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A B S T R A C T

The evolving landscape of agri-food systems, driven by climate change and population growth, necessitates 
innovative approaches to ensure food integrity, safety, and sustainability. This review explores the role of data 
fusion strategies, particularly focusing on non-destructive spectroscopic sensors (NDSS) in three key application 
contexts: in-field monitoring, on/in-line food processing, and food quality authentication. Various data fusion 
scenarios, including fusing spectra from different spectroscopic platforms, integrating images and spectra, and 
combining non-spectroscopic sensor data with spectroscopic ones are reviewed. Focus is set on practical con
siderations, such as selecting the level of data fusion, defining blocks, variable selection, and validation methods, 
highlighting the importance of tailored approaches based on research aims and data characteristics.

While combining information from diverse sensors generally enhances information extraction and modelling 
performance, their implementation in routine applications is still limited and especially studies focused on data 
fusion models’ performance over time and their maintenance are lacking.
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1. Introduction

The research and application scenarios in the agri-food context have 
changed significantly in recent years due to the new challenges posed by 
climate change and population growth. These put increased pressure on 
the agri-food chain, requiring adjustments to reduce waste, adapt to 
climate change and increase resilience, while ensuring food integrity, 
safety, and health [1]. Concepts such as digital agriculture, digital food 
and big data are now being used to drive the evolution that food systems 
need to meet these challenges [2], encompassing both crop production 
and industrial food processing.

Nevertheless, the implementation of new technologies and para
digms, such as QbD/PAT tools in the food industry and precision agri
culture, as well as in-field monitoring tools in agronomy, is progressing 
slowly. On the other hand, the technologies are quite mature; in 
particular, non-destructive spectroscopic sensors (NDSS), combined 
with data analysis, offer cost-effective, high-value solutions to chal
lenges such as integrity verification [3] and better understanding of 
products and ingredients. Furthermore, their in-line implementation 
[4–6], combined with data provided by process sensors installed to 
monitor the plant, can provide a real-time solution to ensure complete 
process control throughout the food chain.

The impasse may be due to critical issues such as the high complexity 
and variability of agri-food matrices, the need for long-term instrument 
stability, robustness of calibrations, integration of sensors into produc
tion environments, and the creation of real-time decision systems. 
Therefore, appropriate strategies for data handling, analysis, and inte
gration (fusion) are a key aspect for further progress.

Near Infrared (NIR), Fluorescence, Raman, thermal and/or time- 
resolved spectroscopy are among the NDSS technologies that are 
becoming increasingly available, in smaller and more affordable 
instrumentation [7]. Most of these techniques can be combined together 
and, with multispectral imaging, allow extremely powerful sampling of 
the entire surface of a product/product stream.

Recent reviews [8–11] have comprehensively revised data fusion 
approaches and methodologies from a data structure and methodolog
ical point of view.

A comprehensive survey reporting application of data fusion strate
gies for food quality authentication has been recently published [9], it 
highlights that in about 80 % improved models could be obtained by 
fusing information from diverse sensors. However, most of the surveyed 
studies were conducted at a laboratory scale and concerned a limited 
number of samples, also the performance comparison was limited to 
accuracy (classification tasks) and coefficient of determination (multi
variate calibration tasks) often solely in cross-validation.

In this work, in reviewing data analysis strategies that enable data 
fusion of different NDSS, also integrated with imaging and other sensors 
(focusing on recent advances), we will adopt a practitioner’s perspective 
with the aim of discussing why and when it might be beneficial to fuse 
more spectroscopic sensors, and what the specific challenges are in 
different contexts. In particular, three different implementation sce
narios will be considered: in-the-field, in-line monitoring and adultera
tion detection. Furthermore, we will discuss the aspects of model 
implementation and validation when dealing with fused data, also from 
the perspective of model maintenance.

2. Applicative contexts

2.1. agrifood: in-field monitoring

The integration of diverse NDSS on in-field monitoring applications 
plays a crucial role in ensuring the quality and healthiness of agricul
tural products. In-field monitoring refers to the continuous assessment of 
agricultural parameters and the quality of crops directly at the 

production site. By utilizing various sensors mounted on satellites, 
drones, or aircraft, remote sensing technologies offer a non-invasive and 
efficient means of collecting data on crop conditions, including factors 
such as vegetation vigor, stress levels, and disease outbreaks. A 
comprehensive picture of crop health can be obtained by fusing data 
from multiple spectroscopic sensors, ranging from nutrient levels and 
water stress to disease detection and yield prediction.

In agricultural monitoring, researchers frequently utilize spectral 
data from HSI to differentiate between different materials by analyzing 
their reflectance values [12]. The integration of hyperspectral data with 
light detection and ranging (LIDAR) shape profiling on an Unmanned 
Aerial Vehicle (UAV) platform is employed to assess the photosynthetic 
processes in forest vegetation [13]. Through data fusion, the 3D LIDAR 
point cloud data and hyperspectral reflectance data are merged to 
forecast the canopy-level biochemical traits that exhibit strong corre
lations. Data fusion can also benefit plant disease detection, as shown by 
Mahlein et al. [14]. In this work, an examination of thermal, fluores
cence, and HSI supports the adoption of a multi-sensor data fusion 
strategy for monitoring plant health. A specific study on wheat head 
blight delineated the significant advantages and limitations of each 
system, further exploring the particular sensor combinations. These 
applications show how reliable HSI is when applied to heterogeneous 
samples/matrices.

Sagan et al. [15] fused multispectral, RGB and thermal images ac
quired by both satellite and UAV for early stress detection, crucial for 
proactive field management and predicting terminal yield accurately. 
The results indicate that early stress can be efficiently identified through 
the utilization of multi-temporal and multi-scale observations from 
UAVs and satellites. Aerial systems can also be used to phenotype crops 
in the field. Bartlett et al. [16] used hyperspectral visible and 
near-infrared fused together for the identification of phenotypes like 
biomass and chlorophyll content. Multispectral satellite images have 
also been fused together to evaluate the impact of the growth stage on 
the amalgamation of spectral bands associated with wheat grain nitro
gen uptake [17].

2.2. food processing: on/in-line monitoring

On/In-line NDSS have the potential to measure numerous quality 
attributes of food products, directly in the processing lines without any 
manual sampling [7,18]. Such measurements are important to improve 
quality control, safety, and efficiency in the food industry. Typical use 
cases are monitoring and control of key quality parameters, detection of 
contamination and defects, process optimization, and process control 
and simulation through digital twins.

In industrial quality monitoring applications, fusion of multiple 
NDSS may be needed to obtain a high precision of the predictions or to 
be able to measure a suite of different quality attributes. Several ex
amples of the fusion of NDSS for food quality assessment may be found 
in Refs. [19–22]. Sometimes, the monitoring is based on soft sensors, i.e. 
models that predict hard-to-measure product quality characteristics 
based on easily available inline sensors. In such cases, it has been shown 
that a combination of spectroscopic and process sensors often may be 
needed to obtain good models [6,23].

When NDSS are integrated into closed-loop control systems or digital 
twins, they need to be combined with other important process variables. 
These types of systems have the potential to significantly improve effi
ciency and resource utilization, but they are still in their infancy and 
industrial implementations remain to be demonstrated [19,24]. There is 
currently a huge amount of research on this topic, and several sources 
point out that sensors for measuring physiochemical food quality attri
butes are key elements in automatic control systems and digital twins 
[19,24–27].
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2.3. food quality and authentication

Combining different types of non-destructive sensors allows for 
capturing different aspects of food properties such as chemical compo
sition, aroma, taste, texture, and visual appearance, achieving a more 
accurate understanding of food properties, and enhancing the effec
tiveness of authentication protocols.

By employing multiple sensors, it becomes possible to analyze 
several aspects of food authenticity, including geographical origin, 
production methods, and the presence of contaminants/adulterants.

NDSS facilitate the rapid screening of large volumes of food products, 
eliminating the need for sample preparation. This streamlined approach 
maintains the integrity of the products while expediting decision- 
making in quality control processes. Consequently, NDSS play a 
pivotal role in ensuring the efficiency and effectiveness of food quality 
assessment and authentication across different sectors of the food in
dustry [28]. In this regard, significant attention has been devoted to the 
NDSS analysis of meat, vegetables, or fats. Sanchez and collaborators 
have reported that hyperspectral Imaging (HSI) and Visible/Near 
Infrared Spectroscopy (Vis/NIRS) are considered the cornerstone tech
niques for the analysis of both beef and pork [29]. On the other hand, 
Silva et al. have highlighted that for ovine meat, optical technologies are 
gaining importance for monitoring and evaluating the quality and safety 
of carcasses and meat [30]. Among these technologies, visible and 
infrared reflectance spectroscopy, hyperspectral imaging, and Raman 
spectroscopy deserve particular attention. These analytical methods 
have been also successfully used for adulteration detection, as discussed 
by Alamprese et al., who achieved the detection of minced beef adul
teration with turkey meat by UV–vis, NIR and MIR spectroscopy [31]. A 
further relevant application in this context is the one proposed by Pu and 
collaborators, where visible and near-infrared hyperspectral imaging 
and textural analysis are used to classify fresh and frozen-thawed pork 
muscles [32]. Concerning the analysis of vegetables, NDSSs are often 
used to assess firmness and ripeness. This practice has been exemplified 
by Orlandi et al., who devised a methodology for evaluating grape 
ripeness by electronic nose (E-nose) and tongue (E-tongue) integrating 
the original signals by means of DF. Eventually, latent variables 
extracted through iterative PLS were combined in a Mid-level DF which 

exhibited superior performance compared to Low-level DF and tradi
tional methods reliant on individual sensors [33]. A further example has 
been provided by Mendoza and colleagues who explored HSI to assess 
apple firmness by PLS achieving notable results [34].

For the analysis of edible fats, like virgin olive oils, Weesepoel and 
co-authors have highlighted that a good strategy could be the combined 
use of visible, fluorescence, and near-infrared spectroscopy, along with 
data fusion methods that allow for the concerted processing of all in
formation [35]. Low- and Mid-level DF approaches were also applied on 
Headspace-Mass Spectrometry, FT-MIR and UV–vis instrumental re
sponses by Borràs and co-authors to predict olive oil sensory descriptors 
[36].

It is worth mentioning that in the field of food quality and authen
tication, obtaining authentic samples with full traceability is essential 
for building reliable statistical models. Authentic samples serve as the 
benchmark for developing models that can accurately identify and 
verify food products. This is essential for addressing issues such as food 
fraud, contamination, and mislabeling.

3. Data structure and fusion scenarios

3.1. fusion levels

There are in general three different levels at which data can be fused 
[8,19,37], as schematically illustrated in Fig. 1. Here they will be only 
briefly recalled.

Low-level DF involves modelling the different blocks of data directly, 
allowing the results to be interpreted in terms of the original variables. 
This can be done using a variety of methods, which fall under the um
brella of multiblock methods [11], even if in the literature the case of 
simple concatenation (data augmentation in the shared mode, most 
often the samples mode) is somehow distinguished as the augmented 
data set is modeled as it were a single block, without posing attention on 
the analysis of shared or common information carried by the single 
blocks.

Mid-level DF implies a first modelling step, before fusion, aimed at 
extracting features from each data block using data decomposition 
techniques, such as PCA. It is worth mentioning that using variable 

Fig. 1. Different levels of data fusion. The notation X indicates a single data block, F a data set holding features extracted from a single data block, D a vector holding 
the decision obtained by modelling a single data block.
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selection methods (to extract features) can be considered either a low- 
level or mid-level process, as there is ongoing debate in the literature 
[19] regarding the appropriate classification of these techniques. The 
features are then fused into a new dataset, which is finally modeled to 
produce the desired outcomes. Model interpretation in terms of original 
variables can be done when variables selection is used in the first step, 
whereas it requires to interpret the contribution/role of the original 
variables in the model used to obtain the features, such as inspecting the 
loadings/weights (PCA/PLS) or pure/independent spectra profile 
(MCR/ICA).

High-level DF involves fusion of decisions obtained from separate 
modelling of each data block, typically by supervised models performing 
regression or classification tasks. Fusing the decisions is expected to 
produce more accurate predictions. Thus, the focus is on final outcomes, 
with almost no investigation into the role of each data block’s variables 
because a fused model in strict sense is not obtained but only a fused 
decision.

3.2. fusing spectra from different spectroscopic platforms

Fusing profiles from different spectroscopic platforms involves 
dealing with two or more blocks of data with a high number of corre
lated variables so it is not surprising that the large majority of the ap
plications involve mid-level data fusion strategy as the best compromise 
between increasing the information content, avoiding dealing with too 
much irrelevant sources of variability and keeping the models still 
reasonably interpretable. When looking at the way mid-level fusion is 
implemented, the large majority of the research reported in the litera
ture favours the use of latent variables extracted from the different 
blocks as features to be combined (concatenated) to build the matrix to 
be subjected to the modelling of choice, principal component scores 
being the latent variables most commonly used. For instance, by 
applying SVM on the concatenated PC scores from ATR-FTIR and FT-NIR 
spectra, Zheng et al. [38] were able to authenticate the geographical 
origin of Gastrodia elata from Zhaotong with an accuracy higher than 
97 % on test data. On the other hand, the possibility of concatenating the 
scores of MCR [39] or PLS/PLS-DA [40] on individual matrices for 
achieving mid-level fusion has also proved highly effective. Mid-level 
fusion approaches can also help overcome the limitations of low-level 
strategies when dealing with the fusion of two- and three- or in gen
eral multi-way spectral data: indeed, scores can be extracted from the 
different blocks by means of PCA and, e.g., PARAFAC or Tucker3, and 
then concatenated. This strategy was adopted by Ríos-Reina et al. who 
performed mid-level fusion to classify PDO wine vinegars [41]. More 
specifically PCA scores extracted from MIR and NIR blocks, PARAFAC 
scores from EEM fluorescence landscapes and the peak areas of MCR 
components from 1H NMR were concatenated and subjected to PLS-DA 
allowing the correct classification of all the samples in the test set.

One of the main limitations of mid-level approaches is that the 
models are not immediately interpretable in terms of the original vari
ables and block contributions, but these limitations are mostly overcome 
by approaches like SO-PLS, SO-CovSel and their discriminant counter
parts, where the sequential and orthogonal nature of feature extraction 
allows to retain model coefficients which are directly relatable to the 
original variables and to identify the incremental contribution of the 
different blocks. The latter property can also translate to the possibility 
of identifying cases in which the inclusion of additional blocks doesn’t 
result in any improvement in the predictive ability of the models. This 
was for instance the case of a study by Rocha Baqueta et al. [42] where 
molecular and atomic spectroscopic techniques (1H NMR, portable NIR, 
benchtop NIR, ATR-FTIR-MIR, and FAAS) were used to characterize and 
discriminate Brazilian Canephora coffees with geographical indication, 
and also to differentiate them from Arabica. The use of SO-PLS-LDA 
suggested the best model to be the one built only on the benchtop NIR 
data, leading to 100 % correct classification on both training and test 
data.

3.3. fusing images and spectra

Imaging techniques are powerful tools in all three application con
texts discussed in section 2 [43]. In general, there can be two different 
motivations for the use of imaging systems: one is the interest in 
recovering morphological or textural information, e.g. for assessing the 
compositional heterogeneity or defects of crops, fruits/vegetables 
[44–46] or food products during food processing; the other is to have a 
fast, non-destructive at/in-line or in-field instrumentation that can be 
used for monitoring over time [47,48] and may be easier to implement 
than a single-spot spectroscopic sensor, or may cover a larger area of the 
product to be monitored. RGB images are widely used as fast scanning 
in-line systems in food production [49], e.g. to detect defects in product 
sorting, and more recently multispectral and hyperspectral imaging 
systems are gaining increasing attention, offering the possibility of 
capturing the distribution of different food components, ingredients 
[50]. At the same time, there is interest in combining imaging data with 
other spectroscopic sensors that can be installed at other stages of the 
process line to monitor more homogeneous intermediates or the finished 
product. There is also an interest in integrating in-situ spectroscopic 
imaging data with environmental information, e.g. from humidity and 
temperature sensors or remote sensing devices.

Strategies are therefore needed for both the fusion of different image 
types and the fusion of images and spectra or other punctual variables.

Fusion of images may deal with fusing imaging of the same scene/ 
sample acquired with different spatial/spectral resolutions, or with 
different spectroscopic modalities, which eventually may show different 
dimensions, or with the combination of spectroscopic (MSI or HSI) and 
colour information (RGB), as well as images referring to different sam
ples (e.g. at different process stages).

Pan-sharpening [51–63] is a general term used when the objective is 
to retrieve a high-spatial and spectral image from a 
low-spectral/high-spatial resolution image and a 
low-spatial/high-spectral resolution image, and this can be achieved by 
different methodologies (as illustrated in Table 1) such as component 
substitution [54], regression [55], multi-resolution analysis [56,57], 
bayesian pan-sharpening [58], non-negative matrix factorization [59], 
multivariate curve resolution [60,61], deep learning [62,63], etc. 
Methodologies, which take directly into account the 3D structure of the 
hyperspectral image have been also used for this aim, e.g. multiple 
co-inertia analysis or multivariate inter-battery Tucker analysis [64,65] 
and tensor decomposition [66]. Multivariate curve resolution offers a 
general and flexible approach also to fuse images acquired with different 
modalities [61]. In these cases, the focus is on exploration, and generally 
a single sample/scene is analysed at time, at a second analysis stage 
some salient parameters may be obtained by post-processing of the 
retrieved information and then fed to further multivariate analysis.

In the case images have to be fused with spectra (or other variables), 
there is the need to reconduct the image data in a set of features per 
single/sample so that these can be handled as a data block in a data 
fusion perspective (Fig. 2), and several strategies may be employed to 
this aim, which can be distinguished based on the capability to retain 
solely spatial or spectral information or, explicitly or implicitly, both of 
them. The most diffuse approach, when dealing with colour images and 
multispectral images (MS), with a limited number of spectral channels, 
is to analyze the single-channel image and either extract bulk indices, e. 
g. statistics from the distribution, or textural features [10,67], e.g. using 
the grey level co-occurrence matrix (GLCM) approach and calculating 
Haralick features, thus obtaining for each sample a vector comprising all 
the features extracted for each spectral channel. In this way, the spatial 
information is explicitly retained, and spectral information can be 
indirectly retrieved by assessing variables’ importance (e.g. which 
feature at which spectral channel) when analysing the data fused model. 
When dealing with MSI it is more common to apply the feature extrac
tion step on the scores image (thus reducing the number of overall 
features) obtained by PCA applied on a data matrix holding textural 
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information (e.g. by image unfolding and data augmentation with 
neighbouring pixels, or by multiresolution analysis) [68,69].

In the case of hyperspectral images (HSI), especially for a huge 
number of samples, it is common to consider a region of interest in the 
hyperspectral image, unfold it pixel wise and calculate the average 
spectrum, this way per each sample the HSI is compressed to a 1D 
spectrum, losing spatial information [70,71]. Spectral unmixing ap
proaches, such as MCR [60,61], non-negative factor matrix decompo
sition [59], independent component analysis [72] and coupled tensor 

matrix decomposition methods [73–75], allow recovering the spatial 
signature (endmember) of each constituent and the relative concentra
tion (abundance) map from which different features can be calculated, 
such as homogeneity indices [47,76], Haralick features, etc. Thus, 
obtaining a set of features for each constituent, this way direct infor
mation on constituent spatial distribution is retained and will be fed in 
the data fusion, and spectral profiles are available for putative identi
fication of the constituent and interpretation. Depending on the 
unmixing method, the spatial structure can be considered during the 
decomposition (tensor decomposition) or not (bilinear decomposition).

Another approach applied to either RGB, MSI or HSI is to calculate 
and fit the frequency histogram for each single channel image thus 
obtaining for each sample a vector holding the histogram profile at each 
spectral wavelength, alternatively histogram can be calculated on scores 
after PCA compression [77]. In this way both spatial and spectral in
formation are indirectly considered, e.g. pixels falling in bins found to be 
relevant (after fusion and multivariate analysis) may be repositioned on 
the image areas they belong to, and salient wavelengths can be depicted 
by interpreting the variables’ contribution.

A different perspective is the one introduced by the deep learning 
framework when convolutional neural networks are employed [63,78]. 
In this case, the feature extraction process takes place during convolu
tion and features can be extracted either directly from the HSI (3D 
convolution) or distinctly from spatial and spectral dimension and fused 
afterward, e.g. this approach was applied by Al-Sarayreh to detect meet 
adulteration [79]. However, it must be underlined that several open 
issues need deep evaluation such as the huge number of tuneable pa
rameters that require lots of input data, hence significance of the data 
augmentation procedure for NDSS has to be carefully considered; sig
nificance of 3D convolution for HSI; model transparency and 
interpretability.

3.4. fusing non-spectroscopic sensors data with spectroscopic ones

This task typically involves fusing high-dimensional spectroscopic 
data with a limited number of additional variables. For example, 
hyperspectral images often need to be combined with location and 
weather sensors in agricultural applications, while in the food industry 
the NDSS are most often combined with readily available sensors for 
temperatures, pressures, torques and flow rates [80,81]. Based on a 
large number of pharmaceutical PAT applications, Casian et al. [82] 
have shown that mid-level data fusion is the preferred choice in such 
situations for monitoring, classification and regression tasks. Other ex
amples from food and related process industries also show good results 
using mid-level data fusion [6,83,84]. The most straightforward 
mid-level strategy is to replace the spectra with predictions of one or 
more physiochemical attributes. The advantage of this approach is that 
the variables are easy to interpret. The disadvantage is that good cali
bration models are needed, which may be time-consuming and expen
sive to build and maintain. Also, there might be more information in the 
spectra than what is reflected in the predicted parameters.

An alternative is to replace the spectra with a set of factors, for 
instance derived from PCA or MCR. The advantage of this approach is 
that no calibration models are needed, and the approach is easy to 
implement in practice.

The last mid-level modelling alternative is to use multiblock methods 
that are specifically developed to handle blocks of different types of 
variables, such as SO-PLS, ROSA [11], and SMB-PLS [85]. All of them 
are dealing with the predictive context, and are characterised by 
sequentially extracting PLS components, which are constrained to be 
orthogonal, while they differ in the way they use information embedded 
in each block. SO-PLS focuses on the complementary information car
ried by each block; in ROSA there is no possibility to explicitly assess to 
which extent the blocks contribute to the final model with common or 
distinctive/complementary information; in SMB-PLS the information in 
subsequent blocks that is collinear with the first one is pooled in the 

Table 1 
Main employed methods for pan-sharpening.

Method Principle Preprocessing Transform Ref.

Component 
Substitution 
(CS)

HSup Transform→ 
HS’ replace a HS’ 
band with P1a

Register, 
spatially 
upsample HSb

to P (HSup)

3dIHS; 
PCA; GS; 
etc.

[54]

Transform− 1→ 
HSS2c

Extend to all 
wavelengths

Regression Divide HS and 
M S in small areas 
(patches) then 
learn regression 
from M S to HS 
for each patch. 
The HSS is finally 
restored by 
mapping MSI 
using the learnt 
relationship

Register, 
spatially 
downsample 
MSI to HS (M S)

[55]

Pixelwise 
unfolding

Multi- 
Resolution 
Analysis 
(MRA)

Multiscale 
decomposition of 
P, the detail sub- 
image is injected 
in HS then inverse 
transform is 
applied

Register, 
spatially 
upsample HS to 
P

DWT; 
UDWT; 
“à-trous” 
WT.

[55–57]

Bayesian Bayesian 
inference 
framework.

[57]

Coupled Non- 
negative 
Matrix 
Factorization 
(CNMF)

HSS––HU Pixelwise 
unfolding

[58]
H holds pure 
spectral 
components 
(endmembers) 
and U the relative 
pixel abundances
MS = HMSU 
HS––HUHS

H and U can be 
retrieved by ALS

Multivariate 
Curve 
Resolution

Spectral 
unmixing.

Register, 
spatially 
downsample 
MSI to HS 
Pixelwise 
unfolding.

[59–61]

HSS is recovered 
by incomplete 
multiset MCR 
analysis 
(augmentation of 
MSI column-wise 
with binned MSI, 
and sample-wise 
with HS)

Deep Learning Learn HSS from 
MSI by using a 
deep CNN 
architecture.

[61–63]

a P stands for panchromatic image, i.e. high-spatial, low-spectral resolution, 
either true panchromatic, only one band, or RGB/multispectral (MS NxNy x λ) in 
this case 1 to 3 bands are taken from P and a transform is applied.

b HS stands for hyperspectral, i.e. low-spatial, high-spectral resolution (HS 
nxny x Λ, with n<<N and »λ).

c HSS stands for high-spatial, high-spectral resolution image.
d HIS: Intensity Hue Saturation transform; PCA: principal component analysis; 

GS: Gram-Schmidt.
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same component and once y-related information from the first block is 
exhausted the same holds for the second and so on. Analysis of block 
explained variance by each component can highlight common and 
distinctive information contributed by each block. In SO-PLS and 
SMB-PLS the block order may have an influence on the model; this does 
not happen with ROSA in which, however, the identification of the first 
winning block may have an impact on the selection of the successive 
components. From an applicative point of view, the SO-PLS approach is 
particularly advantageous when the aim is to identify possible extra 
benefits from the inclusion of successive block(s) of data (and the in
formation they carry) into the model; for instance, in the context of the 
present review, to understand whether it is really worth to add a spec
troscopic sensor to non-spectroscopic ones, or to combine different types 
of spectroscopy. ROSA is computationally very fast, so it is useful when 
the number of sensors is huge. SMB-PLS can be suited for situations 
where it is important to assess common and distinctive contributions by 
each block, e.g., in industrial process monitoring to improve interpret
ability and feedback actions.

The advantage of these methods is that they extract latent variables 
that are directly related to the response, but it comes at the cost of more 
complicated algorithms that need a skilled data scientist to apply.

It is not recommended to do simple concatenation of variables in 
these situations as the results will depend heavily on the weighing of 
spectra relative to the other variables, and the models will be difficult to 
interpret.

4. Practical issues

4.1. preprocessing prior to data fusion

The preprocessing step is critical for any DF approach. Generally, for 
low-level DF, it goes over three stages [86]: the first, which we can refer 
to as signal preprocessing, aims to correct artefacts and uninteresting 
variations such as noise, multiplicative effects, scaling, baseline drift, 
peak shift, etc.; the second deals with intra-block offset and varia
bility/scale correction aiming at ensuring equal contribution of the 
variables within a block; finally, the third is the inter-block pre
processing, such as block scaling, having the objective to correct 

differences in the scales, number of variables and the pseudo rank of 
different blocks. The latter step ensures that no single block of data 
contributes more than others simply because it contains a higher num
ber of variables or because the way the signals are defined results in a 
higher total variance with respect to the other blocks.

In mid- and high-level DF, where features or decisions, respectively, 
are fused, preprocessing only involves the second and the third steps 
described above. In fact, possible signal preprocessing is performed in 
the modelling step, before the feature/decision extraction.

4.2. selecting the level of data fusion and the fusion method

Many papers have compared different data fusion methods [41,
87–90]. They usually focus on comparing predictive ability, and the 
results show that there is no universally best method. This indicates that 
the choice of method should depend on the properties of the data set, as 
well as the research aim and the intended use of the model [37].

For example, in food quality control, several analytical platforms can 
be used, and the most important question is what redundant and unique 
information each provides, so that it might be possible to select the 
platform(s) that are really needed to achieve the most effective moni
toring set-up at the lowest cost. To this aim, low level DF methods are 
more appropriate [11].

Other considerations concern the type of data to be fused, for 
instance in NMR spectroscopy feature extraction by a spectral unmixing 
technique, such as MCR, could be very effective while NIR data may be 
more informative as such, thus suggesting a combination of low and 
mid-level DF as a choice.

Regarding the research aims and intended use of the models, when it 
comes to regression tasks it is important to distinguish between pre
diction and interpretation. The main advantage of some methods (e.g. 
SO-PLS and SMB-PLS) is that they give a better interpretation of the 
contributions from each block. If the model is going to be used for 
prediction only, more flexible machine learning methods may give more 
precise predictions [91], as well as a high-level DF framework. If the 
model will be used for routine predictions, it is necessary to monitor the 
model’s performance over time and do maintenance and adjustment 
when needed. In these cases, it is important to choose a method that is 

Fig. 2. Different paths to obtain a 1D vector (holding representative spectra or features per sample) from the HSI data cube. ROI = Region Of Interest.

L. Strani et al.                                                                                                                                                                                                                                   Trends in Analytical Chemistry 180 (2024) 117957 

6 



robust and maintained. Also, with respect to the DF level, when more 
modelling steps are involved, as in mid-level but especially in high-level, 
routine implementation might become troublesome.

4.3. block definition and variables selection

The process of defining blocks and selecting variables holds para
mount importance in data analysis; hence, in constructing a multi-block 
model, the sequence of blocks is pivotal. While including each spectrum 
type into distinct blocks can look natural, it prompts critical inquiries 
into the optimal strategy, and block definition can either enhance or 
impede the efficacy of subsequent analyses. Decisions regarding block 
order can be guided by different factors, including prior knowledge, 
research objectives, and the inherent structure of the dataset [92]. Ap
proaches that rely on predictive performance to guide the selection of 
block sequences have been devised [93]. Although the block order will 

not sway the models’ predictions, it significantly influences the inter
pretation of their findings. In certain scenarios, such as when dealing 
with blocks gathered at various stages of an online process or a mix of 
categorical and continuous variables, the order may be straightforward 
[94]; however, in other situations, is not as clear-cut. In particular cases, 
such as when employing sequential multi-block methods, it is worth 
emphasizing the advantageous aspect that these methods allow the 
recognition and interpretation of distinct and common components 
among blocks [84]. This underscores the importance of considering 
block order, as it directly impacts this ability. Moreover, beyond the 
delineation of blocks, the selective inclusion or exclusion of variables 
becomes imperative. This process necessitates a judicious balance be
tween retaining informative features and mitigating noise, thereby 
refining the analytical framework for enhanced predictive performance 
and interpretability.

In the literature, various types of variable selection methods are 

Fig. 3. Validation workflow in low-level (a) and mid-level (b) DF scenarios.
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available, often categorized as filter, wrapper, or embedded methods 
[95]. However, this classification is not specifically tailored to 
multi-block approaches. Customized variable selection strategies for 
multi-block methods are relatively rare, and there is a lack of compre
hensive discussion in the literature regarding which strategy is the most 
appropriate. An attempt was made to address this issue, focusing on 
MB-PLS and SO-PLS [96]. In this instance, it has been determined that, 
for spectroscopic data, when the objective is to attain a parsimonious set 
of features, it is preferable to integrate the sequential approach with 
forward selection. Conversely, when the emphasis is placed on inter
pretation and there is no imperative need to significantly reduce the 
number of variables, VIP can be incorporated into the creation of the 
SO-PLS model. However, it was concluded that it is challenging to 
determine upfront which strategy would be the most suitable. This dif
ficulty is common in variable selection methodologies, as outcomes are 
inherently reliant on the specific dataset under examination. Alterna
tively, solutions of diverse nature, stemming from the hyphenation of 
multi-block and variable selection approaches, have been proposed as 
viable resolutions to this issue [97].

4.4. validation

Data fusion, as with any modelling approach, has some tuneable 
parameters which depend on the level at which DF operates and, on the 
method, adopted. Cross-validation (CV), or resampling methods in 
general, are widely used to select the optimal setting of tunable pa
rameters [98]. However, the independence of the data splits must be 
carefully considered.

Fig. 3 represents the data analysis pipeline for each DF scenario 
highlighting at which stage the data splitting must take place.

In low-level DF scenario, the single data blocks are directly consid
ered, either by data augmentation or coupling, and the number of 
components (overall or per block) is the main parameter to tune. In this 
case, the critical step is preprocessing, which has been described in 
section 4.1., and distinguished in three levels: 1) signal preprocessing; 2) 
inter-block and 3) intra-block preprocessing. A frequently encountered 
mistake is that often preprocessing at levels 1 and 2 is done before the 
data is split, and only the third level preprocessing enters the CV loop. 
However, this way the training data, in each CV iteration, are already 
informed about the left-out samples, e.g. because the mean or variance 
(level 2) or the average reference spectrum considered for multiplicative 
scatter correction (level 1) are calculated across the whole data block.

In mid-level DF scenario, features are extracted by each data block 
and afterward these features are fused, in this case it is critical that single 
block data are split before feature extraction and obviously also before 
inter-block preprocessing as already discussed above. In addition, there 
are more model parameters to be tuned, e.g. if the extracted features are 
components obtained by a decomposition model (PCA, PLS, etc.) their 
number is to be tuned too. Then, there are also the parameters of the 
fused model built on these selected features to be set. Thus, a double CV 
scheme is more appropriate [99].

Analogous reasoning applies to high-level DF scenarios, in which 
each single block undergoes a complete modelling step, and the models’ 
decisions are fused.

5. Concluding remarks

In the area of in-field monitoring, remote sensing technologies 
combined with NDSS offer a comprehensive assessment of crop health 
and quality, aiding in early disease detection and yield prediction. 
Similarly, in food processing, on/in-line NDSS facilitate real-time 
monitoring of quality parameters, contamination detection, and pro
cess optimization. The integration of NDSS with other sensors enhances 
the precision and scope of monitoring, paving the way for efficient 
quality control and resource utilization. Furthermore, data fusion en
ables a more comprehensive understanding of food properties and 

enhances the effectiveness of authentication protocols.
In this paper, different data fusion scenarios have been reviewed, 

such as the fusion of spectra from different spectroscopic platforms, the 
combination of non-spectroscopic sensor data with spectroscopic data, 
and the integration of images and spectra. In the first two cases, both 
available methods and application examples, especially in food 
authentication, are abundant; in the latter, most of the literature focuses 
on image fusion, while a limited number of applications concern the 
integration of imaging, especially HSI and spectral data.

The focus of in-field monitoring is on fusing the results of remote 
sensing technologies, such as LIDAR and UAVs, with HSI to provide a 
comprehensive picture of the crop, from nutrient levels and water stress 
to disease detection and yield prediction. On/in-line NDSS are attractive 
because they can measure food quality attributes directly in the pro
cessing line, eliminating the need for manual sampling. Combining 
multiple NDSS between them and with process variables seems prom
ising to obtain soft sensors for predicting hard-to-measure product 
quality attributes. It is likely that both areas will grow in the near future 
and more research is needed to improve the available DF methods to the 
point of routine implementation.

Coming to practical issues the following points can be highlighted.

• To profit from data fusion and selecting appropriate DF levels and 
methods the research questions and objectives must be clear, such as 
to which extent model interpretation is critical? Is common or 
distinctive information among blocks, or both, sought? Is the DF 
model to be implemented for real-time predictions? and so on.

• Block definition and data structure are closely interconnected, and 
block definition can either enhance or impede the efficacy of sub
sequent analyses.

• Implementing data fusion requires some expertise since the available 
methods are based on different assumptions. When combining block 
of different order, e.g. two dimensional and three-dimensional tensor 
decomposition methods are more suitable. Multiblock methods may 
offer several advantages on interpretative ground. However, they are 
influenced (to which extent depends on the specific method) by the 
block order which is not always straightforward to define.

• Variables selection may improve model predictive performance and 
enhance interpretability but a judicious balance between retaining 
informative features and mitigating noise is needed. It is worth to 
underline that variable selection strategies specific for multi-block 
methods are a few as illustrated in section 4.2.

• The level at which data are fused involves a different number of 
modelling steps which translate in different efforts in terms of vali
dation as discussed in section 4.3.

Finally, we emphasize the message that seen from the perspective of 
going from research and development to routine implementation in-situ 
and in-line the state of art of DF approaches is still in his infancy.
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