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Abstract 
This paper investigates two parameters effect on vibrational responses of the spiral bevel gear. Changing the gear 
system overall stiffness (GSOS) considering elastic deformation and periodic torques are the two parameters which are 
represented as the main goals of this study. In order to investigate the effects of shaft stiffness and elastic deformation, 
two different cases with different support locations are considered. The first case is presented by locating the support 
close to the gear, and in the latter one, the distance between gear and support is increased. Besides, to study the effect 
of torque, two main types are considered: constant and periodic excitation torque. To illustrate the dynamic behavior, 
the governing differential equations are solved numerically according to the Runge–Kutta method. The equations are 
nonlinear due to backlash and time-varying coefficients as the results of GSOS variation. Vibrational phenomena are 
illustrated by means of bifurcation diagrams, RMS, and Poincaré maps. Particular vibrational behaviors such as “chaos” and 
“period-doubling” phenomena are illustrated with details. By investigating the effect of shaft stiffness, results show that 
when the support is far away from gear, the vibration response increased by 67.5%. Moreover, while the input torque is 
constant, the support movement does not cause undesirable responses such as chaotic or period-doubling responses. 
The periodic torque causes undesirable responses such as chaos and bifurcation and period-doubling responses.

Article Highlights  What is done in the present paper can be mentioned in three main parts:

•	 The nonlinear dynamics of the spiral bevel gear pair 
under two different support situations is investigated 
in this paper.

•	 To scrutinize the dynamic behavior of the spiral bevel 
gear-pair in a nearly real situation, the input driver 
torque is periodically variable.

•	 The results show that the spiral bevel gear pair may 
comprise chaotic response with periodic torque excita-
tion if the bearing supports locate far enough from the 
gears.
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Abbreviations
aj , bj	� Fourier coefficients
Cm	� Damping coefficient between the mesh gear 

teeth of the pairs
Ceq	� Equivalent damping coefficient
e�(t)	� Time-varying circumferential no-load transmis-

sion error
I1, I2	� Rotary inertia of pinion and gear
Ieq	� Equivalent rotary inertia
N1	� Teeth number of pinion
n	� Gear ratio of the gear pair
Np	� Number of samples for gear system overall stiff-

ness computation
k0	� Average value of torsional gear system overall 

stiffness of the gear pair
Keq	� Equivalent gear system overall stiffness of the 

gear pair
Km	� Equivalents of the torsional gear system overall 

stiffness of the gear pair
rb1, rb2	� Base radii of pinion and gear
S	� Number of harmonics
T1	� Constant driver torque
T2	� Constant breaking torque
�s	� Input shaft speed
�1	� Driver angular displacement
�2	� Driven angular displacement
�b	� Angular backlash
�	� Linear dynamic transmission error along the line 

of action
��	� Angular dynamic transmission error
�m	� Fundamental mesh frequency
nf 	� Ratio of the ripple terms to the mean term of an 

input torque

1  Introduction

Spiral bevel gear (SBG) is applicable to transfer the torque 
between non-parallel high-speed axes. Durability and 
vibration are two main aspects in which researchers study 
interestingly. The vibration has affected the bending, pres-
sure, and fatigue life of the gear systems [1].

Recently, researches on SBG are mainly focused on 
the tooth contact analysis to obtain the static transmis-
sion error (STE) which is marked as the main source of the 
vibration. A method to minimize vibration of the SBG is 
presented with the meshing impact model by Mu et al. [2]. 
Buzzoni et al. [3] investigated three different algorithms to 
discriminate proper contact patterns from improper ones 
with considering different speeds. Zolfaghari et al. [4] car-
ried out a study on optimizing the straight bevel gear vol-
ume by means of a genetic algorithm. In their research, 
face width, module, and teeth number are considered 

as the design parameters for optimization. Chen et al. 
[5] achieved a new mathematical model of elastic ring 
squeeze film dampers (ERSFDs) based on the Reynolds 
equation and presented a semi-analytical method to esti-
mate the elastic ring deformation of ERSFDs. Yavuz et al. 
[6] offered a nonlinear dynamic model for the SBG pair of a 
train with considering the effect of the shafts and the bear-
ings stiffnesses. Motahar et al. [7] studied the optimization 
of straight bevel gear models by the Tredgold method. 
Kickbush et al. [8] presented two finite element models 
(two-dimensional and three-dimensional) to achieve mesh 
stiffness (MS) and derived a simple formula for calculating 
MS. Tang et al. [9] analyzed the effect of two different STEs 
on the dynamic response of SBG. The two considered STEs 
are predesigned parabolic function and the sine function. 
Lin and Wu [10] theoretically and experimentally showed 
that increasing the contact ratio has a significant effect on 
the vibration of helical curve-face gear pair.

Some researchers are focused on the effect of faults on 
the dynamic behavior of gear pairs [11–13]. Peng et al. [14] 
suggested a new idea of calculating the load transmission 
error (LTE) by considering the effect of the bearing sup-
ports. Wang et al. [15] investigated the time-varying mesh 
stiffness of the gear pair with cracked teeth, based on a 
finite element analysis method.

The main goals of this paper are to determine the 
effect of shaft stiffness by considering elastic deforma-
tion of gear and shaft, and periodic torque on the non-
linear dynamics of an SBG pair. It would be mentioned 
that the LTE is one of the sources of noise, and the elastic 
deformation is the primary source of strength. This study 
leads to a more accurate definition of the gear pair behav-
ior in reality. In this study, nonlinearity and time-varying 
are perceived as two properties of the differential equa-
tion of motion due to the MS and backlash fluctuation. To 
investigate the dynamic behavior of gear-pair, a numerical 
method is applied according to the 4th order Runge–Kutta 
method. Two considered support locations, to change the 
shaft stiffness, are: (1) support located near the gear and 
(2) support located far from the gear. In order to illustrate 
the dynamic behavior of the considered SBG, bifurcation 
diagrams, Poincaré maps, and the root-mean-square (RMS) 
responses are utilized.

2 � Model description

As it is mentioned, this study is done to scrutinize the 
effect of shaft stiffness and periodic input torques. So, 
this paper involves two parts: shaft stiffness and periodic 
torque. For the first part, the effect of the shaft stiffness 
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in consideration of the elastic deformation, two different 
cases are as follows:

•	 Case-1: The first one is the case that bearings are 
located near the gear and the pinion.

•	 Case-2: The latter one is the case that one of the gear’s 
bearing is located far away from the gear.

To explain the conditions, Fig. 1. is brought. Figure 1a 
represents an SBG pair with the support located near the 
gear (case-1). Figure 1b shows the SBG pair with the sup-
port far from the gear (case-2, Fig. 1b). It is considered 
that SBG’s DOFs are restricted in all directions except the 
rotational DOF. These two support arrangements are uti-
lized to present the effect of the shaft deformation on 
the LTE considering the elastic deformation evaluations. 

Consequently, these two support arrangement effects 
present on the dynamic response of the considered SBG. 
Note that the arrangement of the pinion remains constant.

For the second part, the effect of input torque for the 
case-1, two main different torques are considered: con-
stant and periodic torque.

3 � Governing equations

Based on the Lagrange formulation [7, 16, 17], the equa-
tions of motion are obtained (Eq. 1) as follows:

To illustrate Eq. 1, Fig. 2 introduces the schematic dia-
gram of the considered system in which the parameters, 
used in Eq. 1, are shown.

Geometric transmission error “ e(t) ” is the distance 
between mating teeth due to mounting and manufac-
turing error as well as free distance due to teeth profile 
modifications. The linear dynamic transmission error 
along the line of action is defined as � = rb1�1 − rb2�2 . Let 
n = rb2∕rb1 , which is the speed ratio. Two equations in 
Eq. (1) are merged and the following equation obtain. In 
this equation, Ieq = (

1

I1
+

n2

I2
)−1 , Keq = kr2

b1
 , �� = �1 − n�2 

and Ceq = cr2
b1

.

Equation (2) presents the dimensional equivalent rota-
tional displacement of the gear mesh and in this equa-
tion �� represents angular dynamic transmission error. 
f
(
�� − e�

)
 is the function of the rotational displacement, 

define as follows:

(1)

I1𝜃̈1 + Cmrb1
(
rb1𝜃̇1 − rb2𝜃̇2 − ė

)
+ kmrb1f

(
rb1𝜃1 − rb2𝜃2 − e

)
= T1

I2𝜃̈2 − Cmrb2
(
rb1𝜃̇1 − rb2𝜃̇2 − ė

)
− kmrb2f

(
rb1𝜃1 − rb2𝜃2 − e

)
= −T2

(2)Ieq𝜆̈𝜃 + Ceq
(
𝜆̇𝜃 − ė𝜃

)
+ Keq(t)f

(
𝜆𝜃 − e𝜃

)
= T1

Fixed

Fixed

Fixed The mentioned support

(a)

Fixed

Fixed

The support 

(b)

L=244mm

Fixed

Fig. 1   Diagram of the supporting form a case-1 and b case-2

Fig. 2   The dynamic model of a spiral bevel gear system with rota-
tional degrees of freedom
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Keq(t)f
(
�� − e�

)
 returns the restoring force function 

[12, 18]. Whenever λ� − e� is between −�b and +�b ( �b : 
angular backlash), the contact loss happens [17]. For 
λ𝜃 − e𝜃 > 𝜃b , the contact occurs in forward face flank, 
while if λ𝜃 − e𝜃 < −𝜃b, backside contact happens; see Ref. 
[19]. Besides, the torsional GSOS is a time-varying function 
which is periodic with fundamental mesh frequency,�m.

In order to nondimensionalize the governing equation, 
new parameters are introduced as follows:

Consequently, Eqs. (2, 3 and 4) can be rewritten as 
follows:

Equation (6) presents the governing equation with the 
constant input torque. In some applications, the input 
torque consists of two parts, mean and ripple torque. 
Therefore, to analyze the dynamic behavior of a spiral 
bevel gear pair precisely, both parts should be considered. 
To achieve this goal, the Eq. (6) is modified. Actually, the 
calculation procedure of the motion equation for periodic 
input torque is approximately similar to the case with con-
stant input torque [Eq. (6)]. The difference between these 
two conditions is related to input torques. Consequently, 
Eq. (6) is rewritten for the case with periodic torque as 
follows:

(3)f
�
𝜆𝜃 − e𝜃

�
=

⎧
⎪⎨⎪⎩

𝜆𝜃 − e𝜃 − 𝜃b, 𝜆𝜃 − e𝜃 > 𝜃b
0, −𝜃b ≤ 𝜆𝜃 − e𝜃 ≤ 𝜃b
𝜆𝜃 − e𝜃 + 𝜃b, 𝜆𝜃 − e𝜃 < −𝜃b

(4)Keq(t) = k0 +

S∑
j=1

ajcos(j�mt) +

S∑
j=1

bjsin(j�mt), where ∶

{
�m =

2�

60
N1�s

S =
(
Np − 1

)
∕2

(5)� = �nt, ��
=

��

�b
, �n =

√
k0

Ieq
, e

�
=

e�

�b
, ��

�
=

d�
�

d�
, Tg =

T1

�bIeq�
2
n

, � =
Cm

2Ieq�n

(6)�
��

�
+ 2�

(
��

�
− e

�

�

)
+ Km(�)f

(
�

�
− e

�

)
= Tg

(7)f

�
𝜆

𝜃
− e

𝜃

�
=

⎧
⎪⎨⎪⎩

𝜆
𝜃
− e

𝜃
− 1 𝜆

𝜃
− e

𝜃
> 1

0 −1 ≤ 𝜆
𝜃
− e

𝜃
≤ 1

𝜆
𝜃
− e

𝜃
+ 1 𝜆

𝜃
− e

𝜃
< −1

(8)Km(t) = 1 +

S∑
j=1

aj

Ieq�
2
n

cos(j�mt) +

S∑
j=1

bj

Ieq�
2
n

sin(j�mt)

(9)

�
��

�
+ 2�

(
�

�

�
− e

�

�

)
+ Km(�)f

(
�

�
− e

�

)
= Tg + nf Tgcos

(
�

�n

�

)

In Eq. (9), nf  is used to determine the effect of ripple 
terms compare with the mean term. Equations (6) and (9) 
are the nondimensional nonlinear governing equations 
with time-varying coefficients. These equations are solved 
numerically by means of the 4th-order Runge–Kutta 
method. In order to achieve this goal, the dynamic mod-
els are solved in “RADAU algorithm” numerically [7, 20]. 
The accuracy of this code has been frequently confirmed 
in several published papers: [7, 11, 12, 20].

4 � Characteristics of case study

The geometrical properties of the considered SBG pair 
are listed in Table 1. The RMS for each case is calculated 
and the bifurcation diagrams are presented by vary-
ing excitation frequency, i.e. pinion rotational speed 
[20]. Also, the Poincaré map is extracted from numeri-
cal results. The time response of the mentioned SBG 
nonlinear vibration is simulated for particular mesh 
frequencies. For each frequency, the transient part and 
steady-state part are separated.

Table 1   geometric parameters of the SBG pairs [14]

Parameters Pinion Gear

Pitch angle 40.31 49.29
Number of teeth 47 55
Module [mm] 3.15
backlash [mm] 0.015
Nominal torque [N.mm] 250,000
Module of elasticity [MPa] 2.09 × 105

Poisson ratio 0.3
Face width [mm] 20
Pressure angle 21
Mean spiral angle 5
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Fig. 3   GSOS and Static Transmission Error, blue line—case-1, red line—case-2, dots present Fourier spots, Ref. [14]
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Fig. 4   RMS diagram of forward and backward motions, black dot—case-1, red dot—case-2
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5 � Effect of shaft stiffness considering elastic 
deformation evaluations

To investigate the effect of shaft stiffness by consider-
ing the elastic deformation on gear pair dynamics, two 

different systems are considered: case-1 bearings are 
located close to the gear, and case-2 one bearing locates 
far away from the gear. In Fig. 3, a period of the time-var-
ying GSOS for the gear with two different bearing sup-
ports is presented. Peng et al. [14] obtained transmission 
error of the gear pairs, utilized in this study, considering 
multiple elastic deformation evaluations under different 
supports conditions. The Fig. 3 portrays the pinion STE 
variation.

Figure 4 compares the RMS of oscillation for the con-
sidered SBG affected by different locations of support in 
terms of backward and forward simulations. Super-har-
monic and primary harmonic responses are recognizable 

Table 2   The differences vibration level due to the support move-
ment

state I II III IV

�∕�n 0.2 0.25 0.34 0.5
RMScase 2 − RMScase 1 = 0.1428 0.3778 0.1411 0.055
Percentage of difference (%) 58.8 67.5 23.2 5.6

(a) (b)

(d) (c)

(i) (ii)0.1 ≤ ⁄ ≤ 0.75 : 0.75 ≤ ⁄ ≤ 1.1 :

⁄

̅ (ii)(i)

0.1 ≤ ⁄ ≤ 0.75 : 0.75 ≤ ⁄ ≤ 1.1 :

⁄

(i) (ii)

̅
(ii)(i)

0.1 ≤ ⁄ ≤ 0.75 : 0.75 ≤ ⁄ ≤ 1.1 :

⁄

(i)

̅

(ii)

(ii)(i)

0.1 ≤ ⁄ ≤ 0.75 : 0.75 ≤ ⁄ ≤ 1.1 :

⁄

̅

(i) (ii)

(ii)(i)

Fig. 5   Bifurcation diagram, a nf = 0 , b nf = 0.5 , c nf = 0.75 , and d nf = 1
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in these graphs. These results show that the dynamic 
response of the second case (the long-distance support) 
is higher than the dynamic response of the first case (the 
short-distance support). The RMS amplitude of the second 
case experiences higher amounts which are specified in 
Fig. 4: details views (a) and (b).

The presented results show that the vibrational behav-
iors for the two considered cases are similar; while the 
magnitudes of the vibration levels are different. For both 
cases, computed transmission error trends are similar; 
while, the peak-to-peak variation of the STE for the case-2 
is 15% larger respect to the peak-to-peak variation of the 

Fig. 6   Bifurcation and cor-
responding Poincaré map for 
nf = 1
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STE for the case-1. This difference causes up to 67.5% dif-
ferences in vibration RMS response; see Table 2 for details. 
The dynamic behavior of the gear pairs remains periodic, 
without any undesirable phenomena, for the two consid-
ered cases.

6 � Effect of periodic torque

To scrutinize the dynamic behavior of gear pair, the input 
torque is considered as the main parameter which may 
result in chaos. The main goal of this part of the study is 
to investigate the gear-pair behavior in a nearly real cir-
cumstance. Consequently, it is considered that the input 
torque consists of two parts: a constant part and an oscil-
lation part. By changing the ratio of the constant part to 
the periodic part, nf  , the effect of periodic torque is deter-
mined. It would be mentioned that this parameter ( nf  ) 
could change from 0 to 1.

Figure 5 portrays the bifurcation diagram for the four 
cases. Actually, the nf  at each case has a different amount. 
As the results show, by increasing the amount of nf  , the 
behavior of gear pair dynamics gets much worse. In other 
words, as nf  grows from 0 to 1, it is expected that the dev-
astating phenomena are observed during monitoring the 
dynamic behavior of SBG. The results are presented for 
four cases: (a) nf = 0 which means the input torque is con-
stant, (b) nf = 0.5 , (c) nf = 0.75 , and (d) nf = 1 . To explain in 
detail, the bifurcation diagram for each case is divided into 
three parts: (1) The main diagram that 0.1 ≤ �∕�n ≤ 1.1 , 
(2) Section (i) with red color that 0.1 ≤ �∕�n ≤ 0.75 , and 
(3) Section (ii) with blue color that 0.75 ≤ �∕�n ≤ 1.1 . For 
the case of constant excitation torque, nf = 0 , the results 
show a periodic response (Fig. 5a) over the frequency ratio. 
However, by increasing the ratio of the constant part to 
the periodic part of the input torque, the probability of 
unwanted behavior, such as jumping or even chaos, rises.

As mentioned, by increasing nf  , the dynamic behavior 
of SBG gets much worse. To illustrate this point, Figs. 6 and 
7 are brought. Figure 6 shows the bifurcation diagram for 
nf = 1 , while the frequency ratio, �

�n

 , varies from 0.1 to 0.75. 

Similarly, Fig.  7 shows the bifurcation diagram for 
nf = 0.75 . By investigating the bifurcation diagram, it 
could be found out that super-harmonic vibration is com-
pletely affected by the ratio of the constant part to the 
periodic part of the input torque, nf  . And by passing from 
super-harmonic to sub-harmonic regime, the effect of nf  
reduces. To investigate clearly, the results are brought in 
detail by means of the Poincaré map for three different 
frequency ratios: �A∕�n = 0.23 , �B∕�n = 0.52 , and 
�C∕�n = 0.62.

7 � Discussion

Scrutinizing the results, it could be found out that increas-
ing the proportion of shaft stiffness to GSOS leads to a rise 
in the nonlinearity of governing equation. In other words, 
the growth of shaft stiffness amplifies the softening behav-
ior of gear-pair system. Also, by comparing the results of 
the two cases: bearings are located close to the gear and 
far away from the gear, going up the stiffness contributes 
to an increase the amplitude of vibration responses (RMS). 
Investigating the effect of stiffness on vibration behavior 
revealed that the gear-pair experienced four different 
jumping phenomena (refer to Fig.  2, RMS diagram) at 
�

�n

= 0.2, 0.25, 0.34, 0.5 . By increasing the stiffness, the 

amount of jumping at �
�n

= 0.25 and 0.5 are about 0.14; 

while the biggest one occurred at �
�n

= 0.34 which is about 

0.38.
Studying the input torque, it is concluded that consid-

ering the periodic torque significantly affects the rota-
tional vibration. The more the proportion of ripple term 
increases, the more probability of unwanted phenomena 
such as chaos escalates. To determine the effect of ripple 
term compared with the mean term, a parameter is used 
which is named nf  . By increasing the nf  from 0 to 1, the 
vibration behavior experienced some phenomena like 
period-doubling and chaos. Results show that (refer to 
Fig. 5, bifurcation diagram) for nf = 0 and 0.5, the solution 
is completely periodic; while for nf = 1 , the period-dou-
bling and chaos occurred frequently. Also, when nf = 0.75 , 
the period-doubling and chaos happened once while 
0.52 ≤ �∕�n ≤ 0.61 and 0.62 ≤ �∕�n ≤ 0.64 respectively. 
It would be mentioned that these devastating phenomena 
happened while �∕�n is lower than about one.

8 � Conclusion

In this paper, the effect of different support locations by 
considering the effect of elastic deformation: the case with 
the short-distance support and the case with the long-
distance support, on the dynamic behavior of the spiral 
bevel gears is investigated. Due to the time-varying GSOS 
and backlash, the nonlinear equation with variable coef-
ficients is numerically solved by means of the Runge–Kutta 
method. The results of this manuscript show that by 
increasing the support distance from the gear, the trend of 
the static transmission error experiences no change. Con-
sequently, the dynamic behavior of the gear-pair remains 
steady and periodic. Moreover, although increasing the 
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distance between the supports causes higher levels of 
vibration, it is not a source of undesirable phenomena, 
e.g. chaos. While the peak-to-peak variation of the static 
transmission error for the case with long-distance support 
is 15% larger respect to the case with the short-distance 
support, the vibrational RMS response increases by up to 
67.5% at the frequency ratio equal to 0.33. Also, by increas-
ing the effect of ripple terms compared to the mean term, 
the probability of undesirable phenomena substantially 
rises.

Finally, it should be mentioned that there are some 
assumptions in order to drive the governing equations 
such as: no-friction, pure involute profile, dry contact, iso-
thermal analysis, and one degree of freedom. Therefore, 
for further research it would be great if it is possible to 
investigate the dynamics of spiral bevel gear pairs without 
these simplifications and increase the number of degrees 
of freedom.
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