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Air quality estimation using low-cost sensors is a pressing issue, with meteorological factors often causing
measurement discrepancies. Hygroscopicity, arising from humidity’s interaction with particulates, leads to
inaccurate PM concentration readings in laser-scattering low-cost PM sensors. Common remedies involve data
removal during high relative humidity or reference station calibration, but these solutions are not always
practical or accurate due to the localized nature of hygroscopicity. In this paper, the authors present an
adaptive correction framework that dynamically models hygroscopicity effectively mitigating humidity’s impact

on particle measurements. The framework exploits historical sensors’ data, providing real-time adaptability in
any context without relying on reference data, thus improving air quality estimations from low-cost sensors.

1. Software and data availability

Name of the software: MitH (Mitigate Hygroscopicity) Framework

Developer: Martina Casari, Laura Po

Contact information: martina.casari@unimore.it,
laura.po@unimore.it

First-year available: 2023

Program language: Python

Cost: free

Software availability and open data: https://gitlab.com/martina.
casari.93/sensordatacorrection-hygroscopicity.

Program size: less than 2MB

2. Introduction

Air pollution is a growing concern in many countries, fuelled by
factors such as increased industrial activity, transportation, and ur-
banization. The impact of air pollution has well-documented adverse
effects on public health, including respiratory problems, heart disease,
stroke, and lung cancer (Zhu et al., 2019; Rajagopalan et al., 2018;
Verhoeven et al., 2021; Xue et al., 2022; Kiesewetter et al., 2015).
Additionally, it contributes to global warming, acid rain, and environ-
mental degradation. As a result, there is an urgent need for sustainable
solutions to mitigate air pollution and the use of low-cost sensors (LCS)
to monitor air quality is a promising approach (Campo et al., 2023;
Coker et al., 2022; Amegah, 2018; Amegah et al., 2022; Barkjohn et al.,
2021; Int Panis et al., 2010). Moreover, the availability of multiple
air quality control dashboards, including mobile applications, has sig-
nificantly increased public awareness and engagement in monitoring
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and improving air quality (Kelly et al., 2023; Zafra-Pérez et al., 2023;
Kosmidis et al., 2018).

While LCS have become increasingly popular due to their affordabil-
ity and portability, their limited technology may not meet regulatory
standards for quantitative evaluation (WHO et al., 2021; Sa et al.,
2022). However, when aggregated for citizen science purposes, they
can complement reports from governmental agencies, improving spatial
resolution (Apte et al., 2017).

The detection of particulate matter (PM) levels is of utmost impor-
tance in environmental monitoring and public health. PM refers to tiny
particles suspended in the air, which can include various pollutants
such as dust, smoke, soot, and aerosols. These particles can have
detrimental effects on human health when inhaled, especially PM2.5
(particles with a diameter of 2.5 micrometres and smaller) which can
penetrate deep into the respiratory system. In the atmosphere, particles
can originate from both direct emissions and secondary formation
processes. Direct emissions refer to particles that are emitted directly
from specific sources such as construction sites, unpaved roads, fields,
smokestacks, or fires. Industrial facilities, power plants, and vehicles
mainly generate these primary pollutants. On the other hand, secondary
pollutants are formed through complex chemical reactions that take
place within the atmosphere (Chang and Lee, 2007; Li et al., 2017;
Siciliano et al., 2021; Dimitriou et al., 2023).

Apart from meteorological influences (Danek et al., 2022), one
of the most significant limitations of LCS in measuring PM is their
sensitivity to humidity (Jayaratne et al., 2018). This is because particles
present in the atmosphere may absorb water and increase in size,
leading to an overestimation of the PM concentration detected by the
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sensor. This is known as the hygroscopic property of the particle.
High humidity can also cause false readings due to the formation
of water droplets, leading to inaccuracies in measurements (Skupin,
2013; Molnér et al., 2020; Hagan and Kroll, 2020; Crilley et al., 2018;
Manikonda et al., 2016). This is especially problematic for laser-based
sensors, which measure particle size and concentration using laser
scattering. It is important to highlight that water vapour is not harmful
to human health. Therefore, it is essential to model and remove this
artefact to obtain accurate pollution level measurements comparing the
LCS measurements with regulatory station measurements. As a matter
of fact, the EU air quality standards (EEA, 2021), the WHO air quality
guidelines (WHO et al., 2021), and other governmental organizations,
measure pollution impact based on the dry PM concentration.

To ensure accurate measurements with LCS, researchers and man-
ufacturers have developed procedures and algorithms to mitigate the
effects of relative humidity (RH) and improve sensor design. Typical
corrective methods utilized measurement data and a reference station
to estimate corrective function or regression model parameters for
relative humidity correction, or integrated a dryer into the sensor to
counteract the effects of humidity (Owczarek et al., 2020; Laquai and
Kroseberg, 2021; Zusman et al., 2020; Giordano et al., 2021; Shi et al.,
2017; Di Antonio et al., 2018; Hofman et al., 2022b).

For low-cost PM sensors where integrating a dryer is not feasi-
ble, existing approaches face significant limitations, primarily due to
their heavy reliance on time and location (Streibl, 2017; Rogulski and
Badyda, 2020). Methods trained in one location may not accurately
capture the environmental specifics when the sensor is moved to a dif-
ferent location, requiring parameter adjustment and re-training (Crilley
et al., 2020; Jin et al., 2022). Additionally, methods that require LCS
to be stationed near reference stations for prolonged periods limit their
practical use for other applications. Furthermore, approaches based
on the k-Kohler theory rely on knowing the elemental analysis of the
air, which may not always be readily available or subject to frequent
changes, limiting their applicability in certain scenarios.

This paper aims to overcome these limitations and develop a more
versatile framework. The Mitigating Hygroscopicity (MitH) framework
can effectively model the hygroscopicity effect and is available as
open-source software.

MitH excels with its dynamic adaptability, managing anomalies
effectively. It operates independently of reference stations, making it
versatile in diverse environments. MitH’s real-time capabilities offer
practical solutions for hygroscopicity challenges in both real-world
applications and research.

Thanks to its distinctive features, MitH framework offers valuable
advantages. It enables the evaluation of modelled air quality data
across a larger number of locations, overcoming the limitations of
conventional simulation techniques that heavily rely on data from
reference stations or high-precision sensors (Brusseleers et al., 2023;
Hofman et al., 2022a). Moreover, integrating MitH into interpolation
techniques allows for the incorporation of more accurate air quality
data, resulting in more comprehensive and representative modelling
outcomes. Furthermore, MitH’s effectiveness in visualizing and man-
aging environmental sensor data provides valuable insights into air
quality patterns and trends. This supports informed decision-making
and environmental management (Horsburgh et al., 2015).

It is important to note that while MitH addresses the specific chal-
lenge of hygroscopicity, it does not negate the need for calibration
techniques in LCS. It is acknowledged that sensors can encounter
various limitations, such as sensor drift, ageing, temperature sensi-
tivity, cross-sensitivity to other pollutants, and inherent measurement
biases. These factors can introduce errors and inaccuracies in the sensor
readings. Therefore, it is crucial to incorporate appropriate calibration
techniques to account for these factors and ensure accurate and reliable
measurements (Giordano et al., 2021; Zhivkov, 2021).

The rest of the paper is structured as follows. In Section 3, the
study site, data collection, data pre-processing, parameter optimization
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and the application of the corrective functions are explained in detail.
Section 4 is dedicated to the evaluation of the proposed approach. Var-
ious study highlights are presented, such as an analysis of anomalous
sensors, the examination of parameter choices, and the performance
evaluation of each module’s step of the approach. Furthermore, a
comparison with existing approaches is provided. The Discussion sec-
tion delves into a detailed analysis and interpretation of the results,
providing deeper insights into the findings (refer to Section 5). Finally,
Section 6 wraps up the article, summarizing the main outcomes and
implications of the study.

3. MitH framework

The main features of MitH are:

» Anomalies-tolerant. The framework can effectively handle
anomalies in the data it processes (Russo et al., 2020; Jones et al.,
2022). It identifies, removes and replaces outliers and spikes from
sensor data.

Dynamic and adaptable. This approach allows for continuous
updates and refinements of the corrective function, thanks to
rolling window data, making it context-aware and capable of
accommodating variations across different environments, also in
isolated and humid locations, where traditional calibration tech-
niques may be limited.

Reference station-agnostic. Unlike existing approaches that re-
quire LCS to be stationed near reference stations for extended
periods, MitH framework can be applied in any context, boosting
its usability, also when calibration is challenging or when a model
is not exploitable due to different environmental conditions.
Real-time. By providing timely and context-aware corrections,
MitH offers a practical and efficient solution to address the hy-
groscopicity challenge in real-world applications and research
endeavours (Hill and Minsker, 2010).

MitH is organized into four modules, as illustrated in Fig. 1, along
with a final evaluation step:

(a) Data collection: In the first module, data are collected from
LCS. Each subsequent module is performed separately for each
sensor’s data.

(b) Data pre-processing: In this module, the chosen process_mode and
window_size values are utilized to pre-process the operational
window, composed by the new observation(s) and the rela-
tive window history. This pre-processing aims to eliminate any
significant statistical anomalies present in the data.

(c) Parameter optimization: The third module involves optimizing
the parameters of the corrective function. This optimization is
carried out to ensure that the function accurately captures the
relationship between relative humidity and particulate matter
based on the operative window data obtained from the previous
module. As a result, the function is context-aware. The optimal
parameters obtained during this optimization are retained for
the next module use.

(d) Application of the correction function: In the final module, the
optimized corrective function is applied to the newly measured
data, in which RH is above a certain threshold. This application
serves to correct any potential hygroscopic biases caused by
humidity in the particulate matter measurements.

Upon completion of the four MitH modules for each sensor, a
conclusive assessment is conducted by comparing the corrected obser-
vations with those obtained from the reference station. It is important
to note that the reference observations are exclusively used at this
stage; they are not employed in either the optimization or correction
phases. Indeed, the framework refines sensor observations without
relying on any reference data.
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Fig. 1. Flowchart displaying the presented MitH (Mitigating Hygroscopicity) framework, which consists of four main modules: data collection, data pre-processing, parameter

optimization, and application of the corrective function.
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Fig. 2. The operational mechanism employed by the Sensirion SPS30 low-cost air
quality sensor.

3.1. Study site and data collection

The air quality data were collected using the Arianna devices devel-
oped by Wiseair,! a Milan-based start-up that aims to enhance policies
related to air quality standards. The Arianna devices are equipped with
a Sensirion SPS30 and an integrated solar panel to function, meaning
that they rely on sunlight to generate the necessary power to operate.
Sensirion SPS30.? sensor uses a laser scattering measurement princi-
ple with contamination-resistance technology and is compliant with
MCERTS Performance Standards for Indicative Ambient Particulate
Monitors (Version 4 dated August 2017)°

1 https://wiseair.vision/

2 https://sensirion.com/products/catalog/SPS30/

3 https://sensirion.com/media/documents/3A3BF572/616540E1/
Sensirion_PM_Sensors_Datasheet SPS30_MCERTS- Certificate_2020.pdf

When it comes to low-cost laser scattering sensors, they can be
broadly classified into two categories: volume scattering or integrating
nephelometers and single particle counters. The SPS30 sensor is an opti-
cal particle counter (OPC) (see Fig. 2), which is a type of single particle
counter widely used for counting particles in the range of 0.25 pm to
several microns. OPCs use laser scattering technology to measure the
amount of light scattered by individual particles as they pass through a
beam of light. A portion of the scattered light is collected and directed
to a photodetector, where it is converted to a voltage pulse. Particle
size is then determined from the magnitude of this voltage pulse using
a calibration curve (Sousan et al., 2021). These sensors can convert
the electrical signal into different size concentrations of the various
PM and the number of particles detected for each bin (see Table 1),
even with a small sample airflow and a short measurement time. The
SPS30 sensor utilizes unique contamination resistance technology that
ensures the optics remain clean and maintenance-free throughout its
lifetime. However, the Arianna devices lack a drying function, and thus
the collected data can be affected by humidity levels, even if the sensors
are operated within the recommended humidity range of up to 80%
(see Table 2).

The comparison of PM concentrations measured by LCS with and
without the dryer indicates that it can effectively dry out the water
vapours generated from the vaporizer (Samad et al., 2021). Unfortu-
nately, it is not possible to incorporate a dryer into the Arianna device
due to limitations with the power supply from the solar panel.

The study was conducted in Turin, Italy, which is the capital city
of the Piedmont region in northern Italy. Turin has a population of
approximately 847,000 inhabitants and covers an area of 130 square
kilometres. In 2019, Wiseair initiated a Citizen Science project in
Turin to increase awareness among the city’s population regarding
pollution levels. As part of this project, over 20 Arianna devices were
strategically deployed across the city. Some of these devices were co-
located close to a reference station operated by Arpa (the regional
environmental protection agency), situated in a public garden, away
from heavy traffic (see ARPA-Torino (2023) for topology specification).
The reference station is a Tecora Sequential Unit, that utilizes gravimet-
ric technology, enabling accurate measurements of PM10 and PM2.5
concentrations. The low-cost devices were positioned on the perimeter
fence surrounding the reference station, elevated at a height of 4 m.
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Table 1
Particulate matter SPS30 sensor specifications.
Parameter Conditions Value Units
Mass concentration range - 0 to 1000 pg/m?
PM1.0 0.3 to 1.0 pm
Mass concentration size range PM2.5 0.3 to 2.5 pm
PM4 0.3 to 4.0 pm
PM10 0.3 to 10.0 pm
0 to 100 pg/m? +10 pg/m?
Mass concentration precision for PM1 and PM2.5 100 to 1000 pg/m? +10 %m V.
0 to 1000 #/cm? +100 #/cm?
Number concentration precision for PM0.5, PM1 and PM2.5 1000 to 3000 #/cm? +10 %m V.
Lifetime 24 h/day operation >10 years
0 to 100 pg/m’ +1.25 ug/m? /year
Maximum long-term mass concentration precision limit drift 100 to 1000 pg/m? +1.25 %m v./year
ARPA — ‘
ari-2049 ‘
ari-1885 =
ari-1953 ‘ r
ari-1952 ‘
ari-1727 1
S W o o o 2~ —
v {V v {V v v v
’19 ,19 ’LQ Q ’LQ ,\’Q ’19
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Fig. 3. Operating periods of LCS and ARPA reference station in 2022.

Table 2
SPS30 recommended operating conditions.

Parameter Recommended Operating Conditions
Temperature 10 to 40 °C
Relative humidity 20 to 80%

The Arpa reference station provides hourly data of validated PM 2.5
levels. The agency conducts the validation using the medium bound
technique, estimating concentrations below the detection limit as half
of the detection limit for the target substance. In contrast, the Wiseair
Arianna devices collect data at 15-minute intervals. Wiseair has its
own corrective algorithm, which includes a threshold, a correction
function with fixed parameters, and a regression applied for the autumn
season. In this study, the data used are the raw ones. A detailed
comparison between the proposed approach and Wiseair’s is provided
in Section 4.5.1. Despite the 15-minute frequency, the data collection
frequency is influenced by factors such as the battery level, contingent
on the sunlight received by the solar panel. The final evaluation is
conducted hourly to match the Arpa reference station granularity,
taking an hourly mean of the data collected from each sensor.

The study was conducted over two distinct periods. The first period
took place from March to April 2022, during spring. The second period
occurred from October to November 2022, representing autumn. By
analysing data from both seasons, the study aimed to capture variations
in RH levels and evaluate the performance of LCS under different
environmental conditions. During these specific periods, multiple LCS
were available for comparison with the Arpa reference station. The
activity of the sensors is illustrated in Fig. 3. Despite having a more
extended duration for data collection in the autumn period, the decision
was made to use an equal amount of time for both periods, ensuring
consistency and comparability.

A total of 13,000 observations were collected from five Arianna
devices. The devices provided a comprehensive set of data, including
various environmental parameters and pollutant concentrations. The
recorded data from the Arianna devices consisted of the following
variables for each observation: date and time in UTC, temperature
in degrees Celsius, relative humidity in percentage, pressure in hPa,
cloud coverage in percentage, wind speed in metres per second, wind
direction in degrees, and concentrations of PM1, PM2.5, PM4, and
PM10 in micrograms per cubic metre (ug/m?). On the other hand,
the reference station operated by ARPA provided a dataset of 3000
hourly measurements. The data included date and time in GMT+1 and
measurements of NO2, NO, NOx, PM10, and PM2.5 concentrations in
micrograms per cubic metre (ug/m?).

As it is well-known, larger diameter particles encompass smaller
ones. Specifically, PM10 includes particles with lower diameters, while
PM4 includes PM2.5 and PM1, and PM2.5 includes PM1. In the current
study, the focus was exclusively on PM2.5, because the SPS30 sensor
provides more precise measurements for this particular particle size
compared to PM10. Additionally, PM2.5 particles are known to be more
harmful to human health.

3.2. Data pre-processing

The pre-processing is applied to the new observation(s) along with
its historical window. If there is only one observation, in the study
is referred to as single observation mode, and if there are multiple
observations, as batch mode. In both cases, the new observation(s) un-
dergo preprocessing together with the preceding historical window of
length window_size. This combined window, consisting of the historical
window and new data, is now referred to as the operative window (see
Fig. 4).

Excluding the single observation/batch into the context used in the
pre-processing and optimization is possible even if not recommended.
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Fig. 4. Two different approaches for data pre-processing and optimization modules: considering each observation individually during pre-processing and optimization (a), or

processing multiple observations simultaneously as a batch (b).

By excluding the new data, the operative window is equivalent to
the window history. In the single observation mode, the downside of
not keeping them is less evident because the window history is more
similar to the operative window. In the batch mode, the window history
itself could not be enough to explain the context of the new observa-
tions. Section 4.3 shows what happens when the batch data context is
excluded from the operative window.

The preprocessing considers various factors, including the identi-
fication and removal of statistical anomalies, imputation of missing
data using the k-Nearest Neighbours (KNN) method, and a one-sided
median cleaning process for correcting right-skewed data. These steps
are tailored to enhance the data quality and prepare an operative
window for further analysis.

After having chosen the processing_mode, as a single observation or
batch, and the window_size, the pre-processing is performed over the
data loaded. The pre-processing, as illustrated in Fig. 1 second box, is
composed of three phases:

1. Removing statistical anomalies: The phase involves identifying
anomalies in the data by calculating the standard deviation
and replacing any events that fall outside 3 standard deviations
with NaN values. This helps to eliminate rare and unlikely data
points, which are likely to be caused by a misreading of the
sensor. It is worth noting that this step might raise concerns,
especially considering that high values are crucial when study-
ing hygroscopicity. However, a prior analysis of the raw data
revealed rare and very high peaks, exceeding 1000 pg/m?>. These
peaks are not indicative of concentrations affected by hygro-
scopicity, but rather anomalous data. Applying a 3-standard
deviation threshold helps retain peaks induced by hygroscopic-
ity while removing anomalous peaks caused by device errors.
Alternatively, a threshold could be used if prior knowledge is
available. When handling raw data unaffected by humidity, set-
ting a threshold becomes more straightforward, especially when
there is a reference limit for PM data available. However, in
the hygroscopic environment, determining a suitable threshold
is challenging due to the lack of prior knowledge regarding
the maximum concentration levels detectable. Therefore, the
3-standard deviation approach is considered appropriate for fil-
tering out only anomalous peaks, where “anomalous” does not
refer to hygroscopicity-induced values but rather to exceptional
values.

2. Imputing missing data: The second phase is filling in any missing
data points. This is done by replacing the NaN values using a
k-Nearest Neighbours (KNN) imputation method with a chosen

k-value. This results in a minor loss of data points and the
missing data are refilled using similar contexts. Of course, the
imputation algorithm could be chosen from the classic set of
filling algorithms. The choice reflects the capacity of the KNN
to use any other available variables (described in Section 3.1) to
fill empty values.

3. One-sided median cleaning: The final phase is a one-sided median
cleaning process, which is used to correct right-skewed data.
A sliding window is used to determine the median value of
the data. Any data points that fall outside the median plus a
calculated threshold are replaced with the median value of the
window. In the study, the threshold is calculated using statistical
properties of the available data, but it should also be determined
based on other environmental-specific knowledge. This process
is performed only on the right side of the data, hence the term
“one-sided” median cleaning, to ensure a real-time approach. It
is important to note that the window used should be a temporal
arch and not a number of preceding observations unless the
frequency of reading of the sensor is ensured.

During each phase, adjustments can be made to various parameters.
This includes the standard deviation in the first phase, the k-value used
in the KNN algorithm, in the second phase, and the number of hours
of the rolling window and the threshold in the last phase.

It is important to note that after the removal of anomalous data
during pre-processing, the data may not include certain events, for
instance, fires, that initially appear as anomalies and are subsequently
modified during pre-processing. As time passes and the event persists,
the data that were initially considered anomalous may no longer be
considered as such and become useful for building a more accurate
context. However, this possible delay must be taken into consideration.

As depicted in the flowchart, at the conclusion of the pre-processing,
the process yields an operative window cleared of significant statistical
anomalies.

3.3. Parameter optimization

After the completion of the three pre-processing steps, the historical
data window is ready for the corrective function optimization. Various
corrective functions, often referred to as growth functions, have been
proposed in the literature to address the issue of hygroscopicity (Day
and Malm, 2001; Gurumurthy Ramachandran and Sexton, 2003; Chris-
takis et al., 2022). These functions are designed to calculate a corrective
coefficient that can be applied to reduce the concentration level of
particulate matter based on the relative humidity level, as in Eq. (1).

PM,,
wet (l)

PMary = S5 R
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The PM results are said corrected with respect to the problem of
hygroscopicity. In the equation, PM,,, represents the PM concentration
detected by LCS and PM,,, represents the PM concentration after the
application of the growth function gf.

In Streibl (2017) a list of possible corrective functions is presented,
among with the Hdnel (Eq. (2)), and a new proposal called Combination
(Eq. (3)).

1

gfhanel = m (2)

RH?
gfcombo—1+a-m 3
Soneja et al. (2014) provide two other corrective functions, the
first proposed in Chakrabarti et al. (2004), call Chakrabarti equation
(Eq. (4)) and the second, Richards’s humidity adjustment (Eq. (5)),
originally proposed in Richards et al. (1999).

2
g fchakrabarti = a + f - % “4)
gfrichards = exp(a + f - Ln(1 — RH)) 5)

Streibl’s work provides insights into the different behaviours of
corrective functions optimized over months. He also emphasizes the
importance of pre-processing, which is similar to the one applied in this
study. That is, in the pre-processing module phases, a range was used to
reduce anomalies instead of SD, and a non-context-aware algorithm was
employed in the filling algorithm. The final phase involved a median
window smoother, although details were not provided.

Regarding the optimization of the corrective function, Streibl argues
that since RH and PM are not correlated in reality, two possible
approaches can be considered:

1. Minimizing the Fourier coefficient: This approach takes into
account the periodic component with a 24-hour period present
in temperature, humidity, and particulate matter growth. By
minimizing the absolute value of the corresponding normalized
Fourier coefficient, the influence of humidity can be compen-
sated to the best possible extent.

2. Minimizing the correlation factor: This approach aims to min-
imize the correlation between the corrected PM and RH. By
achieving a minimal correlation, the influence of humidity can
be effectively compensated.

In the case of Chakrabarti and Richard’s equations, Soneja et al.
explored the original parameters proposed in Chakrabarti’s original
work for the first, as well as new parameters fitted using simulated
cooking test data for both. Additionally, they compared the application
of these three corrective functions to the entire dataset versus applying
them only to data above a certain threshold. The findings suggested
that using a threshold for applying the corrective functions was a
better approach. Furthermore, it was observed that a threshold of 60%
relative humidity appeared to be generally too low.

Typically, as for Soneja, the optimization process involves finding
the values of the corrective function that provide the best match
between the observed data and the reference station values. Once the
corrective function has been optimized, it is used to correct the raw
sensor data. This fitting procedure relies on the fact that the optimal
parameters for a specific context are explanatory in general.

In contrast, MitH does not rely on the use of a reference sta-
tion to optimize the parameters of the corrective function. Instead,
two distinct approaches were explored. The first approach involved
minimizing the correlation between relative humidity and particulate
matter measurements, as suggested in Streibl. The second approach
focused on minimizing the difference between the distribution of the
original data below a chosen threshold and the data corrected above
the same threshold.
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Two real examples of parameter optimization modules, based on
the correlation minimization approach, are shown in Fig. 5. The x-
axis, which remains the same among the two subplots, represents the
combined parameters used for optimization, and the y-axis represents
the correlation obtained. The figure highlights two different periods,
to demonstrate the difference in parameter selection even for closely
spaced time periods.

Given a curve, it is possible to see how different corrective function
parameters yield different correlation values between RH and PM;
the same happens when using the distribution difference minimization
approach. In the figure, it is evident that there exists an optimal point
where the correlation is minimized, which is the one obtained with
the parameters used as optimal in the next module. Consequently, by
applying the correlation (or distribution difference) minimization over
the operative window, the corrective function can be customized to
the specific characteristics of the sensor and account for the impact
of relative humidity on the sensor readings within the specific envi-
ronmental context. As a result, this dynamic approach enables MitH to
effectively adapt to environmental changes over time, without the need
for a reference station.

To effectively implement this approach, there is a prerequisite for a
significant volume of historical data to ensure the precise optimization
of the corrective function. This entails periodic reevaluation of the
parameters involved in the correction process. Despite these demands,
the approach proves especially beneficial for LCS that may lack access
to reference station data for calibration.

3.4. Application of the corrective function

In the fourth module of the process, the optimal corrective function
found is applied as a corrective coefficient to the current observation(s),
as in Eq. (1), if the associated relative humidity is above a certain
threshold. As a result, the corrected data provides a more accurate
representation of the particulate matter levels, compensating for the
influence of humidity on the sensor readings.

After obtaining the corrected data, the evaluation was conducted by
comparing them to the data received from the Arpa reference station.
The evaluation was performed using metrics such as R?, RMSE, and
NRMSE. It is noteworthy that the granularity of the data remained
consistent with that collected by LCS, approximately every 15 min,
during the evaluation process. However, for the purpose of comparison
with the measurements from the Arpa reference station, the data were
re-sampled to reflect the hourly granularity imposed by the reference
station. This adjustment facilitated a meaningful assessment of the
accuracy of the MitH framework.

4. Results

In this section, several key insights are presented, focusing on
evaluating the performance of MitH. The results section is divided into
the following subsections to provide a comprehensive analysis:

1. Sensors Behaviour Analysis: An examination of the behaviour of
sensors during the corrective process, aiming to identify specific
patterns or challenges encountered (see 4.1).

2. Window History Size: Exploration of the impact of different win-
dow history sizes on the performance of the corrective function.
This involves assessing how the choice of window;ize influences
the accuracy of the corrected data (see 4.2).

3. Context Inclusion: Discussion of the advantages of including the
context of new observations alongside the window history in the
parameter optimization process. Incorporating current environ-
mental conditions aims to enhance the accuracy of the corrective
function (see 4.3).

4. Step Performance: Evaluation of the performance at different
stages of the approach, including raw data, pre-processed data,
and corrected data (see 4.4).
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Fig. 5. Two real examples of parameter optimization for reducing Relative Humidity correlation to Particulate Matter concentration levels.

5. Comparison with Existing Approaches: Presentation of the results
of the presented approach and a comparison with outcomes
achieved by applying approaches described in the literature (see
3.3). This comparison provides insights into the effectiveness of
MitH in addressing the hygroscopicity issue and improving the
accuracy of sensor data (see 4.5).

6. Wiseair approach comparison: In the last subsection, a comparison
is provided between the Wiseair corrective method approach and
MitH.

The presentation of these subsections aims to offer a comprehensive
understanding of the performance and effectiveness of the proposed
approach in addressing hygroscopicity in low-cost sensor data.

In the following, the application results are presented in terms of
RMSE (Root Mean Squared Error), NRMSE (Normalized Root Mean
Squared Error), and R%. Additionally, some of the results are visualized
as time-series plots to demonstrate practical outcomes and capture
some peculiarities of the process. The evaluation metrics, such as RMSE
and NRMSE, provide quantitative measures of the model’s performance
in terms of accuracy, estimating how well the model can predict the
target value. A lower RMSE and NRMSE indicate better agreement
between the corrected values and the ground truth, in addition, NRMSE
may be useful to make the evaluation scale-free. Furthermore, the R?
value assesses the goodness of fit of the corrected data compared to the
observed data. A higher R? value indicates a stronger correlation and
better predictive capability of the correction model.

4.1. Sensors behaviour analysis

An important aspect to consider when working with LCS is that
they can exhibit a wide range of anomalies. Fig. 6 clearly demonstrates
this phenomenon, where the sensor labelled ari-1727 (the blue line)
consistently shows higher concentration levels compared to the other
sensors. This discrepancy is visually evident in the plot, as the data
from ari-1727 consistently deviates from the overall trend observed
in the other sensors (orange and green lines), which approximates the
reference station (black line) better.

Although some peaks are reduced after pre-processing (see sub-
figure b), the overall signal from the ari-1727 sensor remains compro-
mised. Moreover, such anomalies are not addressed by the corrective
function used in this study, as the RH threshold chosen for correction
is higher than the RH levels detected during these measurements.
This suggests that the observed anomaly is likely unrelated to hygro-
scopic effects. Consequently, addressing this anomaly would require
additional pre-processing steps specifically designed to handle such
anomalies. It is important to mention that despite these anomalies, the
sensor remains useful as it generally aligns with PM concentrations
from other sensors for the majority of the time, justifying its inclusion
in the study.

However, this emphasizes the complexity and challenges associated
with correcting and processing data from LCS, especially when dealing
with anomalous sensor behaviour. Further investigation and refinement
of pre-processing techniques may be necessary.
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(b) Pre-processed data

Fig. 6. Anomalous sensor behaviour with elevated concentration levels: Raw data with
visually prominent readings (a) and cleaned data after pre-processing (b).

4.2. Window history size

The choice of the window_size parameter is crucial in contextualiz-
ing the corrective function and obtaining optimal corrective parameters
for the specific period under consideration. Initially, it was believed
that a larger window size would lead to better performance. However,
the findings contradict this assumption.

It has been observed that a shorter window history is sufficient to
optimize the corrective function parameters, and using longer window
periods diminishes performance. This is illustrated in Table 3, where
the performance metrics are plotted against differen