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Abstract

After decades of research e�orts, the wind-wave interaction mechanisms have been
recognized as extremely elusive. The reason is the complex nature of the prob-
lem which combines complex coupling mechanisms between turbulent wind and
water waves with the presence of multiple governing parameters such as the friction
Reynolds number of the wind, the water depth and the wind fetch. As unequivocally
shown here, the use of suitable �ow settings allows to reduce the complex problem
of wind-wave interaction to its essentials features mainly as a function of the sole
friction Reynolds number of the wind. The resulting numerical solution allows to
study the interactions between water and air layers with its own �uid properties
and to unveil very interesting features such as an oblique wave pattern traveling
upstream and a wave-induced Stokes sublayer. The latter is responsible for a drag
reduction mechanism in the turbulent wind. Despite the simulated �ow conditions
are far from the intense events occurring at the ocean-atmosphere interface, the here
unveiled basic �ow phenomena may explain some experimental evidences in wind-
wave problems. Among others, the wave-induced Stokes sublayer may shed light
on the large scatter of the drag coe�cient data in �eld measurements where swell
waves of arbitrary directions are often present. Hence, the present results and the
developed approach pave the way for the understanding and modeling of the surface
�uxes at the ocean-atmosphere interface which are of overwhelming importance for
climate science.
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Chapter 1

Wind and ocean waves interactions

Momentum, heat, and mass exchanges between air and water are of primary im-
portance for the characterization of geophysical �ows and climate formation mech-
anisms. Field observation shows that, the presence of moving waves determines an
interaction between the atmospheric boundary layer and the wave �eld developed
in response to the wind forcing. These interactions in�uence the �ux of momentum
and and heat trough air�sea interface and alter the atmospheric boundary layer in
the water proximity, modifying the classical features associated to a wall bounded
�ow. In analogy with �ows over hills, the disturbances introduced by surface waves
determine a surface deformation described by the wave length λ, the wave amplitude
a and the wave steepness a/λ. However the impact of waves on the atmospheric
boundary layer depend not only on their geometry but also on some peculiar aspects
strictly related to the wave nature. First, the waves can be seen as undulations prop-
agating through the sea surface therefore they are not stationary but evolve with a
certain speed called phase speed c, that for a monocromatic wave is de�ned as the
ratio between its wave frequency ω and its wave number k. Second, the waves grow
and decay locally under the wind forcing, it means that their shape is not �xed but
it is the result of a dynamic coupling between wind and waves. Third, a real sea
surface is described by a broadbend spectrum: the wave state can not be studied by
means of a monocromatic description because it is the sum of individual sinusoids,
each moving at a di�erent wave speed. This broadband nature of the wave state
introduces some additional complexities such as the multiscale nature of the sea
surface and the non linear interaction between di�erent wave components.

Despite the extensive research activity on the topic, the present understanding
of the physical mechanisms behind the wind wave interactions remains unclear.
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4 CHAPTER 1. WIND AND OCEAN WAVES INTERACTIONS

1.1 Theoretical model of wave growth and evolution

1.1.1 Kelvin-Helmholtz theory

The �rst attempt to study the complex interactions, occuring in a two phase �ow,
was done by Kelvin and Helmholtz in 1880. They developed the irrotational the-
ory of waves induced by the parallel movement of two �uids with di�erent den-
sity (ρ1, ρ2) and velocities (u1, u2). Assuming the �uid to be two-dimensional, in-
compressible, irrotational, of unlimited depth, and considering small disturbances
around the steady state of the boundary between the two �uids, a solution can be
found for the wave growth rate. Considering the free surface wave height function
as η = aei(ωt−kx),where ω is the wave angular frequency and k is the wave number,it
is possible to �nd an expression for the phase speed of the wave de�ned as the ratio
between ω and k:

c = ū± c̄

ū =
ρ1ū1 + ρ2ū2

ρ1 + ρ2

c2 = c2
0 −

ρ1ρ2

(ρ1 + ρ2)2
(u1 − u2)2

c0 =
g

k

1− ρ1/ρ2

1− ρ1/ρ2

(1.1)

where ū and c are the averaged value of velocity between u1 and U2 phase speed,
while c0 is the phase velocity in correspondence of no current in both �uids (U1 =
u2 = 0). The instability of a wave and so the wave growth can be observed from (1.1):
when the phase velocity c becomes imaginary, the free surface height η progressively
increase in amplitude leading to an unstable process. Considering the �uids of
di�erent densities to be air and water

ρa = 1kg/m3 ρw = 1000kg/m3

and neglecting the contribution of the density ratio ρa/ρw = 10−3, the instability
condition will be:

u1 − u2 = ua − uw = uc > c0
1 + ρa/ρw√

ρa/ρa
≈ 30

g

k
(1.2)

The main problem of this theory, applied to the wind-wave interaction, arises from
the value of the predicted critical velocity of uc, that is the minimum wind relative
velocity capable of generating instability, and so wave growth, does not match the
reality: the smallest existing wave in the ocean spectrum usually have a phase
velocity of 0.2 m/s. It means that the critical velocity would be uc = 30·0.2 = 6m/s.
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So the waves will be stable until the relative velocity of the wind will reach 6m/s.
Nevertheless from direct observations, it well known that velocity of a wind just
strong enough to rise waves is about 1, 1m/s.

1.1.2 Je�reys sheltering theory

The �rst attempt to explain this discrepancy between theory and observations was
given by Je�reys in 1925 with his sheltering theory (Je�reys, 1925). He abandoned
the irrotational hypothesis on air and realized that the interaction between wind
and wave cause the inability of the wind to follow the deformed water free surface.
The resulting air�ow separation on the leeside of the wave leads to a pressure drop
and hence to a recirculation zone (the �sheltered zone�) in the proximity of the
wave trough. According to Je�reys the �uctuating pressure distribution is the main
responsible for the wave growth and the force applied to the free surface can be
evaluated by:

F = sρau
2
a

dη

dx
(1.3)

where s is the sheltering constant, ua the wind velocity over the crests and η is the
wave elevation. The formula (1.3) is called �the sheltering hypothesis� and comes
from the analogy of this problem with the one of the thrust produced by a current
over an inclined lamina in the direction of the �ow. There were two problems in this
theory: the former was the assumption of no tangential stresses, thus no air friction
acting along the free surface; the latter was that the observed value of the constant
s, made by solid wave models, was smaller than what predicted by the sheltering
model and the resulting force caused by the wind in the sheltered zone, was not
enough to let waves grow.

1.1.3 Philips and Miles theories

Phillips(1957) and Miles (1957) proposed two mechanisms which aim at explaining
the initial and the later stage of wave growth, respectively (Phillips, 1957; Miles,
1957). The mechanism proposed by Philips considers the crucial role of turbulence in
the wave generation. Considering an in�nite sheet of deep inviscid water, initially at
rest, he found that waves develop most rapidly by means of a resonance mechanism
which occurs when a component of the �uctuating air pressure �eld moves with
the same speed of the water free surface with the same wave number. This growth
mechanism continues until waves grow so high that non-linear e�ects, established
between wind and wave, become important. The Philips' resonance mechanism
predict a linear wave growth with time:

η2 ∼ p′2t

2
√

2ρ2
wUcg

(1.4)
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where η2 is the mean square surface displacement, p′2 is the mean square turbulent
pressure on the water surface, t the elapsed time, Uc the convective speed of the
surface pressure �uctuation and ρw the water density. In parallel with the Phillips
theory, was developed another important theory by Miles. The hypothesis behind
this theory regard both air and water phase. The air is assumed to be inviscid,
incompressible and, in the absence of the wave motion, to have a prescribed mean
shear �ow U(y), where y is the vertical coordinate. The water is considered in-
viscid, incompressible and with a small surface slope (ak) to permit the equations
linearization. Although the turbulent nature of the wind seems to be decisive in the
the dynamics of the system, Miles constructed a model which neglects the interac-
tion between turbulence and wave-induced perturbations. Due to this hypothesis
the wind-wave interaction is described by the Orr-Sommerfeld equation that, for
inviscid �uids, becomes the Rayleigh's equation. By following the stability analysis,
he found that for air �owing a wavy surface, there is a critical height yc , where
the unperturbed wind speed, U(y), equals the real part of wave phase speed c.The
concept of the critical layer is crucial in the Miles theory. As a matter of fact it
represents the height at which the energy transfer from the wind to the waves is
concentrated. The rate of energy transfer can be expressed as:

r = −π(U ′′|y=yc/kU
′|y=yc)/(W

2) (1.5)

From the above expression it is clear that r is proportional to the velocity pro�le
curvature at the critical layer, i.e. to U ′′(y) at yc. From a physical point of view
the transfer of energy can be explained as follow: the upward motion of the air
�ow over the waves induces a sinusoidal pressure variation which in turns leads to
a closed loop structures (cat's eye) of periodically varying strength forming at the
critical height. Then the vortex force on the wave leads to a transfer of energy from
the wind to the waves. Two are the criticisms of Miles' theory: the former is that
the energy transfer is concentrated in the critical layer, which has an in�nitesimal
thickness and the latter is related to the location of the critical height. As a matter
of fact the critical layer is very close to the surface of the wave, which means that
the critical layer height is well within the inner surface layer. Hence, the overall
energy transfer from wind to waves is very small.

1.1.4 The Non-Separated Sheltering (NSS) mechanism

Now the question is: Does the critical layer plays a signi�cant role in turbulent
�ows over a wave? For slowly or rapidly moving waves, Belcher & Hunt (1993)
discussed the importance of nonseparated sheltering. They divided the air�ow into
an inner region and an outer regions. Close to the interface is an inner region
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where the wave-induced turbulent shear stress signi�cantly a�ects the wave-induced
mean �ow, which leads to a sheltering e�ect, whereby streamlines are displaced
asymmetrically about the wave crest. In an outer region, turbulence is advected
over a wavelength too rapidly for it to transport signi�cant momentum and so the
wave-induced �ow there is inviscid to a good approximation.

In the inner region the turbulent eddies have su�cient time to interact before
they are advected by the mean �ow and they reach a local equilibrium state. In this
region, the e�ects of the shear stress displace the streamlines asymmetrically causing
the turbulent boundary layer thickening and an asymmetric pressure distribution
that, again, leads to wave growth.

In the outer region, the turbulent eddies are advected rapidly before they interact
with other. It means that turbulent perturbations are small and linear approxima-
tion can be applied, better satisfying the assumption of the critical-layer mechanism.
In the nonseparated sheltering mechanism, momentum transfer from the air �ow to
the waves is determined by the �ow asymmetry, caused by the perturbation of the
shear stress in the inner region. In the critical-layer mechanism, the perturbations
near the wave surface are determined by the perturbations of the air�ow at the
critical height, caused by the wave-induced velocity. It is important to say that
nonseparated sheltering mechanism does not exclude or substitute the Miles' one.
In fact, they both work together, but the e�ectiveness of each one depends on the
wave speed c (or wave age). Therefore, we can identify three types of waves: slow, in-
termediate and fast. For slow waves the critical layer is very close to the surface and
his e�ect towards the rest of the �ow is negligible; here prevails the non-separated
sheltering. The more the waves grow the more the critical layer moves upwards,
until its in�uence on the mean �ux is negligible; stated this, we can say that even in
the case of fast waves the prevailing mechanism is the non-separated sheltering one.
Finally, for intermediate wave speeds, the critical height is roughly situated in the
transition zone between the inner and outer region of the �ux and its role cannot
be neglected. In this case the relation among the two mechanisms is complex and
needs more investigation.
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Chapter 2

DNS of a two phase pressure driven

channel

The complexity of the problem makes the wind-wave interactions di�cult to be
numerically represented. The aim of the present chapter is to overcome some of
the previous mentioned issues by considering a numerical simulations of a turbulent
wind blowing over a water free surface. In the present simulation the two-phases are
dynamically evolved based on �rst principles and the multiplicity of the governing
parameters is reduced to the sole Reynolds number of the wind, thus addressing the
problem at equilibrium, i.e. for in�nite wind fetch lengths. The chapter is organized
as follows. In section �1, the numerical method and the �ow settings are described.
In section �3, the water wave pattern is characterized while, in sections �4 and
�5, the turbulent wind boundary layer is analysed. The in�uence of the wind-wave
mechanisms on the �eld of stresses in the wind boundary layer is addressed in section
�6. Finally, the paper is closed by �nal remarks in section

2.1 Equations and numerical methods

The �ow evolution is governed by the continuity and momentum equations. The
evolution of the �ow is governed by the continuity and momentum equations. This
set of equations is solved here in a one-�uid formulation where the same set of
equations is applied for two immiscible �uids with di�erent density ρ and viscosity
ν = µ/ρ, 

∂ui
∂xi

= 0

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ fσi + ρgi

(2.1)
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where ui is the velocity �eld, p is the pressure �eld, τij = 2µSij is the viscous stress
tensor with Sij the strain rate tensor, fi is the surface tension force and gi the gravity
acceleration. In the following the index i = 1, 2, 3 corresponds to the streamwise,
vertical and spanwise directions and velocity components, (x, y, z) and (u, v, w) re-
spectively. The evolution equations of the �ow have been numerically solved by
means of a �nite volume discretization method using a structured Cartesian grid
of hexahedral cells. The numerical technique is based on central spatial interpo-
lation operators of the second order whereas time integration is performed with a
�rst-order implicit Euler scheme. The pressure�velocity coupling is performed with
the pressure-implicit split-operator algorithm (Issa, 1986). In order to identify the
interface between the two �uids, a transport equation for the volume fraction func-
tion α (α = 1 in the water phase and α = 0 in the air phase) is coupled with the
momentum equation (Hirt & Nichols, 1981),

∂α

∂t
+
∂ujα

∂xj
+

∂

∂xj

[
α
(
1− α

)
urj

]
= 0 (2.2)

The numerical challenge of keeping the interface sharp is addressed by limiting the
phase �uxes based on the "Multidimensional universal limiter with explicit solution"
(MULES) limiter and by using a numerical interface compression method. The latter
is expressed by the last term of (2.2) from which it is easy to recognize that is active
only in the interface region due to the term α(1−α). In the volume fraction equation
(2.2), ur is a compression velocity evaluated as

ur = cα |u| n (2.3)

where

n =
∇α
|∇α|

(2.4)

is the unit normal to the interface vector and cα is a compression coe�cient that
determines the strength of the compression, i.e. cα = 0 no compression, cα = 1
conservative compression and cα > 1 high compression (Okagaki et al., 2021).

The volume fraction α from (2.2) is then used to compute the physical properties
of the two �uids,

ρ = ρwα +
(
1− α

)
ρa (2.5)

µ = µwα +
(
1− α

)
µa (2.6)

where the pedices w and a are used to denote quantities computed for water and
air, respectively. The volume fraction α is also used to compute the local curvature
of the interface, κ = −∂ni/∂xi. This observable is then used to model the surface
tension (Brackbill et al., 1992) as

fi = σκni (2.7)
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where σ is the surface tension coe�cient. In the present work, we consider air and
water as working �uids for which standard values of viscosity and density are em-
ployed, νa = 1.48 · 10−5, νw = 1 · 10−6, ρa = 1, ρw = 1 · 103 and σ = 0.07N/m. It
is important to highlight that the here reported solution of the wind-wave problem
based on �rst principle equations with the actual properties of air and water repre-
sents an unicuum in the panorama of numerical simulations. Indeed, air and water
introduce a sharp jump of the �uid properties at the interface thus representing a
challenge for numerical techniques as demonstrated by a series of works where the
jump between the two �uid properties have been reduced to obtain numerical sta-
bility, see e.g. Liu et al. (2022); Scapin et al. (2022), or where the evolution of the
two �uids is separately integrated in time and their interaction is taken into account
with suitable boundary conditions, see e.g. Yang & Shen (2010, 2011). Here, we
success in obtaining a stable solution of the wind-wave problem based on �rst prin-
ciple equations with the actual properties of air and water. To achieve this result
a relevant role has been played by the value of the compression factor, cα = 0.5, in
combination with the use of high resolution levels at the interface as better shown
in the following section.

2.2 Flow settings

Figure 2.1: Numerical domain setup and Cartesian frame of reference.

The �ow case considered is an open channel composed by a water layer on the
bottom of an air layer on the top, see �gure 2.1. Periodic boundary conditions are
applied in the streamwise and spanwise directions for both velocity and volume frac-
tion �elds. No slip and free slip boundary conditions are imposed in the water bed
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and top boundary, respectively. Finally, a zero gradient condition is imposed in the
vertical direction for the volume fraction. The �ow is driven by imposing a constant
pressure gradient in the streamwise direction, dPb/dx. This pressure gradient deter-
mines the friction Reynolds number of both the wind and water boundary layers,
see �3. Accordingly, their ratio is completely determined solely by the heights of the
air and water layers and by the properties of the two �uids,

Reτa
Reτw

=
µw
µa

√
ρa
ρw

√
h3
a

(ha + hw)h2
w

(2.8)

see again �3. Here, Reτa = uτaha/νa and Reτw = uτwhw/νw are the friction Reynolds
numbers of the air and water boundary layers, respectively, with uτa =

√
〈τ12〉/ρa

and uτw =
√
〈τ12〉/ρw the air and water friction velocities evaluated at the inter-

face between the two �uids (see section 5 for its exact de�nition) and at the water
bed, respectively. In the present �ow settings we have Reτa = 317 and a ratio
Reτa/Reτw ≈ 3. In conclusion, the choice of forcing coupled with the use of periodic
boundary conditions allows us to obtain in a very simple and computationally e�-
cient way, a fully developed turbulent boundary layer on top of an almost quiescent
and laminar water layer.

The extent of the numerical domain is (Lx, Ly = ha+hw, Lz) = (25.6ha, 1.6ha, 25.6ha),
where ha and hw are the heights of the air and water portions of the domain, respec-
tively. The domain is discretized by means of a number of volumes (Nx, Ny, Nz) =
(820, 277, 1232) that are homogeneously distributed in the horizontal directions
whereas stretching laws have been applied in the vertical direction in order to have
larger resolution values in the highly inhomogeneous regions, i.e. at the wind-wave
interface region. The resulting resolution in friction units is (∆x+,∆y+

min,∆z
+) =

(9.9, 0.1, 6.6), where ∆y+
min is achieved at the wind-wave interface. Throughout the

paper, variables in friction units will be denoted with the superscript +, implying
normalization of lengths with νa/uτa and velocities with uτa where the friction ve-
locity uτa is computed in a suitable plane at the wind-water interface as shown in
section �5. On the other hand, when not speci�cally stated, variables will be re-
ported dimensionless by using ha for lengths and Ue for velocities where Ue is the
average velocity at the top boundary. Finally, the time step is kept variable through-
out the simulation to obtain a condition CFL < 1 in each point of the domain. The
resulting time step, on average, is ∆t+ = 1.1× 10−4.

In the present �ow settings, the computational demand for well-converged statis-
tics is mitigated by the statistical stationarity of the �ow �eld and by the statistical
homogeneity in the streamwise and spanwise directions. Hence, the average opera-
tor, hereafter denoted as 〈·〉, combines a spatial average in the horizontal directions
and a temporal average over 34 samples collected every ∆T+ = 95 after reaching
a fully developed statistical state. In order to reduce the time needed by the �ow
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to reach a fully developed state, the simulation has been initialized by using the
velocity �elds from a precursory simulation of a single-phase turbulent open chan-
nel. This initialization is applied only for the air portion of the domain while the
water one is initialized with a null value for velocity. In what follows, the customary
Reynolds decomposition of the �ow in a mean and �uctuating �eld will be adopted,
i.e. ui = Ui + u′i where capitol letters and the superscript ′ will denote average and
�uctuating quantities, respectively.

In closing this section, let us notice that the �ow con�guration here considered
allows us to study the autonomous development of the wind-wave turbulence prob-
lem with air and water as working �uids. Indeed, the only parameters governing the
�ow are the imposed constant pressure gradient dPb/dx and the ratio between the
air boundary layer thickness and the water depth ha/hw being the thermodynamic
properties of the �uids prescribed by the selection of air and water in standard con-
ditions as working �uids. Hence, contrary to several previous attempts where the
wave �eld is prescribed a priori or approximated with speci�c wave equations, see
e.g. Sullivan et al. (2000), Kihara et al. (2007), Yang & Shen (2009), Yang & Shen
(2010), Druzhinin et al. (2012), Yang et al. (2013), Sullivan et al. (2014) and Cao &
Shen (2021), the present con�guration allows us to prescribe only the general �ow
conditions, dPb/dx and ha/hw, and to address the natural evolution based on �rst
principles of wind and waves with air and water as working �uids in a fully coupled
framework. To our knowledge, this is the �rst attempt of this kind.
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Chapter 3

Flow symmetries and mean equations

The con�guration of the two-phase open channel considered in the present work
exhibits certain statistical symmetries that can be exploited to specialize the mean
�ow equations. Indeed, by considering fully developed conditions we have that the
average �ow solution is invariant under translations in time and in the streamwise
and spanwise spatial directions. Furthermore, we have that the average surface
tension and also the gravity term have a non-zero contribution only in the vertical
direction, i.e. 〈fσ1〉 = 〈fσ3〉 = 0 and ρg1 = ρg3 = 0. All these symmetries allow us
to reduce the problem of wind-wave interactions to its essential features. The mean
�ow equations read

∂〈ui〉
∂xi

= 0

∂〈ρ〉ũi
∂t

+
∂〈ρ〉ũi ũj
∂xj

= −∂〈p〉
∂xi

+
∂〈τij〉
∂xj

−
∂〈ρu′′i u′′j 〉
∂xj

+ 〈fσi〉+ 〈ρgi〉
(3.1)

where the Favre average ũ = 〈ρu〉/〈ρ〉 and the Favre �uctuation u′′ = u − ũ have
been introduced to take into account the density variations at the air-water interface
region. By taking into account the above mentioned statistical symmetries of the
�ow, the mean �ow equations become

dV

dy
= 0

d〈ρ〉ũ ṽ
dy

= −∂P
∂x

+
d〈τ12〉
dy

− d〈ρu′′v′′〉
dy

d〈ρ〉ṽ ṽ
dy

= −∂P
∂y

+
d〈τ22〉
dy

− d〈ρv′′v′′〉
dy

+ 〈fσ2〉+ 〈ρg2〉

d〈ρ〉w̃ ṽ
dy

=
d〈τ32〉
dy

− d〈ρw′′v′′〉
dy

(3.2)
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where capitol letters are introduced to denote average quantities. From the conti-
nuity equation we have the trivial result V = 0. The above equations (3.2) allow us
to de�ne the behaviour of the average normal and shear stresses. In the following,
to better express the corresponding equations we consider a shift of the origin of the
wall normal coordinate to the water bed, ŷ = y + hw.

By considering the integral of the momentum equation in the vertical direction,
we can write an equation for the average pressure �eld,

P = Pb − 〈ρ〉ṽ ṽ + 〈τ22〉 − 〈ρ v′′v′′〉+

∫ ŷ

0

〈fσ2〉 dy + g2

∫ ŷ

0

〈ρ〉 dy (3.3)

where Pb is the average pressure �eld at the water bed ŷ = 0. An important con-
sequence of this equation is that the mean streamwise pressure gradient is uniform
across the two �uids,

∂P

∂x
=
dPb
dx

(3.4)

In the vertical stress balance (3.3), it is important to highlight that some terms have
a non-null contribution only at the interface region between the two �uids. These
terms are 〈ρ〉ṽ ṽ, 〈τ22〉 and 〈fσ2〉. Furthermore, outside the interface region we also
have that 〈ρ v′′v′′〉 reduces to the classical Reynolds stress, i.e. 〈ρ v′′v′′〉 = 〈ρ v′v′〉.
By taking into account these considerations, we can write that

P = Pb − ρw〈v′v′〉+ ρwg2 ŷ for ŷ < h<int (3.5)

and

P =Pb − ρa〈v′v′〉+

∫ h>int

h<int

〈fσ2〉 dy + ρwg2h
<
int+

ρag2

(
ŷ − h>int

)
+ g2

∫ h>int

h<int

〈ρ〉 dy for ŷ > h>int

(3.6)

where h<int < ŷ < h>int is the region of the �ow where the �uid properties change. The
thickness of this layer, δint = h>int − h<int, depends on the height of the wave motion
δw and on the thickness of the interface between the two �uids. Being the latter
generally small, a good approximation is δint ≈ δw. When the wave elevation is small
compared with the height of the air boundary layer ha and with the water depth
hw, the thickness of this region is small, δint/ha � 1 and δint/hw � 1, thus making
the contribution of the two integrals in (3.6) generally negligible. Furthermore,
the assumptions δint/ha � 1 and δint/hw � 1, allow us also to introduce a single
interface position, hint ≈ h<int ≈ h>int. Hence, the vertical stress balances for small
water wave elevations can be �nally simpli�ed as

P = Pb − ρw〈v′v′〉+ ρwg2 ŷ for ŷ < hint

P = Pb − ρa〈v′v′〉+ g2hint

[
ρw + ρa

(
ŷ

hint
− 1

)]
for ŷ > hint

(3.7)



17

We address now the behaviour of the total shear stresses that for the present
�ow symmetries read

T12 = 〈τ12〉 − 〈ρ u′′v′′〉 (3.8)

and the stremwise momentum equation (3.2) can be recasted as

dT12

dy
− d〈ρ〉ũ ṽ

dy
=
dPb
dx

(3.9)

that integrates to

T12 − T b12 − 〈ρ〉ũ ṽ =
dPb
dx

ŷ (3.10)

where

T b12 = µw
dU

dy
≡ ρwu

2
τw (3.11)

is the total shear stress at the water bed ŷ = 0 that can be used to de�ne the friction
velocity at the water bed, u2

τw . For ŷ = hw +ha, we have T12 = 0 and 〈ρ〉ũ ṽ = 0 and
equation (3.10) allows us to link the imposed streamwise pressure gradient with the
friction velocity at the water bed,

T b12 = −HdPb
dx
≡ ρwu

2
τw (3.12)

where H =
(
hw + ha

)
. Hence, the friction velocity at the water bed reads

uτw =

√
−H
ρw

dPb
dx

(3.13)

By considering now ŷ = h>int, we have again that 〈ρ〉ũ ṽ = 0 and the streamwise
stress balance (3.10) reduces to

T12 = −ha
dPb
dx

for ŷ = h>int (3.14)

where equation (3.11) has been used and we have again assumed that δint/ha � 1
and δint/hw � 1 thus allowing us to write this approximation h>int−H ≈ −ha. From
equation (3.14), it is possible to derive an equation for the friction velocity at the
top edge of the interface region for ŷ = h>int. Indeed, at this location, the total shear
stress can be recasted as

T12 = µa
dU

dy
− ρa〈u′v′〉 for ŷ = h>int (3.15)

that using equation (3.14) allows us to write

µa
dU

dy
= −ha

dPb
dx

+ ρa〈u′v′〉 for ŷ = h>int (3.16)
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where the viscous term can be used to de�ne the friction velocity for the air boundary
layer, i.e.

ρau
2
τa ≡ µa

dU

dy

∣∣∣∣
ŷ=h>int

(3.17)

Hence, the friction velocity for the air boundary layer can be then computed as

uτa =

√
−ha
ρa

dPb
dx

+ 〈u′v′〉 (3.18)

In this region of the �ow 〈u′v′〉 is essentially due to the wave motion and, by assuming
again a small wave elevation, it has a negligible contribution. Hence, the friction
velocity of the air boundary layer for small water waves can be �nally estimated as

uτa =

√
−ha
ρa

dPb
dx

(3.19)

thus showing the signi�cantly large value attained by the friction velocity for the air
�ow (indeed turbulent in the present simulation) with respect to that of the water
�ow (indeed laminar in the present simulation).

It is important now to recall that 〈ρ〉ũ ṽ = 0 in the entire �ow except to the thin
region h<int < ŷ < h>int where the �uid properties change. By assuming that

|〈ρ〉ũ ṽ| � dPb
dx

ŷ (3.20)

also for h<int < ŷ < h>int, the contribution to the streamwise stress balance (3.10)
of 〈ρ〉ũ ṽ can be always neglected. The inspection of the data from the present
simulation supports this assumption. Hence, from equation (3.10), we can �nally
write the behaviour of the total shear stresses as,

T12 = −HdPb
dx

(
1− ŷ

H

)
(3.21)

where again equation (3.11) has been used.



Chapter 4

Mean �ow structures

4.1 The structure of water waves

We start the analysis of the Direct Numerical Simulation data by addressing the
structure of the developed water waves. Indeed, contrary to several previous at-
tempts where the wave state is essentially prescribed, the water-wave pattern here
obtained is the result of the mutual interaction of the turbulent wind with the water
surface based on �rst principles and, hence, it deserves a detailed analysis.

Figure 4.1: Instantaneous water-wave pattern. The vertical wave length has been
expanded by a factor 80 for readability reasons.

The instantaneous pattern taken by the water-waves is shown in �gure 4.1 by
means of an iso-surface of the phase fraction α = 0.5. Notice that, for readability
reasons, the vertical size of waves has been expanded by a factor of 80. Indeed,
the wave height δw measured as the di�erence between the maximum and minimum

19
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water surface elevation is found to be very small compared with both the water
depth and with the length scales of the turbulent wind boundary layer,

δw = 9.2× 10−4

δ+
w = 0.3

(4.1)

where
δw = ηmax − ηmin (4.2)

with the surface elevation de�ned as

η(x, z) = yα − 〈yα〉 (4.3)

and α(x, yα, z) = 0.5. Accordingly, also the wave steepness is very small, S =
7.3× 10−04.

As shown in the previous section �2.2, the �ow state is completely determined
by the streamwise pressure gradient dPb/dx and by the ratio between the air and
water depths ha/hw. A consequence of the measured very small value of the wave
height is that we can drop the dependence of the wave state on the ratio ha/hw. Let
us notice that, due to the use of periodic boundary conditions in the streamwise and
spanwise directions, the signi�cant e�ect that the wind fetch usually has on the water
wave state is here avoided being the fetch length formally in�nite. In conclusion,
the water wave evolution here analysed depends uniquely on the selected value of
the streamwise pressure gradient dPb/dx and, in turn, with the friction Reynolds
number of the wind that is completely determined by the pressure gradient itself

Reτa ≈

√
−ha
ρa

dPb
dx︸ ︷︷ ︸

uτa

ha
νa

(4.4)

It is important to anticipate here that despite the small height of the water waves,
their dynamical e�ect on the statistical features of the turbulent wind boundary
layer are far from being negligible as it will be shown in the next sections �4.2, 5
and 5.3.

Surprisingly, �gure 4.1 highlights that the water surface develops an oblique
water-wave pattern whose inclination with respect to the wind x-direction is γ ≈
38.6◦. It is recognized that according to resonance mechanisms of wind-wave gen-
eration (Phillips, 1957), two dominant wave systems propagate at oblique angles
symmetric to the wind direction (Morland, 1996). This symmetry is however often
broken for moderate winds as demonstrated by several laboratory and �eld exper-
iments, e.g. Walsh et al. (1985, 1989); Caulliez & Collard (1999); Hwang & Wang
(2001); Hwang et al. (2019); Shemer (2019), reporting asymmetry in the directional
spectra at early stages of wind waves evolution.
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Interestingly, we also observe that the generated oblique wave pattern propagates
at an angle in the upstream direction, i.e. the phase speed vector is aligned with the
dominant wavenumber of the water waves with a negative streamwise component. In
particular, we measure c+ ≈ (−10,−8). Upwind-traveling waves have been already
observed in the past, see e.g. Plant & Wright (1980); Hara & Karachintsev (2003);
Wang & Hwang (2004). In accordance with linear perturbation (Plant & Wright,
1980), the dependence of the wave propagation on the wind shear is odd while
on the inertial pressure is even. Hence, wind shear can be thought as responsible
for a downwind propagation of waves together with a water surface drift while the
pressure �eld can give rise to both upwind and downwind travelling waves. This
even e�ect of pressure is usually broken by the so-called sheltering mechanisms of
wind separation over the water surface. However, due to the very low steepness of
the present water waves, the wind is able to follow the deformed water surface thus
not giving rise to asymmetric pressure distributions in the windward and leeward
sides of waves and, hence, we argue that the oblique upwind propagation of waves
is essentially induced by the wind pressure �eld forming on their top. Accordingly,
�eld experiments show that upwind travelling waves occur mostly in open oceans
then in sheltered bays as reported by Wang & Hwang (2004).

From a statistical point of view, this oblique water-wave pattern can be charac-
terized quantitatively by addressing the two-point correlation function of the wave
elevation,

Rηη(rx, rz) =
〈η(x+ rx/2, z + rz/2, t)η(x− rx/2, z − rz/2, t)〉

〈η2〉
. (4.5)

As shown in �gure 4.2, the two-point correlation function exhibits an inclined (γ ≈
38.6◦) oscillatory behaviour typical of quasi-periodic phenomena. The distance from
the origin of the �rst positive peak in the correlation along the direction normal
to the wave pattern can be used to measure the characteristic wave length. We
measure λ+ = 296. The projection in the streamwise and spanwise directions of
this typical wave length is useful for the forthcoming analysis and is measured to
be (λ+

x , λ
+
z ) = (475, 380). On the other hand, by rescaling the wave length with

the water depth, we measure λ/hw = 1.55 thus highlighting a deep water regime.
This observation further support the previous assumption that, in the present �ow
settings, the �ow state is primarily driven by the imposed pressure gradient dPb/dx
with a substantial weak dependence on the water depth hw.

The two-point spatial correlation function (4.5) can now be used to compute the
one-dimensional spectrum of the wave elevation,

Êx
ηη(kx) = F {Rηη(rx, 0)}

Êz
ηη(kz) = F {Rηη(0, rz)}

(4.6)
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Figure 4.2: Two-point spatial correlation function of the wave elevation Rηη(rx, rz).

where the operator F denotes the Fourier transform. The one-dimensional spectrum
allows us to identify the scales of the most intense waves. As shown in �gure
4.3, both the streamwise and spanwise wave elevation spectra highlight a peak of
intensity that is located at streamwise and spanwise wavenumbers that are of the
same order of the wavelengths previously measured with the two-point correlation,
i.e. λ+

x,peak = 2π/k+
x,peak = 450 (k+

x,peak = 1.39× 10−2) and λ+
z,peak = 2π/k+

z,peak = 386

(k+
z,peak = 1.63 × 10−2). Two relevant additional statistical features are however

evident. The �rst is given by the presence of a broad range of wavenumbers where
the intensity of the wave elevation is not negligible thus highlighting the occurrence
of a multi-scale interface typical of realistic water surfaces. The second is given by the
appearance of a secondary peak in the streamwise spectrum at small wavenumbers,
k+
x = 3.1 × 10−3, corresponding to a wavelength λ+

x,peak = 2π/k+
x,peak = 2026. This

secondary peak is a statistical footprint of the presence of group waves typical of
deep water. Hence, the oblique water-wave pattern analysed so far turns out to be
superimposed to a longer wave envelop developing in the streamwise direction.

It is possible now to address some classical parameters used to characterize the
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ηη, respectively.
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state of water waves. Of particular interest is the so-called Bond number,

Bo =
σ(2π/λ)2

ρwg
(4.7)

that is a measure of the major restoring force between gravity and surface tension.
In the present simulation we measure Bo ≈ 5.1 × 10−3 thus suggesting that the
developed waves can be classi�ed as gravity waves.

In closing this section, let us remind that the here described water wave �eld
is the result of a fully coupled, �rst principle, evolution of a turbulent wind over a
water surface where the unique control parameter is the pressure gradient dPb/dx
and, hence, the friction Reynolds number Reτa of the wind being the e�ect of water
depth negligible in accordance with the previously shown deep water regime and
because the wind fetch length is formally in�nite. Accordingly, we may conclude
that for a friction Reynolds number Reτa = 317, the wind-wave interaction problem
develops a wave pattern propagating at an angle in the upwind direction of deep
water gravity waves at very low wave steepness and elevation.

4.2 The structure of the turbulent wind

We consider now the behaviour of the wind turbulent boundary layer. Let us recall
that the stresses at the water surface created by the wind are responsible for the
formation of the previously analysed water-wave pattern that in turn in�uences the
wind boundary layer thus forming a complex fully coupled mechanisms. Hence, it
is very relevant now to address how the physical properties of the turbulent wind
are di�erent with respect to classical behaviours observed in wall-bounded boundary
layer.

4.2.1 Turbulent coherent motions

In this section we start the study of the turbulent wind by addressing the topology
of the turbulent structures populating it. From an instantaneous point of view,
coherent vortical structures can be identi�ed by using the so-called λ2 criterion(Jeong
et al., 1997) where λ2 is the second largest eigenvalue of the tensor

SikSkj + ΩikΩkj (4.8)

where Sij = (∂ui/∂xj + ∂uj/∂xi)/2 and Ωij = (∂ui/∂xj − ∂uj/∂xi)/2 are the sym-
metric and antisymmetric parts of the velocity gradient tensor. In �gure 4.4 the iso-
surface of λ2 = −3 colored with the streamwise velocity is shown. Figure 4.4 shows
that quasi-streamwise vortices are the dominant vortical structure above the wave
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Figure 4.4: Instantaneous vortex pattern in the turbulent wind boundary layer
shown by means of an iso-surface of λ2 = −3 colored with the streamwise velocity.

surface. Consistently with the low elevation and steepness of the water wave pattern
described in the previous section 4.1, the evolution of the observed quasi-streamwise
vortices is essentially not constrained by the water-wave pattern, thus leading to a
vortex dynamic that resembles the one commonly observed in wall-bounded turbu-
lence. Such turbulent structures by interacting with the mean velocity gradient are
known to give rise to streamwise velocity streaks as a result of ejection and sweeping
of �uid from/to the near-interface region.

In order to give a quantitative description of these wind boundary layer structures
and to highlight their statistical relevance, we consider the two-point spatial auto-
correlation function of the velocity �eld,

Ruiui(x, r) =
〈u′i(x + r, t)u′i(x, t)〉

〈u′iu′i〉(x)
(4.9)

where no summation is implied for index i. As shown in �gure 4.5(a), the stream-
wise correlation function evaluated at y+ = 30 shows that all the three velocity
components are correlated over relatively long distances. In particular, we measure
a correlation length `+

corrx ≈ 1250 and `+
corrx ≈ 700 for the vertical and spanwise

velocity components, respectively, while `+
corrx ≈ 2800 for the streamwise one. Here,

the correlation length is measured as the spatial increment where Ruiui = 0.05.
These values signi�cantly exceed those commonly reported for wall-bounded turbu-
lence thus highlighting an elongation of the turbulent structures due to the presence
of the water-wave surface. The correlation function in the spanwise direction is
shown in �gure 4.5(b). In this case, negative peaks of correlation are observed for
the streamwise and vertical velocity components that can be understood as a clear
statistical evidence of the presence of high and low streamwise velocity streaks and
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Figure 4.5: Two-point spatial auto-correlation function of the velocity �eld Ruiui

computed in the bu�er layer region at y+ = 30. (a) Streamwise correlation for
ry = rz = 0. (b) Spanwise correlation for rx = ry = 0. Ruu (solid line), Rvv (dashed
line) and Rww (dashed dotted line)
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of quasi-streamwise vortices, respectively. In particular, the value of the spanwise
scale rz where these negative peaks occur can be used as a measure of their span-
wise size. Accordingly, we measure a spanwise spacing between streamwise velocity
streaks of r+

z ≈ 100 (location of the negative peak of Ruu) and a spanwise size of
quasi-streamwise vortices of r+

z ≈ 53 (location of the negative peak of Rvv). Also in
this case, these values are signi�cantly larger than those commonly observed in wall
turbulence where the spacing between streamwise velocity streaks and the diameter
of quasi-streamwise vortices are measured to be of the order of r+

z ≈ 50 and r+
z ≈ 30,

respectively (Kim et al., 1987; Abe et al., 2001). In conclusion, the topology of tur-
bulent structures responsible for the self-sustaining mechanisms of turbulence in
the the wind boundary layer essentially resembles that observed in classical wall-
turbulence. The main di�erence is indeed only of quantitative nature being the size
of the turbulent structures resulting from wind-wave interactions quite larger than
those observed in wall-bounded �ows. This similarity with wall turbulence is not
maintained in the very-near interface region. There, the e�ect of the presence of a
wind-induced water wave pattern becomes signi�cant giving rise to peculiar ordered
motions related with the presence wind-wave interaction phenomena as it will be
shown in the next section 4.2.2.

4.2.2 Wave-induced Stokes sublayer and interface stresses

The oblique wave pattern analysed in section 4.1 is responsible for the appearance of
a very interesting phenomenon in the very near-interface region of the wind boundary
layer. Indeed, it is possible to assume that the air �ow, when interacting with the
water wave �eld, it accelerates on the windward side and then decelerates on the
leeward side. This behaviour can be associated with a pattern for the pressure �eld
that is minimum above the wave crests and maximum within the trough region.
As shown in �gure 4.6(a), the instantaneous pressure �eld actually con�rms this
scenario by reproducing a pattern that conforms with that of the wave elevation
that is reported for comparison in �gure 4.6(b). Because the water wave pattern is
skewed with respect to the mean wind direction, these pressure variations give rise
to periodically distributed pressure gradients in both the streamwise and spanwise
directions. Of particular interest is the e�ect of the latter gradient that is responsible
for the generation of an oscillating spanwise forcing thus inducing an alternating
spanwise motion, as shown in �gure 4.7(a). The relevance of this observation is given
by the fact that this near-interface velocity pattern emulates the �ow behaviour of
the so-called generalized Stokes layer that is widely recognize to reduce the levels of
drag in wall-bounded turbulence (Quadrio et al., 2009; Quadrio & Ricco, 2011). As
it will be shown in the next section 5, also the present turbulent wind, by interacting
with the water wave �eld, is characterized by a signi�cant reduction of drag with
respect to wall-bounded turbulence. It is then possible to conjecture that this drag
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(a) (b)

Figure 4.6: Iso-contours of the instantaneous pressure �eld p+(x, z) (a) and wave
elevation η+(x, z) (b) both evaluated at the water interface α = 0.5.

reduction is related with the presence of a spanwise oscillating motion induced by the
presence of a skewed wave pattern in analogy with the results obtained in Ghebali
et al. (2017) using skewed wavy walls. For this reason, a deeper analysis of the very
near-interface region and of the wave-induced Stokes sublayer, is here reported.

In contrast with the generalized Stokes layer reproduced by the spanwise wall
motion in active control techniques, the velocity �eld in the wind-wave case pe-
riodically accelerate/decelerate also in the streamwise and vertical direction as a
result of the pressure �eld pattern previously analysed and shown in �gure 4.6(a).
However, it is not the velocity �eld but the associated shear stresses at a certain
location within the boundary layer that is known to be responsible for the weaken
of turbulence and, hence, for the consequent drag reduction (Touber & Leschziner,
2012). As shown in �gure 4.7(b) the instantaneous spanwise shear ∂w/∂y at the
water surface exhibits an alternating positive and negative behaviour respectively
at the wave crest and trough region. The apparent irregularity of this behaviour
is clear footprint at the water surface of the stresses induced by streamwise-aligned
turbulent structures that have been shown in the previous section 4.2.1 to dominate
the wind boundary layer further away from the water surface.

To clear the analysis of the generalized Stokes sublayer of wind-wave �ows from
the e�ects of turbulence structures above it, we introduce here a conditional average
procedure to address the very-near interface behaviour separately on the crest and
trough wave regions. For the generic quantity β, two conditional averages, denoted
as 〈β〉∩ and 〈β〉∪, are computed as the average over (x, z) points that satisfy the
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Figure 4.7: (a) Iso-contours of the instantaneous wave elevation η+(x, z) and ve-
locity �eld streamlines. (b) Iso-contrours of the instantaneous spanwise shear
∂w+/∂y+(x, z) superimposed to the iso-levels of the wave elevation η+(x, z) where
positive and negative values are reported with solid and dashed lines, respectively.
Both panels show a portion of the entire domain in order to improve the readability
of the behaviour by enlarging the view.
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Figure 4.8: Very-near interface behaviour of the crest and trough conditional av-
erages of (a) streamwise shear, 〈∂u/∂y〉+∩ (solid line) and 〈∂u/∂y〉+∪ (dashed line),
respectively and of (b) spanwise shear 〈∂w/∂y〉+∩ (solid line) and 〈∂w/∂y〉+∪ (dashed
line), respectively. The vertical solid lines denote the average position of the wave
crest and trough.

conditions η(x, y, z, t) > 0.7 δw/2 (crests) and η(x, y, z, t) < −0.7 δw/2 (trough),
respectively. As shown in �gure 4.8(a), the �ow in the very near-interface region
is characterized by higher streamwise velocity gradients in the crest rather than
in the trough regions in accordance with the pressure �eld pattern induced by the
water wave �eld analysed so far. In accordance with this wave-induced pressure
�eld and as shown in �gure 4.8(b), the mean spanwise velocity gradient exhibits a
reverse of sign moving from the crest to the trough regions. Interestingly, the peaks
of streamwise and spanwise shear are not located at the water surface but slightly
away from it. This behaviour is related with the interaction of the water surface
that, contrary to the generalized Stokes layer induced by moving walls, forms an
accelerating/decelerating wave pattern based on �rst principles. We measure that
for the wave-induced Stokes sublayer, the peak of spanwise shear stresses is reached
at y+ ≈ 0.4 on the wave crests and at y+ ≈ 0.25 on the trough regions. By
recalling that the maximum and minimum average values of the wave elevations are
η+
max ≈ 0.15 and η+

min ≈ −0.15, we can conclude that these peak values are further
away from the water surface in the trough regions than in the wave crests, see the
vertical lines in �gure 4.8(b).

In closing this section, let us point out that in drag reducing techniques based
on oscillating walls, the thickness of the Stokes layer has been recognized as an
important quantity for the e�ectiveness of the viscous shearing action of the moving
wall to weaken the near-wall turbulence interactions (Quadrio & Ricco, 2011). For
the present wave-induced Stokes sublayer, we measure a penetration length `+

S ≈ 2,
computed as the interface distance where the conditionally averaged spanwise shear
reaches 10% its maximum. This value is compatible with a drag reduction state
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of the wind boundary layer in accordance with Quadrio & Ricco (2011) where the
minimal condition for drag reduction has been found to be `+

S ≈ 1.
To summarize, the near interface �eld highlights the presence of a wave-induced

Stokes sublayer similar to that observed in Ghebali et al. (2017) for solid skewed
wavy walls. The relevance of this layer for the turbulent wind �owing above it is
recognized to be in the associated oscillating spanwise motion. The resulting �eld of
spanwise shear takes the form of a streamwise travelling wave whose wavelength and
phase speed is the one of the water waves, i.e. λ+

x ≈ 475 and c+
x ≈ −10. The intensity

of the associated motion and its region of in�uence are small, |w|+max ≈ 10−3 and
`+
s ≈ 2, but as shown in the following section 5, their e�ects on the wind boundary
layer are not being responsible for a non-negligible drag reduction.
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Chapter 5

Mean wind pro�les

The present simulation highlights that the mutual interaction of a water surface
with a turbulent wind at a friction Reynolds number Reτa = 317 leads to a skewed
pattern of low steepness waves as shown in section 4.1. This �eld of water waves
modi�es the structure of the turbulent wind as shown in section 4.2 that in turn
created them thus forming a complex self-sustaining mechanism. Accordingly, it
is now relevant to study how and to what degree, the statistical features of the
turbulent wind are a�ected by this modi�ed structures with respect to classical
behaviours of wall turbulence.

5.1 Mean �ow

The e�ect of moving water waves on the mean wind pro�le is of overwhelming inter-
est for wind-wave problems in general. In the present �ow settings, the interaction
of wind with moving waves creates a wave-induced Stokes sublayer which modulates
the near-surface �ow. It is then important to address if this near-surface modu-
lation a�ects also the wind �ow further away from the water surface thus leading
to a departure from the mean velocity logarithmic law classically observed in wall
turbulence. To this aim, we compare the mean velocity pro�les from our simulation
with those from the Direct Numerical Simulation of an open channel at Reτ = 300
performed by Nagaosa & Handler (2003).

Before that, let us point out that the time variation of the wave state makes es-
sential to de�ne a method to capture the origin of the wind turbulent boundary layer.
In analogy with wall turbulence, we localize the virtual origin in correspondence of
the maximum of the mean velocity gradient. The resulting location is y+

0 = 0.37,
i.e. slightly above the water wave pattern, and the corresponding mean velocity
is U+

0 = 0.75. Following this criterion the mean velocity pro�le will be shown by
re-scaling the velocity and the vertical coordinate with U0 and y0, respectively.
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Figure 5.1: Mean wind velocity pro�le (U − U0)+ (solid line) compared with the
mean velocity pro�le of wall turbulence in a open channel (Nagaosa & Handler,
2003) (�lled circles). The linear law and interpolating logarithmic laws are shown
with dashed lines.
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As shown in �gure 5.1, the mean velocity pro�le is found to follow the classical
scalings of the viscous sublayer for (y−y0)+ < 5 and of the bu�er layer for (y−y0)+ <
20. However, for (y − y0)+ > 20 the mean velocity pro�le is found to deviate
from the classical scalings of wall turbulence especially in the overlap and outer
layers. It consists of an upward shift of the mean velocity �eld with respect to
that obtained from wall turbulence in a open channel. This behaviour is consistent
with a signi�cant drag reduction of the wind-wave boundary layer with respect to
turbulence over smooth walls. Arguably, this phenomenon of drag reduction can be
associated with the presence of a wave-induced Stokes sublayer that, in turbulence
control techniques, is widely recognized to induce a signi�cant drag reduction. In a
more quantitative point of view, by assuming a logarithmic behaviour in the putative
overlap layer for 30 < (y − y0)+ < 0.3Reτ ,

U+ − U+
0 =

1

κ
log
(
y+ − y+

0

)
+B (5.1)

we measure a small variation of the von Kármán constant, κ = 0.38 for the wind-
wave problem with respect to κoc = 0.39 for wall turbulence in a open channel. On
the other hand, the additive constant B is found to substantially increase, B = 7.3
for the wind-wave problem with respect to Boc = 5.7 for wall turbulence. Hence,
the additive constant increment, ∆B = B − Boc, can be understood as a measure
of the drag reduction experienced by the wind-wave problem with respect to wall
turbulence.

By considering the water wave pattern as rough surface for the wind boundary
layer, we can rewrite the logarithmic law for the mean velocity pro�le as

U+ − U+
0 =

1

κ
log

(
y+ − y+

0

k+
s

)
+Boc (5.2)

where k+
s is an estimate of the surface roughness length by assuming that the upward

shift of the mean velocity pro�le ∆B can be modelled as (Pope, 2000)

∆B = −1

κ
log
(
k+
s

)
(5.3)

Accordingly, the e�ective roughness length of the water surface that is felt by the
mean wind boundary layer can be measured as

k+
s = e−κ∆B = 0.54 (5.4)

that is of the same order of the mean wave height here measured (4.1).
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5.2 Turbulent intensity pro�les

The in�uence of moving surface waves is also visible in the turbulent intensity pro-
�les as shown in �gure 5.2. Compared to wall turbulence, the peak intensity of the
streamwise velocity �uctuations is signi�cantly higher and shifted towards the wind
boundary layer core. Also the peak intensity of the spanwise and vertical velocity
�uctuations is moved outward but, in this case, its magnitude is decreased with
respect to wall turbulence. The outward shift of the peaks of turbulent activities is
in line with many observations in drag reducing �ows. The modulation of turbu-
lence given by the wave-induced Stokes layer is such that turbulence is weaken in
the very-near interface region. As a consequence, the turbulence self-sustainment
mechanisms through which quasi-streamwise vortices and streaks are generated, are
moved outward. Indeed, such processes are known to form an autonomous regen-
eration cycle (Jimenez & Pinelli, 1999) where the presence of the water interface
appears to be only necessary to sustain the mean shear. This outward shift allows
for the generation of wider and longer velocity streaks as demonstrated by the two-
point correlation function reported in section 4.2.1. This scenario is consistent with
the increase of the streamwise velocity �uctuation intensity and to the weakening
of the spanwise and vertical velocity �uctuations in the very near-interface region
shown in �gure 5.2.

Analogous considerations can be done for the Reynolds shear stresses shown in
�gure 5.3. The magnitude of −〈u′v′〉 is reduced and its maximum value is reached
for a larger value of y+ with respect to wall turbulence. Interestingly, a change of
sign of the Reynolds shear stresses is observed for y+ < 1 as shown in the inset
zoom of �gure 5.3. This region of the �ow represents the wind layer directly a�ected
by the water surface pattern being the wave elevation of the order of δ+

w = 0.3 as
shown in section �4.1. Indeed, this change of sign is a clear wave-induced e�ect.
Due to the very low steepness of the water waves (S = 7.3 × 10−04), the wind is
able to remain attached to the water surface, i.e. wind-wave sheltering mechanisms
are absent (Je�reys, 1925). Accordingly, in the windward side the �ow while raising
(v′ > 0) accelerates in the streamwise direction (u′ > 0). On the contrary, in
the leeward side the �ow while descending (v′ < 0) decelerates in the streamwise
direction (u′ < 0). Hence, both the windward and leeward sides contribute to the
production of negative Reynolds shear stresses −〈u′v′〉 < 0. Accordingly to our data,
this e�ect is felt by the wind up to y+ = 1 thus suggesting a penetration length of
the wave-induced motions signi�cantly higher than the wave height δw itself. This
penetration length is of the same order of that of the wind-induced Stokes sublayer
`+
s ≈ 2 thus suggesting the e�ectiveness of the resulting spanwise oscillating motion
in altering the turbulent dynamics of the wind boundary layer.
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Figure 5.2: Pro�les of wind turbulence intensities (lines) compared with the turbu-
lence intensity pro�les of wall turbulence in a open channel (Nagaosa & Handler,
2003) (circles). Streamwise turbulent �uctuations

√
〈u′u′〉 (solid line), spanwise tur-

bulent �uctuations
√
〈w′w′〉 (dashed dotted line) and vertical turbulent �uctuations√

〈v′v′〉 (dashed line).
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Figure 5.3: Reynolds shear stress −〈u′v′〉 pro�les in the wind-wave problem (solid
line) compared with those of wall turbulence in a open channel (Nagaosa & Handler,
2003) (�lled circles). The inset shows an enlargement view of the near-interface
region.
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5.3 Wind-wave induced �eld of stresses

Until now, we have addressed the e�ect of wind-wave interactions on the turbulent
wind motions. It is however important also to address the �eld of stresses induced
by wind-wave mechanisms. In particular, it is relevant to establish how and to
what extent the related �eld of stresses penetrate into the wind boundary layer. To
this aim, we consider the two-point spatial correlation function of the pressure and
Reynolds shear stresses,

Rpp(x, r) =
〈p′(x + r, t)p′(x, t)〉

〈p′p′〉(x)
(5.5)

and

Ruv(x, r) =
〈u′(x + r, t)v′(x, t)〉√
〈u′u′〉(x)

√
〈v′v′〉(x)

(5.6)

respectively.
As shown in �gure 5.4, the pressure footprint of the wind-wave interaction mech-

anisms is felt by the wind boundary layer up to y+ ≈ 60. It consists of an oscillating
behaviour of the two-point pressure correlation. The clear matching of scales be-
tween the water wave lengths (λ+

x , λ
+
z ) = (475, 380) measured in section �4.1 and

the second peak of pressure correlation, clearly suggests that the high and low pres-
sure �eld pattern induced by water waves at their trough and crest, see �gure 4.6,
signi�cantly penetrates the wind boundary layer thus a�ecting its evolution. It is
worth remarking the strongly non-local feature of the pressure �eld that enables
long-distance interactions between a very thin layer of water waves, δ+

w = 0.3 thick,
with the �ow structures populating the wind boundary layer core.

Contrary to pressure, the turbulent shear stress footprint of the wind-wave inter-
actions does not signi�cantly penetrate into the wind boundary layer and remains
more con�ned in the near interface region. Indeed, as shown in �gure 5.5, the two-
point correlation of Reynolds stresses is clearly a�ected by wind-wave interactions
up to y+ ≈ 3 while for y+ > 3 the classical behaviour induced by the structures
composing the self-sustaining mechanisms of turbulence is observed, i.e. a negative
peak in the spanwise correlation function induced by quasi-streamwise vortices and
streaks at increasingly larger scales by augmenting the distance from the interface.

Due to the very low steepness of water waves, the wind boundary layer remains
attached to water surface and, hence, in the windward side the �ow accelerates
(u′ > 0 and v′ > 0) while in the leeward side the �ow decelerates (u′ < 0 and
v′ < 0) in accordance with the near-interface change of sign of the Reynolds shear
stresses shown in the previous section �5.2. Accordingly, we may expect a wind-wave
footprint in the two-point correlation in the form of a peak of anti-correlation at
half water wave length and a second peak of correlation at the water wave length
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Figure 5.4: Two-point spatial auto-correlation function of the pressure �eld Rpp

computed at increasing vertical positions, y+ = 15 (solid line), y+ = 30 (dashed
line) and y+ = 45 (dashed dotted line). (a) Streamwise correlation for ry = rz = 0.
(b) Spanwise correlation for rx = ry = 0.
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Figure 5.5: Two-point spatial correlation function of the Reynolds shear stresses Ruv

computed at increasing vertical positions, y+ = 0.6 (solid line), y+ = 1.37 (dashed
line) and y+ = 5.37 (dashed dotted line). (a) Streamwise correlation for ry = rz = 0.
(b) Spanwise correlation for rx = ry = 0.
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itself. Figure 5.5 actually con�rm this scenario up to y+ ≈ 3. The clear matching of
scales suggests that this region of in�uence is governed by the wave-induced Stokes
sublayer that has been found to have a penetration length of the same order, `+

S ≈ 2.
The two-point correlation function of Reynolds shear stresses highlights another

interesting wind-wave feature. Indeed, the peak of correlation for y+ < 3 occurs for
non-zero displacements (rx, rz) = (47, 40). This is a clear measure of the phase shift
between the streamwise acceleretion/deceleration of the �ow (u′ > 0 and u′ < 0)
with respect to the windward raising and leeward descending (v′ > 0 and v′ < 0)
wave-induced motions. This measured values of shift are of the order of 1/10 the
water wave lengths in accordance with measurements performed by Ghebali et al.
(2017) for solid skewed wavy walls.



Chapter 6

Turbulent kinetic energy budget

For inhomogeneous turbulence, the evolution of the turbulent kinetic energy budget
is mandatory to obtain a detailed analysis of one-point statistics such production,
dissipation and spatial redistribution of turbulent kinetic energy in the physical
space. The intensity of turbulence in a speci�c point of the physical domain is
related to the instantaneous turbulent kinetic energy, de�ned as

k =
1

2
u′iu
′
i (6.1)

Multiplying the momentum equation by u′i and summing over i, one can derive the
transport equation for k

∂〈k〉
∂t

+
∂〈kv′〉
∂y

+
1

ρ

∂〈p′v′〉
∂y

− ν ∂
2〈k〉
∂y2

= −〈u′v′〉∂U
∂y
− ν〈∂u

′
i

∂xj

∂u′i
∂xj
〉 (6.2)

Clearly, for a statistically stationary �ow, the time derivative is equal to zero. The
terms on the right-hand side of the previous equation are respectively the inertial,
the pressure and viscous di�usion transports of turbulent kinetic energy. The terms
on the left-hand side are the production and the rate of pseudo-dissipation. They
represent respectively a source and a sink of turbulent kinetic energy.

The di�erent terms in the turbulent kinetic energy transport equation are re-
ported in Figure 6.1. In order to appreciate the characteristic �ow features intro-
duced by the wavy boundary a direct numerical simulation of a turbulent channel
at Reτ = 300 is taken as reference (Cimarelli & De Angelis, 2011). Compared to
wall turbulence, the magnitude of dissipation is generally reduced with a particular
decrease in the water waves proximity. This lower dissipative nature of the �ow is
combined with a production peak slightly higher and shifted toward the boundary
layer core. The total e�ect therefore is a turbulent kinetic energy excess between
13 < y+ < 50, which is carried away by the transport terms. The negative value of
the transport indicates the extraction while the positive values indicates the supply
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Figure 6.1: (a) Turbulent kinetic energy budget vs. distance from the wall y+: pro-
duction (solid line), total transport (dashed line) and dissipation(dashed-dot line).
(b) Di�erent contributions to the turbulent kinetic energy transport vs. distance
from the wall y+: inertial transport (dashed-dot line), pressure transport (solid line)
and viscous transport (dashed line).

of energy to the corresponding region. Figure 6.1 (b) displays the di�erent contri-
butions to the transport. In the proximity of the energy excess the total trasport
term has a negative value and turbulent kinetic energy is drained thanks to the in-
ertial and viscous components. Compared with wall-turbulence, an higher quantity
of energy is supplied in the bulk region. The positive value of the transport term is
mainly due to the inertial component which is the only e�ective contribution while
the viscous and pressure components are nearly zero . Approaching the wall, where
the production decreases and the dissipation grows, the transport term becomes
positive and the energy supply is provided only by the viscous transport.

Introducing the total �ux of turbulent kinetic energy:

Φ = 〈kv′〉+
1

ρ
〈p′v′〉 − ν ∂〈k〉

∂y
(6.3)

the turbulent kinetic equation can be rewritten as

∂Φ

∂y
= −〈u′v′〉∂U

∂y
− ν〈∂u

′
i

∂xj

∂u′i
∂xj
〉 (6.4)

Figure 6.2 shows the di�erent contributions to the energy �ux as a function of
the distance from the wall. A negative value of the �ux corresponds a �ux transfers
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Figure 6.2: Di�erent contributions to the �ux of turbulent kinetic energy as a func-
tion of the distance from the wall y: inertial component (dashed-dotted), pressure
transport (solid line), viscous transport (dashed-dotted line) and the total �ux ( red
solid line).

energy toward the wall while a positive value to a �ux transfers energy toward the
bulk. Figure 6.2 show that only a part of the energy produced in the bu�er region
is sent toward the water free surface mainly by the viscous component and �nally
dissipated. As a matter of fact, due to the lower dissipative nature of the water
surface, the energy excess tends rather to migrate toward the bulk thanks to the
inertial component of the �ux.
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Chapter 7

The generalized Kolmogorov

equation

In analogy with wall-turbulence, the presence of the water free surface under the
wind turbulent boundary layer induces anisotropy and inhomogenity of the air �ow.
These �ow features are respectively re�ected in a turbulence production process
taking place in the water proximity and in a spatial redistribution of turbulent
kinetic energy in the whole domain. Nevertheless the complete dynamics of the
turbulence processes can not be described in physical space alone. As a matter of
fact, turbulence is characterized by �ow structures and eddies whose size ranges
from the characteristic width of the �ow, L, to much smaller scales, which become
progressively smaller as the Reynolds number increases. This multi-scale nature of
turbulence is crucial to understand turbulent processes such as energy production,
transport and dissipation which depend both on the position in the geometric space
and on the turbulent scale considered. For this reason the turbulent kinetic energy
equation is insu�cient to describe completely the turbulent dynamics. The terms
of the equation are indeed single-point observables: they depend only on the water
free surface distance. In order to properly analyze turbulence, a quantity describing
the �ow dynamics both in physical and in scale space, has to be considered. As two-
point statistical observable, we select the so called second order structure function
de�ned as

δu2 = δuiδui (7.1)

where δui = ui(xs+ rs)−ui(xs) is the �uctuating velocity increment between points
x′i and xi. These quantities represents a measure of the amount of kinetic energy at
scale r =

√
riri and depend both on separation vector ri and on the spatial location

of the mid-point Xci = 1/2(x′i + xi), as sketched in Figure 7.1. It is possible to
derive from the Navier-Stokes equations a balance equation for the second structure
function in globally anisotropic and inhomogeneous conditions.
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Figure 7.1: Sketch of the two-point velocity increment.

∂〈δu2〉
∂t

+
∂〈δu2δuj〉

∂rj
+
∂〈δu2δUj〉

∂rj
+ 2〈δuiδuj〉

∂δU

∂rj
+
∂〈u∗jδu2〉
∂Xcj

+
∂〈δu2U∗j 〉
∂Xcj

+

2〈u∗jδui〉
∂δU

∂Xcj

= −4〈ε∗〉+ 2ν
∂〈δu2〉
∂ri∂ri

− 2

ρ

∂〈δpδui〉
∂Xci

+
ν

2

∂2〈δu2〉
∂X2

cj

(7.2)

The previous equation, usually called generalized Kolmogorov equation, allows to
identify all the processes which characterize the dynamics of inhomogeneous anisotropic
�ows both in the space of scales and in the physical space. In particular, the terms
with r-derivatives describe physical processes which transfer energy through scales
while those with x-derivatives arise due to inhomogeneities and describe physical
processes which transfer energy through di�erent regions of the �ow. The general-
ized Kolmogorov equation specialized for the wind turbulent boundary layer over
a wavy surface reduces to the formulation of the Kolmogorov equation in a turbu-
lent channel once the water and air portion of the domain are consdered separately.
Horizontal homogeneity yields ∂〈·〉/∂Xc = 0 and ∂〈·〉/∂Zc = 0 while the stationary
state condition leads to ∂〈·〉/∂t = 0

〈∂δu2δui〉
∂ri

+
〈∂δu2δU〉

∂rx
+ 2〈∂u∂v〉

(
dU

dy

)∗
+
∂〈v∗δu2〉
∂Yc

=

−4〈ε∗〉+ 2ν
∂2〈∂u2〉
∂ri∂ri

− 2

ρ

∂〈δpδv〉
∂Yc

+
ν

2

∂2〈δu2〉
∂Y 2

c

(7.3)

where U(y) is the longitudinal mean velocity, ∗ denotes a mid-point average, 〈ε〉 =
ν(∂ui/∂xj)(∂ui/∂xj) is the viscous pseudo-dissipation, 〈·〉 denotes the average in the
homogeneous directions and the Yc is associated with inhomogeneity in the normal
direction with respect to the water free surface. Compared to the turbulent kinetic
energy budget where its terms depend only on the distance from the interface, the
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Kolmogorov equation is written in a for dimensional space (rx, ry, rz, Yc), called the
augmented space. The terms with r-derivatives describe the rate of energy �ux in
the three-dimensional space of scales. They are due to turbulent �uctuations, mean
motion and viscous di�usion:

∂〈δu2δui〉
∂ri

∂〈δu2δU〉
∂rx

2ν
∂2〈δu2〉
∂ri∂ri

The terms with Yc-derivatives describe the rate of energy �uxes in the normal di-
rection because of inhomogenity. They are due to turbulent �uctuations, pressure-
velocity correlation and viscous di�usion:

∂〈v∗δu2δui〉
∂Yc

2

ρ

∂〈δpδv〉
∂Yc

ν

2

∂2〈δu2〉
∂Y 2

c

This double energy �ux balance with the behaviour in the augmented space of the
energy source due to the anisotropic production by mean shear

2〈δuδv〉
(
dU

dy

)∗
and of the energy sink due to viscous dissipation,

4〈ε∗〉 .

7.1 The �ow of energy in the augmented space

The generalized Kolmogorov equation introduced in the previous section is a tool
to describe the turbulence phenomena taking place in the space of scale and in the
physical space. This equation can be recast in a conservative form as:

∇ ·Φ(r, Yc) = ξ(r, Yc) (7.4)

where ∇·Φ is the four-dimensional divergence, ξ is the scale energy source/sink and
Φ is a four-dimesional vector representing the energy �uxes, called hyper-�ux,

Φ = (Φrx,Φry,Φrz,Φc).

The hyper-�ux in the three-dimensional space of scale describes the energy �ux
among scales and it is called the three-dimensional energy transfer vector,

Φr = (Φrx,Φry,Φrz) = 〈δu2δu〉 − 2ν∇r〈δu2〉.
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Figure 7.2: (rx, rz, Yc)-projection (ry = 0) of the augmented phase-space. Stream-
lines of the inertial component of the reduced hyper-�ux colored with the pseudo-
source ξp. The gray iso-surface shows ξ = 0.9ξmax thus highlighting the source region
of �uxes of the augmented space (rx, rz, Yc).

The projection of the hyper-�ux in the physical space is a pseudo-scalar and repre-
sents the spatial energy �ux

Φc = 〈v∗δu2〉+ 2〈δpδv〉 − ν/2∂〈∂u2〉/∂Yc.

The conservative form allows to appreciate in which region of the (r, Yc) space
the production term exceeds the dissipation rate (ξ(r, Y c) > 0) and where the
consequential energy excess is brought to dissipate by means of the two scale-energy
�uxes, namely Φr through the scales of motion and Φc in physical space.

In �gure 7.2 the scale-energy hyper-�uxes and the source ξ are shown in the
augmented space (rx, rz, Yc) for ry = 0. In this subspace, the net scale energy drain
and release by �uxes is given by a pseudo source term,

ξp = −2〈δuδv〉
(
dU

dy

)∗
− 4〈ε∗〉 − ∂〈δu2δv〉

∂ry
+ 2ν

∂2〈∂u2〉
∂r2

y

that is reported in �gure 7.2 by coloring the �eld of �uxes. As for a wall-bounded
�ow, it is evident how the classical theory of turbulence fails near the water surface.
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The turbulent energy is not introduced at large scales, but, the source term ξ reaches
its maximum in a range of small scales well within the bu�er region (gray isosurface).
From that region the scale-energy hyper-�uxes diverge to feed larger scales before
bending towards the water surface and towards the bulk of the wind boundary layer.
The paths of �uxes moving towards the water surface become aligned to the vertical
direction thus showing that the dissipative sink represented by the water surface is
distributed at a variety of interface-parallel scales being a forward cascade towards
small scales absent. On the other hand, the paths of �uxes moving towards the
core of the wind boundary layer follow a spiral path thus sustaining longer and
wider turbulent structures while ascending before eventually bending towards small
scales where dissipation occurs. Such a scenario conforms with that observed in wall
turbulence (Cimarelli et al., 2013).
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Chapter 8

Conclusions

A Direct Numerical Simulation of the wind-wave interaction problem has been per-
formed. To the author' knowledge, the simulation represents one of the very �rst
attempts to get the fully-coupled solution of the wind-wave problem based on �rst
principles and on realistic values of the �uid properties of air and water. The con-
sidered �ow settings consist of a two-phase open channel �ow driven by a constant
pressure gradient where the wind is turbulent and the water is almost quiescent. The
simplicity of the �ow settings is such that the complex problem of wind turbulence
over water waves essentially reduces to be governed by a single parameter, the wind
friction Reynolds number Reτa = 317.

The simulation reveals an interesting water wave pattern. It consists of waves
at very low steepness and elevation (S = 7.3 · 10−4 and δ+

w = 0.3) propagating at an
angle γ = 38.6◦ in the upwind direction with a phase speed c+ ≈ (−10,−8). Despite
the small size of the water wave pattern, its e�ect on the turbulent wind is far from
being negligible. A signi�cant reduction of drag is indeed observed, ∆B = 1.6. The
origin of drag reduction is associated with the presence of a wave-induced Stokes
sublayer. The oblique wave pattern is found to induce periodically distributed pres-
sure gradients also in the spanwise direction thus leading to an oscillating spanwise
forcing. Such type of modulation gives rise to a weakening of the self-sustaining pro-
cesses of turbulence in the very near-interface region and, hence, to drag reduction.
It is remarkable the signi�cant e�ect on the turbulent wind despite the very small
thickness of the Stokes layer `+

s ≈ 2 and the very weak intensity of the associated
motion |w|+max ≈ 10−3.

Both the mean velocity and turbulent pro�les agree with the presence of a near-
interface weakening of turbulence due to the wave-induced Stokes sublayer. An
upward shift of the self-sustaining processes is indeed observed. A consequence of
this shift is the observed increase in size of the main turbulent structures compos-
ing the autonomous cycle of turbulence, i.e. quasi-streamwise vortices 53 viscous
units wide and streamwise velocity streaks 2800 viscous units long. The study of
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the �eld of stresses reveals that despite the very small thickness of the Stokes sub-
layer, its e�ect on the pressure �eld is felt in the wind boundary layer also at very
large distances from the interface. Indeed, the two-point correlation function clearly
highlights the non-local nature of wind-wave induced pressure �uctuations that are
shown to penetrate the wind boundary layer up to y+ ≈ 60. On the contrary, the
�eld of shear stresses induced by wind-wave interactions phenomena remains more
con�ned to the water surface region. These e�ects emerge in a change of sign of
the Reynolds shear stresses −〈u′v′〉 < 0 for y+ < 1 that is clearly induced by the
non-sheltering behaviour of the wind over the very low steepness and elevation of
the developed water waves. Also the two-point correlation function con�rms this
scenario highlighting that wind-wave interaction e�ect on the shear stresses remains
con�ned to the very near-interface region for y+ < 3.

To close this work, it is important to note that the simulated �ow conditions are
far from the intense events occurring at the ocean-atmosphere interface. However,
the simplicity of the �ow settings allows us to reduce the complex problem of wind-
wave interactions to its essential features thus unveiling very basic �ow phenomena
that may explain some experimental evidences also in real wind-wave problems. An
example is the �nding of the wave-induced Stokes layer. Such phenomenon is here
unveiled to be at the basis of a change of the momentum �ux at the air-water inter-
face. It is then possible to argue that a similar phenomenon can be responsible also
for the large scatter of the drag coe�cient data in �eld measurements. Indeed, the
condition for the development of the Stokes sub-layer is a misalignment of the wind
with respect to water waves. In this context, it is well-known that �eld realizations
are characterized by the presence of swell waves from remote wind-generation events.
Swell waves move in arbitrary directions with respect to the local wind and their
interaction with local wind waves often lead to a water surface pattern misaligned
with the wind direction. Hence, it is reasonable to assume that a Stokes sublayer
often develops in �eld realizations thus modifying the air-sea momentum �ux with
respect to that of water waves aligned with the wind that is known to be generally
increased with respect to �at surfaces. These arguments suggest to analyse �eld
measurements of the drag coe�cient as a function of the angle between wind and
waves.



Bibliography

Abe, H., Kawamura, H. & Matsuo, Y. 2001 Direct numerical simulation of
a fully developed turbulent channel �ow with respect to the Reynolds number
dependence. J. Fluids Eng. 123 (2), 382�393.

Belcher, S. E. & Hunt, J. C. R. 1993 Turbulent shear �ow over slowly moving
waves. J. Fluid Mech. 251, 109�148.

Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for
modeling surface tension. J. Comput. Phys. 100 (2), 335�354.

Cao, T. & Shen, L. 2021 A numerical and theoretical study of wind over fast-
propagating water waves. J. Fluid Mech. 919.

Caulliez, G. & Collard, F. 1999 Three-dimensional evolution of wind waves
from gravity-capillary to short gravity range. Eur. J. Mech. B-Fluid 18 (3), 389�
402.

Cimarelli, A. & De Angelis, E. 2011 Analysis of the kolmogorov equation for
�ltered wall-turbulent �ows. J. Fluid Mech. 676, 376�395.

Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in
turbulent channel �ows. J. Fluid Mech. 715, 436�451.

Druzhinin, O. A., Troitskaya, Y. I. & Zilitinkevich, S. S. 2012 Direct
numerical simulation of a turbulent wind over a wavy water surface. Journal of
Geophysical Research: Oceans 117 (C11).

Ghebali, S., Chernyshenko, S. I. & Leschziner, M. A. 2017 Can large-
scale oblique undulations on a solid wall reduce the turbulent drag? Phys. Fluids

29 (10), 105102.

Hara, T. & Karachintsev, A. V. 2003 Observation of nonlinear e�ects in ocean
surface wave frequency spectra. J. Phys. Oceanogr. 33 (2), 422�430.

55



56 BIBLIOGRAPHY

Hirt, C. W. & Nichols, B. D. 1981 Volume of �uid (VOF) method for the
dynamics of free boundaries. J. Comput. Phys. 39 (1), 201�225.

Hwang, P. A. & Wang, D. W. 2001 Directional distributions and mean square
slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys.
Oceanogr. 31 (5), 1346�1360.

Hwang, P. A., Wang, D. W., Yungel, J., Swift, R. N. & Krabill, W. B.

2019 Do wind-generated waves under steady forcing propagate primarily in the
downwind direction? arXiv preprint arXiv:1907.01532 .

Issa, R. I. 1986 Solution of the implicitly discretised �uid �ow equations by
operator-splitting. J. Comput. Phys. 62 (1), 40�65.

Jeffreys, H. 1925 On the formation of water waves by wind. Proceedings of the

royal society of London. Series A, containing papers of a mathematical and phys-

ical character 107 (742), 189�206.

Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near
the wall in a turbulent channel �ow. J. Fluid Mech. 332, 185�214.

Jimenez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence.
J. Fluid Mech. 389, 335�359.

Kihara, N., Hanazaki, H., Mizuya, T. & Ueda, H. 2007 Relationship between
air�ow at the critical height and momentum transfer to the traveling waves. Phys.
Fluids 19 (1), 015102.

Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed
channel �ow at low reynolds number. J. Fluid Mech. 177, 133�166.

Liu, H.-R., Chong, K. L., Yang, R., Verzicco, R. & Lohse, D. 2022 Heat
transfer in turbulent Rayleigh�Bénard convection through two immiscible �uid
layers. J. Fluid Mech. 938.

Miles, J. W. 1957 On the generation of surface waves by shear �ows. J. Fluid
Mech. 3 (2), 185�204.

Morland, L. C. 1996 Oblique wind waves generated by the instability of wind
blowing over water. J. Fluid Mech. 316, 163�172.

Nagaosa, R. & Handler, R. A. 2003 Statistical analysis of coherent vortices
near a free surface in a fully developed turbulence. Phys. Fluids 15 (2), 375�394.



BIBLIOGRAPHY 57

Okagaki, Y., Yonomoto, T., Ishigaki, M. & Hirose, Y. 2021 Numerical
study on an interface compression method for the volume of �uid approach. Fluids
6 (2), 80.

Phillips, O. M. 1957 On the generation of waves by turbulent wind. J. Fluid Mech.

2 (5), 417�445.

Plant, W. J. & Wright, J. W. 1980 Phase speeds of upwind and downwind
traveling short gravity waves. J. Geophys. Res.: Oceans 85 (C6), 3304�3310.

Pope, S. B. 2000 Turbulent �ows . Cambridge university press.

Quadrio, M. & Ricco, P. 2011 The laminar generalized Stokes layer and turbu-
lent drag reduction. J. Fluid Mech. 667, 135�157.

Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-travelling waves of span-
wise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161�178.

Scapin, N., Demou, A. D. & Brandt, L. 2022 Evaporating Rayleigh-B\'enard
convection: prediction of interface temperature and global heat transfer modula-
tion. arXiv preprint arXiv:2205.02710 .

Shemer, L. 2019 On evolution of young wind waves in time and space. Atmosphere

10 (9), 562.

Sullivan, P. P., McWilliams, J. C. & Moeng, C. 2000 Simulation of turbulent
�ow over idealized water waves. J. Fluid Mech. 404, 47�85.

Sullivan, P. P., McWilliams, J. C. & Patton, E. G. 2014 Large-eddy simu-
lation of marine atmospheric boundary layers above a spectrum of moving waves.
Journal of the Atmospheric Sciences 71 (11), 4001�4027.

Touber, E. & Leschziner, M. A. 2012 Near-wall streak modi�cation by spanwise
oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150�
200.

Walsh, E. J., Hancock, D. W., Hines, D. E., Swift, R. N. & Scott, J. F.

1985 Directional wave spectra measured with the surface contour radar. J. Phys.
Oceanogr. 15 (5), 566�592.

Walsh, E. J., Hancock, D. W., Hines, D. E., Swift, R. N. & Scott, J. F.

1989 An observation of the directional wave spectrum evolution from shoreline to
fully developed. J. Phys. Oceanogr. 19 (5), 670�690.



58 BIBLIOGRAPHY

Wang, D. W. & Hwang, P. A. 2004 The dispersion relation of short wind waves
from space�time wave measurements. J. Atmos. Ocean. Tech. 21 (12), 1936�1945.

Yang, D., Meneveau, C. & Shen, L. 2013 Dynamic modelling of sea-surface
roughness for large-eddy simulation of wind over ocean wave�eld. J. Fluid Mech.

726, 62�99.

Yang, D. & Shen, L. 2009 Characteristics of coherent vortical structures in tur-
bulent �ows over progressive surface waves. Phys. Fluids 21 (12), 125106.

Yang, D. & Shen, L. 2011 Simulation of viscous �ows with undulatory boundaries:
Part II. Coupling with other solvers for two-�uid computations. J. Comp. Phys.

230 (14), 5510�5531.

Yang, D. I. & Shen, L. 2010 Direct-simulation-based study of turbulent �ow over
various waving boundaries. J. Fluid Mech. 650, 131�180.


