, 085105 (2021).

[158] A. A. Kananenka, E. Gull, and D. Zgid, Physical Review B 91, 121111 (2015).

[159] T. N. Lan, A. A. Kananenka, and D. Zgid, The Journal of Chemical Physics 143, 241102

(2015).

[160] T. N. Lan, A. Shee, J. Li, E. Gull, and D. Zgid, Physical Review B 96, 155106 (2017).

[161] L. Muechler, D. I. Badrtdinov, A. Hampel, J. Cano, M. Rösner, and C. E. Dreyer,

arXiv:2105.08705 [cond-mat] (2021), arXiv:2105.08705 [cond-mat].

[162] M. Govoni and G. Galli, Journal of Chemical Theory and Computation 11, 2680 (2015).

[163] P. Scherpelz, M. Govoni, I. Hamada, and G. Galli, Journal of Chemical Theory and Com-

putation 12, 3523 (2016).

[164] M. Govoni and G. Galli, Journal of Chemical Theory and Computation 14, 1895 (2018).

[165] M. Govoni, J. Whitmer, J. de Pablo, F. Gygi, and G. Galli, npj Computational Materials

7, 1 (2021).

26

http://dx.doi.org/10.1103/PhysRevResearch.2.033088
http://dx.doi.org/10.1103/PhysRevB.103.245116
http://dx.doi.org/10.1103/PhysRevB.95.155104
http://dx.doi.org/10.1103/PhysRevLett.124.206405
http://dx.doi.org/10.1016/j.cpc.2015.10.023
http://dx.doi.org/10.1016/j.cpc.2015.10.023
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevB.96.235149
http://dx.doi.org/10.1103/PhysRevB.96.235149
http://dx.doi.org/10.1088/0953-8984/28/38/383001
http://dx.doi.org/10.1088/1361-6633/aadca4
http://dx.doi.org/10.1088/1361-6633/aadca4
http://dx.doi.org/10.1103/PhysRevLett.115.196403
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.90.075136
http://dx.doi.org/ 10.1103/PhysRevLett.113.266403
http://dx.doi.org/ 10.1103/PhysRevB.103.195149
http://dx.doi.org/ 10.1103/PhysRevB.102.085105
http://dx.doi.org/10.1103/PhysRevB.91.121111
http://dx.doi.org/10.1063/1.4938562
http://dx.doi.org/10.1063/1.4938562
http://dx.doi.org/ 10.1103/PhysRevB.96.155106
http://arxiv.org/abs/2105.08705
http://dx.doi.org/10.1021/ct500958p
http://dx.doi.org/ 10.1021/acs.jctc.6b00114
http://dx.doi.org/ 10.1021/acs.jctc.6b00114
http://dx.doi.org/10.1021/acs.jctc.7b00952
http://dx.doi.org/ 10.1038/s41524-021-00501-z
http://dx.doi.org/ 10.1038/s41524-021-00501-z


[166] N. Sheng, C. Vorwerk, M. Govoni, and G. Galli, arXiv:2203.05493 [cond-mat,

physics:physics, physics:quant-ph] (2022), arXiv:2203.05493 [cond-mat, physics:physics,

physics:quant-ph].

[167] M. Casula, A. Rubtsov, and S. Biermann, Physical Review B 85, 035115 (2012).

[168] I. S. Krivenko and S. Biermann, Physical Review B 91, 155149 (2015).

[169] Y. Nomura, S. Sakai, and R. Arita, Physical Review B 89, 195146 (2014).

[170] R. Mizuno, M. Ochi, and K. Kuroki, Physical Review B 104, 035160 (2021).

[171] G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Physical Review Letters 87, 186401

(2001).

[172] L. De Leo, M. Civelli, and G. Kotliar, Physical Review B 77, 075107 (2008).

[173] E. Gull, P. Staar, S. Fuchs, P. Nukala, M. S. Summers, T. Pruschke, T. C. Schulthess, and

T. Maier, Physical Review B 83, 075122 (2011).

[174] J. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng,
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