
22/07/2024 20:21

Matching Faces and Attributes Between the Artistic and the Real Domain: the PersonArt Approach /
Cornia, Marcella; Tomei, Matteo; Baraldi, Lorenzo; Cucchiara, Rita. - In: ACM TRANSACTIONS ON
MULTIMEDIA COMPUTING, COMMUNICATIONS AND APPLICATIONS. - ISSN 1551-6857. - 18:3(2022), pp. 1-
23. [10.1145/3490033]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



77

Matching Faces and Attributes Between
the Artistic and the Real Domain: the PersonArt Approach
MARCELLA CORNIA, University of Modena and Reggio Emilia, Italy
MATTEO TOMEI, University of Modena and Reggio Emilia, Italy
LORENZO BARALDI, University of Modena and Reggio Emilia, Italy
RITA CUCCHIARA, University of Modena and Reggio Emilia, Italy

In this paper, we present an approach for retrieving similar faces between the artistic and the real domain.
The application we refer to is an interactive exhibition inside a museum, in which a visitor can take a photo of
himself and search for a lookalike in the collection of paintings. The task requires not only to identify faces but
also to extract discriminative features from artistic and photo-realistic images, tackling a significant domain
shift. Our method integrates feature extraction networks which account for the aesthetic similarity of two faces
and their correspondences in terms of semantic attributes. Also, it addresses the domain shift between realistic
images and paintings by translating photo-realistic images into the artistic domain. Noticeably, by exploiting
the same technique, our model does not need to rely on annotated data in the artistic domain. Experimental
results are conducted on different paired datasets to show the effectiveness of the proposed solution in terms
of identity and attribute preservation. The approach is also evaluated on unpaired settings and in combination
with an interactive relevance feedback strategy. Finally, we show how the proposed algorithm has been
implemented in a real showcase at the Gallerie Estensi museum in Italy, with the participation of more than
1,100 visitors in just three days.

CCS Concepts: • Computing methodologies→ Visual content-based indexing and retrieval;Matching;
• Applied computing→ Fine arts.

Additional Key Words and Phrases: face similarity, face retrieval, face recognition, cultural heritage.

ACM Reference Format:
Marcella Cornia, Matteo Tomei, Lorenzo Baraldi, and Rita Cucchiara. 2022. Matching Faces and Attributes
Between the Artistic and the Real Domain: the PersonArt Approach. ACM Trans. Multimedia Comput. Commun.
Appl. 18, 3, Article 77 (2022),

1 INTRODUCTION
Even though there isn’t an artwork depicting yourself, there are probably some which contain
faces that look just like you, as testified by the number of people who found their “Doppelgänger”
in a painting while visiting a museum1 [16]. Taking inspiration from these accidental discoveries,
we develop an interactive multimedia solution which can retrieve similar faces in a collection
of paintings given a query photo from a visitor. Once the visitor has arrived at the museum, we
imagine a situation where he can take a photo of himself, and get back the name and the location
of the painting where his Doppelgänger lies, as a possible starting point for his visit.

This setting requires to detect faces in both paintings and selfies taken by the visitors, and also to
retrieve faces that look similar between the real domain (that of photographs) and the artistic one
1https://www.thoughtco.com/art-museum-doppelgangers-4154789
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✓ Wearing Hat

Fig. 1. Overview of our approach: given a real face as query, we retrieve similar faces from paintings, jointly
taking into account the aesthetic similarity and the correspondence between semantic attributes. The user
can further refine the retrieved set by providing feedbacks and imposing constraints on attributes.

(that of paintings). As images from these two domains can look very different in terms of low-level
statistics, due to the presence of strokes and the peculiarities of the artistic style, the task demands
for a domain adaptation stage, in which features extracted from the two domains can be merged
and compared to get the final retrieval result. Additionally, as often happens when dealing with
artistic data, there are no annotated datasets for the task, since no dataset contains photos of real
people annotated with the most similar paintings in a given collection. To tackle these issues, we
define a deep learning-based domain translation strategy, which lets us recover artistic proxies of
real faces while still exploiting annotations coming from datasets with real faces. This allows us to
exploit the supervision given by datasets originally designed for tasks similar to the one we are
addressing (e.g. face recognition and attribute prediction) while working in a domain where no
supervision is given. In this regard, this is the first work to propose a face retrieval system, trained
with a shared embedding space and with no explicit supervision, for the artistic domain.

Beyond developing a retrieval algorithm, we also design of a multimedia system for face retrieval
in the artistic domain with user interaction. In our system, we let the user customize the final
result by interacting with the application. By a first mean, the user can provide a feedback on
retrieved results by telling the application which faces look similar to him, and which are not
satisfactory. This, in combination with a relevance feedback strategy, allows us to recover better
and more subjective results at each iteration. Secondly, we also let the user impose constraints on
the attributes of retrieved faces, e.g. requiring that retrieved results should be smiling, wearing a
hat, having a big nose, and so on. This in turn permits a better exploration of the space of artworks.
An overview of our approach is depicted in Figure 1.

The proposal is evaluated on both synthetic and realistic settings, on a variety of different datasets.
In particular, we employ a style-transferred version of Celeb-A, which contains annotations for
face and attribute recognition. We then evaluate the results on WebCaricature and IIIT-D Sketch,
which respectively contain caricatures and sketches of different subjects, and collect two additional
test sets, one from DeviantArt, and a second one containing artworks. We will publicly release
both datasets to foster research in the field. Experimental evaluations will show the effectiveness
of the presented architecture when employing different face embeddings, and the role of both face
recognition and attribute detection in retrieval performance. We will also investigate the potential
of the interaction with the user and the performances of the proposed relevance feedback strategy.
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The proposed algorithm has also been tested in a real setting, by implementing a showcase at
the Gallerie Estensi museum in Italy, which has seen the participation of more than 1,100 visitors
in three days during the world-wide known Philosophy Festival. The remainder of this paper is
organized as follows: in Sec. 2 we review the existing literature on the application of multimedia
and computer vision techniques to arts with specific reference to face analysis; in Sec. 3 we present
our architecture for weighted retrieval and its combination with relevance feedback. Further, in
Sec. 4, 5 and 6 we describe our experimental setting and validate our proposal on different datasets.
Finally, in Sec. 7 we present the showcase and the interaction with real users.

2 RELATEDWORK
In this section, we review the literature related to the application of multimedia and computer
vision techniques to the cultural heritage domain, mainly focusing on generative architectures.
Moreover, we provide a brief overview of the most important advancements of face recognition
methods and facial attribute classification solutions applied to both real and artistic images.

2.1 Computer vision for artistic content
In the last years, several efforts have been done to apply computer vision techniques to the cultural
heritage domain, resulting in different works and applications ranging from generative models to
classification and retrieval solutions. On the generative and synthesis side, up-and-coming results
have been obtained by style transfer models, which aim to transfer the style of a painting to a real
photo. Gatys et al. [24, 39] first proposed to encode style and content through pre-trained CNNs to
generate a new image with a target content and a target texture. After this work, several methods
have been proposed to improve different aspects of style transfer, including the reduction of the
computational overhead [39, 46, 86], the improvement of the generation quality [25, 38, 66], and
diversity [47, 87]. Other works have instead focused on the combination of different styles [13]
and on the generalization to previously unseen styles and paintings [26, 48, 70]. Although all
these methods have demonstrated to be effective in transferring artistic styles, they are usually
not suitable for being inverted, i.e. for creating a realistic representation of a given painting. The
latter task has been addressed in [45, 83–85, 101], by proposing generative architectures which can
translate from the artistic to the real domain.

On the analysis and feature extraction side, several datasets containing artistic images have been
collected and annotated to foster researches on style and genre recognition [40, 56, 62, 93], multi-task
learning [76], zero-shot artwork instance recognition [19], and object and people detection [17, 92].
In this context, different traditional [4, 27] and deep learning-based [18, 28, 71, 92] solutions have
been introduced to guarantee the application and generalization of visual correspondence and
object detection methods to the artistic domain. Similar research efforts have also been made in the
context of vision-and-language related tasks, with a particular focus on cross-modal retrieval, in
which both supervised [7, 23, 75] and semi-supervised [5, 11, 15] approaches have been presented.

2.2 Generative architectures for content generation
Generative adversarial networks have been applied to several conditional image generation prob-
lems, ranging from image inpainting [61, 96] and super-resolution [44] to video prediction [58, 88]
and text to image synthesis [63, 64]. In this context, a line of work on image-to-image translation
has emerged, in both paired [37] and unpaired settings [49, 101].

Taigman et al. [81] tackled the image-to-image translation task by proposing a Domain Transfer
Network based on a multiclass GAN loss, an 𝑓 -constancy component, and a regularizing component.
Zhu et al. [101] proposed the Cycle-GAN framework, which learns a translation between domains
by exploiting a cycle-consistent constraint that guarantees the consistency of generated images
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with respect to original ones. On a related line, Liu et al. [49] used a combination of generative
adversarial networks and variational auto-encoders, while Ma et al. [54] focused on instance-level
image translation by incorporating the attention mechanism into generative adversarial networks
and allowing the incorporation of constraints at both instance and set-level.
A different line of work is multi-domain image-to-image translation [3, 14, 95]: here, the same

model can be used for translating images according to multiple attributes (i.e. hair color, gender or
age). For instance, Choi et al. [14] create a unified architecture that allows simultaneous image-to-
image translation between multiple datasets and different domains. Other methods, instead, focus
on diverse image-to-image translation, in which an image can be translated in multiple ways by
encoding different style properties of the target distribution [34, 45, 102].

2.3 Face recognition
After the advent of deep learning, research on face recognition has mainly focused on the collection
of training data to learn face representations [10, 30, 68, 82, 89] and on the design of specific
architectures and training strategies to effectively address the task [50, 60, 68, 82, 94].
In this context, a considerable effort has been made to develop new loss functions for learning

better and more powerful face representations. While first deep learning-based methods for face
recognition adopted cross-entropy based softmax losses [79, 82], subsequentworks started to explore
discriminative loss functions to enhance generalization capabilities. Among them, contrastive and
triplet loss functions became one of the leading choices to train face recognition networks. While
contrastive loss requires face image pairs to minimize the distance of positive pairs and maximize
that of negative pairs [77, 78], triplet loss considers face triplets and tries to minimize the distance
between an anchor and a positive sample (i.e. same subject) while maximizing the distance between
the anchor and a negative sample (i.e. different identity) [21, 60, 67, 68]. Other works proposed to use
angular or cosine margin-based loss functions to make learned features potentially separable with a
larger angular or cosine distance thus obtaining highly discriminative face features [20, 50, 51, 90].

For a complete review of face recognition literature, we refer to recent surveys on this topic [57,
91] focusing on both networks and training strategies specifically designed for the task, along with
the datasets used to train and evaluate face recognition architectures.

2.4 Facial attribute classification
Another important field of research on face analysis is focused on automatically recognizing facial
attributes. Along with the introduction of different datasets for the task [52], several CNN-based
architectures have been proposed [98]. One of the key components is the extraction of powerful
and discriminative features to represent faces, either by leveraging on pre-trained networks [99] or
by designing customized architectures [53]. While earlier methods combined facial representations
with traditional classifiers [9, 43], current literature is focused on the design of deep attribute classi-
fiers trained with specific loss functions [31, 65]. In this context, the most widely used loss function
is the sigmoid cross-entropy loss, leading to a binary classification for each attribute [31]. Other
works have instead investigated the use of the euclidean loss to train the network, thus considering
the facial attribute classification as a regression problem [65]. As recently demonstrated, similar
performance can be achieved by using both solutions with minimal changes in the architectural
design [29].

2.5 Faces in artworks
While there is a vast corpus of work on face-related tasks on real images, only a few works
have studied the extraction of facial features from artistic images. Crowley et al. [16] proposed
to retrieve paintings using hand-crafted and pre-trained features either with a discriminative
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Fig. 2. Overview of face recognition and attribute detection networks.

dimensionality reduction technique or with Exemplar SVMs [55]. Other works have focused on
caricatures [1, 35, 36, 42] and cartoon recognition [59]. Among them, Hou et al. [35, 36] introduced
a novel benchmark for caricature recognition and an approach based on landmark localization
and representation. In this context, our work focuses on the domain shift between artistic and
photo-realistic images and exploits the integration of face recognition and face attribute detection.

3 LEARNING CROSS-DOMAIN FACE RETRIEVAL
As it is rarely feasible to find and annotate a variety of Doppelgängers from paintings, almost no
data exist for training a retrieval algorithm to find similar faces between the artistic and the real
domain. While sources of supervision are available on photo-realistic images, our method needs to
be aware of the domain shift between artistic and real images, which demands different feature
extractors and a domain adaptation strategy.
To address these challenges, we define a translation approach that generates artistic proxies of

real faces and lets us exploit the annotations of datasets containing real faces. Secondly, we address
the lack of training data by exploiting proxy tasks for which training data is available and which
share some of the underlying characteristics of our task. We employ face recognition (Figure 2a)
and face attribute detection (Figure 2b), as they are closely related to the goal of finding similar
faces and define a learned retrieval strategy which lets us recover faces across the two domains.
Finally, we also discuss how our architecture can be combined with relevant feedback strategies to
consider suggestions from the user during the retrieval phase. As an additional result, we provide
explanation maps to highlight which regions of the retrieved results contribute most to the final
similarity.

3.1 Addressing the domain shift
To be robust to the domain shift between artistic and real images, we define a way of converting
real images to artistic proxies, which we will later employ as a data translation strategy to train the
retrieval network. Here, we take inspiration from style transfer techniques, firstly proposed in [24]:
given a realistic input face 𝐼𝑅 and an artistic face 𝐼𝐴, we build an artistic version of 𝐼𝑅 , called 𝐼𝐺 ,
which preserves the content of 𝐼𝑅 and the artistic style of 𝐼𝐴. The generated image can be built by
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back-propagating directly on its pixel values while minimizing a loss function 𝐿 that takes into
account both the artistic style of 𝐼𝐴 and the content of 𝐼𝑅 . Formally, pixel values of the input real
image are updated as

𝐼𝐺𝑖,𝑗 ← 𝐼𝐺𝑖,𝑗 − 𝜂
𝜕𝐿

𝜕𝐼𝐺
𝑖,𝑗

, (1)

where (𝑖, 𝑗) represents the coordinates of a pixel on the input image, and 𝜂 is the step size of
Stochastic Gradient Descent. To encode the artistic style of 𝐼𝐴, we focus on textures and employ
the Gram matrix obtained from the activations of a pre-trained CNN when applied on 𝐼𝐴. Given
a layer 𝑙 from the CNN, we define an ℓ2 loss function between the Gram matrix of the generated
image and that of the artistic image, as follows:

𝐸𝑠 =
1
4

∑︁
𝑖, 𝑗

(
G𝑙 (𝐼𝐴)𝑖, 𝑗 − G𝑙 (𝐼𝐺 )𝑖, 𝑗

)2
, (2)

where G𝑙 denotes the Gram matrix obtained from activations at layer 𝑙 , and G𝑙 (·)𝑖, 𝑗 denotes its
element in position (𝑖, 𝑗). To encode the content of 𝐼𝑅 , and to make sure that the same content is
preserved in 𝐼𝐺 , we combine the previously defined loss with a regularization term built on top of
CNN activations. Given a layer 𝑙 , we define an ℓ2 loss function between raw activations as follows:

𝐸𝑐 =
1
2

∑︁
𝑖, 𝑗

(
F 𝑙 (𝐼𝑅)𝑖, 𝑗 − F 𝑙 (𝐼𝐺 )𝑖, 𝑗

)2
, (3)

where F 𝑙 denotes the activations at layer 𝑙 . By combining the style loss with the reconstruction
regularizer into the final loss (i.e. 𝐿 = 𝐸𝑠 + 𝛼𝐸𝑐 ), and exploiting appropriate pre-trained layers to
encode style and content, we obtain a style-transferred version of 𝐼𝑅 which matches the artistic
style of 𝐼𝐴. To encode multi-level and multi-scale information, we also combine the activations
extracted at multiple layers and define a separate loss function for each layer. We refer the reader to
Figure 4 for a visualization of some qualitative results of the aforementioned translation approach
and to Sec. 5 for implementation details.

3.2 Learning from face identities
Having obtained artistic proxies of real faces, we can train a similarity function which is aware of
the domain gap between artistic and real faces. Firstly, we employ the preservation of face identities
across domains as a proxy task. We employ a face recognition network 𝜙 (·) to extract face-level
features and a common embedding space, which is trained to recognize faces of the same identity
across the two domains. An overview of the face recognition branch is shown in Figure 2a.

To project the representations of artistic and real images in a common semantic space, we perform
a non-symmetric linear projection, followed by a ℓ2-normalization step, so that the embedding
space lies on the ℓ2 unit ball. When projecting, we also employ a residual connection which was
observed to slightly improve residual performance during our preliminary experiments. Formally:

𝑓𝑎 (𝐼𝐴,w𝑎,w𝜙 ) = ℓ2,𝑛𝑜𝑟𝑚 (w⊺𝑎 (1 + 𝜙 (𝐼𝐴,w𝜙 ))) (4)

𝑓𝑟 (𝐼𝑅,w𝑟 ,w𝜙 ) = ℓ2,𝑛𝑜𝑟𝑚 (w⊺𝑟 (1 + 𝜙 (𝐼𝑅,w𝜙 ))), (5)

where ℓ2,𝑛𝑜𝑟𝑚 is the ℓ2 normalization function. Being 𝐷𝜓 the output dimensionality of 𝜙 and 𝐷 the
dimensionality of the joint embedding space, w𝑟 and w𝑎 are 𝐷𝜓 × 𝐷 matrices which are in charge
of storing different weights for the artistic and real projection branches. w𝜙 indicates the weights
of the face recognition network 𝜙 .
Artistic and real faces can be compared in the joint embedding space by computing the dot

product (i.e. the cosine similarity) between their projections, so that the similarity between a (real)
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query face 𝐼𝑅 and an artistic face 𝐼𝐴 becomes

𝑠𝑖 (𝐼𝑅, 𝐼𝐴) = 𝑓𝑎 (𝐼𝐴) · 𝑓𝑟 (𝐼𝑅), (6)

where we drop the dependency on weights for brevity. The utility of the joint embedding space
is maximized when it exhibits suitable cross-domain matching properties, i.e. when distances in
the embedding space correspond to meaningful distances across the artistic and the real domain,
and when corresponding pairs are matched in the embedding space. When this is verified to some
extent, the embedding space acts as a bridge between the two domains and makes it possible to
retrieve artistic faces given real faces as queries.

In order to learn an embedding space with such properties, we leverage face recognition datasets
partially translated into the artistic domain using the strategy outlined in Sec. 3.1. We train the
parameters of the model according to a Hinge triplet ranking loss with maximum violation [22]
and margin 𝛼 , defined as

ℓ (𝐼𝑅, 𝐼𝐴) = max
ˆ𝐼𝐴

[
𝛼 − 𝑠 (𝐼𝑅, 𝐼𝐴) + 𝑠 (𝐼𝑅, ˆ𝐼𝐴)

]
+
+

+max
ˆ𝐼𝑅

[
𝛼 − 𝑠 (𝐼𝑅, 𝐼𝐴) + 𝑠 ( ˆ𝐼𝑅, 𝐼𝐴)

]
+
, (7)

where [𝑥]+ = max(0, 𝑥). In the equation above, (𝐼𝑅, 𝐼𝐴) is a matching artistic-real pair of faces
(such that the identity of the person in 𝐼𝑅 is the same of that in 𝐼𝐴), while ˆ𝐼𝑅 is a negative real
face with respect to 𝐼𝐴 (such that the person in ˆ𝐼𝑅 is different from that of 𝐼𝐴), and ˆ𝐼𝐴 is a negative
artistic face with respect to 𝐼𝑅 (such that the person in ˆ𝐼𝐴 is different from that of 𝐼𝑅). The two
terms contained in the loss require that the difference in similarity between the matching and the
non-matching pair is higher than a margin 𝛼 : in the first term, this is done by considering a real
anchor and matching or non-matching artistic images; in the latter, instead, an artistic image is
used as anchor.

3.3 Learning from semantic attributes
While preserving people identities across domains is a good proxy objective for retrieving similar
faces, the network described so far might be unable to maintain face attributes (i.e. hair style,
presence of glasses, age) in retrieved elements, as it focuses on face identification features rather
than considering properties of the face that might change over time. For this reason, we complement
the common embedding with attribute detection capabilities, to ensure that the correct attributes
are maintained in retrieved faces.

To this aim, we employ two attribute detection networks, one for the artistic and one for the real
domain. The structure of the attribute detection network we employ is shown in Figure 2b: we start
from a face recognition model and then feed the activations of its last layer to 𝑛 identical branches,
each in charge of predicting the presence of an attribute. In our implementation, each branch is a
composition of four fully connected layers, the last having an output size of two. Each branch is
then trained, via a categorical cross-entropy loss, to predict the presence of the 𝑖-th attribute2.

At test time, given predictions from the two attribute networks, we binarize them by tresholding,
so to obtain a binary vector with length 𝑛 for each image, and compute a similarity function by
means of their Hamming distance as follows:

𝑠𝑎 (𝐼𝑅, 𝐼𝐴) = 1 − H(𝛾 (𝐼
𝑅), 𝛾 (𝐼𝐴))
𝑛

, (8)

2We refer the reader to Sec. 5 for implementation details.
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User

Fig. 3. Schema of the relevance feedback strategy. Given a query 𝐼𝑞 , an item labeled by the user as positive
𝐼𝑝 and one labeled as negative 𝐼𝑛 , we firstly change the position of the query according to the user feedback.
Then, we also change the position of the database items (gray dots) employing Feature Space Warping.

where𝛾 (·) indicates the binarized prediction from the attribute prediction network,H the Hamming
distance and 𝑛 the number of attributes.
The final retrieval function is a weighted combination of the similarity computed through

cross-domain face recognition and that computed by extracting semantic attributes:

𝑠 (𝐼𝑅, 𝐼𝐴) = 1 + 𝑠𝑖 (𝐼𝑅, 𝐼𝐴)
2

+ 𝜆𝑠𝑎 (𝐼𝑅, 𝐼𝐴), (9)

where 𝑠𝑖 (𝐼𝑅, 𝐼𝐴), resulting from a cosine similarity, is projected back to the same range of 𝑠𝑎 (𝐼𝑅, 𝐼𝐴),
i.e. [0, 1]. For a given 𝜆, the resulting similarity score jointly takes into account the similarity of
face traits and the similarity in attributes.

3.4 Interacting with user feedback
To foster the interactivity of the application and considering the subjectivity of the task, we also let
the user give a feedback on retrieved results. This is, in turn, used to iteratively improve the quality
of the retrieval following the preferences expressed by the user. In particular, the user is presented
with the first 𝑘 retrieved artworks and can refine the results by labelling a retrieved item either as
positive (when it is more satisfactory than the others) or negative (if completely unsatisfactory).

As our retrieval depends on a face recognition and a face attribute branch, and given that the face
attribute branch is easily controllable from the exterior (e.g. by asking the user which attributes he
prefers to see in retrieved results), we here focus on the face recognition branch of our architecture.
We employ two relevance feedback strategies to alter the embeddings of the query and database
items. Given an item 𝐼𝑝 labeled by the user as positive and an item 𝐼𝑛 labelled as negative, we firstly
change the position of the query 𝐼𝑞 in the embedding space according to the user’s feedback, as
follows:

𝑓𝑟 (𝐼𝑞) ← 𝛼 𝑓𝑟 (𝐼𝑞) + 𝛽 𝑓𝑎 (𝐼𝑝 ) − 𝛾 𝑓𝑎 (𝐼𝑛). (10)
Then, we also change the position of the database items employing Feature Space Warping [8, 12].
This consists in moving all data points towards or away the new query vector 𝑓𝑟 (𝐼𝑞) according to
their similarities with the user’s feedbacks. Formally,

𝑓𝑎 (𝐼 ) ← 𝑓𝑎 (𝐼 ) + 𝜂𝑒−𝑐 | 𝑓𝑎 (𝐼 )−𝑓𝑎 (𝐼
𝑝 ) | (𝑓𝑟 (𝐼𝑞) − 𝑓𝑎 (𝐼 ))

− 𝜂𝑒−𝑐 | 𝑓𝑎 (𝐼 )−𝑓𝑎 (𝐼𝑛 ) | (𝑓𝑟 (𝐼𝑞) − 𝑓𝑎 (𝐼 )), (11)

where 𝑐 is a bandwith parameter. The procedure above might be repeated at multiple feedback
iterations, until the user is satisfied with at least one of the 𝑘 retrieved results. A graphical overview
of the approach is depicted in Fig. 3.

In practice, as it will be reported in Sec. 6, in most cases the initial retrieved set already contains
sufficiently similar images and few feedback iterations are enough to retrieve a significant set of
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similar faces. Nevertheless the adoption of a relevance feedback strategy is useful for corner cases
in which retrieval fails and to accommodate user’s preferences.

3.5 Providing explanations
Even in the case that retrieved results are satisfactory before the user provides a feedback or
imposes any constraint on attributes, it is important to explain why a particular artistic face was
selected and presented to the user. This is particularly significant considering that the user might
struggle to perceive his own face, and thus the retrieved results, in an objective way.

Following recent works on Explainable AI [2] and techniques on prediction attribution [69, 72, 74,
80], for each retrieved item 𝐼𝐴 we provide the user with a saliency map that visually indicates which
regions of 𝐼𝑅 have mostly contributed to the final similarity score 𝑠 (𝐼𝑅, 𝐼𝐴), as an explanation of
why the particular image was selected and presented. Ideally, a pixel in the saliency (or explanation)
map E should be high if the corresponding pixel in 𝐼𝑅 has contributed to increase the final similarity,
lower otherwise.
To compute an explanation map E, we follow the Integrated Gradients approach [80] by con-

sidering the straight-line path from a black baseline image to 𝐼𝑅 and computing the gradients of
the similarity score at all points along the path. Integrated gradients are obtained by accumulating
these gradients. Specifically, a pixel (𝑖, 𝑗) in E is computed as the path integral of the gradients
along the straight-line path from 0 to 𝐼𝑅 (𝑖, 𝑗), i.e.

E𝑖, 𝑗 = 𝐼𝑅𝑖,𝑗 ·
∫ 1

𝛼=0

𝜕𝑠 (𝛼𝐼𝑅, 𝐼𝐴)
𝜕𝐼𝑅
𝑖,𝑗

𝑑𝛼. (12)

Given the structure of our retrieval network, the computation of the partial derivative in Eq. 12
requires to back-propagate on both the face identity branch of the architecture and the face attribute
branch of the network, thus providing an explanation which takes into account the dual nature of
the similarity function.

4 DATASETS
To train and evaluate our model, we use – and in some cases extend – different datasets which
contain real photos and portraits of people of known identities. To further validate our proposal,
we also collect a large set of paintings containing people faces that can be used in real scenarios in
which the corresponding portrait of a person is not known in advance.
Celeb-A [52]. This dataset contains more than 200, 000 face images belonging to 10, 177 different
celebrities. Each image is annotated with 40 facial attributes ranging from the gender and hair style
of the person to the presence of specific accessories such as eyeglasses, hat, or earrings. Since its
size is sufficiently large to train a neural network, we employ this dataset to address the domain
shift between artistic and real faces and to train the proposed architecture. We use the predefined
training, validation, and testing splits, where identities do not overlap. To address the domain shift,
we create a copy of this dataset where each image is converted into an artistic representation of
itself using the style transfer strategy described in Sec. 3.1. For each image, we apply the style of
a randomly selected painting from WikiArt3 (i.e. different images of the same identity are style-
transferred with a different painting) and use the annotations of identity and attributes to train the
two branches of our architecture. Sample results of the style transfer performed on Celeb-A are
shown in Figure 4.
WebCaricature [35, 36]. This dataset contains real photos and caricatures of 252 different subjects.
For each person, the number of caricatures ranges from 1 to 114, while the number of real photos
3https://www.wikiart.org/

https://www.wikiart.org/
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Content Style Result Content Style Result Content Style Result Content Style Result

Fig. 4. Sample results of the style transfer strategy for addressing the domain shift between real and artistic
faces. Real photos and paintings come from Celeb-A and WikiArt, respectively.

from 7 to 59. Overall, the dataset contains 6, 042 caricatures and 5, 974 photos. In our experiments,
we use the entire set of caricatures as test set and the real photos as queries to test the effectiveness
of our approach in the case of caricatures.
IIIT-D Sketch [6]. It comprises real photos and sketches of 238 different subjects. For each person,
a single sketch, drawn by a professional sketch artist, is available. Also for this dataset, we use all
238 sketches as test set and the corresponding real photos as queries, thus testing our solution in
the case of sketches.
DeviantArt Faces. This is a dataset that we collect and release as part of this work. It features
portraits from the DeviantArt website4, which contains art images produced by the users, divided
in different categories (e.g. photography, traditional art, cartoons). On this website, many portraits
of well known figures, especially celebrities, are available and can be used for this task. In general,
images vary from oil or acrylic painted portraits to sketches, and lack of a photo-realistic quality.

To create the dataset, we start from the set of portraits described in [16] containing 1, 088 images,
one for each person, collected from DeviantArt. Since only the original image URLs are provided,
we discard all identities for which the artistic image is no longer available obtaining a starting set
of 617 portraits. We then extend this set of images by collecting new portraits of different people
manually downloading them from this website. Overall, we obtain a set of 1, 215 different identities
for which a single portrait is collected. For the real counterpart, we download 5 different photos
from Google Images for each identity that we manually validate to ensure the identity preservation
and avoid errors. Also for this dataset, we use the entire set of portraits as test set and the real
photos as queries.

Even though this dataset contains artworks instead of caricatures or sketches, it still cannot be
used to fully test our target task, as it deals with a paired setting in which given a real image artistic
portraits of the same person can be retrieved. Our task, instead, deals with an unpaired setting in
which given a real face it is only possible to retrieve similar artistic faces.
WikiArt Faces. To qualitatively validate our solution in a real and unpaired scenario, we also
collect a large set of paintings from WikiArt in which at least one face is present. To extract face
bounding boxes, we use a deep learning-based face detector [97] that experimentally works well
also on less realistic images. Then, we manually validate all detected faces, removing any false

4https://www.deviantart.com/

https://www.deviantart.com/
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positive detection. Overall, we collect 15, 116 artistic faces from paintings of different styles and
periods. As previously mentioned, we release both DeviantArt Faces and WikiArt Faces.

5 IMPLEMENTATION DETAILS
Before presenting the experimental evaluations and their corresponding results, we here provide
implementation and training details of our face retrieval approach.
Face detection. The first stage of our pipeline consists of the detection of the user face. Similarly,
all database images are firstly offline fed through a face detector [97] that extracts a bounding
box for each detected face. We apply the same face detector for both artistic and real images as
we found face detections to be quite reliable on both domains. In our experiments, we keep all
detected faces with a lower edge size of at least 100 pixels. To include the whole head, we extend
face bounding boxes by a factor of 0.4.
Style-transferred art proxies. To generate art proxies from real faces, we employ a pretrained
VGG-19 [73] and extract features from layers conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1
to encode the artistic style, and from layer conv4_2 to encode the content of the real image. The
relative weight 𝛼 of content and style loss is set to 0.02. The generated face 𝐼𝐺 is initialized with the
realistic face 𝐼𝑅 . During the update of 𝐼𝐺 , all CNN parameters are kept fixed, and we backpropagate
the loss only with respect to the pixels in 𝐼𝐺 , using a L-BFGS optimizer [100] and clamping 𝐼𝐺

between 0 and 1 at each iteration. We manually check the generated images to ensure that they
have sufficient visual quality and repeat the generation with a different artistic image when needed.
Noticing that bad visual quality is often associated with an high loss during the generation, we
discard a sample and repeat the random choice until the loss is always lower than a threshold. In
our experiments, we set this threshold to 40.0 as it generally corresponds to good generated results.
Face embeddings. To extract face feature vectors, we use and compare different face recognition
networks, namely: SphereFace [50], VGG-Face [60], LightCNN [94], and VGG-Face-2 [10]. The
feature embedding sizes respectively are of 512, 4096, 256, and 2048. For the Light-CNN network,
we use its variants composed of 9 and 29 layers. For the VGG-Face-2, instead, we use two different
versions of the model: one based on ResNet-50 [32], while the other based on SE-ResNet-50 with
squeeze-and-excitation blocks [33]. We employ the implementations provided by the authors, when
available.
Attribute prediction. We test the usage of two separate attribute prediction models, one for
artistic images and one for real photos, and that of a shared one. In our experiments, we train
the two separate models by using real photos and style-transferred images from Celeb-A, each
of them annotated with binary attributes. When employing a shared prediction model, instead,
we train it on both real and style-transferred images. The network structure consists of 𝑛 = 40
identical branches, one for each facial attribute. Starting from the feature vector coming from a
face recognition network, each branch is composed of four fully connected layers having output
sizes of 1024, 512, 64, and 2. We use dropout after the first and second layer with a probability of
0.2 and 0.4, respectively. Also for this model, we extract face feature vectors from different face
recognition models.
Training details. To train all our models, we employ the Adam optimizer [41]. For face retrieval,
we use an initial learning rate of 10−5 decreased by a factor of 0.1 when recall metrics on validation
set stop improving. When finetuning the whole face embedding model, we instead use a learning
rate of 10−6. The margin of the Hinge ranking loss is set to 0.1. For attribute prediction, we employ
an initial learning rate of 10−4 decreased by a factor of 0.8 every 3 epochs. For all our experiments,
we use a batch size of 32.
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Table 1. Face recognition branch performance (Recall@k) on Celeb-A, WebCaricature, IIIT-D Sketch, and
DeviantArt Faces.

Celeb-A WebCaricature IIIT-D Sketch DeviantArt Faces

Face Embedding Emb. Size Finetuning R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SphereFace 512 ✗ 30.2 44.0 50.4 22.9 40.9 49.3 29.9 57.3 67.5 3.0 7.1 10.4
✓ 33.0 46.9 52.8 26.8 45.7 54.2 31.6 62.0 69.7 3.8 9.5 13.2

LightCNN-9L 256 ✗ 69.2 80.7 83.8 69.0 84.7 88.8 57.7 81.6 89.7 19.3 31.9 38.7
✓ 69.6 80.8 84.2 69.3 85.0 89.0 57.7 81.2 90.6 19.6 32.5 39.6

VGG-Face 4096 ✗ 70.1 82.7 86.2 70.9 87.2 91.6 61.1 86.8 91.5 20.5 37.8 46.4
✓ 77.7 88.2 90.9 75.2 89.7 93.0 61.5 87.2 90.2 26.5 45.3 54.3

LightCNN-29L 256 ✗ 87.8 92.4 93.6 82.2 91.6 94.1 52.6 75.6 83.8 35.1 51.9 59.4
✓ 88.6 93.2 94.1 82.5 92.5 94.8 55.1 78.6 86.3 36.3 55.1 62.9

VGG-Face-2 2048 ✗ 90.5 94.4 95.2 90.1 96.4 97.6 66.7 88.5 92.3 45.7 65.4 73.1
(ResNet) ✓ 90.9 94.6 95.3 89.6 96.1 97.7 63.7 88.5 93.2 45.9 65.6 73.4

VGG-Face-2 2048 ✗ 91.1 94.6 95.3 91.6 97.4 98.5 60.7 87.6 92.7 47.6 67.0 74.8
(SE-ResNet) ✓ 91.5 94.8 95.5 91.3 97.2 98.2 58.1 86.3 93.6 47.9 67.1 74.8

Celeb-A WebCaricature DeviantArt Faces
Query Top-3 Retrieved Results Query Top-3 Retrieved Results Query Top-3 Retrieved Results

Fig. 5. Top retrieved results from Celeb-A, WebCaricature, and DeviantArt Faces from the face recognition
branch (𝜆 = 0).

Relevance feedback. The parameters of the relevance feedback algorithms are respectively set to:
𝛼 = 0.8, 𝛽 = 0.1, 𝛾 = 0.1, 𝜂 = 0.5, 𝑐 = 0.8.

6 EXPERIMENTAL RESULTS
In the following, we first evaluate the performance of the two branches of our architecture in
presence of the artistic domain gap, and then assess the quality of the retrieved results in the final
application scenario, also in combination with the user’s feedback.

6.1 Face retrieval
We evaluate the performance of the embedding space trained on the recognition of face identities,
by ablating our approach and removing the face attribute networks. We use real faces as query and
artistic or style-transferred images as database items. Table 1 shows the performances in terms
of Recall@k (k=1, 5, 10) when finetuning the whole feature face recognition network and when
training only the non-symmetric linear projections with residuals. For completeness, results are
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Table 2. Facial attribute prediction accuracy on Celeb-A.

Accuracy (%)

Model Training Set Real photos Style transfer

VGG-Face
Real

88.9 85.2
VGG-Face-2 (ResNet) 88.5 86.3
VGG-Face-2 (SE-ResNet) 87.7 85.8

VGG-Face
Style Transfer

88.7 87.2
VGG-Face-2 (ResNet) 87.9 87.0
VGG-Face-2 (SE-ResNet) 87.1 86.3

VGG-Face
Joint

88.8 87.0
VGG-Face-2 (ResNet) 88.4 87.0
VGG-Face-2 (SE-ResNet) 87.4 86.4

reported for all the face recognition backbones we employ and on Celeb-A, WebCaricature, IIIT-D
Sketch, and DeviantArt Faces. For fairness, in the case of Celeb-A we remove the style-transferred
version of the query from the set of retrievable elements.

We observe that our strategy for addressing the domain shift can produce significantly effective
results on face recognition (with R@1 greater than 90% on some backbones), and further notice
that fine-tuning the backbone is generally beneficial. Analyzing the different backbones, VGG-
Face-2 provides the best performance, followed by LightCNN. SphereFace, instead, provides the
worse performance on our setting, with a R@1 barely over 30%. As it can be seen, the impact of
finetuning the backbone is particularly evident in the case of backbones which have low or medium
effectiveness. When comparing the performance of the different datasets, instead, it is noticeable
that recalls on IIIT-D Sketch and DeviantArt Faces are generally lower than those on Celeb-A and
WebCaricature: this is explained by the smaller average number of relevant items for each query
(i.e. only one for IIIT-D Sketch and DeviantArt Faces, around 20 for Celeb-A and WebCaricature).

Figure 5 qualitatively evaluates the performance of the branch by showing the top-3 retrieved
results when using queries from Celeb-A, WebCaricature and DeviantArt Faces. As it can be seen,
the branch is capable of preserving the identity of the query most of the times, although as expected
it sometimes fails to preserve the facial attributes of the query.

6.2 Face retrieval using semantic attributes
In Table 2, we report the accuracy of the attribute prediction branch of our architecture on Celeb-A.
We evaluate the performance of the two attribute prediction networks (one trained on real faces,
one on style-transferred versions) on both real and artistic images, and test also the usage of a
shared attribute prediction network for both real and artistic images. While VGG-Face tends to
perform better in almost all settings, we notice that the obtained results are positive in terms
of overall accuracy and always greater than 85% for both real and artistic settings and with all
considered backbones. Further, we also notice that using a shared backbone does not decrease
performances significantly.
Further, in Table 3 we employ our full architecture and evaluate the role of the two branches

by varying the relative weight of the face recognition and the attribute prediction branches. Also
in this case we test on Celeb-A, WebCaricature, IIIT-D Sketch, and DeviantArt Faces, and report
Recall@1 for face recognition, as well as the attribute accuracy of the first retrieved element with
respect to the query. As it can be seen, increasing 𝜆 up to 0.2 generally leads to boosting the attribute
accuracy of the retrieved elements, without significantly loosing in terms of face recognition, thus
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Table 3. Weighted retrieval results on Celeb-A, WebCaricature, IIIT-D Sketch, and DeviantArt Faces. Results
are reported for different 𝜆 values in terms of recall and attribute preservation accuracy.

𝝀 = 0.0 𝝀 = 0.1 𝝀 = 0.2 𝝀 = 0.5 𝝀 = 1.0 𝝀 = 5.0 𝝀 = 10.0

Face Embedding R@1 Acc. R@1 Acc. R@1 Acc. R@1 Acc. R@1 Acc. R@1 Acc. R@1 Acc.

Celeb-A

SphereFace 33.0 85.4 34.1 87.7 32.8 88.9 26.0 90.5 17.3 91.3 6.2 91.7 6.1 91.7
LightCNN-9L 69.6 86.5 70.0 87.4 69.5 88.1 63.6 89.3 52.3 90.4 13.5 91.8 9.1 91.9
VGG-Face 77.7 86.8 77.4 87.8 75.7 88.5 68.0 89.6 54.0 90.6 13.6 91.8 9.9 91.8
LightCNN-29 88.6 86.8 88.6 87.6 88.1 88.1 84.2 89.1 74.4 90.0 21.1 91.8 10.8 91.8
VGG-Face-2 (ResNet) 90.9 86.9 90.7 87.6 90.1 88.2 85.5 89.2 73.7 90.2 17.9 91.8 10.6 91.8
VGG-Face-2 (SE-ResNet) 91.5 86.7 91.2 87.6 90.5 88.2 85.7 89.3 73.8 90.3 17.7 91.9 10.7 91.9

WebCaricature

SphereFace 26.8 85.0 30.2 89.3 30.6 91.5 26.4 94.6 19.0 96.4 10.9 97.4 10.9 97.4
LightCNN-9L 69.3 86.8 69.9 88.5 69.9 89.7 64.8 92.1 53.0 94.3 17.7 97.4 15.1 97.4
VGG-Face 75.2 87.6 75.5 89.3 73.9 90.5 67.3 92.8 54.3 94.7 19.6 97.3 16.7 97.4
LightCNN-29 82.5 87.1 82.7 88.5 82.6 89.5 77.5 91.7 65.0 93.8 22.5 97.3 16.9 97.4
VGG-Face-2 (ResNet) 89.6 87.5 89.3 88.8 88.2 89.8 81.2 92.0 67.2 94.2 20.6 97.4 17.5 97.4
VGG-Face-2 (SE-ResNet) 91.3 87.5 90.7 88.9 89.8 89.9 83.7 92.1 69.0 94.2 21.5 97.3 17.8 97.4

IIIT-D Sketch

SphereFace 31.6 84.0 35.9 84.6 37.6 88.2 31.6 80.6 24.4 92.1 8.5 93.3 8.5 93.3
LightCNN-9L 57.7 84.0 62.0 85.8 62.4 87.0 56.0 88.7 38.9 90.8 11.5 93.2 9.0 93.3
VGG-Face 61.5 85.3 62.0 86.3 62.4 87.1 56.8 88.6 43.2 90.4 9.8 93.2 7.7 93.3
LightCNN-29 55.1 84.5 54.7 85.8 56.4 87.1 50.4 88.7 37.6 90.6 11.5 93.2 8.5 93.3
VGG-Face-2 (ResNet) 63.7 85.0 64.1 86.0 63.2 87.0 52.6 89.2 35.0 91.4 9.4 93.3 8.1 93.3
VGG-Face-2 (SE-ResNet) 58.1 84.9 61.5 86.2 59.8 87.0 51.7 89.0 36.3 91.3 9.8 93.3 8.5 93.3

DeviantArt Faces

SphereFace 3.8 84.1 4.8 88.6 5.0 91.0 4.0 94.3 2.7 95.8 1.6 96.5 1.6 96.5
LightCNN-9L 19.6 85.1 20.3 87.6 20.2 89.0 17.4 91.9 11.6 94.2 2.9 96.5 2.4 96.5
VGG-Face 26.5 86.5 26.3 88.2 25.3 89.6 20.2 92.2 13.4 94.3 3.4 96.5 2.7 96.5
LightCNN-29 36.3 85.7 36.6 87.3 35.8 88.5 30.2 91.2 20.0 93.6 4.2 96.5 2.8 96.5
VGG-Face-2 (ResNet) 45.9 86.0 45.6 87.5 43.6 88.8 34.8 91.5 21.5 94.2 3.7 96.5 2.9 96.5
VGG-Face-2 (SE-ResNet) 47.9 86.0 47.3 87.5 45.1 88.7 35.2 91.4 21.8 94.0 3.9 96.5 3.0 96.5

obtaining better quality results in terms of the final similarity and validating the appropriateness
of combining face recognition and attribute prediction.

To validate the weighted retrieval approach on our target setting (i.e. that of a real museum), in
Figure 6 we use queries from the test set of Celeb-A and retrieve artistic faces coming fromWikiArt.
As it can be noticed, 𝜆 = 0.2 and 𝜆 = 0.5 offer the best result in terms of attribute preservation
without significant loss in terms of the overall face similarity. Retrieved paintings generally look
similar to the corresponding real queries and tend to preserve most of the facial attributes, in
addition to face appearance.
Additionally, we quantitatively evaluate how attributes are preserved in retrieved results. In

Table 4, we retrieve elements fromWikiArt Faces using our weighted retrieval and queries from the
test set of Celeb-A, and measure the attribute accuracy between the query and the top-1 retrieved
element. As it can be seen, increasing 𝜆 effectively increases the preservation of attributes also in
the case of real paintings.
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Query 𝜆 = 0.0 𝜆 = 0.2 𝜆 = 0.5 Query 𝜆 = 0.0 𝜆 = 0.2 𝜆 = 0.5 Query 𝜆 = 0.0 𝜆 = 0.2 𝜆 = 0.5

Fig. 6. Top-1 retrieved element from WikiArt Faces using weighted retrieval and different values of 𝜆.

Table 4. Top-1 attribute accuracy on WikiArt Faces using different values of 𝜆.

Accuracy for different 𝝀 values

Face Embedding 0.0 0.1 0.2 0.5 1.0 5.0 10.0

SphereFace 83.3 87.3 89.9 94.0 95.9 96.7 96.7
LightCNN-9 83.1 85.8 87.8 91.5 94.3 96.7 96.7
VGG-Face 83.7 86.4 88.4 92.1 94.5 96.6 96.7
LightCNN-29 83.1 85.4 87.3 91.2 94.0 96.6 96.7
VGG-Face-2 (ResNet) 83.1 85.5 87.6 92.0 94.7 96.7 96.7
VGG-Face-2 (SE-ResNet) 83.1 85.3 87.2 91.0 93.7 96.7 96.7

6.3 Relevance feedback and user interaction
Experimental results provided so far have shown that, when a good face recognition backbone
is chosen, the first retrieved element is generally similar enough to the query. However, as the
user is presented with the top-𝑘 retrieved elements in our application scenario, we also need to go
beyond the evaluation of the top-1 and assess the quality of the complete ranking. For this reason,
we evaluate the Average Precision (AP) of the predicted ranking, and how it changes when the
user interacts with the relevance feedback algorithm.
In the following experiments, we use a subset of the Celeb-A test set composed of a single

randomly selected image for each identity (i.e. 989 query images) and all style-transferred images of
the test set as retrievable items (i.e. around 18, 000 images). For WebCaricature, we instead perform
the experiments on the whole dataset. To simulate user interaction, at each iteration we provide
the relevance feedback algorithm with one positive item (randomly selected among images which
share the same identity with the query) and one negative item (randomly selected among images
which do not share the same identity with the query).

Firstly, we evaluate the proposed relevance feedback model through an ablation study. In Table 5
we report the Average Precision (AP) of the predicted ranking after 1, 5 and 10 relevance feedback
iterations, when employing three different variants of the proposed strategy: (1) Query Point
Movement (QPM), where at each iteration a new query is reformulated as the mean of positive
feedbacks, that corresponds to 𝛼 = 0, 𝛽 = 1.0, 𝛾 = 0, 𝜂 = 0; (2) Feature Space Warping (FSW)
without changing the query point, corresponding to 𝛼 = 1.0, 𝛽 = 0, 𝛾 = 0; (3) the full proposal, with
both Query Point Movement and Feature Space Warping. The experiments are conducted on both
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Table 5. Ablation study on relevance feedback hyper-parameters.

Parameters VGG-Face-2 (ResNet) VGG-Face-2 (SE-ResNet)

𝛼 𝛽 𝛾 𝜂 𝑐 1 5 10 1 5 10

Celeb-A

QPM 0.0 1.0 0.0 0.0 0.0 56.41 56.20 55.98 59.68 59.64 60.15
FSW 1.0 0.0 0.0 0.5 0.8 56.23 62.74 67.24 60.02 64.23 68.32
Ours 0.8 0.1 0.1 0.5 0.8 56.56 73.63 82.23 56.68 73.00 81.53

WebCaricature

QPM 0.0 1.0 0.0 0.0 0.0 47.07 46.60 46.79 50.17 50.36 50.72
FSW 1.0 0.0 0.0 0.5 0.8 58.94 62.15 65.67 61.49 64.34 67.43
Ours 0.8 0.1 0.1 0.5 0.8 71.10 81.93 86.51 72.13 81.73 85.71
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Fig. 7. Relevance feedback evaluation with different backbones on Celeb-A and WebCaricature (𝜆 = 0.2).

Celeb-A and WebCaricature datasets and by using the two versions of VGG-Face-2 (i.e. ResNet and
SE-ResNet). As it can be seen, our complete strategy leads to the best performance according to both
datasets and both considered backbones, with an overall AP over 80% after 10 relevance feedback
iterations. On the contrary, when employing only one of the relevance feedback components, the
final AP is generally lower than 60% and 70% for the QPM and FSWmodels respectively, confirming
the effectiveness of our proposal.

Then, in Figure 7, we show the AP of different backbones on Celeb-A and WebCaricature, after a
variable number of relevance feedback iterations. As it can be seen, the two versions of VGG-Face-2
have similar performances and obtain the best results on both datasets, with an initial AP of
48.5% (ResNet) and 48.6% (SE-ResNet) on Celeb-A, and 65.5% (ResNet) and 67.2% (SE-ResNet) on
WebCaricature. In both cases, the initial AP is further increased by 15 points after four relevance
feedback iterations (i.e. after the user has given four positive and four negative feedbacks), reaching
more than 70% and 80% on Celeb-A and WebCaricature respectively.
Additionally, in Figure 8 we show some qualitative examples of using attributes as a further

constraint to retrieval. In this case, the user is presented with the list of all possible attributes and
can constraint the retrieval so that the retrieved set contains samples with a given attribute.
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Query Top-1 Earrings Eyeglasses Query Top-1 Beard Hat Query Top-1 Big Nose Smiling

Query Top-1 Mustache Smiling Query Top-1 Earrings Hat Query Top-1 Hat Mustache

Query Top-1 Beard Big Nose Query Top-1 Eyeglasses Smiling Query Top-1 Eyeglasses Hat

Fig. 8. Weighted retrieval results with attribute constraints (𝜆 = 0.2).

7 PERSONART
The proposed retrieval algorithm has been used to build an interactive application that has been
placed in the Gallerie Estensi museum in Modena, Italy. Gallerie Estensi is an art gallery centered
on the collection of the Este family and houses a range of artworks executed by both notable and
local artists, mainly from the 17th century.

The interactive exhibition has been designed as the reproduction of a photo booth, in which the
visitor could enter to take a photo of himself and search for his lookalike through an interactive
application. To foster a natural interaction, we wall-mounted a small camera and a touchscreen
inside the photo booth and designed an application to guide the visitor in the process of capturing
the photo and navigating retrieved results. Once a visitor found a satisfactory painting, he could
print the result together with a map with guidance to reach the painting. For this purpose, a printer
was placed inside a hidden compartment of the booth and made accessible from the exterior through
a slot in the plasterboard, so that the visitor could pick up the printed sheet after leaving the booth.
Figure 9 shows pictures of the photo booth during a day with high turnout.

The application has been designed following a web-based approach and is run on a browser on
the client side. On the server side, instead, a Django server is responsible for generating views
and interacting with the retrieval algorithm, implemented in PyTorch. Since the retrieval phase
requires an asyncronous interaction between client and server, we also exploited Celery as task
queue manager. The flow of the application is visually summarized in Figure 10: after entering
personal details and accepting the terms of service, the user can visualize a preview of the video
stream coming from the camera and take multiple photos of himself, until reaching a satisfactory
result. The retrieval algorithm is then called asynchronously and candidate results are returned.
After eventually interacting to refine the result, the user is finally presented with a description of
the selected painting and the paper with indications is sent to the printer.

From the collection hosted at Gallerie Estensi, containing 95 pictures, we extracted 226 faces after
a manual verification step to remove false positives and occluded faces. Figure 11 presents sample
retrieval results obtained during the interactive exhibition on the Gallerie Estensi collection. As
can be seen, although the set of retrievable artistic faces was limited in size, the retrieval algorithm
was able to find similar faces across the artistic and the real domain.

As mentioned, we also endowed the retrieval algorithm with an explanation strategy to provide
the user with saliency maps that can help to justify retrieved results. Figure 12 reports six samples
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Fig. 9. Images of PersonArt, an interactive exhibition at the Gallerie Estensi of Modena, Italy.

Fig. 10. Screenshots from the flow of the web-based application behind PersonArt.

of explanation maps. As it can be observed by comparing the predicted maps with the two matching
faces, the strategy can provide a guide to understand which regions of the user’s face contributed to
the selection of a particular painting. For example, the middle face on the top row was paired with
the reported painting because of the eyebrows, the nose shape, and the location of the corners of the
mouth. Similarly, the painting on the right of the bottom row was selected because of similarities
with the eyebrows and mustaches of the user, rather than for the beard, which is less bushy than
that of the painting.

8 CONCLUSION
In this paper, we have presented a learned weighted retrieval strategy to find faces between
the artistic and the real domain, which was also applied as an interactive demo in a museum
environment. Our proposed architecture combines face identification and semantic attributes, in
a weighted retrieval strategy. Further, the user can interact with the application by providing
feedbacks on retrieved results, and by imposing constraints on the attribute space. Experiments,
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Painting Matching Users Painting Matching Users

Fig. 11. Retrieval results from the Gallerie Estensi collection.

Painting Face Explanation Painting Face Explanation Painting Face Explanation

Fig. 12. Explanation examples using the Integrated Gradients approach on the Gallerie Estensi colleciton.

conducted on an augmented version of Celeb-A, WebCaricature, IIIT-D Sketch, and on two novel
datasets we have collected, have demonstrated the effectiveness of the proposal in both synthetic
and real settings.
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