
23/09/2024 17:18

HePREM: A Predictable Execution Model for GPU-based Heterogeneous SoCs / Forsberg, B.; Benini, L.;
Marongiu, A.. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - 70:1(2021), pp. 17-29.
[10.1109/TC.2020.2980520]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

1

HePREM: A Predictable Execution Model for
GPU-based Heterogeneous SoCs

Björn Forsberg∗, Luca Benini∗, Fellow, IEEE , Andrea Marongiu†, Member, IEEE

Abstract—The ever-increasing need for computational power in embedded devices has led to the adoption of heterogeneous SoCs
combining a general purpose CPU with a data parallel accelerator. These systems rely on a shared main memory (DRAM), which
makes them highly susceptible to memory interference. A promising software technique to counter such effects is the Predictable
Execution Model (PREM). PREM ensures robustness to interference by separating programs into a sequence of memory and compute
phases, and by enforcing a platform-level schedule where only a single processing subsystem is permitted to execute a memory phase
at a time. This paper demonstrates for the first time how PREM can be applied to heterogeneous SoCs, based on a synchronization
technique for memory isolation between CPU and GPU plus a compiler to transform GPU kernels into PREM-compliant codes. For
compute bound GPU workloads sharing the DRAM bandwidth 50/50 with the CPU we guarantee near-zero timing varibility at a
performance loss of just 59%, which is one to two orders of magnitude smaller than the worst case we see for unmodified programs
under memory interference.

Index Terms—Real-time and embedded systems, Languages and compilers, Graphics processors, Memory management, Reliability,
Runtime environments, Parallel systems

F

1 INTRODUCTION

IN the last years both industry and academia have
been working towards the goal of autonomous vehi-

cles and systems [1]. This requires embedded computers
capable of ensuring that the data needed for the vehicle
to take decisions autonomously is computed with strict
real-time guarantees, as failure to do so could cause acci-
dents and damage to person or property. Autonomous sys-
tems rely on algorithms which require significant comput-
ing power. Bleeding-edge demonstrators for autonomous
driving (AD) systems are capable of managing prompt,
compute-intensive elaboration of sensor data by employing
powerful in-trunk compute servers [2]. However, as of
today such servers are extremely power-hungry, making
them practically impossible to commercialize and calling
for solutions based on orders-of-magnitude more energy-
efficient embedded systems-on-chip [1].

In recent years, there has been a push towards heteroge-
neous SoCs for commercial off-the-shelf (COTS) embedded
computing, which combine a general-purpose CPU with a
programmable, data parallel accelerator such as a GPU [3]
[4]. While these systems are capable of sustaining adequate
GOps/W targets for the requirements of autonomous nav-
igation workloads, their architectural design is optimized
for best-effort performance, not at all for timing predictabil-
ity. To allow for system scalability to hundreds of cores,
resource sharing is a dominating paradigm at every level
in these SoCs. In particular, it is commonplace to employ
a globally shared main memory architecture between the
CPU and GPU. This has large benefits in energy savings [5]
due to reduced replication of power hungry hardware, and

• B. Forsberg is with the Integrated Systems Laboratory, ETH Zürich,
Zürich 8092, Switzerland. E-mail: bjoernf@iis.ee.ethz.ch.

• L. Benini is with the Electrical, Electronic, and Inforamtion Engineering
Department of the University of Bologna, Bologna 40126, Italy, and
with the Integrated Systems Laboratory, ETH Zürich, Zürich 8092,
Switzerland. E-mail: lbenini@iis.ee.ethz.ch.

• A. Marongiu is with the Department of Physics, Informatics and Math-
ematics of the University of Modena and Reggio Emilia, Modena, Italy.
Email: andrea.marongiu@unimore.it

improves programmability, as programmers do not need to
handle data movements between two discrete memories [6]
when offloading computation to the accelerator. On the other
hand, the execution of CPU and GPU programs becomes
susceptible to interference from each other’s accesses to main
memory (and from other peripherals’ accesses), with signif-
icant impact on the execution time of real-time tasks [7] [8].

Custom-designed hardware for real-time systems [9]
[10], is not always a viable solution, as it generally lags
severely behind in performance and cost compared to COTS
systems, due to longer time-to-market and limited produc-
tion volumes, which prevent access to the latest CMOS tech-
nology nodes. Therefore, software mechanisms that enable
timing predictable execution on COTS hardware are of high
interest. Certification authorities are in the process of defin-
ing software development guidelines aimed at enabling the
long-awaited adoption of multi-core processors in safety-
critical domains [11]. Here, the concept of robustness to
interference is central, and achieved through strict time par-
titioning. As software partitions are guaranteed to execute
in isolation, the worst-case execution times (WCET) of each
partition can be computed/measured in isolation, greatly
reducing the pessimism in traditional timing analysis.

The predictable execution model (PREM) [12] has been
proposed as a solution to deliver robustness to interference in
multi-core CPU systems sharing memory at various levels in
the hierarchy. At its core, PREM enables timing predictable
execution on non-predictable hardware by separating pro-
grams into intervals of Memory and Compute phases, which
can be independently scheduled. Shared main memory is
guaranteed to be only accessed during the Memory Phase and
the system is scheduled such that only a single processing
element executes a Memory phase at a time. By transforming
the original program such that the Memory phase prefetches
all required data into private memory, the Compute phase is
able to operate without any external memory interference.

This paper presents a novel methodology to general-
ize PREM for timing-predictable execution on heteroge-
neous (CPU+GPU) COTS architectures with a single shared

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

2

DRAM. To simplify programmability, we build upon recent
proposals for directive-based programming models [13],
[14], [15] – which are more abstract than the low-level,
involved coding style of CUDA or OpenCL – and apply the
required transformations transparently to the application
developer, as part of the compilation process. Specifically,
we design PREM support on top of OpenMP [13], with an
extended offloading runtime that interacts with a synchro-
nization library – called GPUguard – that orchestrates the
memory accesses between the CPU and the GPU.

Initial explorations have been presented in [16], while
we make the following contributions:

• We describe novel compiler transformations to create
optimized and independently schedulable PREM mem-
ory and compute phases, the key building block to
achieve robustness to interference without having to idle
the GPU when it cannot access the shared memory;

• We describe a software-controlled system-level mem-
ory scheduling infrastructure for predictable execution
on heterogeneous SoCs, and extensively document the
performance impact of memory scheduling;

• We present a full implementation of the proposed tech-
niques based on the LLVM compiler infrastructure and
the Linux kernel;

• We present an extensive evaluation of the proposed
techniques, running on an NVIDIA Tegra X1 and pro-
viding detailed insight on their effect on timing pre-
dictability and performance.

The experimental results show that our solution is able
to limit the execution time variance of GPU kernels to near-
zero (max 3.5%), fully achieving the desired robustness to in-
terference effect. For compute bound GPU workloads sharing
the DRAM bandwidth 50/50 with the CPU this is achieved
at an average performance loss of 59%, with respect to an
interference-free theoretical best-case execution.

The paper is organized as follows: Sec. 2 discusses
basic notions and assumptions. Sec. 3 describes our Com-
piler/Runtime support and Sec. 4 its evaluation in terms of
predictability and performance. Sec. 5 presents related work,
and Sec. 6 concludes.

2 BACKGROUND

2.1 Architectural Template and Hardware Platform

As an architectural template we consider a System-on-Chip
(SoC) that consists of a CPU and a GPU complex, sharing
a single DRAM (the global memory). This means that all
data transfer occurs on-chip, and is subject to memory
interference. We consider a multi-core CPU, with at least
one level of private caches. A miss in the last-level cache
(LLC) is redirected to the main memory controller. The GPU
complex consists of many simple cores grouped in clusters.
Within a cluster each core has access to a private L1 cache,
as well as a shared software-managed scratchpad memory
(SPM). The GPU complex may consist of any number of
such clusters. Several clusters share a hardware-managed
L2 cache. A miss in this cache is also redirected to the main
memory controller, such that cache misses from different
complexes may interfere with each other, leading to delays
that are difficult to predict. In practice, most commercial
systems adhere to this template [4], [17].

Fig. 1: A schematic view of how the memory separation
property of PREM is enforced.

2.2 The Predictable Execution Model (PREM)
The Predictable Execution Model (PREM) was originally
proposed in the context of single-core CPUs [18], to pro-
vide robustness to interference from peripheral (I/O) devices
sharing the main memory. The concept was later extended
to counter inter-core interference in multi-core CPUs [12].
PREM [18] separates programs in scheduling intervals that
can represent memory or compute phases. By scheduling
the system such that only a single actor is executing a mem-
ory phase at a time, PREM ensures that this memory phase
will not experience any interference. As a consequence,
the WCET of each phase can be calculated or measured
in isolation, leading to system composability and greatly
reduced pessimism in the timing analysis.

A PREM interval maps to a region of code whose mem-
ory footprint is small enough to fit into the local memory,
such as a private cache or SPM. Within the interval, the
execution is split into three phases, Load, Execute, and Store
(LES), where only the Load and Store phases access the global
memory, transfering the required data to/from the local
memory. These two phases together make up the PREM
Memory phase. The Execute phase, which coincides with the
PREM Compute phase, can then operate on the local data
without accessing the shared memory. Separating memory
and compute phases enables the execution to continue even
when the program does not have access to the global mem-
ory, minimizing the time the task would otherwise idle.

Previous work on PREM has been focused on the CPU,
where PREM can be enforced at runtime by scheduling
the Memory and Compute phases individually using the
system scheduler. On heterogeneous systems, the problem
becomes more involved, as a) the PREM schedule must be
enforced within both the CPU and the accelerators locally,
and b) between all the CPU and accelerators in the system
globally. Fig. 1 shows a breakdown of a CPU+GPU heteroge-
nous PREM system in discrete time steps. In the interval
[t0, t1) the GPU is permitted to access DRAM, and uses this
time to load data from the DRAM to the local memory (in
this case the SPM). Meanwhile, the CPU is not permitted
to access DRAM, but is able to continue execution by using
data in its local memory (e.g, L1 cache). In the next time step
[t1, t2) the roles are exchanged, and the GPU is working on
the local data it fetched during the previous time step, while

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

3

the CPU is permitted to load/store new data to/from its
local memory.

To ensure CPU and GPU memory transfers do not
interfere with each other, we use a time-triggered global
arbitration mechanism, that can be implemented with timer
interrupts. At these points, the two devices synchronize
with each other to determine which device can access mem-
ory during the next period. The frequency at which these
timer interrupts happen can impact the execution time of
the CPU and GPU programs negatively if they are not
well aligned to the actual execution time of the workload,
as they would idle until the synchronization occurs. The
optimization of these frequencies is out of the scope of this
paper, but we provide insights on this through the use of
two different timer configurations: best fit and fair. In the
former, the timers are perfectly aligned with the execution
time of the GPU program, and in the latter they are set such
that CPU and GPU memory time allocations are equal.

3 HEPREM DESIGN AND IMPLEMENTATION

3.1 HePREM Design Decisions
HePREM is based on five key design decisions:
Real-time coding standards – As the target of PREM is the
enabling of real-time execution, we focus our efforts towards
code written in accordance with best practices for real-time
systems. Such best practices have been designed to enable
certification of safety critical software in diverse domains,
such as the MISRA guidelines for the Automotive industry
[19]. One of the main benefits of code written in accordance
with such guidelines is that it is subjectible to static analysis,
i.e., program behavior can be determined at compilation
time. For HePREM, this means that exact analysis tools can
be used in place of, e.g., profile-based techniques.
High Level Language Compilation – The push towards
the adoption of directive-based programming models such
as OpenMP and OpenACC in the context of GPGPUs is
constantly growing, as traditional languages like OpenCL
and CUDA offer a low-level programming style. OpenMP
ensures that also the non-expert user can easily code the de-
sired functionality by just abstractly indicating which loops
are to be offloaded to the accelerator1. Not only is this per-se
a valuable feature worth to preserve, it also gives the com-
piler the freedom to determine the best work partitioning
and data movements for predictability, without conflicting
with such low-level decisions made by the programmer.

We focus on the subset of OpenMP directives that
are suitable for execution on GPUs, i.e., Single-Instruction
Multiple-Data (SIMD) execution. These are expressed using
parallel for loops, that are distributed over the GPU
clusters using OpenMP teams. Based on the findings of [20],
we focus our efforts on statically scheduled loops, as these
perform significantly better than dynamic scheduling on
GPUs2, and achieve similar performance as native CUDA.
PREM Enforcement Granularity – Predictability can be en-
forced at different granularities in the system, most promi-
nently at offload boundaries, or continously throughout the
execution of GPU kernels. However, implementing PREM
synchronization at the boundaries of a whole offloaded task
has, in our opinion, several drawbacks.

1. Advanced directives provide detailed control to expert users.
2. HePREM also supports reductions, tuning of num threads and

num teams (corresponding to CUDA blockDim and gridDim), and other
OpenMP clauses that can be applied to parallel for loops.

Fig. 2: The analysis and transformation steps taken as part
of the PREM-enabling compiler passes.

First, it is not possible to control the granularity of
the PREM phases without transforming the kernel code,
either by inserting data movements within the kernel, or
by splitting the program into multiple kernels and orches-
trating data-movements on a per-offload basis. Controlling
the granularity is key, as GPU kernels could otherwise block
the CPU such that it is starved for memory. Second, the local
memory of the GPU is cleared at the end of an offload,
and not addressable from the host, i.e., data can not be
copied into the scratchpad using the memcpy functionality.
Thus, even if the program is split into multiple kernels, the
data movements would still be performed by the kernel
code itself. Third, splitting the kernels would incur further
offloading overhead, as the GPU would have to be recon-
figured for every offload. This operation is also part of the
closed-source driver, and can not be relied on for timing
predictable execution, unless given by the manufacturer.

In contrast, PREM intervals can be easily created from
loop structures in the kernel code itself, through the process
of tiling. By treating a loop iteration as an atomic unit to
construct PREM intervals, they can be grouped together
into blocks that are sized to perfectly match the local stor-
age. In light of this, we argue that the most reasonable
granularity to enforce predictability is continously over the
kernel execution, by explicitly encoding the PREM phases
and synchronization points within the GPU kernel3.
Staging data through the Scratchpad – PREM can be
implemented at any level of the memory hierarchy. In the
provided architectural template, there are two main options
available for the GPU, the SPM (CUDA shared memory) and
the hardware-managed last-level cache (LLC). While it has
been shown [21] that GPU caches could in theory be used
for PREM, it has also been shown that kernels need to be
well engineered to ensure a cache-friendly access patterns.
Even after this, the random replacement policy is still a great
hurdle to guarantee that data is locally available. As the
main goal of the presented work is to achieve predictability,
we have opted for the software managed SPM, that is not
subject to un-controllable hardware eviction policies.
CPU+GPU Synchronization – To exchange the memory
access token between the CPU and the GPU, explicit syn-
chronization is required. However, as no current generation
GPU system include any hardware-supported way to do
this, we have decided to synchronize over shared memory.
This is a portable approach available on any platform, and
does not require any particular hardware support.

3.2 HePREM Compiler
The compilation flow consists of a three-phase process, as
presented in Fig. 2. The Analysis phase devises a tiling factor

3. The offloading point also requires protection to avoid interference
due to OS scheduling jitter, i.e., interference from other tasks competing
for processor time, but this no longer requires access to the proprietary
drivers. This is further explained in Sec. 3.3.2.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

4

Fig. 3: Original loop

for the loops such that the memory footprint of each tile fits
into the local memory. The Refactoring phase applies loop
tiling based on the selected tiling granularity and inserts
a synchronization skeleton to enforce the PREM isolation
property. The Transformation phase specializes the original
code to generate individual PREM phases. This section de-
scribes these steps in further detail. To understand how the
compiler operates, it is useful to have an understanding of
the control flow graph (CFG) of the code as it goes through the
different transformation stages of the compilation process.
Consider Fig. 3 that shows both C code and the CFG of
a simple loop. In this representation, the loop is defined
by an initial assignment, followed by the loop condition, and
finally the increment. The code executed within the loop is
referred to as the loop body. Within the compiler, this code is
represented as a directed graph of basic blocks, where a basic
block is a sequence of instructions where the terminating
instruction is the only branch instruction. The destination
of the terminating branch instructions of each basic block
provide the edges between the basic blocks of the CFG.

3.2.1 Analysis
The first Analysis step is to identify code regions that
can be turned into PREM intervals, and determine their
memory footprint such that the largest possible regions
are selected. As OpenMP offloading is based on loops,
the footprint analysis focuses on determining the memory
footprint of loops. For this purpose, Scalar Evolution (SCEV)
[22] analysis is employed (built into LLVM), which is able to
determine how the loop induction variable (IV) changes over
the execution of the loop. SCEV analysis requires loops to
be statically analyzable, i.e., the iteration space of the loop
must not depend on any information that is not available
at compile time. This is in line with typical requirements
on real-time code (see Sec. 3.1), and allows the analysis to
always return exact results4. By combining this information
with the loop variant data accesses5 performed within the
loop it is possible to determine the memory footprint of
each loop. Algorithm 1 shows how the range of addressesM
accessed is determined. Lines 6-7 use SCEV to determine the
addresses accessed by loop-variant memory operations sA,
based on the initial value of the IV (start), its increase over
successive iterations (step) and the total number of iterations
(tripcount). For loop invariant accesses, line 10 records the
single address loaded or stored. Lastly, on lines 13-15 the
memory accesses of sub-loops in loop nests are analyzed
recursively, and at the end of the recursion, the memory
footprint is determined from the addresses accessed M .

4. The presented methodology does not fundamentally depend on
any feature specific to Scalar Evolution, and other loop analysis tech-
niques, including profile-based techniques or bounds provided through
programmer annotations, could be used in their stead.

5. In a loop variant access, the address loaded or stored is different
for each loop iteration, e.g., when iterating over an array.

Algorithm 1 Pseudo-code for memory footprint analysis.
1: Input: Loop L
2: A is a memory access in L
3: sA is a tuple describing the SCEV ofA in L (start, step, tripcount)
4: Output: Memory access map ML
5: for all memory access A in L do
6: if A.loopvariant(L) then
7: sA = ScalarEvolution(A, L)
8: M .addAddressRange(start = sA.start, end = sA.start +

sA.tripcount× sA.step)
9: else

10: M .addAddress(A)
11: end if
12: end for
13: for all Sub Loop SL in L do
14: Recurse on SL
15: end for

Algorithm 2 Pseudo-code for the tiling decision.

Require: Memory Footprint for all Loops, given by Footprint(), and
calculated from M in Algorithm 1.

Require: SSPM is the size of the local scratchpad
1: if Loop is SIMT Loop then
2: if Footprint(Block iteration of Loop) < SSPM then
3: Set blockDim to largest multiple of num threads such that

Footprint(T ileblockDim) < SSPM
4: else
5: Failure
6: end if
7: else
8: Set blockDim to num threads
9: for all Sub Loop in Loop ∪ Sub Loops do

10: Set tileDimSubLoop to largest value V such that Foot-
print(T ileblockDim×tileDim) < SSPM

11: end for
12: if V < 1 then Failure end if
13: end if

3.2.2 Refactoring
Once the memory footprint has been calculated, PREM
intervals are selected by loop tiling, after which a synchro-
nization skeleton separating the PREM phases is inserted.
Tiling - Algorithm 2 shows how the memory footprint
is used to define the granularity of PREM intervals, by
selecting tiles that fit within the size SSPM of the SPM.
Lines 1-6 handle the case when the tiling is performed on
the outermost loop in the annotated loop nest. We refer to this
outermost loop as the SIMT Loop (SIMT = Single Instruction
Multiple Threads), as work distribution among GPU threads
is determined by the iteration space of the outermost loop
in OpenMP. We refer to the tile dimension influenced by
the SIMT Loop as the blockDim, and it is constrained to be
a positive multiple of the OpenMP num threads annotation,
as an uneven distribution of the SIMT loop iterations cause
some threads to have no work to perform as part of the
tile, reducing performance. Therefore, we define a block
iteration of the SIMT loop as each thread executing exactly
one iteration in parallel. We select the largest such multiple
that produces a tile that fits in the SPM (line 3). If no such
tile can be created, the algorithm returns a failure6 (line 5),
however, none of the kernels we will show Sec. 4 trigger this
case. Lines 7-13 of Algorithm 2 handle the tiling of N levels
of inner loops. Also in this case, we respect the positive
multiple constraint on the blockDim (line 8) to ensure a
balanced workload. The iteration spaces of the remaining
N dimensions of the tile, which we refer to as tileDimn

6. It would be possible to create tiles where some threads idle, but we
opted for a compiler warning. This allows the OpenMP num threads to
be adjusted to enable balanced tiles and better performance.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

5

Fig. 4: Tiled loop with EnterMem/EnterComp sync skeleton.

(n = 1 . . . N), are local to each thread, and can be tiled freely.
Thus we select the largest tileDim possible V in accordance
with the size of the local memory, SSPM (line 10). If it is
not possible to find V such that the loop fits into SSPM ,
we use V = 1 if the loop has subloops, as we can then
find a tiling granularity for the subloops on lines 9-11. If
there are no subloops (i.e., innermost loop) and we cannot
tile it to be smaller than SSPM , setting V = 0 triggers a
Failure on line 127. Ultimately, the inequality in Equation 1
must hold, meaning that the more threads that are used per
cluster (blockDim), the smaller the tileDim (iterations local
to the thread) will become.

SSPM ≥ blockDim× tileDim = blockDim×
N∏

n=1

tileDimn

(1)
The tiling of the loop adds the uncolored nodes in the CFG,
and the inner loop in the C code, shown in Fig. 4. Note
that our approach is not specific of any tiling technique. We
plan to investigate as future work the use of more advanced
methods [23] [24]. After the loop has been tiled, the tile itself
is outlined to a new function (this is the opposite of inlining),
as shown by the dotted rectangle in Fig. 4.
Synchronization skeleton - Following this, the resulting
tiles are separated through the insertions of synchroniza-
tion calls into the predictable runtime, to be presented in
Sec. 3.3. Through these synchronization points, the GPU
program is effectively divided into PREM memory and
compute phases, as shown in Fig. 4 by the red squares in
the CFG, representing the function calls in the code. Thus,
every instruction following a synchronization is part of the
following PREM phase, as specified in the call, up until the
next synchronization. The next section describes how the
PREM phases are specialized to perform the required Load,
Execute, and Store operations, as described in Sec. 2.2.

3.2.3 Transformation
To separate memory accesses from computation, the code
must be divided into three distinct steps that are specialized
to perform the Load, Execute, and Store (LES) steps of the
PREM intervals. Naively, the PREM phases can be created
by cloning the tiled loop into two additional copies, and
placing one after each synchronization, as shown in Fig. 5.
The Load and Store phases are then created simply by strip-
ping the non-load/store code out of the respective phases,

7. Addressable by splitting the inner loop into two PREM intervals.

Fig. 5: Skeleton extended to Load Execute Store phases, with
EnterComp and EnterMem synchronizations.

Fig. 6: The memory access patterns of the original program,
and the PREM memory phases created with the stripping
and SoftDMA techniques.

and the execute phase restructured to use the intermediate
load/stores from these phases. The stripping technique is
similar to Decoupled Access Execute [25] that has been used
successfully on the CPU. The state of the art for PREM on
GPU [16] uses this technique (with limited success), and we
will revisit it in the evaluation in Sec. 4.
SoftDMA – However, for the code to perform well on the
GPU, where hundreds or even thousands of threads are
executing the same code, additional care must be taken
when creating the Load and Store phases. The performance
of GPU programs heavily depends of regular and well-
organized memory accesses. In this sense, the stripping
technique has two main disadvantages. First, reusing the
original control flow means that multiple threads may
load/store the same data to the SPM, leading to less effective
use of the memory bandwidth. Second, the strict adherence
to the original control flow means that sub-optimal access
patterns may be inherited from the compute patterns, that
could have been optimized if the memory accesses were
decoupled from the point of use [26]. Algorithm 1 pro-
vides the compiler with the necessary information to create
better optimized memory phases that lift these limitations,
through a novel technique we refer to as SoftDMA.

As a motivating example, consider a kernel that com-
putes A[i-1] + A[i] + A[i+1], i.e., the thread executing the
ith iteration will access the same memory as the threads
executing the i − 1th and i + 1th iterations, as shown in
Fig. 6a. In the original program this is required, as each
thread fetches its data from the global memory. However,
if stripping is used, this duplication will unneccessarily be
inherited by the memory phase, as shown in Fig. 6b. In con-
trast, SoftDMA enables each unique accesses to be mapped
to a single thread, as shown in Fig. 6c.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

6

Instead of reusing the original control flow for the Load
and Store phases, as shown in Fig. 5, optimized SoftDMA
memory phases are created as loops in Algoritm 3.

To present the algorithm we refer to 2D structures, but
the algorithm generalizes to data of any shape. Access code
is created for each data structure D in the access map
M (line 1), handling both cases identified as part of the
footprint analysis: loop variant accesses to composite types
(arrays of any dimension, and structs) on lines 2-11, and
loop invariant accesses, e.g., scalars, on lines 13-16. For the
latter, no loops are needed, and the data is loaded as is (line
14). The helper function createLoop(start, stop, step) is used to
create a loop on the form for(iv := start; iv < stop; iv +=
step). L.iv is the IV (Sec. 3.2.1) of the created loop L.

For loop variant accesses, the algorithm operates on a
per-dimension basis, where each dimension represents one
layer of pointer dereference. For example, an access to a
2D structure A[i][j] requires three dereferences: The first to
identify the location of A in memory, the second to identify
the offset to the row i, and the last to identify the column j
(offset within the row). We enumerate these dereferences in
derefChains, starting from the base structure and handle
them one by one (line 3). Important to realize is that only the
last dereference will address a sequential piece of memory,
as only rows are laid out sequentially – traversing a column
implies an access pattern with strides the length of a row.

To achieve coalesced memory accesses, we therefore
assign these accesses to neighboring threads: Line 5 creates
a loop indexed by the threadIdx, thus mapping the accesses
over individual threads such that all threads will access data
as close to each other as possible. On line 6, we use this
index to fetch the correct data from memory, using the offset
between the threadIdx and the accessed data element, and
the steps to recompute the address. For all other dimensions
dereferenced, we create sequential loops within each thread
(lines 8-9), that account for the offsets to the non-sequential
memory ranges (e.g., row-by-row accesses in a 2D struc-
ture). We thus replace the suboptimal access behavior in
derefChain with new chains derefChains′ that are effi-
ciently mapped to the iteration space of L, which are pushed
into the loop body of L. By mapping the iteration space
of the new loop L to the threadIdx, SoftDMA improves
performance compared to stripping by ensuring that mem-
ory accesses in sequential memory are loaded in a coalesced
manner, and that each element is loaded exactly once, thus
adding the least possible amount of instructions to create the
memory phases. As synchronization is implicitly provided
by PREM, no additional synchronization is required.

Certain dereferences, such as A[B[i]], can not be known
at compile time, as the value returned by B[i] can not be
determined. For such cases, it is not possible for SoftDMA
to coalesce memory accesses into A. However, SoftDMA
is still able to prune duplicate accesses into B[i], limiting
unneccessary transfers. Due to the sensitivity to memory
access patterns, such constructs are commonly avoided in
GPU code, and we do not further optimize for this case8.

The use of SoftDMA only affects the Memory phases,
i.e., the Load and Store transformations. The only transfor-
mation done to the Execute phase is to replace all accesses to
global memory with accesses to scratchpad buffers, to/from
which the Load and Store phases load/store data.

8. Instead, the stripping technique is used as fallback solution, if anal-
ysis provides insufficient information for SoftDMA code generation.

Algorithm 3 Pseudo-code for the SoftDMA decision.
Require: Memory Footprint given by Footprint(), and calculated from

M in Algorithm 1.
1: for all data structures D in M do
2: if D.derefChains.isLoopV ariant then
3: for all dimension d in D.derefChains do
4: if d.isSequential then
5: L = createLoop(threadIdx, d.end÷ d.step, blockDim)
6: D.derefChains′.push(L.iv × d.step+ d.start)
7: else
8: L = createLoop(d.start, d.end, d.step)
9: D.derefChains′.push(L.iv)

10: end if
11: end for
12: else
13: for all dimension d in D.derefChains do
14: D.derefChains′.push(d)
15: end for
16: end if
17: end for

3.3 HePREM Runtime: GPUguard
To orchestrate the memory accesses between the CPU and
the GPU on a system level we introduce a runtime in-
frastructure for CPU-GPU synchronization and memory
isolation, namely GPUguard. GPUguard answers calls to
the EnterMem and EnterComp functions inserted into the
transformed code as part of the compiler transformations.

3.3.1 System Co-scheduling through Synchronization
As the GPU and the CPU can only communicate through
global memory, the PREM co-scheduling is performed
through a synchronization flag, kept in the shared DRAM.
At the end of each Memory or Compute phase, a synchro-
nization takes place (as illustrated by the CFGs in Fig. 5),
during which the memory token is exchanged between the
CPU and the GPU, and dictates which of the two is allowed
to access the global memory until the next synchronization.

The synchronizations are enforced through timer inter-
rupts triggered on the CPU at the end of the WCET of each
PREM phase, by setting a timeout at the start of each PREM
phase. Thus, the length of each phase, Tcompute and Tmemory

respectively, must be programmed into the system so that
the exchange of the memory token is correctly performed at
the end of each phase. At the system level we only consider
PREM Memory and Compute phases. Thus, each kernel
has only two timer values associated with it, Ecompute

and Ememory , as previously shown in Fig. 1. The system
is scheduled such that the GPU has access to the global
memory pmemory percent of the time, and conversely is not
allowed to access memory pcompute percent of the time, such
that pmemory + pcompute = 100%. As the enforced phase
lengths Ememory and Ecompute of the system must be sized
such that they both fulfil the system schedule parameters p,
and be large enough to enclose the full phase times E ≥ T ,
the phases are calculated as shown in Equation 2.

Ememory =

{
Tmemory, if Tcompute

Tmemory
≤ pcompute

pmemory
pmemory

pcompute
× Tcompute otherwise

Ecompute =

{
pcompute

pmemory
× Tmemory if Tcompute

Tmemory
≤ pcompute

pmemory

Tcompute otherwise
(2)

Thus, the execution time of a tile, with the system schedule
taken into account isE = Ememory+Ecompute. The idle time
I introduced into the the transformed kernel through the

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

7

system schedule, can be determined as shown in Equation
3. When the schedule is created with E such that I = 0, we
say that we have a best-case schedule. Note however, that as
E is the worst case execution time, the system might still
idle when the execution time is lower.

I = (Ememory + Ecompute)− (Tmemory + Tcompute) (3)

The timer interrupt handler implements the synchro-
nization protocol, and is loaded into the kernel as a loadable
module (LKM). Each time the GPU reaches a synchroniza-
tion point, i.e., it wants to enter the next PREM phase,
it writes a synchronization flag into the shared DRAM.
Once the WCET for the PREM phase has expired, the timer
expires and the handler in the LKM is invoked to perform
the handover of the memory token. Synchronization is per-
formed twice per PREM interval. Thus, taking the synchro-
nization cost into account, the overall execution time esti-
mate of each tile is Linterval = Ememory +Ecompute+2×S.
As can be seen by inspection, the relative impact on the
execution time of the synchronization is dependent on the
execution time of the individual phases. If E � S the
synchronization cost will be negligible, but if E � S it
will dominate the overall execution time. A more in-depth
discussion on this effect follows in Sec. 4.2.1.

3.3.2 Enforcement of CPU Memory Inactivity
We conservatively assume that the CPU tasks do not fully
comply to PREM, and thus a separate mechanism must be
employed to ensure that the CPU does not access global
memory during the GPU memory phases. For this purpose
throttle threads [27] are employed on the CPU. Throttle
threads are executed at high-priority, and preempt any
running task. While scheduled, the throttle thread itself only
idles, and thus does not generate any memory accesses it-
self. We schedule CPU throttle threads during GPU memory
phases, giving the GPU exclusive use of memory, which are
descheduled when the GPU enters the compute phase.

Interference within the system consists of memory inter-
ference on the shared memory system, and OS scheduling
interference on the CPU. The scheduling interference occurs
when the Linux scheduler selects an interfering task from
the ready queue in favor of the GPU offloading task, which
may inject large delays (jitter) into the response time of the
offloaded kernel [28]. To protect the offloading point from
such jitter, extra synchronizations are inserted around the
offload in the OpenMP runtime. Scheduling throttle threads
during this critical point ensures that mutual exclusion of
shared resources is achieved internally on the CPU.

In systems with PREM-compliant CPU tasks (enforced
by a PREM scheduler), the throttle thread is not necessary,
except for misbehaving tasks. As the architectural template
(Sec. 2.1) enables PREM data staging through CPU caches,
CPU memory management can be achieved as outlined in
Fig. 1. This generalization is a key point of our future work,
but out of scope in this exploration of PREM on the GPU.

4 EXPERIMENTAL EVALUATION

Our experiments aim at assessing the performance and
reduction in sensitivity to memory interference and schedul-
ing jitter for the novel SoftDMA (henceforth SDMA) PREM
kernels, comparing it to the unmodified baseline, and two
previously proposed techniques: Compatible Intervals, and
Decoupled Access Execute.

Compatible Intervals - PREM supports Compatible Intervals
[18] for the execution of code that for some reason cannot
be transformed into Load, Execute, and Store phases (e.g.,
syscalls). Code constructs that would require compatible
intervals are uncommon on the GPU, but in a way, they rep-
resent the simplest way of ensuring memory isolation one
could think of. The specification of a compatible interval is
fulfilled after the insertion of the synchronization skeleton,
as shown in Fig. 4, as the unmodified tile is executed in
the Memory phase. Execution of the unmodified tile in the
PREM Memory phase enables predictable scheduling of the
Compatible Interval, but at the cost of complete idleness
when the GPU does not have access to the DRAM. For the
remainder of this section we refer to this scheme as CMPT.
Decoupled Access Execute - Decoupled Access Execute
(DAE) [25] is a method to create PREM memory phases
based on the stripping technique (as presented in Sec. 3.2.3),
and in contrast to CMPT enables execution to continue
even without access to main memory. The DAE technique
represents the previous state of the art for the creation
of PREM memory phases [16], and together with SDMA
represents LES phase execution.

4.1 Evaluation methodology
The compiler transformations have been implemented in
LLVM, using the OpenMP frontend as a hook to trigger
the transformations. The NVPTX (NVIDIA Parallel Threads
eXecution) backend is used to generate code for a con-
crete embodiment of the discussed architectural template,
the NVIDIA Tegra TX1. The TX1 consists of a four-core
ARM A57 CPU running Linux, and a two-cluster NVIDIA
Maxwell GPU, with 128 physical cores each. Each GPU
cluster has access to a 48kB local SPM, and all clusters share
a L2 cache of 256kB. The off-chip DRAM is shared with
the CPU. It has been shown that the LLVM OpenMP v4
support [20], introduces less than 5% overhead compared to
native CUDA when static loop scheduling is employed [29].
Our techniques extend this infrastructure, and our measure-
ments confirm the published low-overhead numbers. As a
representative GPU workload we consider kernels from the
PolyBench-ACC suite [30], compiled with the standard data
set for the best performing block/grid dimensions.

Our main goal is to achieve timing predictable execution,
and we expect the required infrastructure and code trans-
formations to introduce some overhead in the execution.
Consequently, we divide our evaluation into two blocks.
The first block, in Sec. 4.2, explores the performance impact
of code transformation, synchronization, and changes in
memory access patterns. Here we compare the novel SDMA
both to CMPT and the state-of-the-art DAE versions, used
in our previous work [16]. The second block, in Sec. 4.3,
discusses predictability results for SoftDMA compared to the
baseline OpenMP implementation without PREM.

All execution times we present have been normalized to
that of the unmodified OpenMP baseline, and all reported
timing results are the measured worst case execution times
(WCET), as real-time systems must always be dimensioned
to account for extreme cases. For all performance-related
experiments we measure execution time in isolation (i.e.,
without memory interference), whereas for predictability
results we measure execution time in presence of high
memory interference. The memory interference from the
CPU is generated using the stress [31] tool, which is able to
produce large amounts of memory interference on a system.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

8

Fig. 7: The performance of code transformation and synchronization on the kernels, relative to the unmodified kernels.

4.2 PREM effects on performance

4.2.1 Overheads

Fig. 7 shows the effect of PREM code transformations
and synchronization on the execution times of the kernels,
compared to the baseline (unmodified kernel). Note that
we are not co-scheduling the CPU and GPU at this point,
only looking at the GPU performance in isolation. There
are two main factors that influence the performance of the
transformed kernels: The change in instruction count and
memory accesses to support the PREM Memory phases, and
the synchronization required to separate the PREM phases.
Instruction count and access patterns - Both DAE and
SDMA add instructions to the CMPT scheme to implement
the separation into load, execute, store phases, which is bound
to introduce an overhead, as can be seen in the blue part
of the bars. Note that, even in light of this, several bench-
marks show a performance increase, which is discussed in
detail at the end of this section. The DAE transformation
is costlier than SDMA, as the minimal SDMA loops that
are guaranteed to access each element only once require
less complex control flow and fewer memory accesses than
DAE. Instead, DAE reuses the original control flow of the
kernel for the memory phase, which results in significant
code duplication. This difference can clearly be seen in the
benchmarks in the left side of Fig. 7. For several kernels
in the right part of the figure, the slowdown in DAE and
SDMA is similar, meaning either that the access pattern of
DAE is similar to that of SDMA (e.g., no data reuse or non-
coalesced access pattern that cause DAE overheads), or that
the kernels have so little computation that even the smallest
extension in instructions visibly impacts performance.

On average, the cost of the SDMA load and store phases
is negligible, while the previously published DAE adds a
20% overhead. CMPT has no significant impact on instruc-
tion count, and impact on code performance is negligible.
A special case is seidel-2d, where the original access pattern
causes frequent stalls, amplified by tiling. SDMA regains
this performance by reordering accesses to minimize stalls.
Synchronization - Together with the effects of code trans-
formation, the synchronization overhead is also presented in
Fig. 7, illustrated by the red part of the bars. The absolute
synchronization cost S is equal for all kernels (Smeasured =
5.8µs), and its impact on each kernel is determined by
how well S is amortized with useful work T (see Sec.
3.3.1). T does not yet account for the WCET, covered in the
next section. However, there is one further effect at play,
which we refer to as the synchronization wall. This effect
primarily affects the kernels in the right-most part of Fig.

7 (labeled B). As synchronization is initiated on the CPU at
the expiry of timers, there is a maximum frequency at which
the synchronizations can occur, based on the response time
Rtimer of the timer interrupt. Over 50000 measurements,
Rtimer ≤ 10.7µs for 95% of the cases, and Rtimer ≤ 17µs
for 99.9% of the cases9 (including synchronization cost S).

For benchmarks where T of one or both of the PREM
phases is below this value, T < Rtimer, the GPU will
idle for Rtimer − T time units at the synchronization point
until the CPU responds (as with road traffic: the faster you
arrive at the red light, the longer you have to wait). In Fig.
7 this manifests as the synchronization cost bringing the
kernels up to a similar execution time. For some kernels,
e.g., covariance-77, this effect is only visible for SDMA and
CMPT – for DAE the instruction overhead dominates.

It has to be underlined that the synchronization wall effect
does not highlight a limitation of the methodology per se.
For these kernels, the SPM is simply not large enough to
hold enough data for the phase lengths T to dominate the
synchronization cost S (or, the maximum speed at which the
CPU and the GPU can synchronize is too slow compared
to the SPM refill rate). This problem intuitively disappears
as local storage becomes larger10, as shown in [21]. It is
also worth noting, that because the sources of overhead
are well understood, and their main influencing factors can
be known at compile time [34], this can be used to inform
the developer via compiler warnings when the performance
degradation effects with HePREM will be noticeable.

On average, the performance impact of the synchroniza-
tions required to be able to execute predictably is about 50%,
even when the kernels that hit the synchronization wall are
included, and for some kernels it can be negligible. Overall,
the synchronization cost is similar for all transformations.
Overall impact - No matter which transformation is used,
it is evident across the board that the kernels can be divided
into a group for which the transformations do not impact
(or improve) performance, grouped to the left in Fig. 7 and
labeled A, and those for which performance is degraded.
The main factor that determines if performance increases
is the amount of data reuse, i.e., the temporal locality of
the computation. The data reuse factor is of importance
to any transformation that tries to gain performance by
better use of local memories, such as cache or SPM, as it

9. Outliers up to Rmax
timer = 97µs have been measured, but could be

removed with the Linux PREEMPT RT patches, and are not considered.
10. Platforms with larger SPM are available, e.g., Kalray [32]. We are

currently exploring HERO [33], providing a 256 KB SPM for 8 cores,
as opposed to 48 KB for up to 1024 CUDA threads. The latest NVIDIA
GPUs have 96KB SPMs, but kernel blocks are still limited to 48KB.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

9

Fig. 8: The idling introduced into the program due to enforcing the Fair system memory schedule.

is only when the accessed data is already available locally
that the caching benefits come into play. Thus, the kernels
with a higher amount of data reuse will show benefits
from tiling, which is the fundament for all the presented
transformations. The performance illustrated by the blue
bars for the CMPT transformation directly measures how
effective the tiling transformation is for each benchmark, as
it is the only transformation done in this case. We note that
for some kernels, such as conv-2d, the optimized memory
accesses of SDMA further improves the result.

We conclude that the novel SoftDMA always performs
better than (or on-par) the DAE transformation used in
previous work [16], [25], allowing on average 34% faster
execution for kernels labeled A, and 17% over all kernels.

4.2.2 Idleness insertion due to System Co-scheduling
PREM requires enforcing the WCET for each phase before
triggering the synchronization that precedes the beginning
of a new phase11. Under these conditions, Fig. 8 shows the
achieved execution times when scheduling exclusive mem-
ory between the CPU and the GPU. The relative execution
times are broken down into three parts, where purple is
the execution time of code and synchronization previously
shown in Fig. 7. The remaining segments present two dif-
ferent types of idling introduced due to scheduling. The
yellow segments show the idling introduced due to WCET
budgeting, i.e., ensuring that the schedule has enough slack
so that the PREM phase finishes also under the WCET. The
green segments show the idle time in the system when
sharing the memory bandwidth equally between the CPU
and the GPU, which we will return to shortly. Lastly, in
addition to the A and B categorizations introduced in Fig. 7,
Fig. 8 introduces an additional category C of memory bound
benchmarks, which will require special consideration.
Best case – Beginning with the purple plus yellow segments,
we can read out the peak performance for each kernel that
can be achieved while guaranteeing that it will never miss its
deadline. This is achieved by reserving enough time in T to
encompass the WCET, and by setting E = T it contains the
smallest amount of budgeting, and thus idling, possible. For
this reason, we refer to this as the best case schedule.

This budgeting impacts the kernels differently, and for
many kernels (adi, atax, bicg, mvt, gemver, and covariance) we
see that the cost of enforcing the worst case phase length

11. The WCET of the phases are determined by recording failed
synchronizations during kernel execution. This occurs when the timer
interrupt was triggered on the CPU, but the GPU had not yet reached
the synchronization point, and thus the synchronization could not
be performed. We incrementally increase the timer timeout until no
synchronization fails, at which point the delay accounts for the WCET.

can cause a considerable slowdown. However, this effect
can be significantly reduced when using SDMA, as the
optimized memory phases streamline the memory accesses,
giving raise to less variance in the execution time between
invocations. This effect is large enough to slightly affect the
average, and significantly contributes in for example the
adi kernels. In other kernels the memory access patterns do
not contain any significant segments of sequential accesses
that SDMA can leverage (due to, e.g., row-by-row accesses),
as is most pronounced in atax-78 to gemver-130. In this
case SDMA can not improve the WCET budgeting, and the
resulting access pattern is similar as in both CMPT and DAE.
Fair sharing – While the best case schedule introduces the
least amount of idling, it might not be possible to achieve
this performance in a realistic system, as it must be sched-
uled to provide memory access to tasks on the CPU as well.

This brings us back to the original reason to transform
the code into separate load, execute, and store (LES) phases:
We want to minimize the time that the kernel requires
memory access, so that it can make progress while the
CPU is accessing memory. Our main goal is therefore to
establish that PREM delivers on the promise to increase
performance by continuing execution even when memory
access is not granted. To evaluate the improvement in the
transformed code, we compare their performance when
memory access is only granted to the GPU 50% of the
execution time. To achieve fair 50/50 memory scheduling
between the CPU and the GPU, we enforce the length of
the longest PREM phase to both phases, i.e., Ememory =
Ecompute = max(Tmemory, Tcompute). The results are shown
with the full bars (purple, yellow, and green) in Fig. 8.

We note that DAE performs worse or at best on-par with
the novel SDMA scheme, which is due to DAEs inefficiency
in redistributing execution time from Tmemory to Tcompute.
This is because the stripping technique creates un-optimized
access patterns that might even fetch data multiple times,
as outlined in Sec. 3.2.3. Because TSDMA

compute = TDAE
compute (same

transformation), and TSDMA
memory ≤ TDAE

memory , SDMA improves
over the state-of-the-art also under co-scheduling with the
CPU, reducing idle time by 45% under fair sharing.

Having established that SDMA improves over the other
LES scheme, we compare SDMA with CMPT. Since CMPT
only executes in the Memory phase, TCMPT

compute = 0, it will
always idle for half of the time. Fig. 8 shows that on
average SDMA introduces about half as much idling (green
segment) as CMPT, and even less in the kernels highlighted
in the left of Fig. 8 (labeled A). These kernels have a good
balance between memory and compute time and can there-
fore gain most from a balanced schedule. In the convolution-

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

10

Fig. 9: The performance degradation due to memory interference from the CPU for the best case system schedule.

Fig. 10: The sensitivity to interference for the BASE and SDMA versions of the kernels.

2d kernel, co-schedule idling is near-zero (1.2%). For this
kernel, Tmemory ≈ Tcompute, which maps well to a fair
sharing scheme with the CPU: Eq. 2 gives E ≈ T , which
introduces a low amount of idling I as given by Eq. 3. For
most other kernels in the A set, we see similar results.

In contrast, kernels that hit the synchronization wall show
a similar amount of idling for all transformations, as the exe-
cution time of the phases T is dominated by synchronization
S, due to the small SPM memory. Between these, there is
a set of kernels in the center of Fig. 8, labeled C, which
show only marginal benefits from SDMA. These kernels are
so memory bound that essentially no work is done in the
Compute phase (Tmemory � Tcompute), in practice making
the SDMA kernel execute in the same manner as CMPT.

Overall SDMA on average reduces the idling by 45%
compared to DAE, and 53% compared to CMPT.

4.2.3 Performance summary
The key performance take-aways are: i) SDMA on average

performs 20% better, and up to 48% better than the state-of-the-
art DAE transformation. ii) For kernels where the PREM trans-
formations are beneficial the SDMA average slowdown under fair
sharing is only 59%, and can be as low as 1.2%, significantly
improving over 2.74× slowdown in CMPT, and 2.67× in DAE.
iii) In heavily memory bound kernels, the inability to perform work
in the compute phase increases the average slowdown to 3.8×
under fair sharing. In this case, PREM memory scheduling is
unable to provide large improvements. iv) In kernels with phases
shorter than the synchronization granularity, slowdown is on
average 4.3×. This happens when the SPM is too small, and is an
effect of the hardware used and not the technique itself.

Given its superior performance and inferior idling, we
only consider SDMA for the predictability experiments.

4.3 PREM effects on Predictability
To validate the effectiveness of the proposed SDMA toward
guaranteeing robustness to interference, we execute the GPU
kernels under heavy interference from the CPU, as outlined

in Sec. 4.1. The results for the best case scenario are shown in
Fig. 9. An additional BASE configuration has been added
for each kernel, representing the execution time of the
unmodified OpenMP program in presence of interference.
We know from Sec. 3.3.2 that the interference consists of two
parts, memory interference and scheduling jitter. While SDMA
is not affected by the latter (see Sec. 3.3.2), to provide a fair
comparison for BASE, we execute those kernels twice: We
measure the memory interference by executing the offloading
process once with the highest priority (i.e., low niceness), and
measure CPU scheduling jitter by executing it at the same
priority as the interfering process. The green part of the bars
shows execution time in isolation, while the blue and cyan
parts shows additional execution time due to interference,
from memory and Linux scheduling respectively.

Results show that the performance of BASE is degraded
to such a high degree that the SDMA kernels perform
better in almost all cases, despite the factors of slowdown
presented previously. On average, SDMA results under
interference remain similar as in isolation (+3.5%), which is
7 times better than BASE under both interference types, and
67% better when only considering memory interference.

As robustness to interference is the most important feature
of PREM, it is further highlighted in Fig. 10, which shows
execution time under interference for BASE and SDMA
normalized to the execution time in isolation for the same
scheme. The low variance in execution time of SDMA, on
average 3.5%, is greatly contrasted to BASE where perfor-
mance can degrade by orders of magnitude. The interfer-
ence to the baseline is based on measurements, and as such
provides a lower bound on the interference that can be ex-
perienced. In contrast, the Predictable Execution Model [12]
provides robustness to interference by design, which means
that near-zero interference is indeed the expected value.

5 RELATED WORK

This work extends the Predictable Execution Model (PREM),
the key novelty in our proposal being the extension to GPUs

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

11

and arbitration of the accesses to shared resources in a
heterogeneous embedded system. PREM was originally pro-
posed in for single-core CPUs [18] to provide robustness to
interference from peripheral devices, and was later extended
to counter inter-core interference in multi-core CPUs [12].

Previous work on heterogeneous architectures has
mainly focused on discrete GPUs12, and only very recently
on integrated GPUs. For discrete CPU-GPU systems the point
of interference is reduced to data movements between the
discrete CPU and GPU memories over the PCIe bus. In this
context, several approaches have been proposed [35] [36]
[37]. Concerning integrated GPUs, the point of interference
is not limited to a single peripheral bus, as the memory
hierarchy itself is largely shared between the two devices.

To achieve timing predictability in such systems,
BWLOCK++ [38] extends the throttle thread based priority
mechanism in BWLOCK [39] to include memory throt-
tling in the context of GPUs, triggered at offloading time.
BWLOCK++ limits the interference to GPU programs by
throttling CPU tasks after a threshold value of memory
accesses has been exceeded. Like HePREM, it targets the re-
duction of memory interference on GPU kernels, but it oper-
ates on unmodified legacy code. In contrast to PREM-based
solutions like ours, BWLOCK++ cannot provide system-
level robustness to interference, as CPU tasks are seen as
lower-criticality tasks that can be arbitrarily throttled.

Throttle threads as a concept were first proposed in Mem-
Guard [27], which uses a memory bandwidth budgeting
scheme, triggering hardware performance counters (PMC)
interrupts to schedule throttle threads once the budget is ex-
hausted. Relying on the PMC, this technique is only suitable
for CPUs. This work reuses throttle threads by significantly
extending our previous work on GPUguard [40] (Sec. 3.3)
from a proof of concept to a formalized component in PREM
CPU-GPU scheduling. Similarly to GPUguard, SiGAMMA
[41] employs high-priority CUDA spin kernels (i.e., a “GPU
throttle thread”) on the GPU to ensure that the GPU does
not interfere with the CPU. Compared to what we propose,
SiGAMMA looks at the dual problem of reducing interfer-
ence to CPU real-time tasks, the GPU being the adversary.

Previous work on PREM compiler support includes the
work by Soliman et al., who propose a compiler analysis
to detect program regions suitable for PREM intervals for
SPM-equipped CPUs [42]. This analysis only handles static
allocation of entire data structures (e.g., arrays), which limits
its applicability to small datasets that fit in the L1 SPM.
In contrast, our approach applies tiling to partition large
data structures, significantly extending its applicability. Our
work focuses on GPUs, rather than CPUs, and to the best of
our knowledge, our work is the first on PREM for GPUs.

Separating memory and computation has also been stud-
ied outside the context of PREM, to provide performance or
energy benefits to CPUs. Relevant examples are Decoupled-
access-execute [25] and Clairvoyance [43], which were pro-
posed as means of i) applying dynamic voltage-frequency
scaling (DVFS) independently for memory and compute
tasks; and ii) increasing the memory and instruction level
parallelism for limited out-of-order cores. This method was
used to implement code stripping, which was at the heart
of our previous work [16], but as shown in Sec. 4 it is not
suitable for GPUs, leading us to propose SoftDMA.

SoftDMA improves GPU performance by decoupling
threads performing memory accesses from thread(s) that

12. GPUs with their own memory system, not shared with the CPU.

use the data for computation. A conceptually similar de-
coupling is used in warp specialization [26]. In comparison,
SoftDMA provides two additional benefits: i) it decouples
memory from computation by separation in time rather
than in space (specialization of thread workloads): matching
standard work distribution primitives (e.g., OpenMP teams
and threads); ii) the creation of SoftDMA memory phases can
be created automatically based on compile time information.

The division of loops into fine-grained schedulable inter-
vals in HePREM is based on tiling, for which there are sev-
eral types of analysis that modern compilers can leverage.
This work uses the built-in LLVM scalar evolution analysis
[44]. Newer and more powerful tools such as polyhedral
analysis [23] [45] are reaching full maturity and are being
included in modern compilers. Our methodology is not tied
to a particular tiling technique, and work on optimized
tiling techniques are complementary to this work.

6 CONCLUSION

We have presented HePREM, which extends the Predictable
Execution Model (PREM) to shared memory heterogeneous
SoCs. A timer-based synchronization mechanism enforces
mutual CPU/GPU exclusion to shared DRAM, thus en-
abling timing predictable execution on COTS hardware. To
support PREM execution of GPU programs, we propose
SoftDMA, a compiler transformation capable of creating
optimized GPU memory phases from high-level languages.
SoftDMA uses loop analysis, tiling, and access redistribution
and reordering over threads to improve coalescing.

HePREM is able to limit CPU interference to GPU pro-
grams to near-zero values, even under heavy memory use.
The code transformations and system scheduling to support
this on average imply an overhead of 2.8× when sharing the
memory bandwidth 50/50 between the CPU and the GPU.
However, for compute bound kernels, overheads are mea-
sured as low as 1.2%. The high average arises from costly
synchronizations in memory bound kernels, due to small
local memories on the NVIDIA TX1 evaluation system.

Having shown in this work that PREM on the GPU is
feasible, we are as part of our ongoing work exploring the
co-scheduling of fully PREM-compliant tasks on both CPU
and GPU. For this, we are also looking into automatic gen-
eration of PREM code from generic CPU code to automate
the process. For kernels that do not perform well under
PREM on the NVIDIA TX1, we are exploring platforms
with larger SPMs that are able to amortize the increased
synchronization cost in heterogeneous PREM systems.

ACKNOWLEDGMENT

This work has been supported by the EU H2020 project
HERCULES (688860).

REFERENCES

[1] P. Burgio et al., “A software stack for next-generation automotive
systems on many-core heterogeneous platforms,” in Digital System
Design (DSD). IEEE, 2016.

[2] W. Shi et al., “Algorithm and hardware implementation for visual
perception system in autonomous vehicle: A survey,” Integration,
the VLSI Journal, vol. 59, pp. 148 – 156, 2017.

[3] A. Skende, “Introducing Parker: Next-generation Tegra System-
on-Chip,” in 2016 IEEE Hot Chips 28 Symposium (HCS), Aug 2016.

[4] “AMD Embedded G-Series LX,” Mar 2018. [Online]. Available:
https://www.amd.com/en/products/embedded-g-series-lx

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2980520, IEEE
Transactions on Computers

12

[5] S. Mittal et al., “A survey of methods for analyzing and improving
GPU energy efficiency,” ACM Comput. Surv., vol. 47, no. 2, pp.
19:1–19:23, Aug. 2014.

[6] M. Dehyadegari et al., “Architecture support for tightly-coupled
multi-core clusters with shared-memory HW accelerators,” IEEE
Transactions on Computers, vol. 64, no. 8, pp. 2132–2144, Aug 2015.

[7] R. Cavicchioli et al., “Memory interference characterization be-
tween CPU cores and integrated GPUs in mixed-criticality plat-
forms,” in ETFA’17, Sept 2017, pp. 1–10.

[8] F. Zhang et al., “Understanding co-running behaviors on inte-
grated CPU/GPU architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 3, pp. 905–918, March 2017.

[9] M. D. Gomony et al., “A globally arbitrated memory tree for
mixed-time-criticality systems,” IEEE Trans. on Computers, vol. 66,
no. 2, Feb 2017.

[10] D. Dasari et al., “A framework for memory contention analysis in
multi-core platforms,” Real-Time Systems, vol. 52, no. 3, May 2016.

[11] I. Agirre et al., “On the tailoring of CAST-32A certification guid-
ance to real COTS multicore architectures,” in 2017 12th IEEE In-
ternational Symposium on Industrial Embedded Systems (SIES), 2017.

[12] A. Alhammad et al., “Time-predictable execution of multithreaded
applications on multicore systems,” in DATE’14. IEEE, 2014.

[13] OpenMP Architecture Review Board, “OpenMP application pro-
gramming interface version 4.5,” Nov 2015. [Online]. Available:
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[14] “The OpenACC application programming interface version 2.6.”
[Online]. Available: https://www.openacc.org/sites/default/
files/inline-files/OpenACC.2.6.final.pdf

[15] J. Bosch et al., “Exploiting parallelism on GPUs and FPGAs with
OmpSs,” in 1st Workshop on AutotuniNg and aDaptivity AppRoaches
for Energy Efficient HPC Systems. ACM, 2017.

[16] B. Forsberg et al., “HePREM: Enabling predictable GPU execution
on heterogeneous SoC,” in DATE’18, 2018.

[17] “NVIDIA Jetson.” [Online]. Available: http://www.nvidia.com/
object/jetson-tx1-dev-kit.html

[18] R. Pellizzoni et al., “A predictable execution model for COTS-based
embedded systems,” in RTAS’11. IEEE, 2011.

[19] Motor Industry Software Reliability Association and Motor Indus-
try Software Reliability Association Staff, MISRA C:2012: Guide-
lines for the Use of the C Language in Critical Systems. Motor
Industry Research Association, 2013.

[20] S. F. Antao et al., “Offloading support for OpenMP in Clang and
LLVM,” in LLVM-HPC’16, 2016.

[21] B. Forsberg et al., “Taming data caches for predictable execution
on GPU-based SoCs,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 650–653.

[22] R. Allen et al., Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann, 2001.

[23] T. Grosser et al., “Polly performing polyhedral optimizations on a
low-level intermediate representation,” Parallel Processing Letters,
vol. 22, no. 04, 2012.

[24] S. Sioutas et al., “Loop transformations leveraging hardware
prefetching,” in CGO’18, February 2018.

[25] K. Koukos et al., “Multiversioned decoupled access-execute: The
key to energy-efficient compilation of general-purpose programs,”
in 25th Int. Conf. on Compiler Construction. ACM, 2016.

[26] M. Bauer et al., “CudaDMA: optimizing GPU memory bandwidth
via warp specialization,” in High performance computing, network-
ing, storage and analysis. ACM, 2011.

[27] H. Yun et al., “Memguard: Memory bandwidth reservation system
for efficient performance isolation in multi-core platforms,” in
Real-Time and Embedded Techn. and Appl. Symp. (RTAS). IEEE, 2013.

[28] Q. Zhu et al., “Understanding co-run degradations on integrated
heterogeneous processors,” in Languages and Compilers for Parallel
Computing, 2015.

[29] G.-T. Bercea et al., “Performance analysis of OpenMP on a GPU
using a CORAL proxy application,” in Proceedings of the 6th
International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems. ACM, 2015.

[30] S. Grauer-Gray et al., “Auto-tuning a high-level language targeted
to GPU codes,” in 2012 Innovative Parallel Computing (InPar), 2012.

[31] FreshPorts – sysutils/stress: Tool to impose load on and stress test
Unix-like systems. [Online]. Available: https://www.freshports.
org/sysutils/stress/

[32] B. D. de Dinechin, “Kalray MPPA: Massively parallel processor ar-
ray: Revisiting DSP acceleration with the Kalray MPPA manycore
processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), Aug 2015.

[33] A. Kurth et al., “HERO: Heterogeneous embedded research plat-
form for exploring RISC-V manycore accelerators on FPGA,”
arXiv, 2017.

[34] B. Forsberg et al., “On the cost of freedom from interference in
heterogeneous SoCs,” in 21st International Workshop on Software and
Compilers for Embedded Systems. ACM, 2018.

[35] G. A. Elliott et al., “GPUSync: A framework for real-time GPU
management,” in 2013 IEEE 34th Real-Time Systems Symp., 2013.

[36] Q. Chen et al., “Baymax: QoS awareness and increased utilization
for non-preemptive accelerators in warehouse scale computers,”
in ASPLOS’16. ACM, 2016.

[37] Y. Suzuki et al., “Real-time GPU resource management with load-
able kernel modules,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 6, pp. 1715–1727, June 2017.

[38] W. Ali et al., “Protecting Real-Time GPU Applications on Inte-
grated CPU-GPU SoC Platforms,” ArXiv e-prints, Dec. 2017.

[39] H. Yun et al., “Bwlock: A dynamic memory access control frame-
work for soft real-time applications on multicore platforms,” IEEE
Trans. on Computers, vol. 66, no. 7, 2017.

[40] B. Forsberg et al., “GPUguard: Towards supporting a predictable
execution model for heterogeneous SoC,” in DATE’17, 2017.

[41] N. Capodieci et al., “SiGAMMA: Server based integrated GPU
arbitration mechanism for memory accesses,” in 25th International
Conference on Real-Time Networks and Systems. ACM, 2017.

[42] M. R. Soliman et al., “WCET-Driven Dynamic Data Scratchpad
Management With Compiler-Directed Prefetching,” in ECRTS’17,
2017.

[43] K.-A. Tran et al., “Clairvoyance: Look-ahead compile-time schedul-
ing,” in CGO’17. IEEE, 2017, pp. 171–184.

[44] R. A. van Engelen, “Efficient symbolic analysis for optimizing
compilers,” in Compiler Construction, R. Wilhelm, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 118–132.

[45] K. Trifunovic et al., “GRAPHITE Two Years After: First Lessons
Learned From Real-World Polyhedral Compilation,” in GROW’10,
Pisa, Italy, Jan. 2010.

Björn Forsberg received his M.Sc. degree in
Information Technology Engineering from Upp-
sala Universitet, Sweden, in 2015. Since then he
has been at the Swiss Federal Institute of Tech-
nology Zürich, Switzerland where he is currently
pursuing his Ph.D. degree. His current interests
include timing predictable real-time execution on
commercial-of-the-shelf hardware, with special
focus on emerging heterogeneous SoCs, and
the programming models and compilers required
to support such systems.

Luca Benini holds the chair of Digital Circuits
and Systems at ETHZ and is Full Professor
at the Universita di Bologna. He received his
PhD degree from Stanford University in 1997.
Dr. Benini’s research interests are in energy-
efficient system design, from embedded to HPC.
He is also active in the design of smart sensing
micro-systems and ultra-low power VLSI circuits.
He has published more than 900 peer-reviewed
papers and five books. He is a Fellow of the ACM
and a member of the Academia Europaea. He

received the 2016 IEEE CAS Mac Van Valkenburg award.

Andrea Marongiu received the PhD degree
in electronic engineering from the University of
Bologna, Italy, in 2010. He has been a postdoc-
toral reserch fellow at ETH Zurich, Switzerland.
He currently is an associate professor at the
University of Modena and Reggio Emilia. His
research interests focus on programming mod-
els and architectures in the domain of heteroge-
neous multi- and many-core systems-on-chip. In
this field, he has published more than 100 pa-
pers in peer-reviewed conferences and journals.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 12,2020 at 02:59:41 UTC from IEEE Xplore. Restrictions apply.

