
19/11/2024 06:20

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform / Scribano, C.; Franchini, G.; Prato, M.;
Bertogna, M.. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 1573-7691. - 94:(2023), pp. 1-25.
[10.1007/s10915-023-02125-5]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

ar
X

iv
:2

20
3.

01
17

8v
3

 [
cs

.L
G

]
 1

5
M

ar
 2

02
3

DCT-Former: Efficient Self-Attention with

Discrete Cosine Transform

Carmelo Scribano1,2*†, Giorgia Franchini1*†, Marco Prato1

and Marko Bertogna1

1Department of Physics, Informatics and Mathematics,
University of Modena and Reggio Emilia, Modena, Italy.

2Department of Mathematical, Physical and Computer Sciences,
University of Parma, Parma, Italy.

*Corresponding author(s). E-mail(s):
carmelo.scribano@unimore.it; giorgia.franchini@unimore.it;

Contributing authors: marco.prato@unimore.it;
marko.bertogna@unimore.it;

†These authors contributed equally to this work.

Abstract

Since their introduction the Trasformer architectures emerged as the
dominating architectures for both natural language processing and, more
recently, computer vision applications. An intrinsic limitation of this fam-
ily of “fully-attentive” architectures arises from the computation of the
dot-product attention, which grows both in memory consumption and
number of operations as O(n2) where n stands for the input sequence
length, thus limiting the applications that require modeling very long
sequences. Several approaches have been proposed so far in the liter-
ature to mitigate this issue, with varying degrees of success. Our idea
takes inspiration from the world of lossy data compression (such as
the JPEG algorithm) to derive an approximation of the attention mod-
ule by leveraging the properties of the Discrete Cosine Transform. An
extensive section of experiments shows that our method takes up less
memory for the same performance, while also drastically reducing infer-
ence time. Moreover, we assume that the results of our research might
serve as a starting point for a broader family of deep neural models
with reduced memory footprint. The implementation will be made pub-
licly available at https://github.com/cscribano/DCT-Former-Public.

1

http://arxiv.org/abs/2203.01178v3
https://github.com/cscribano/DCT-Former-Public

2 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

Keywords: Transformers, Self-attention, Natural language processing, Deep
learning, Discrete cosine transform, Frequencies domain

1 Introduction

Transformers are a family of recently introduced Deep Learning (DL) models
which leverage the mechanism of dot-product attention to map a sequence of
tokens of arbitrary length into a new set of tokens. Thanks to their outstand-
ing performance in a variety of tasks, transformers are nowadays ubiquitous
in state-of-the-art techniques that gain any benefit from modeling long-term
interactions between elements of a sequence. Another important advantage
of transformers is the ability to process sequences of arbitrary length in a
single forward pass without incurring the limitations of recurrent approaches:
no other standard Machine Learning (ML) or DL methods in the literature
have shown this great adaptability so far. In the domain of Natural Language
Processing (NLP) transformers are pervasive in any sort of task, such as
Machine Translation [1–4], text classification, document retrieval, document
summarization and several others more. More recently, researchers started to
focus on exploiting the benefits of the self-attention mechanism for computer
vision tasks [5–7], either standalone or applied downstream to a convolutional
backbone and even to multimodal problems where the language and visual
input needs to be correlated.
Despite the clear benefits that were widely popularized by the recent achieve-
ments, the main limitation of this class of models arises from the increase in
both memory occupation and computational cost, which grows quadratically
with the length of the input sequence. This problematic poses a significant
limitation to the application of attention models to process long sequences.
The quadratic growth in memory occupation, in particular, imposes an
upper-bound on the maximum length on the sequence that can be processed.
While a multitude of approaches has already been proposed in the literature
to mitigate this issue, ideally aiming at making the cost of the attention grow
linearly with the input’s length, the formulation of those solutions is often
obscure and poorly interpretable.
In this work, we investigate a method to mitigate the problem of the quadratic
dependence on the input’s length through the use of Discrete Cosine Trans-
form (DCT)[8]. The DCT, widely used in signal approximation problems
and especially in image compression, is well known as the most used linear
transform for lossy compression. In our work, we employ DCT to compute an
approximation of the real attention and to exploit such compressed represen-
tation as a replacement for the full attention. Our methodology, contrarily
to other approaches, has a simple formulation and can be clearly interpreted
as a mere signal filtering operation. Moreover, the proposed relaxations to
the attention’s formulation can be experimentally validated against a best-
case scenario formulation. We evaluate our methodology both in terms of

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 3

algorithmic complexity and in terms of performances in a common NLP
benchmarking scenario. In particular, we follow the standard approach of
pre-training on a large corpus of unlabeled text in an unsupervised fashion
and then finetuning on downstream supervised tasks, considering the problem
of sentiment classification [9] as our benchmark. It must be clear by now that
the objective is not to propose a new model for language modeling tasks to
compete against the state of the art. Based on a robust mathematical tool
such as DCT, the mathematical treatment is also robust and the potential
applications of the method are numerous.

Our contribution can be summarized as follow:

1. We propose a simple yet effective self-attention approximation by leveraging
the properties of the DCT.

2. We experimentally show that our formulation allows for both reduced mem-
ory footprint and faster inference, while still being competitive on NLP
tasks.

3. We compare our method against prominent competitors in the literature,
showing that our method offers the best trade-off between inference time
and model accuracy.

Structure of the paper: in Section 2 we introduce the main mathemati-
cal models and their formulations. In Section 3 we present an overview of
the prominent methods in the literature whose purpose is to reduce the com-
putational complexity of the mechanism of self-attention. Additionally, we
present a small overview of methods that leverage Fourier-affine transforms
in deep learning models. Subsequently, in Section 4 we introduce our pro-
posed methodology to approximate the self-attention with quasi-linear cost.
Finally, in Section 5 we detail our experimental setup and we report and dis-
cuss an experimental evaluation of the proposed methodology in multiple NLP
applications.

2 Background

2.1 Neural Networks and Sequential models

Feed-Forward (FF) Artificial Neural Networks (ANN) are the simplest kind of
DL model [10]. A standard FF network is a nonlinear function Ψ : Rd → R

k,

which maps an input x ∈ R
d into an output y ∈ R

k. In general, the function
Ψ takes the form of a stack of Fully-Connected layers. Each layer is defined

by a weights matrix Wi ∈ R
ki−1×ki plus a scalar bias term bi−1 with i =

1, . . . , L, where L is the number of layers and k0 = d, kL = k. Each layer is also
characterized by a nonlinear activation function σi(·). The recursive formula
takes the form:

yi = σi(W
T
i yi−1 + bi)

where y0 = x and yL = y.

4 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

On the other hand, the total function can be written as:

Ψ(x) = σL(WT
L σL−1(WT

L−1 . . . σ0(WT
0 x + b0)) + bL).

An important limitation of the FF model is the inability to operate with inputs
of non-fixed length, which would be desirable to work with sentences in nat-
ural language and other kinds of sequential data points. In NLP, an input
sentence is usually split into a set of tokens, which represents individual dic-
tionary indices, and each token is mapped to an embedding of fixed dimension.
For convenience here, we use the terms token and embedding interchangeably,
since it persists a 1 : 1 mapping.
In contrast, Recurrent Neural Networks (RNN) [11, 12] arise expressively for
the management of sequences, whether they are sequence connected by a tem-
poral component (e.g., time series) or meaning (e.g., a sentence). An RNN
processes a sequence of inputs X ∈ R

n×d by feeding sequentially each row ele-

ment of X xi ∈ R
d, referred to as a token, to a stack of recurrent cells. In this

case, the recurrent formula is:

yi(t) = σi(W
T
i yi−1 + W

T

i yi(t− 1) + bi) t = (0, 1, ..., n)

where W ∈ R
ki−1×ki is a weight matrix trained during the epochs.

This implies that the i-th activation for the t -th token will also depend on the
activation produced by the input provided at a previous timestep, effectively
allowing to consider yi(t) as a fixed size latent representation of the whole
input sequence up to t. The sequential nature of the recurrent cell however
poses a severe performance bottleneck by requiring the tokens to be fed to the
model one after the other. Such throughput limitation, together with several
other problems in terms of expressive capacity, are among the reasons that
lead to the introduction of attentive and ultimately fully-attentive models.

2.2 Transformers

Transformers [1] represent the current state-of-the-art in DL models for
sequence modeling tasks. This family of architectures replaces the recursion
mechanism of RRNs with the introduction of the mechanism of self-attention
to effectively process sequences of arbitrary length in a single forward opera-
tion. As in Figure 1, a standard transformer is made of nblocks identical blocks,
each composed of two sub-blocks: a self-attention module and a feed-forward
layer, each one followed by a layer normalization [13] operation and a residual
connection.

Self attention

Given a set of tokens X ∈ R
n×d, the self-attention mechanism produces a

similar set of tokens X ∈ R
n×d, where each new row token element of X is

obtained as a weighted average of the whole original set X.

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 5

Fig. 1 Overview of the general architecture of the standard Transformer Encoder.

The resulting weights of the attention mechanism represent the affinity
degree between pairs of tokens. Such affinity is computed by first project-
ing, where with the term projection we mean a simple matrix multiplication,
X onto a set of Queries Q ∈ R

n×dq , a set of Keys K ∈ R
n×dk and a set

of Values V ∈ R
n×dv , with three distinct projection matrices WQ ∈ R

d×dq ,

WK ∈ R
d×dk , and WV ∈ R

d×dv . The three projections are shown below:

Q = XWQ, K = XWK , V = XWV (1)

The dot-product between Q and KT (with dq = dk and dv = d in self-
attention) produces an Energy score between pairs of tokens, which is then
normalized and fed to a nonlinear softmax [14] operation to obtain the final
weights matrix. In this case the softmax operation is applied row-wise.

E(Q,K) = softmax

(
QKT

√
dq

)
(2)

The energy is finally multiplied by V in order to produce the final attention
output:

Atn(X) = E(Q,K)V = softmax

(
XWQ(XWK)T√

dq

)
XWV (3)

In almost any transformer implementation a number nheads of self-attention
heads, each with its own set of projection matrices W j

Q,K,V , with j =
1, . . . , nheads, are applied in parallel, defining the Multi heads Self Attention
(MhSA). The output of the multi-head attention is obtained as a concate-
nation of the results of the individual attention heads, usually followed by an
additional projection layer WO ∈ R

mdv×d.

X = MhSA(X) = [Atn1(X) ⊕Atn2(X) ⊕⊕AtnM (X)]WO

6 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

For the sake of simplicity, from now on we can ignore the multi-head aspect
of the transformers attentions, since the problem that we investigate is not
dependent on the number of attention heads but is related to a single attention
term.

Quadratic complexity of Attention

It is clear from (2) that being n the sequence length, the complexity of calculat-
ing the attention’s weight matrix E ∈ R

n×n is O(n2) in both memory and time,
which limits significantly the applicability of the self-attention mechanism for
very long input sequences. To overcome the limitations of the quadratic depen-
dence, several options have been already proposed in the literature, some of
which are discussed in section 4.2.

2.3 Transformer based Language modeling

Given the property of the self-attention mechanism, since their introduction,
transformers have been popularized as powerful language modelers. However,
transformer-based language models are known to be extraordinarily hard to
train by relying only on labeled data for supervised tasks. For this reason,
the scheme of adopting a pre-training strategy, already popular in previous
language modeling techniques [15, 16], has become of great importance for
transformers based modeling. Pre-trained transformers can be then effectively
fine-tuned for downstream supervised tasks, usually with little to none archi-
tectural changes.
Among the considerable variety of pre-trained transformer models, BERT [2]
and its derivatives [17–21] have become the de facto standard for deep language
modeling. The strength of this model comes from the bidirectional pretraining
strategy, which leverages a huge amount of unlabeled text in an unsupervised
fashion. From an architectural standpoint, BERT simply employs the orig-
inal transformer architecture adding a WordPiece tokenizer [22] to split an
input sentence in a sequence of dictionary entries, which are then mapped to
token embeddings. The unsupervised pre-training is carried by simultaneously
optimizing for two tasks:

• Masked Language Modeling (MLM), where a percentage of the input tokens
is masked at random, by replacing those with a placeholder [MASK] token,
and then asking the model to predict back the masked tokens.

• Next Sentence Prediction (NSP) task, where a pair of sentences (sentence
A and sentence B) are fed together to the model, divided by a separation
token [SEP], and the model is tasked to classify whether the sentence B is
the actual next sentence that follows A or is a random sentence from the
training corpus.

The training corpus is obtained by combining BooksCorpus [23] and English
Wikipedia in order to obtain over 3,5M words of document-level corpus which
include long sequences of sentence-level text required for the pre-training objec-
tives. A major downfall of the transformers pre-training is the very large

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 7

computational power required to achieve state-of-the art performance, with a
proper training easily approaching costs in the tens of thousands dollars [24]
(based on the current cloud GPU prices). For our experimental validation we
trained a BERT-like model following the training recipe detailed in [25], while
the language modeling ability of such a model cannot be compared with a full
pre-training BERT, but it is instead perfectly suited to demonstrate the advan-
tage of our approximated attention in a fair comparison scenario. In Section 5
we detail the experimental setup and the adopted training scheme.

2.4 Discrete Cosine Transform

The DCT [8] is a Fourier-related transform which expresses a finite sequence
of elements (a discrete signal) in terms of a sum of cosine functions at differ-
ent frequencies. Most noticeably, the DCT is both discrete and, contrary to
the Discrete Fourier Transform (DFT), real-valued. DCT is invertible, with
the inverse function denoted as IDCT, and enjoys the properties of energy

compaction, concentrating the energy of the signal in few coefficients, and
decorrelation, since the coefficients are uncorrelated to each other. Thanks to
those properties, DCT is heavily used as a transformation mechanism in signal
processing, and especially in lossy data compression algorithms such as JPEG
(images) [26], MPEG (video), and MPEG Layer III or MP3 (digital audio).
There are several variants of DCT, the most common, also used in this work,
is the type-II DCT [27], which was also the first version of DCT.
Given a finite length sequence of N real valued elements x̂ ∈ R

N×1, the Type-II
DCT is a sequence X̂ of the same length defined as:

X̂K = αk

N−1∑

n=0

xn cos

(
π(2n + 1)k

2N

)
for k = 0, 1, ..., N − 1

where αk =

{√
1/N if k = 0√
2/N if k 6= 0

(4)

Since the DCT is a linear transformation, (4) can be conveniently expressed in
terms of a dot-product operation between the sequence x and a transformation
matrix D ∈ R

N×N . Formally, X̂ = DCT (x̂) = Dx̂, where:

Dn,k = αk cos

(
π(2n + 1)k

2N

)
(5)

Due to the normalization term α, the matrix D is orthogonal, which
makes possible to express the inverse transform as D−1 = DT , hence:

IDCT (X̂) = DT X̂ = x̂, thus avoiding the high computational cost of the
inverse calculation.
Generally, when we speak about lossy compression algorithms, we first com-
pute the computing of the DCT coefficients of a signal, and then keep only a
handful of the most relevant values. A simple way of computing a low-frequency

8 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

approximation would be to define a matrix D ∈ R
M×N with M < N by keep-

ing only M rows of the transformation matrix D. D can be used to obtain a
compressed representation x ∈ R

M×1 by computing the forward DCT, then a
lossy reconstruction of the original x̂ is obtainable with the inverse transform.
When we are dealing with a transformation that is performed by both rows and
columns, we can generalize the observations made before by using 2D-DCT. In
this case, given a finite length sequence of N×N real elements x̂ ∈ R

N×N , the
2D-DCT can be computed with the formula X̂ = DCT (x̂) = Dx̂DT . Using
the same methodology as described above, we can generalize the compression
procedure to the 2-dimensional case.

3 Related Works

3.1 Efficient Attention Heads

As briefly mentioned in the introduction, the quadratic complexity of the
attention is a well-studied issue in the deep learning community. A variety of
solutions have so far already been proposed, which can be roughly categorized
in three classes: (i) methods that try to approximate or factorize the attention
as defined in the original formulation [28–34] (ii) methods that reformulate
the definition of attention (e.g., by introducing locality constraints) to avoid
the complexity bottleneck [35–40] (iii) contributions which entirely remove
the self-attention, usually by proposing an alternative paradigm [41–43]. Our
methodology clearly falls in the first category, therefore hereafter we provide a
brief description of our principal competitors, a few of which will be used for
comparison in the experimental Section 5.

Attention Matrix Reduction

Reformer [30] achieves a complexity of O(nlog(n)) by reducing the num-
ber of operations in the computation of softmax(QKT) (2) introducing a
local-sensitivity-hashing (LSH) mechanism. Their methodology is based on
the observation that large values dominate the output of the softmax oper-
ation, hence they claim to be sufficient to only compute the largest values of
the QKT product. In Linformer [28] the authors introduce a set of learnable
linear projection matrices ǫi(i = 1, .., nheads) to project Q and V in a lower
dimensional space, justifying this approach with the empirical observation of
the attention matrix being low-rank. Performers [29] introduce a kernelizable
attention mechanism (FAVOR+) to approximate the softmax attention with
a complexity of O(n). More recently, Nyströmformer exploited the usage of
the Nyström approximation which is commonly used in kernel methods to
approximate the Gram matrix (positive semi-definite) with a low rank matrix.
To avoid computing the full attention, the authors exploit a relaxation of the
Nyström method by individually computing the softmax operation of the three
decomposition sub-matrices before the dot product operation.
SOFT [32] builds on top of [31] by replacing the dot-product operation with

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 9

a Gaussian kernel, thus entirely removing the softmax operation from the for-
mulation allowing, for a proper application of the Nyström method. Moreover,
they propose a Newton-Raphson based method to approximate the pseudoin-
verse operation, in contrast with the less efficient Moore-Penrose pseudoinverse
used in [31].

Differences with Model Compression

Some readers might be familiar with some popular techniques to reduce
inference cost of generic deep learning models. Among those, quantization
techniques [44] rely on reduced precision arithmetic (either 8-bits integers or
16-bits floating point), pruning [45] remove less important weights or nodes
from the network, and knowledge distillation [46] is a technique to transfer the
knowledge of a large model in a smaller one.
The formulation detailed in this manuscript, as well as the competitors previ-
ously introduced, are not related to these compression strategies. Formulations
for efficient attention focus on mitigating the issue of the quatratic complexity
of the dot-product attention, while compression strategies are aimed exclu-
sively at reducing inference times and are often tailored to the particular
capabilities of the hardware used for inference [47].

3.2 Frequencies domain

In the frequency domain, a matrix which represents a digital image is con-
verted from spatial to frequency domain. The Fast Fourier Transform is an
efficient method used to convert the spatial to the frequency domain. In this
paper, DCT was specifically chosen to transform attention matrix information
into frequencies because of some of its characteristics: DCT operates in the real
field like images, its compression capability has been demonstrated and widely
used in the literature, and its matrix formulation makes its computation and
the computation of its inverse particularly efficient on parallel architectures.
Regarding the latter point, many works have dealt with FFT parallelization,
as e.g. [48] in which the authors propose a novel and hardware-efficient archi-
tecture for power-of-two FFT processors.
In the signal processing literature there is extensive use of the DCT/FFT in
”learning” problems. For example in [27] the authors proposed an efficient
and flexible dictionary structure for sparse and redundant signal representa-
tion and they demonstrated the advantages of the proposed structure for 3-D
image denoising. On the other hand, in [49] orthogonal and nonorthogonal dic-
tionaries are factorized as a product of a few basic transformations to balance
data representation performance and computational complexity. Also in [50]
the authors work with dictionary learning, with the aim of finding a frame
(called dictionary) in which some training data admits a sparse representa-
tion. The approach is demonstrated experimentally both with a factorization
of the Hadamard matrix and on image denoising.

10 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

3.3 Neural Networks in the frequency domain

To the best of our knowledge, only few works have so far exploited Fourier-
related transforms in the DL domain. A remarkable contribution is the
recent F-Net [42], which entirely replaces the transformer’s self-attention with
a two-dimensional Discrete Fourier Transform operation. While this might
sound similar to our methodology (Section 4), it is entirely different in the
formulation, since their method does not represent an approximation for
the dot-product operation but rather a complete substitute. Previously [51]
proposed to operate a Convolutional Neural Network (CNN) on the DCT coef-
ficients of a JPEG compressed image to avoid the need to run the full JPEG
decoding algorithm. Several other contributions, such as [52–55], explored
similar concepts for computer vision problems with varying degrees of success.

4 Proposed Methodology

4.1 A Naive Solution

We recall that the goal of our investigation is to exploit the DCT introduced
in Section 2.4 to define an approximation method which avoids a quadratic
growth of the attention matrix in (2) with the input sequence length n for an
input X ∈ R

n×d.
Given the three (n × d) matrices Q, K and V defined in (1), all functions of
input X , a straightforward solution is to individually obtain three compressed
representations Q, K and V each of length n << n by computing the DCT of
each matrix over the dimension n and retaining only n DCT coefficients. For
ease of understanding we can express the forward DCT relying on the matrix
formulation of (5), hence a transformation matrix D ∈ R

n×n can be easily
obtained from the definition to compute the required n DCT coefficients.
Denoting the transformation matrix as D we formulate:

Q = DQ, K = DK, V = DV (6)

by substituting in (2) we obtain:

E(Q,K) = softmax

(
(DQ)(KTD

T
)√

d

)

If we consider the numerator inside the softmax operator is clear to see that:

D(QKT)D
T

= DCT2D(QKT)

By leveraging the associative property of the dot-product, E ∈ R
n×n is

obtained without explicitly computing the original E ∈ R
n×n. Going forward,

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 11

the compressed attention output is computed by multiplying with V :

Atn(X) = E(Q,K)V (7)

And finally, the resulting approximated attention Ãtn(X) is obtained with an
inverse DCT:

Ãtn(X) = IDCT (Atn(X)) = (D)TAtn(X) (8)

From (7), (8):

Ãtn(X) = (D)T [E(Q,K)]DV = IDCT2D(E)V

To reiterate, our approximated attention grows in memory and complexity
with O(n2), by picking an n small enough is possible to approach a linear
growth with the original input length n. A clear relaxation in our method is
that we are in effect leveraging:

Ãtn(X) = IDCT2D(softmax(DCT2D(QKT)))V (9)

where the normalization term
√
de is omitted. Clearly softmax(DCT (x)) 6=

DCT (softmax(x)), hence by computing the Inverse DCT we are implicitly
introducing a relaxation. Similar relaxations involving the softmax function
have already been proposed in [28] and [31], in Section 5.3 we discuss in detail
its implications and define a strategy to experimental evaluate the performance
degradation caused by its utilization.

4.2 A More efficient formulation

A first improvement that we can introduce to make our formulation more
efficient from a computational standpoint is to avoid the calculation of three
distinct forward DCT transforms as in (6). Recalling the formulation for Q,K
and V in (1), we can save on computation by computing only the DCT of X
(X = DX) and then utilize the compressed X in place of X in the attention
formulation of (3). This can be easily proven to be equivalent to the approxi-
mated attention defined in (7). Our formulation can be then formalized as in
Algorithm 1.
From the efficiency standpoint, the choice of the matrix formulation to com-

pute the DCT is optimal: a single D can be precomputed, memorized and
shared across all the attention modules of the transformer architecture of
choice. This for example in stark contrast with [28] where each attention
head requires its own learnable projection matrix, resulting in a total of
(nheads∗nblocks) matrices to be stored in memory. Moreover, relying on a known
linear transformation matrix has its own set of advantages: (i) it reduces the
total number of trainable parameters, making for a lighter and more efficient
training (ii) learning a transformation matrix E ∈ R

n×n as in [28] implies

12 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

Algorithm 1 Efficient attention with DCT

Input X ∈ R
n×d

Output X̃ ≈ Atn(X)

Require: D ∈ R
n×n

1: X = DCT (X) = DX
2: Q = XWQ, K = XWK , V = XWV

3: Atn(Q,K, V) = E(Q,K)V = softmax
(

QK
T

√
d

)
V

4: X̃ = D
T [

Atn(Q,K, V)
]

5: return X̃

that the input sequence length must be exactly n, taking away the option of
model input of arbitrary lengths. When using the DCT instead we can eas-
ily recompute D, or we can exploit an algorithm for fast cosine transform
without explicitly relying on D. For the latter, in the fine-tuning experiments
(Section 5.2) we employed Makhoul’s algorithm [56], which leverages the Fast
Fourier Transform (FFT) to efficiently compute the DCT of a N−point real
valued signal.
To conclude, among the different transforms available in the literature, DCT
was chosen because it is an efficient way of compressing information, it can
be expressed as a matrix product, its inverse calculation is also linear and
operates in the real numbers field.

4.3 The curse of nonlinear softmax

As introduced in Section 5.1, a significant relaxation exploited by our for-
mulation to compute the inverse DCT of the result of a nonlinear function
softmax(x) : Rn → R

n applied to the result of the forward DCT, as from (9).
For the sake of completeness, we recall that the softmax function is defined as:

softmax(x)i =
exi

∑n

j=0 e
xj

i = 0, 1, ..., n

This function is commonly used in the deep learning domain to highlight larger
values and hide the ones significantly smaller than the maximum; moreover,
it constrains the output of a layer to sum to 1 and returns values between 0
and 1.
Ideally, to avoid our relaxation we would need a function s such that:

s(DCT (x)) = DCT (softmax(x)).

This function is trivially s(DCT (x)) = s(x̂) = D(softmax(DT x̂)) that is very
unsuitable since it implies passing through a higher-dimensional space, which
is exactly what we want to avoid with the proposed method. With our relax-
ation, we can instead avoid the computation of the matrix E ∈ R

n×n.

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 13

When leveraging our formulation, we introduce two potential sources of error
when compared to the standard attention definition: (i) an approximation error
induced by the lossy compression using n < n DCT coefficients, and (ii) a
relaxation error induced by the usage of the softmax relation above mentioned.
The approximation error is intrinsically in the definition of lossy data com-
pression, the relaxation error needs instead to be carefully evaluated in order
to prove our methodology to be mathematically worthy.

Algorithm 2 Evaluation of DCT-induced error

Input X ∈ R
n×d

Output X̃ ≈ Atn(X)

Require: D ∈ R
n×n

1: Q = XWQ, K = XWK , V = XWV

2: E ⇐ E(Q,K) = softmax
(

QKT

√
d

)

3: E = DED
T ∈ R

n×n

4: Ẽ = D
T
ED ∈ R

n×n

5: X̃ = ẼV
6: return X̃

We devise a simple yet effective strategy to experimentally evaluate the
contribution of the softmax relaxation on the overall error degree: the full
matrix E ∈ R

n×n is explicitly obtained as in (2), then its forward and inverse

DCT are computed to obtain a lossy reconstruction Ẽ ∈ R
n×n which is then

used in the following steps to obtain the attention output.
With this setup, the relaxed formulation of (9) is never used, hence only the
approximation error is added: a simple way of quantifying the relaxation error
is to compare the experimental results obtained with this formulation with
those of the efficient attention formalized by Algorithm 1. It is worth clarifying
that the above setup it is only intended for evaluation and comparison, since
the quadratic attention is explicitly computed in Line 2 of Algorithm 2 there
would not be any benefit in using this formulation in a real use scenario.

5 Experimental Evaluation

5.1 Experimental Setup

Our experimental setup follows the transfer learning scheme common in NLP:
first the model is trained on a large dataset of unlabeled corpus data, then
we finetune the model on a downstream supervised task. In subsection 5.3
we report the results both on the pretrain and the downstream task, while in
subsection 5.2 we present the results in terms of inference speed and memory
occupation.

14 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

Model Architecture

The transformer architecture adopted for our experiments is inspired by
BERTsmall introduced in [57]. The model architecture follows the same struc-
ture of the original transformer [1] while only using nblocks = 4 instead of the
12 of BERTbase in order to keep a reasonable memory footprint even when
training with the standard attention head. Each multi-head attention uses 8
heads, the embedding dimension d is 512 and the hidden dimension of the
feed-forward layer is 2048. For the input tokenization, we employed the same
pretrained WordPiece tokenized used in BERT, leveraging the implementation
“bert-base-uncased” provided by the Transformers library [58].

Pretraining

For our evaluation, we base our workflow on the pipeline proposed [25], which
combines several techniques to train a BERT-style language model with a
reasonable computational budget. Following their setup, we optimize only
for the masked-language model (MLM) task with a sparse token prediction
head [20], not using the next sequence prediction (NSP) objective, but we
used only English Wikipedia text as training corpus. To maximize the train-
ing throughput 10 masked copies of the dataset are precomputed, with a
masking probability of 0.1. Moreover the maximum sequence length n is lim-
ited to 128 tokens to allow for larger batch sizes. On the optimization side,
we mostly followed the same setup using the optimizer AdamW [59] with
(β1 = 0.9, β2 = 0.98, ǫ = 1e−6) and weight decay of 0.01. To allow for an unbi-
ased comparison of models with vastly different training speeds, we discarded
the fixed time-budged scheduler from the training recipe, instead we fixed the
total number of optimization steps to 100k and linearly increased the learning
rate from 0 to the Peak-lr with a warm-up proportion of 0.06, then applied
a linear decay for the remainder of the steps. The peak learning rate (LR)
is fixed to 1e−3 and the minibatch size to 4096, obtained with two gradient
accumulation steps.
From an implementation standpoint the optimization engine DeepSpeed [60] is
used with mixed precision training provided by the APEX1 backbone. To avoid
potential interferences with the efficient attention formulation, we avoided
using fused linear-activation-bias layers and APEX LayerNorm implementa-
tion, which are commonly used to speedup training. All our experiments are
trained on two 32GB Nvidia V100 GPUs, leveraging model-level parallelism.

Finetuning

In the spirit of keeping the experimental setup simple and understandable we
opted to evaluate our model on the downstream task of sentiment classifica-
tion of IMDb movies reviews [9]. This dataset consists of 50.000 movie reviews
in plain English text, evenly split between train and test. Each review is man-
ually labeled for sentiment classification as positive or negative depending on
the writer’s liking of the movie, positive and negative labels are distributed

1https://github.com/nvidia/apex

https://github.com/nvidia/apex

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 15

with a 0.5 ratio both in the test and train splits, making for a perfectly bal-
anced classification task. The sequences of the training set are in average 298
tokens long (min. 13, max. 3055), to save memory during training we cap the
maximum sequence length to 1024 tokens, truncating the longer sequences.
To finetune the model, the MLM head used for pre-training is replaced by a
classification head. Only the first token C ∈ R

d is kept from the transformer’s
output X ∈ R

n×d. C corresponds to the special [CLS] token, which is added
to the input. C is then fed to two feed-forward layers with a tanh(·) : R → R

activation function to produce the binary classification output. The model is
optimized with a Binary CrossEntropy objective function, as for the pretrain-
ing we use the optimizer AdamW, but the learning rate is fixed to 1e−5: in
total we train each model for 10 epochs with a batch size of 64 with no gradient
accumulation steps.

5.2 Evaluation

Reducing memory footprint and computational cost is the main objective of
our work, therefore hereafter we provide detailed results on the requirements
of our model and compare them against the main competitors in the literature.
We compare our attention head against the original (Vanilla [1]) transformer
implementation as well as Linformer, Nyströmformer and Performer.

Model Inference results

For a fair comparison we used for all the tests our transformer model defined
in Section 5.1, replacing only the attention head. We tested with randomly
generated sequences of length n ∈ {128, 512, 1024, 4096} adapting the batch
size accordingly to fit the model in memory: to adjust for the non fixed batch
size we normalize both the inference time and the memory occupation for the
current batch size. All the measurements are taken accounting only for the
forward propagation.

Table 1 Inference performance of our efficient attention compared to other attention heads

Sequence length (N) - Batch size (BS)

Attention Head 128 - 256 512 - 32 1024 - 16 4096 - 1

MB ms MB ms MB ms MB ms

Vanilla 5.1 0.391 28.75 1.99 89.37 5.03 1250.0 45.6
DCT-0.25 4.55 0.312 22.62 1.34 44.5 2.85 326.0 15.75

Linformer-0.125 4.23 0.374 21.0 1.62 46.75 3.52 612.0 19.3
Nyström-0.125 4.73 0.41 24.87 1.83 55.5 4.18 488.0 47.71
Performer-0.125 4.91 0,425 23.87 1.89 59.5 4.2 548.0 28.93

The results are expressed in terms of peak memory occupation (Megabytes, MB) and
inference time (milliseconds, ms). All the models are evaluated on a single Nvidia 2080Ti

16 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

In Table 5.2 we adopt the notation {Model} − {scale} where scale indi-
cates the (fixed) ratio of the input sequence length used to instantiate the
efficient attention: for our method it defines the number of DCT coefficients,
for Linformer the dimension of the learnable projection ǫ, for Nyströmformer
the number of selected landmarks and for Performer the number of random
features. While in principle scale could be defined as a constant, instead of a
proportion of the input length (i.e, DCT − 0.25 for n = 128 implies n = 32),
we argue that it would be mathematically unfounded to assume that is pos-
sible to obtain a constant complexity for an arbitrary input length, whatever
efficient attention head is used. From the reported results it is clear that the
transformer model, equipped with our DCT based efficient attention, outper-
forms all the competitors. As expected and discussed in Section 2.2 the savings
in memory and inference times, from the usage of our attention head, are
directly proportional to the sequence length. In the next paragraph we discuss
this important aspect in more details.

Scalability with Sequence Length

To obtain the inference results presented in the last paragraph we were
forced to reduce the batch-size (BS) when increasing the sequence length (N)
in order to fit the model in memory. While this approach is perfectly suitable
to compare different models - for a fixed sequence length - it does not allow to
truly appreciate how each model scale with the sequence length. We setup a
new experiment to evaluate the growth in memory occupation and inference
times when we vary the sequence lengths. In fact, as reported in Figure 2 we
benchmark exclusively the multi-head attention modules with a small fixed
batch size. For this experiment we maintain, for each attention, the same scale
factors of section 5.2.

0

20

40

60

80

100

120

140

160

180

200

128 256 512 1024 2048 4096

T
im

e
 (

m
s)

Inference Speed

Vanilla DCT Former Linformer Nystromformer Performer

0

1000

2000

3000

4000

5000

6000

128 256 512 1024 2048 4096

M
e

m
o

ry
 (

M
B

)

Memory Footprint

Vanilla DCT Former Linformer Nystromformer Performer

Fig. 2 Plot of Inference Time (ms) and Memory Footprint (MB) for input sequences of
different lengths. The Batch Size is fixed to 16 to allow for comparison.

As deducible from its formulation, the vanilla attention scales proportion-
ally with the square of the input’s length. Our efficient attention outperforms
all the competitors in terms of scalability, both in inference times and memory

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 17

footprint. In particular, for the longest input sequences the benefit of the effi-
cient attention reflects in a memory reduction of up to 80%, thus successfully
enabling to work with significantly longer sequences.
In the following section we instead present the results for the trained models
on both the pretraining and downstream tasks, showing that our attention can
perform competitively when compared to significantly heavier formulations.

5.3 Results and Discussion

We evaluate multiple settings of our model following the configurations detailed
in Section 5.1. For the pretraining stage, we report both the best loss (Cross
Entropy) on the validation set and the Accuracy score for the MLM task. It is
worth remembering that the MLM can be evaluated as a multilabel classifica-
tion problem, since for each masked token of the sentence we aim at predicting
the correct vocabulary entry index (which in our case is 30522 entries long).
In addition, to make the comparison fair we evaluate the normalized accuracy
score, which is obtained by dividing the accuracy score by the normalized aver-
age inference time obtained by the same model with a bath size of 256 and a
sequence length of 128 (divided by 102 for readability). For the finetuning we
report the averaged Precision, Recall and F1-score obtained on the test split.
All the sequences of the pretraining data are close to 128 tokens, requiring

Table 2 Results of transformer models with different attentions

Pretraining Finetuning ↑

Attention Loss ↓ Accuracy (%) ↑ Normalized ↑ Precision Recall F1-Score

Vanilla 2.07 59.7 1.52 0.9 0.9 0.9
DCT-16 2.58 51.6 1.73 - - -
DCT-32 2.36 54.7 1.74 0.87 0.87 0.87

IDEAL-32 2.26 56.6 - 0.88 0.88 0.88
DCT-48 2.28 56.0 1.68 0.86 0.85 0.85
DCT-64 2.24 56.6 1.61 0.85 0.85 0.85

Linformer-16 2.29 56.2 1.49 0.80 0.80 0.80
Linformer–32 2.17 57.9 1.49 0.82 0.82 0.82
Linformer–48 2.13 58.5 1.49 0.83 0.83 0.83
Nystrom–16 2.25 56.6 1.37 0.88 0.87 0.87
Nystrom–32 2.13 58.8 1.26 0.88 0.88 0.88

For all the results the number of DCT coefficients (and respectively of Nyström landmarks
and Linformer ǫ size) is fixed. We use the notation {Model} − {n}

only a minimal amount of padding to be fixed to exactly 128 tokens: the fine-
tuning sequences instead, while being truncated to 1024 tokens, presents a
significant length variation. For this reason we used the Makhoul’s method to
compute the forward and inverse DCTs in the finetuning phase. With respect

18 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

to the usage of the D matrix, this allows us to work with any sequence length,
while otherwise we would be limited to only work with sequences of exactly n
tokens. Finetuning the Linformer it is instead far more problematic: the matri-
ces ǫi learned during the pretraining are only suitable to work for sequences of
128, the only way to perform the finetuning is hence to reinitialize the trans-
formation matrix to work with sequences of 1024 and zero-pad all dataset
elements to the maximum length. With Nyströmformer we encountered a sim-
ilar issue, since also in this case the sequence length is required to be known
and be evenly divisible by the number of landmarks, hence we opted to pad
the sequences in the same way as for Linformer.
For the results reported in Table 2, the models trained with the efficient
attention formulation of Algorithm 1 are reported as DCT-{n}, while the
experiment IDEAL-32 follow the formalization of Algorithm 2 to evaluate the
approximation error induced by the DCT compression, without leveraging the
relaxation on the softmax operation. It is fundamental to understand that,
while the Ideal setup clearly outperforms the efficient setup, the Ideal setup
needs to compute all the matrices onto the R

n space, therefore losing all rel-
evance to both memory and speed efficiency. Exploring alternatives to our
softmax relaxation is a potentially interesting topic on its own, and can rep-
resent a future research direction.
.

6 Conclusion

In this work we analyzed the transformer architecture, in particular we focused
on the attention mechanism, which grows for memory and computational time
quadratically in the input length. Since in practical applications we are poten-
tially faced with text sequences of thousands of words or videos of hundreds
of frames, this growth represents the real bottleneck of these architectures.
Our method, on the other hand, allows choosing the size n of the workspace,
compressing the available information through the DCT. Once we have set a
compression threshold, in line with our competitors, the experiments carried
out show that our method requires a memory allocation that is a quarter less
than the standard attention and saves a fifth of the inference time, while still
maintaining a comparable expressive capacity. Due to its great flexibility, we
consider the proposed method particularly suitable for all the applications with
large amounts of data. In fact, contrary to other approximations proposed in
the literature, our method allows for greater adaptability and ease of appli-
cability, by not requiring the length of the sequence to be known in advance.
Then the desired memory and time usage can be chosen by defining the number
of DCT coefficients to be used. As a final reminder, energy-efficiency repre-
sents a raising concern for large deep learning models: reducing inference and
training cost represents one of the biggest challenges for the near future. We
are confident that our work could inspire other researchers in the domain of
GreenAI.

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 19

Acknowledgments. This work has been partially supported by the INdAM
research group GNCS.

20 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances
in Neural Information Processing Systems, pp. 5998–6008 (2017)

[2] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018)

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et
al.: Language models are unsupervised multitask learners. OpenAI blog
1(8), 9 (2019)

[4] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language
models are few-shot learners. Advances in neural information processing
systems 33, 1877–1901 (2020)

[5] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et
al.: An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929 (2020)

[6] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S.: End-to-end object detection with transformers. In: European Confer-
ence on Computer Vision, pp. 213–229 (2020). Springer

[7] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.:
Swin transformer: Hierarchical vision transformer using shifted windows.
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 10012–10022 (2021)

[8] Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE
transactions on Computers 100(1), 90–93 (1974)

[9] Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.:
Learning word vectors for sentiment analysis. In: Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pp. 142–150. Association for Computational Lin-
guistics, Portland, Oregon, USA (2011). https://aclanthology.org/P11-
1015

[10] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press,
Cambridge, MA, USA (2016). http://www.deeplearningbook.org

https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
http://www.deeplearningbook.org

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 21

[11] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735–1780 (1997)

[12] Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the prop-
erties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259 (2014)

[13] Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

[14] Bridle, J.: Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters.
Advances in neural information processing systems 2 (1989)

[15] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for
word representation. In: Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/
D14-1162

[16] Peters, M.E., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint
arXiv:1705.00108 (2017)

[17] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.:
Albert: A lite bert for self-supervised learning of language representations.
arXiv preprint arXiv:1909.11942 (2019)

[18] Clark, K., Luong, M.-T., Le, Q.V., Manning, C.D.: Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint
arXiv:2003.10555 (2020)

[19] He, P., Liu, X., Gao, J., Chen, W.: Deberta: Decoding-enhanced bert with
disentangled attention. arXiv preprint arXiv:2006.03654 (2020)

[20] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

[21] Iandola, F.N., Shaw, A.E., Krishna, R., Keutzer, K.W.: Squeezebert:
What can computer vision teach nlp about efficient neural networks?
arXiv preprint arXiv:2006.11316 (2020)

[22] Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W.,
Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neu-
ral machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144 (2016)

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

22 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

[23] Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba,
A., Fidler, S.: Aligning books and movies: Towards story-like visual expla-
nations by watching movies and reading books. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 19–27 (2015)

[24] Sharir, O., Peleg, B., Shoham, Y.: The cost of training nlp models: A
concise overview. arXiv preprint arXiv:2004.08900 (2020)

[25] Izsak, P., Berchansky, M., Levy, O.: How to train bert with an academic
budget. arXiv preprint arXiv:2104.07705 (2021)

[26] Raid, A.M., Khedr, W.M., El-dosuky, M.A., Ahmed, W.: Jpeg image
compression using discrete cosine transform a survey. arXiv preprint
arXiv:1405.6147 (2014)

[27] Shao, X., Johnson, S.G.: Type-II/III DCT/DST algorithms with reduced
number of arithmetic operations. Signal Processing 88(6), 1553–1564
(2008)

[28] Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768 (2020)

[29] Choromanski, K.M., Likhosherstov, V., Dohan, D., Song, X., Gane, A.,
Sarlos, T., Hawkins, P., Davis, J.Q., Mohiuddin, A., Kaiser, L., et al.:
Rethinking attention with performers. In: International Conference on
Learning Representations, p. 636 (2021)

[30] Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer.
In: International Conference on Learning Representations, p. 1838 (2020)

[31] Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y.,
Singh, V.: Nyströmformer: A Nyström-based algorithm for approximat-
ing self-attention. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 14138–14148 (2021)

[32] Lu, J., Yao, J., Zhang, J., Zhu, X., Xu, H., Gao, W., Xu, C., Xiang,
T., Zhang, L.: Soft: Softmax-free transformer with linear complexity.
Advances in Neural Information Processing Systems 34, 21297–21309
(2021)

[33] Ren, H., Dai, H., Dai, Z., Yang, M., Leskovec, J., Schuurmans, D., Dai,
B.: Combiner: Full attention transformer with sparse computation cost.
Advances in Neural Information Processing Systems 34, 22470–22482
(2021)

[34] Nguyen, T., Suliafu, V., Osher, S., Chen, L., Wang, B.: Fmmformer:

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 23

Efficient and flexible transformer via decomposed near-field and far-
field attention. Advances in Neural Information Processing Systems 34,
29449–29463 (2021)

[35] Wu, C., Wu, F., Qi, T., Huang, Y., Xie, X.: Fastformer: Additive attention
can be all you need. arXiv preprint arXiv:2108.09084 (2021)

[36] Jaszczur, S., Chowdhery, A., Mohiuddin, A., Kaiser, L., Gajewski, W.,
Michalewski, H., Kanerva, J.: Sparse is enough in scaling transform-
ers. Advances in Neural Information Processing Systems 34, 9895–9907
(2021)

[37] Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150 (2020)

[38] Tay, Y., Bahri, D., Metzler, D., Juan, D.-C., Zhao, Z., Zheng, C.: Synthe-
sizer: Rethinking self-attention for transformer models. In: International
Conference on Machine Learning, pp. 10183–10192 (2021)

[39] Zhu, C., Ping, W., Xiao, C., Shoeybi, M., Goldstein, T., Anandkumar,
A., Catanzaro, B.: Long-short transformer: Efficient transformers for lan-
guage and vision. Advances in Neural Information Processing Systems 34,
17723–17736 (2021)

[40] Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., Ré, C.: Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information
Processing Systems 34, 17413–17426 (2021)

[41] Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X.,
Unterthiner, T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., et

al.: Mlp-mixer: An all-mlp architecture for vision. Advances in Neural
Information Processing Systems 34, 24261–24272 (2021)

[42] Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontanon, S.: Fnet: Mixing tokens
with fourier transforms. arXiv preprint arXiv:2105.03824 (2021)

[43] You, W., Sun, S., Iyyer, M.: Hard-coded gaussian attention for neural
machine translation. arXiv preprint arXiv:2005.00742 (2020)

[44] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam,
H., Kalenichenko, D.: Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2704–2713
(2018)

[45] Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and con-
nections for efficient neural network. In: Cortes, C., Lawrence, N., Lee,

24 DCT-Former: Efficient Self-Attention with Discrete Cosine Transform

D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 28, pp. 1135–1143 (2015)

[46] Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

[47] Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural
networks on CPUs. In: Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011 (2011)

[48] Zhou, Y., Noras, J.M., Shepherd, S.J.: Novel design of multiplier-less FFT
processors. Signal Processing 87(6), 1402–1407 (2007)

[49] Rusu, C., Thompson, J.: Learning fast sparsifying transforms. IEEE
Transactions on Signal Processing 65(16), 4367–4378 (2017)

[50] Le Magoarou, L., Gribonval, R.: Chasing butterflies: In search of efficient
dictionaries. In: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3287–3291 (2015)

[51] Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural
networks straight from jpeg. Advances in Neural Information Processing
Systems 31, 3933–3944 (2018)

[52] Dziedzic, A., Paparrizos, J., Krishnan, S., Elmore, A., Franklin, M.:
Band-limited training and inference for convolutional neural networks. In:
International Conference on Machine Learning, pp. 1745–1754 (2019)

[53] Rajesh, B., Javed, M., Srivastava, S., et al.: Dct-compcnn: A novel image
classification network using jpeg compressed dct coefficients. In: 2019
IEEE Conference on Information and Communication Technology, pp.
1–6 (2019)

[54] Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.-K., Ren, F.: Learning in
the frequency domain. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1740–1749 (2020)

[55] dos Santos, S.F., Sebe, N., Almeida, J.: The good, the bad, and the
ugly: Neural networks straight from jpeg. In: 2020 IEEE International
Conference on Image Processing (ICIP), pp. 1896–1900 (2020)

[56] Makhoul, J.: A fast cosine transform in one and two dimensions. IEEE
Transactions on Acoustics, Speech, and Signal Processing 28(1), 27–34
(1980)

[57] Turc, I., Chang, M.-W., Lee, K., Toutanova, K.: Well-read students learn
better: On the importance of pre-training compact models. arXiv preprint

DCT-Former: Efficient Self-Attention with Discrete Cosine Transform 25

arXiv:1908.08962 (2019)

[58] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S.,
von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger,
S., Drame, M., Lhoest, Q., Rush, A.M.: Transformers: State-of-the-art
natural language processing. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 38–45. Association for Computational Linguistics, Online
(2020)

[59] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 (2017)

[60] Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion
parameters. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 3505–3506
(2020)

	Introduction
	Background
	Neural Networks and Sequential models
	Transformers
	Self attention
	Quadratic complexity of Attention

	Transformer based Language modeling
	Discrete Cosine Transform

	Related Works
	Efficient Attention Heads
	Attention Matrix Reduction
	Differences with Model Compression

	Frequencies domain
	Neural Networks in the frequency domain

	Proposed Methodology
	A Naive Solution
	A More efficient formulation
	The curse of nonlinear softmax

	Experimental Evaluation
	Experimental Setup
	Model Architecture
	Pretraining
	Finetuning

	Evaluation
	Model Inference results
	Scalability with Sequence Length

	Results and Discussion

	Conclusion
	Acknowledgments

