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A B S T R A C T

Deep learning has recently proved a huge potential in the classification of lung sounds. Most studies rely on
publicly available data sets that are usually well-cleaned and annotated by expert physicians. The result of
annotation is subjective by definition and, above all, large and public data sets are not collected in the scope
of a very specific clinical investigation. Other works rely on private and suitably collected data sets that either
may or may not stem from clinical studies. The main issue in these cases is represented by the reliability and
noisiness of auscultations.

This paper delves into the significant impact of quantitative, systematic and reproducible cleaning of data
sets of lung sounds. For ‘‘cleaning a data set’’ we mean discarding the records that carry mostly noise and
interfering signals, since machine learning can be significantly impaired by outliers.

The developed pre-processing techniques are tested on several data sets of lung sounds. We designed
a deep neural network (DNN) for the diagnosis of interstitial lung diseases (ILD) in patients affected by
connective tissue diseases (CTD). The devised DNN can provide significant performance on the clean data
set with impressive accuracy, F1-score, and F2-score of 97% with respect to the high-resolution computer
tomography. Considering that the screening of ILD in patients affected by chronic autoimmune diseases is still
an open issue, the proposed pipeline represents the enabling technology for the early, safe, reliable and cheap
diagnosis of CTD-ILD.
1. Introduction

Interstitial lung disease (ILD) is one of the most severe and frequent
complications of chronic autoimmune diseases like rheumatoid arthritis
(RA) and connective tissue diseases (CTD). ILD appreciably reduces
the life expectation of patients as well as it can worsen their quality
of life. Despite these certainties, the actual incidence, prevalence and
survival rate related to ILD are yet largely unknown and are mainly
based on retrospective studies. Diagnosis of lung involvement in RA
and CTD patients can be difficult if based only on symptoms. Patients
can be asymptomatic in the early stages of the disease and for a long
time, whereas some suggestive clinical manifestations, such as fatigue,
dyspnoea and cough, can also derive from extra-pulmonary causes.
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High-resolution computed tomography (HRCT) remains the gold stan-
dard for the diagnosis of ILD and it is mandatory in case of suspected
ILD. Nevertheless, a routine use of HRCT for screening programs is not
advisable for both the high costs to be sustained by the national health
system (NHS) and the exposition to ionizing radiation of patients.
To improve the prescriptive appropriateness of HRCT for the early
diagnosis of ILD, a physical lung examination has been proposed as an
easy and repeatable screening. In fact, lung auscultation can reveal fine
bibasilar, end-inspiratory, ‘‘velcro-like’’ crackles, which may precede
the development of clinically overt ILD. Recently, our group developed
an algorithm named VECTOR (VElcro Crackles detecTOR) capable of
recognizing velcro crackles in pulmonary sounds with high sensitivity
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and specificity in both RA and CTD patients [1–3]. These algorithms are
employed in a prospective study led by our research group and focused
on the investigation of the incidence and prevalence of ILD in patients
affected by RA and Sjogren’s syndrome [4,5]. In practice, respiratory
sounds are periodically recorded in 3 or 4 pulmonary fields (2 at the
basal field, 1 at the middle field and eventually 1 at the upper field)
in a silent environment with an electronic stethoscope. Considering a
bilateral auscultation, 6 or 8 audio files are acquired for each patient.

The algorithmic classification of lung sounds has attracted much
interest in the last 10 years. On the one hand, developing countries can
take advantage of telemedicine to make up for the lack of specialized
doctors in needy regions. On the other hand, physicians working in
advanced hospitals or clinics can rely on quantitative tools to support
their diagnosis. The huge potential of deep learning (DL) is giving
a new life to this field of research. The pre-processing proposed in
the work [6] consists of removing high-frequency components and
zero-padding each auscultation to achieve a time support of 15 s.
Then 13 features are extracted from the Mel-Frequency Cepstral Co-
efficients (MFCC) and 1000 features are extracted from the Short-Time
Fourier Transform (STFT). The classifier is based on an Artificial Neural
Network (ANN) achieving an accuracy of 98.61%. Empirical Mode
Decomposition (EMD) and Gammatone filter bank are used in [7] for
pre-processing. The classification relies on well-known architecture for
neural networks, namely AlexNet, GoogLenet, ResNet50 and Incep-
tionV3, where the respective accuracies are 98.60%, 98.80%, 98.80%,
and 98.14%. MFCC are exploited for feature extraction and ANN is used
for classification in [8]. Accuracies larger than 90% are obtained at
high signal-to-noise ratios (SNRs). 3D-second order difference plot is
investigated in [9,10] for feature extraction, whereas a deep autoen-
coder is considered for the classification of severity in patients affected
by chronic obstructive pulmonary disease (COPD).

Most works rely on publicly available data sets that are usually well-
cleaned and annotated by expert physicians. The workload required to
specialized doctors is huge and the result of annotation is subjective by
definition. Above all, large and public data sets are not collected in the
scope of a very specific clinical investigation. For instance, the ICBHI
2017 challenge data set [11] described in [12] includes diagnosis of
COPD, asthma, pneumonia and bronchiectasis. It is worth mentioning a
couple of works processing the ICBHI 2017 challenge data set. In [13],
MFCC and autoencoder are exploited for denoising, whereas classifi-
cation is based on long-short term memory (LSTM) and bidirectional
LSTM (BLSTM) networks. The accuracy is 94% for LSTM and 97% for
BLSTM. In [14] several features are extracted from the data set, namely
Shannon entropy, logarithmic energy entropy, and spectrogram-based
spectral entropy. Decision tree (DT) and support vector machine (SVM)
are employed for classification with an accuracy of 98% and 98.2%,
respectively. Other works rely on private and suitably collected data
sets that either may or may not stem from clinical studies. To the
best of our experience, the main issue in these cases is represented by
the reliability and noisiness of auscultations. In fact, patients affected
by severe pulmonary disorders can only perform a few deep breaths
before getting tired, so the skills of the medical staff play a fundamental
role. Then, researchers and physicians have two options. The first
option consists of considering the whole data set as is, however, ‘‘bad’’
auscultations will affect the final results. The second option consists
of cleaning the data set on the basis of physicians’ annotations, but the
reproducibility of results is unavoidably compromised by the subjective
judgment of specialized doctors.

On the one hand, the problem of noise suppression or noise reduc-
tion or noise mitigation in lung sounds has been widely investigated
in the technical literature. For instance, the separation of heart sounds
from lung sounds is a well known issue in clinical practice (see [15] and
the references therein). The basic idea is that the useful signal is always
available, but it might be hidden by noise; then, the goal is to filter out
the noise component. The conventional approaches relies on adaptive
2

filtering [15–17] and/or time–frequency analysis [15,18–22]. Active
noise cancellation based on two microphones is employed in [23].
Mode decomposition has attracted much interest recently because of
its ability to separate lung sounds from background noise [24–26]. On
the other hand, the problem of cleaning data sets of lung sounds is still
an under-explored field. To the best of our experience, in many clinical
cases the useful signal is not available at all in every auscultation. For
instance, when the pulmonary disease is very severe, the patient is not
able to deeply breathe.

1.1. Scope of this work

To the best of our knowledge, the problem of quantitative, sys-
tematic and reproducible cleaning of data sets of lung sounds has
not been tackled in the technical literature yet. For ‘‘cleaning a data
set’’ we mean discarding the records that carry mostly noise and
interfering signals, since machine learning can be significantly impaired
by outliers. In this paper, we present an algorithmic approach to this
problem. Variational mode decomposition (VMD) [7,27] and Harmonic
Percussive Separation Spectrogram (HPSS) [28] are employed for sig-
nal denoising. Several features are extracted from the fast Fourier
transform (FFT) and autocorrelation function of the resulting signal.
Conventional techniques, namely K nearest neighbors (Knn) [29], De-
cision Tree (DT) [30], LogitBoost [31] and Naive Bayes (NB) [32], are
used to classify auscultations into ‘‘good’’ and ‘‘bad’’ signals. We mean
for good signal an auscultation carrying non-negligible information for
the diagnosis of pulmonary disorders. Conversely, we categorize an
auscultation as a ‘bad signal’ when it predominantly contains noise,
lacking substantial diagnostic information. We consider two data sets
collected in our previous studies and the publicly available Respirato-
ryDatabase@TR [33]. We compare the results of the proposed pipeline
with a mixture of annotations provided by expert physicians and quan-
titative data devised from [3]. Then, bad auscultations are purged from
the data sets and the performance of a new deep neural network (DNN)
is assessed with respect to HRCT reports in the diagnosis of ILD.

1.2. Related works

A first example of work close to this topic is [34], where the
classification of different noise sources and clean signals is considered
in a population of young children. Several time–frequency features
are extracted and classified through a SVM. A second example is the
work [35] dealing with the discrimination between uncontaminated
and noisy lung sounds. The analysis of [34] relies on spectrum char-
acterization, whereas the analysis of [35] is based on Katz fractal
dimension, Teager–Kaiser energy operator and normalized mutual in-
formation. However, excluding all the auscultations that carry some
noise is not feasible in most cases, since this would lead to a significant
reduction of the data set dimension and hence it would appreciably
affect the performance of deep learning.

The remainder of the paper is organized as follows. The data sets
considered for performance assessment are introduced in Section 2. The
proposed pipeline for the classification of good and bad auscultations
is described in Section 3. The new DNN for the detection of ILD is
presented in Section 4. Numerical and experimental results for both
the classification of good/bad sounds and the diagnosis of ILD are
illustrated in Section 5. Finally, some conclusions are discussed in
Section 6.

2. Clinical study

The data sets used in this work have been collected in the clinical
studies described in detail in [4,5,36,37]. These studies were approved
by the University Hospital of Modena Ethics Committee and all par-
ticipants signed a written consent form. The studies were conducted
in accordance with the principles of the Helsinki Declaration. In this

Section, we recall only the information necessary to understand the
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composition of these data sets and to appreciate the practical impact
of the results discussed in Section 5.

The population included in the RA-ILD data set involves patients
affected by RA and undergoing chest HRCT at the University Hospital
of Modena (Italy) in the period 1st of January 2015–1st of January
2017 [4]. HRCTs have been requested by physicians independent of
this research and the patients have not been suitably selected. Lung
auscultation was performed on both sides of the chest in three different
areas (lower para-vertebral, lower axillary, medium para-vertebral)
during an outpatient visit in a quiet environment. Littmann 3200
digital stethoscope was used to capture, convert, and record pulmonary
sounds. The recordings were made at a sampling frequency of 4000 Hz.
All 6 recordings per patient were saved as WAV (Waveform Audio
files). The population included in the CTD-ILD data set involves patients
with a diagnosis of CTD, such as dermatomyositis, Sjögren’s syndrome,
antisynthetase syndrome, systemic lupus erythematosus, and undiffer-
entiated connective tissue disease [36]. Participants were required to
have undergone an HRCT scan in the past 12 months before the study.
Those with pleural effusion or pneumothorax were not eligible. In some
cases, additional HRCT scans were performed. Lung auscultation was
performed on both sides of the chest in four different areas (lower
para-vertebral, lower axillary, medium para-vertebral and upper para-
vertebral) in the same conditions and with the same setup of the RA-ILD
study.

The RA-ILD data set is composed of 137 patients affected by RA and
includes 820 auscultations. Similarly, the CTD-ILD data set is composed
by 84 patients affected by CTD and includes 670 auscultations. Please
see also Section 5 for the distribution of the data sets.

The HRCT images were anonymized, converted to DICOM format
and analyzed by the same radiologist with specific expertise in thoracic
radiology and ILD. The radiologist was required to extract binary infor-
mation from HRCT images, namely the presence (positive) or absence
(negative) of ILD. Radiological reports have been used as ground truth
for the diagnosis of ILD in the performance assessment of the DNN
devised in Section 4.

3. Classification of ‘‘good vs. bad’’ auscultations

In this Section, the suite of algorithms developed for the classifica-
tion of ‘‘good vs. bad’’ auscultations is presented in detail. The designed
pipeline is sketched in Fig. 1.

Variational mode decomposition (VMD) is used for separating dif-
ferent sources of sounds. We are interested in keeping lung sounds
and removing all the other sounds, both physiological like heartbeat
and artifacts like rubbing the stethoscope on the skin. The power
of signals is normalized before VMD. Harmonic percussive separation
spectrogram (HPSS) is introduced to remove percussive components of
noise like tapping fingers on the head of the tool. The remaining har-
monic component is divided into windows and the Root Mean Square
(RMS) value is computed for each of them. The resulting sequence
of RMS values (or RMS signal in brief) is interpolated through the
Akima function [38]. Various features are extracted from the FFT and
correlation function of the interpolated RMS signal, namely overall
signal power, number of breath cycles, fundamental breathing fre-
quency and breathing periodicity. Binary classifiers are employed to
infer the presence of specific patterns related to breath cycles. Good
auscultations include clean breath cycles and carry useful information
for detecting ILD in patients affected by autoimmune diseases. On the
contrary, bad auscultations mainly include noise and should not be used
to raise the diagnostic suspicion of ILD.

The first step, i.e. VMD, is executed in Matlab environment [27],
whereas the following steps are implemented in Python on the basis of
the standard libraries Numpy, Pandas, Librosa, Path and Scipy [39–41].
3

Fig. 1. Flow chart summarizing the pipeline for the detection of ‘‘good vs. bad’’
auscultations.

3.1. Variational mode decomposition

The first step of the pipeline consist of removing as much noise
as possible. We usually classify the noise affecting auscultations as
external and internal noise. External noise is mainly related to signal ac-
quisition, for instance to the proper placement of the stethoscope head
on the human body, to the pressure and tilt applied by the physician on
the tool and to the electrical characteristics of the stethoscope. Internal
noise is related to involuntary and voluntary physiological functions.
To the best of our experience, involuntary physiological functions
like heartbeat, stomach and intestine movements, are characterized by
spectral components having frequencies lower than 100 Hz. Voluntary
(in a wide sense) physiological functions like cough, crackles, wheezes
and whistles, have spectral components with frequencies higher than
200 Hz.

In this work, we adopt VMD to separate different sources of lung
sounds. Although Empirical Mode Decomposition (EMD) has been used
in various applications [42–44], we have opted for VMD for its solid
mathematical background. VMD [27] is a well-known approach to the
non-recursive decomposition of a real input signal 𝑔(𝑡) into a discrete
number 𝐾 of sub-signals 𝑢𝑘. Sub-signals are called modes or Intrinsic
Mode Functions (IMFs). The IMFs are amplitude-modulated–frequency-
modulated (AM–FM) signals defined in [27] as

𝑢𝑘(𝑡) = 𝐴𝑘(𝑡) ⋅ 𝑐𝑜𝑠(𝜙𝑘(𝑡)) (1)

where the phase 𝜙𝑘(𝑡) is a non-decreasing function, the envelope 𝐴𝑘(𝑡)
is non-negative, both the envelope and the instantaneous pulsation
𝜔𝑘(𝑡) = 𝜙′

𝑘(𝑡) vary much slower than the phase. The main goal consists
of finding the modes 𝑢 (𝑡) and respective central pulsation 𝜔 (𝑡) to
𝑘 𝑘
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Fig. 2. PSD of the three IMFs resulting from the VMD of four auscultations: (a) good-positive, (b) bad-positive, (c) good-negative, (d) bad-negative.
minimize the variational problem
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s.t.
∑

𝑘
𝑢𝑘 = 𝑓 (2)

where 𝛿(𝑡) is the Dirac distribution, ∗ denotes convolution and 𝑘 =
1, 2,… , 𝐾. In practice, Hilbert Transform is used to devise the analytic
signal corresponding to each mode, the mode is shifted to the base-band
through the exponential of the given central frequency, the squared
L2 norm of gradient is exploited to estimate the bandwidth of each
mode [28]. The number of IMFs 𝐾 to be devised represents an input
for the algorithm and impacts the final result. On the one hand, if
the number of expected IMFs is too low, a leakage between different
sound sources may deteriorate the decomposition. On the other hand,
an excessive number of IMFs may lead to noise over-fitting. In our
work the number of IMFs has been set to 𝐾 = 3 on the basis of
both empirical tests on our data sets and the results of other studies
in the same field. The IMFs at the output of the VMD are compact
around the respective central pulsations 𝜔𝑘(𝑡). The parameters involved
in VMD are described in detail in [27]. We used the Matlab function
provided by D. Zosso for the practical implementation of VMD [45].
We set a moderate bandwidth constraint and the noise tolerance. The
instantaneous frequencies are initialized as uniformly distributed.

According to the presented setup for VMD, the first mode mainly
includes physiological functions and internal noise, so it is always
discarded. The second mode usually includes a mixture of useful infor-
mation and noise. If the central frequency of the second mode is lower
than the frequency threshold 𝑓𝑡ℎ = 110 Hz, then it is discarded since
it includes mainly noise. On the contrary, if the center frequency of
the second mode is higher than the frequency threshold 𝑓𝑡ℎ = 110 Hz,
it is considered since it carries useful information for this application.
The frequency threshold 𝑓𝑡ℎ = 110 Hz has been set based on the
doctor’s annotations and empirical considerations [3]. The third mode
usually carries the most useful information about physiological and
pathological lung sounds. The third mode is discarded if its central
frequency is lower than 𝑓𝑡ℎ = 110 Hz, since in this case, pulmonary
sounds are almost absent. Indeed, the auscultation is classified as
bad since it is meaningless to the scope of investigating pulmonary
disorders. VMD evidenced an appreciable robustness against noise in
some works available in the technical literature [7,46]. Summarizing,
if the central frequency of mode 2 is larger than 𝑓𝑡ℎ = 110 Hz, the sum
of the second and third IMFs is considered for further processing. If the
central frequency of mode 3 is lower than 𝑓 = 110 Hz, the auscultation
4

𝑡ℎ
is classified as bad. Otherwise, only the third mode is processed by the
remaining of the pipeline.

The VMD of four auscultations is shown in Fig. 2. Left and right
columns refer to good and bad auscultations, respectively. The top and
bottom rows denote whether or not the patient is positive or negative
to ILD, respectively. The power spectral density (PSD) of the three IMFs
is expressed as dBW/Hz. The central frequency of the modes increases
as the mode order increases by the definition of VMD. Furthermore, the
power of the modes decreases as the mode order increases, since lung
sounds are weaker than other physiological sounds and possible arti-
facts/noise. The overall ‘‘pictures’’ of the four VMDs are quite similar,
even if some quantitative deviations can be appreciated in the bad-
negative auscultation. Consequently, further processing is necessary for
the classification of lung sounds.

3.2. Mel spectrogram

Mel spectrogram is exploited in this Section to visualize the time–
frequency properties of good and bad auscultations. In our Python
implementation, we focus on the first 8 s of the considered mode/modes
(see Section 3.1) for two main reasons. Firstly, this time support is
suitable to collect at least two to four breath cycles [3]. Secondly,
inhalations are usually deeper at the beginning of the auscultation,
i.e. when the patient is not ‘‘tired’’ yet. It is well known that the deeper
is the inhalation, the more likely is the detection of possible velcro
crackles since the pathogenesis of ILD starts in the lower lobes. Each
mode/sum of modes is divided into 500 non-overlapping frames of 64
samples, considering the sampling rate of 4000 Hz for the electronic
stethoscope employed in this study. The power of the considered signals
has been normalized to compare the auscultations acquired by different
operators in different hospitals. This approach has been exploited for
cough recognition in [47] and for the detection of ILD in [3].

The Mel spectrograms [48] of the IMFs depicted in Fig. 2 are shown
in Figs. 3 and 4. Auscultations referring to patients positive and nega-
tive to ILD are illustrated in Figs. 3 and 4, respectively. Good and bad
auscultations are reported in the left and right columns, respectively,
of both figures. Similarly, the first row of both figures represents the
acquired signal, and the second to fourth rows denote first to third
IMFs, respectively.

Good signals are characterized by almost periodic breath cycles in
both the raw acquisition and IMFs (left columns of Figs. 3 and 4).
Most of the power of the first and second IMFs is carried in the band
0−100 Hz, whereas the power of the third IMF is gathered around
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Fig. 3. Mel spectrograms of auscultations referring to patients positive to ILD (first row of Fig. 2): (a) full-signal good-positive, (b) full-signal bad-positive, (a1) mode 1 good-positive,
(b1) mode 1 bad-positive, (a2) mode 2 good-positive, (b2) mode 2 bad-positive, (a3) mode 3 good-positive, (b3) mode 3 bad-positive.
500 Hz with strong components up to 1000 Hz. On the contrary, bad
signals evidence irregular breathing patterns as shown in the right
columns of Figs. 3 and 4. Most of the noise affects the first and second
IMFs. The power of the third IMF is smeared in the time–frequency
plane. Events characterized by very short time support and frequencies
up to 1500 Hz can be easily related to artifacts, like for instance tipping
the fingers on the head of the stethoscope.

3.3. Harmonic percussive separation spectrogram

HPSS [28] is employed for further noise suppression. HPSS is
adopted in several fields to evidence the harmonic vs. percussive com-
ponents in a spectrogram, for instance, [49]. Percussive components
5

are basically strong events concentrated in a limited time support and
appear in the spectrogram as vertical lines. Harmonic components
infer the presence of given spectral contributions and appear in the
spectrogram as horizontal lines [28]. In this work, we are interested in
harmonic components, since they can be related to signal components
having a periodic behavior. On the contrary, percussive components are
neglected since they are related to impulsive events usually associated
with artifacts and noise sources. Not all sounds evidence necessarily
harmonics and/or percussive components. The traditional audio model
is based on the superposition of sines, transients, and noise (STN), so
it is also called the STN model [28,50,51]. In practice, by discarding
the first and second IMFs, we aim to filter out transients and noise,
while retaining the sine parts that carry crucial information about
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Fig. 4. Mel spectrograms of auscultations referring to patients negative to ILD (second row of Fig. 2): (a) full-signal good-negative, (b) full-signal bad-negative, (a1) mode 1
good-negative, (b1) mode 1 bad-negative, (a2) mode 2 good-negative, (b2) mode 2 bad-negative, (a3) mode 3 good-negative, (b3) mode 3 bad-negative.
pathological lung sounds. We employ HPSS to further evidencing
harmonic components with respect to other components.

The mathematical details of HPSS are available in [28]. Denoting
with

𝑋(𝑡, 𝑘) =
𝑁−1
∑

𝑛=0
𝑤(𝑛)𝑥(𝑛 + 𝑡𝐻)𝑒𝑥𝑝(−2𝜋 ⋅ 𝑖𝑘𝑛∕𝑁) (3)

the STFT of either the third IMF or the mixture of the second and
third IMFs (see Section 3.1), then the spectrograms of the harmonic
and percussive components are defined as

𝑋 (𝑡, 𝑘) = 𝑋(𝑡, 𝑘) ⋅𝑀 (𝑡, 𝑘) (4)
6

ℎ ℎ
and

𝑋𝑝(𝑡, 𝑘) = 𝑋(𝑡, 𝑘) ⋅𝑀𝑝(𝑡, 𝑘), (5)

respectively, where

𝑀ℎ(𝑡, 𝑘) = 𝑌 1
ℎ (𝑡, 𝑘)∕(𝑌

1
𝑝 (𝑡, 𝑘) + 𝜖) > 𝛽 (6)

and

𝑀𝑝(𝑡, 𝑘) = 𝑌 1
𝑝 (𝑡, 𝑘)∕(𝑌

1
ℎ (𝑡, 𝑘) + 𝜖) ≥ 𝛽 (7)

are the masks for harmonic and percussive separation, respectively,

𝑌 1(𝑡, 𝑘) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌 (𝑡 − 𝑙ℎ, 𝑘),… , 𝑌 (𝑡 + 𝑙ℎ, 𝑘)) (8)
ℎ
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Fig. 5. Harmonic components of the third IMF of the signals considered in Figs. 2–4: (a) good-positive, (b) bad-positive, (c) good-negative, (d) bad-negative.
Fig. 6. RMS signals stemming from the harmonic components of Fig. 5: (a) good-positive, (b) bad-positive, (c) good-negative, (d) bad-negative. The yellow line represents the
RMS signal, green line denotes Akima interpolation and blue circles highlight peaks.
and

𝑌 1
𝑝 (𝑡, 𝑘) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌 (𝑡, 𝑘 − 𝑙𝑝),… , 𝑌 (𝑡, 𝑘 + 𝑙𝑝)) (9)

are the harmonically and percussively enhanced magnitude spectro-
grams, respectively, and 𝑌 = |𝑋|. The separation factor of the masks
has been set to 𝛽 = 2 on the basis of both the indications of [28] and our
empirical tests of robustness. The window dimension and the hop size
have been set to 𝑁 = 256 and 𝐻 = 192 according to various studies
available in technical literature [52–54]. Kaiser windowing has been
employed for 𝑤(𝑛).

Fig. 5 presents the harmonic components of the third IMFs of the
signals considered in Figs. 2, with good signals on the left and bad
signals on the right. The good signals are characterized by numerous
horizontal lines, which represent harmonic components. These compo-
nents, particularly dense in time intervals corresponding to inhalations,
7

facilitate the identification of breath cycles. Conversely, bad signals
do not exhibit well-defined patterns, making breath cycles difficult to
discern.

3.4. RMS

The root mean square (RMS) value of each time window composed
by 𝑁 = 256 samples is computed and then 1D Akima interpolation [38]
is applied. This interpolation is employed to preserve crucial infor-
mation about peaks, as the Akima function connects the peaks of the
signal using splines. The output of the Akima interpolator is henceforth
referred to as the RMS signal.

The RMS signals stemming from the harmonic components of Fig. 5
are shown in Fig. 6. Yellow line represents the RMS signal, green line
denotes Akima interpolation and blue circles highlight peaks. Abscissa
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Fig. 7. Comparison between algorithmic classification and physicians’ annotations
(‘‘good’’ vs. ‘‘bad’’ auscultations) for different power thresholds 𝑃𝑡ℎ.

nd ordinate represent the frame index and RMS value (of the given
rame), respectively. The amplitude of the peaks in good signals (on
he left) is larger than that of the bad signals (on the right). Moreover,
eaks in good signals are almost periodic in time and can be exploited
o infer the presence of breathing activity.

.5. Features extraction

The foundational premise of this work is the characterization of
reathing as a pseudo-periodic process. The algorithms detailed in
ections 3.1 and 3.3 are specifically designed to eliminate transient
nd noise components from the conventional STN audio model while
mplifying the sine (or harmonic) component. The subsequent sections
ill introduce the algorithms we propose for extracting various features
f interest from both the raw signal (i.e., the acquired signal) and the
MS signal discussed in Section 3.4. In particular, the vector at the

nput of the classifier is composed by 6 features, namely signal power
Section 3.5.1), number of breath cycles (Section 3.5.2), frequency and
mplitude of the absolute maximum of the FFT applied to the RMS
ignal (Section 3.5.3), amplitude and lag of the non-trivial maximum
f the autocorrelation function (Section 3.5.4).

.5.1. Power
This feature consists of the original power of the acquired signal and

s used for power normalization.

.5.2. Number of breath cycles
This feature quantifies the number of breath cycles. Specifically, the

umber of peaks in the Akima function that exceed a power threshold
𝑡ℎ are identified as breath cycles. The performance of the proposed
lgorithm for the detection of ‘‘good’’ vs. ‘‘bad’’ auscultations have
een compared to the annotations of physicians for some values of the
ower threshold, namely for 𝑃𝑡ℎ = {2.5, 3, 3.5, 4, 4.5}⋅𝑅𝑀𝑆, where 𝑅𝑀𝑆

represents the mean value of the signal RMS. Results are summarized
in Fig. 7 showing the number of correct vs. wrong decisions of the pro-
posed algorithm for different power thresholds 𝑃𝑡ℎ. Correct decisions
correspond to properly detecting good or bad auscultations, whereas
wrong decisions lead to misdetection. It is worth pointing out that the
search space might be expanded and enriched, however, this ‘‘brute
force’’ approach requires significant efforts, so we limited our search
to 5 values in the most promising set based on preliminary results. The
best performance is then achieved setting the power threshold to

𝑃𝑡ℎ = 3.5 ⋅ 𝑅𝑀𝑆. (10)

Fig. 6 provides an example of peak counting. Two peaks are de-
tected in the good signals illustrated in Figs. 6-(a) and -(c), whereas no
peaks are identified in the bad signals depicted in Figs. 6-(b) and -(d).
8

3.5.3. FFT
Fast Fourier Transform (FFT) is exploited to devise the funda-

mental breathing frequency. Although the original breath signal is
non-stationary and FFT is applied to the RMS signal, a certain pseudo-
periodicity is still expected. In fact the auscultation length is 8 s and
2–4 breath cycles are expected (see Section 3.2). To this aim, the RMS
signal of length 500 samples is included in one FFT window of length
2500 samples and zero-padding is employed to refine the spectral
representation.

Useful information is carried by both the amplitude and frequency
of the largest peak. Amplitude is interpreted as a measure of feature
reliability. In fact, large amplitudes are achieved when the breathing is
pseudo-periodic, whereas low amplitudes denote noise and/or absence
of breathing cycles. In some cases, the FFT of the RMS signal evidences
one peak corresponding to the breath fundamental frequency. In other
cases, the FFT reveals two distinct peaks corresponding to different
inhaling and exhaling pseudo-periodicity.

The FFT of the RMS signals considered in Fig. 6 is shown in Fig. 8.
The FFTs associated with good signals (on the left) are characterized
by pronounced peaks having normalized amplitude 1.5 and frequency
0.6 Hz. This frequency leads to about 5 breath cycles in the time interval
f 8 s, which is a physiological condition. The FFTs associated to bad
ignals (on the right) are characterized by peaks weaker than those
elated to good signals. Moreover, the frequency of the main peaks are
round 0.15 Hz, leading to about 1 breath cycle over a time interval of
s, i.e. evidencing an abnormal breathing condition.

.5.4. Correlation function
The auto-correlation function is employed to analyze the pseudo-

eriodicity of the RMS signal (refer to Section 3.4). For instance, Fig. 9
llustrates the auto-correlation functions of the RMS signals considered
n Fig. 6. Good auscultations, shown on the left, display a broad sense of
seudo-periodic behavior. This can be leveraged to infer physiological
reathing. Indeed, the lag of the peaks is associated with the duration
f breathing cycles, while the amplitude of the peaks can serve as a
easure of estimation reliability. Conversely, bad auscultations, shown

n the right, exhibit weak auto-correlation and a lack of periodicity.
hese characteristics can be used to infer the prevalence of noise over
ulmonary sounds.

.6. Classification

The features extracted from both the raw and RMS signals serve as
nputs for various binary classification algorithms, which distinguish
etween ‘‘good’’ and ‘‘bad’’ auscultations. We have explored the use
f several classifiers, including K-nearest neighbors (Knn) [29], De-
ision Tree (DT) [30], LogitBoost [31], and Naive Bayes (NB) [32].
hese techniques find application in a multitude of fields, such as the
lassification of breast cancer metastasis [55].

.7. Computational complexity

The computational complexity involved by the techniques presented
n Section 3 has been assessed in terms of complex additions and
ultiplications. The pipeline has been sectioned into three main sub-
odules, namely VMD, features extraction and classification. We de-
ote with 𝑁𝑎 the number of audio files, 𝑀𝑎 is the average length of

audio files, 𝐿𝑚 is the average length of the modes, 𝑃 = 6 is the number
of features.

VMD has a computational complexity of 𝑂(𝑁𝑎 ⋅𝑀𝑎), whereas sorting
and extraction of modes involve 𝑂(𝑁𝑎 ⋅ 𝑙𝑜𝑔(𝐿𝑚)) complex additions and
multiplications.

The extraction of power, number of breath cycles and autocorrela-
tion features require 𝑂(𝑁𝑎 ⋅ 𝐿𝑚) real operations, whereas FFT involves

𝑂(𝐿𝑚 ⋅ 𝑙𝑜𝑔(𝐿𝑚)) complex additions and multiplications.
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Fig. 8. FFT of the RMS signals of Fig. 6: (a) good-positive, (b) bad-positive, (c) good-negative, (d) bad-negative.
Fig. 9. Auto-correlation function of the RMS signals of Fig. 6: (a) good-positive, (b) bad-positive, (c) good-negative, (d) bad-negative.
Knn has a computational complexity of 𝑂(𝑁𝑎 ⋅ 𝑃 ⋅𝐾𝑛), where 𝐾𝑛 is
the number of neighbors. Logit Boost has a computational complexity
of 𝑂(𝑁𝑎 ⋅ 𝑃 ⋅𝑄), where 𝑄 represents the number of boosting iterations.
Decision Tree involves a computational complexity of 𝑂(𝑃 ⋅𝑁𝑎 ⋅𝑙𝑜𝑔(𝑁𝑎)).
Naive Bayes has a computational complexity of 𝑂(𝑁𝑎 ⋅ 𝑃 ⋅ 𝐾𝑏), where
𝐾𝑏 is the number of classes.

4. Deep learning for the diagnosis of ILD

Our research group has extensively investigated the diagnosis of ILD
from the analysis of lung sounds in several studies [1,3,4]. In particular,
the work [3] introduced a pipeline based on deep learning that consid-
ers the whole available data set; in other words, suboptimal signals,
i.e. bad auscultations, are not differentiated or removed. Despite this,
in this work we prove that carefully curating and excluding unsuitable
signals can significantly enhance the accuracy of ILD detection.

The core of our DNN consists of a multi-model parallel ensemble
of well-known convolutional neural networks (CNNs) architectures,
including InceptionV3, ResNet101, EfficientNetB0, and MobileNetV2.
These CNNs are fed with an augmented image data set composed by
the Mel spectrograms of lung sounds [3]. Each Mel spectrogram is
9

handled as an image providing a standardized visual representation
of the pulmonary sounds of the patient. The proposed DNN is trained
exclusively on data unrelated to the test subjects to ensure an unbiased
training process. In practice the training and testing data sets are
strictly distinct.

Each CNN model is fine-tuned in its final layer for the specific task
of ILD detection. Global average pooling is employed to extract key
features; these are then processed through fully connected layers with
dropout regularization to mitigate the risk of overfitting. The sigmoid
activation function is adopted in the final layer to yield the class
prediction. The individual predictions from the four CNN models are
aggregated and further processed through additional fully connected
layers with dropout. The resultant stacked architecture culminates in a
sigmoid-activated layer producing the ensemble prediction.

This sophisticated model operates on the TensorFlow and Keras
frameworks and is optimized using the Adam algorithm. Cross-entropy
loss function is employed for training. 5-fold cross-validation is adopted
for robust and reliable performance assessment in the detection of ILD
from lung sounds.
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Table 1
Performance of binary classifiers introduced in Section 3.6 for ‘‘good vs. bad’’ signals
on the CTD-ILD data set. The accuracy is reported in terms of the mean and standard
deviation of the cross-validation.

Metrics Knn LogitBoost NB DT

Accuracy 95% ± 0.45% 95% ± 0.84% 93% ± 0.55% 94% ± 0.74%
F1-score 97% ± 0.24% 97% ± 0.44% 96% ± 0.30% 97% ± 0.39%
F2-score 97% ± 0.34% 97% ± 0.60% 95% ± 0.44% 97% ± 0.50%
Recall 98% ± 0.42% 97% ± 0.74% 94% ± 0.53% 97% ± 0.60%
Precision 96% ± 0.17% 97% ± 0.40% 99% ± 0.12% 97% ± 0.35%

Table 2
Results of the Shapiro–Wilk test on the proposed classifiers.

Shapiro–Wilk test Knn LogitBoost NB DT

Statistic 0.9945 0.9939 0.9925 0.9618
𝑝-value 0.9601 0.9383 0.8586 0.0054

5. Results

This Section is divided into three parts. First, the performance of
the pipeline described in Section 3 is shown to ‘‘clean’’ the considered
data sets of lung sounds (see Section 2), namely the CTD-ILD data set,
the RA-ILD data set and the RespiratoryDatabase@TR. These results are
presented in Sections 5.1 and 5.2. Then, the clean data sets for CTD-ILD
and RA-ILD are exploited to raise the suspicion of ILD from lung sounds
in Section 5.3. Finally, the results of Sections 5.1 and 5.3 are compared
to the results presented in similar works in Section 5.4.

5.1. Cleaning of CTD-ILD and RA-ILD data sets

The process of classifying signals into ‘‘bad’’ and ‘‘good’’ categories
can be deemed subjective, as it lacks a well-defined ground truth. To
address this issue, we combine expert annotations from medical special-
ists and predictions from the DNN described in Section 4. Specifically,
we define ‘‘bad’’ and ‘‘good’’ signals in the following way. We label an
auscultation as ‘‘bad’’ if it lacks meaningful information according to
medical specialists, and if the DNN prediction falls below 60%. Any
auscultation not meeting these criteria is categorized as ‘‘good’’.

The CTD-ILD data set is unbalanced, with nearly twice as many
‘good’ signals compared to ‘bad’ ones. To counteract this issue, we
assigned double the cost to ‘bad’ signals compared to ‘good’ ones,
helping to reduce potential bias in the signal classifiers. We evaluated
the performance using common metrics: accuracy, recall, precision, F1-
score, and F2-score. Here, ‘good’ signals were treated as true positives
and ‘bad’ signals as true negatives.

The performance of the pipeline described in Section 3 is sum-
marized in Table 1 for the CTD-ILD data set. 5-fold cross-validation
has been adopted for binary classification. The probability density
functions (pdfs) entailed by the considered classifiers are shown in
Fig. 10, whereas the results of the normality Shapiro–Wilk test are
reported in Table 2. All the considered classifiers provide a normal
accuracy distribution, except DT which can be deemed approximately
normal. The performance is excellent for all classifiers, as all the
metrics exceed 93%. In other words, all the classifiers are capable of
identifying good/bad auscultations in the CTD-ILD data set with respect
to the ground truth defined at the beginning of this Section. For the
sake of fairness, Knn and LogitBoost provide the best performance
exceeding 95% in all the metrics. Knn relies less than its counterparts
on hyperparameters and is known for its simplicity, flexibility and
accuracy. LogitBoost belongs to the category of ensemble methods,
i.e. it combines different models to boost reliability, and it often yields
excellent results. NB methods rely on the assumption that features are
independent, but in our application features are somewhat correlated
as discussed in Section 3.5. This correlation unavoidably affects the per-
formance of the NB approach. DT method is more prone to overfitting
10
Fig. 10. Visual representation of the normal probability density functions correspond-
ing to the Shapiro–Wilk test results for the classifiers Knn, LogitBoost, NB, and
DT.

Table 3
Performance of binary classifiers introduced in Section 3.6 for ‘‘good vs. bad’’ signals on
the RA-ILD data set. The maximum uncertainty entailed by the five-fold cross validation
is ±5%.

Metrics Knn LogitBoost NB DT

Accuracy 58% 52% 58% 57%
F1-score 73% 73% 71% 73%
F2-score 86% 84% 80% 85%
Recall 97% 94% 87% 96%
Precision 59% 59% 60% 58%

than Knn and LogitBoost and suffers from a performance deterioration
accordingly.

The same pipeline of Section 3 has been tested on the RA-ILD data
set. The resulting performance is summarized in Table 3. Recall and
F2-score exceed 94% and 80% respectively, denoting a minimal number
of false negatives. In other words, the proposed pipeline is effective in
identifying almost all good signals. However, precision is limited to 59-
60%, denoting a significant number of false positives. Indeed, precision
also affects accuracy and F1-score. In practice, several auscultations are
classified as good even if they do not carry useful information for the
diagnosis of ILD. We are aware that the RA-ILD data set collected in our
first clinical study [1] may have some limitations. We suspect that our
confidence in the electronic stethoscope and measurement setup was
not optimal during data acquisition. Furthermore, the clinical picture
of RA patients is usually more severe than that of CTD patients and
repeatedly deep breathing is more difficult for them.

5.2. Cleaning of the RespiratoryDatabase@TR

The pipeline presented in Section 3 has been applied to the public
data set available at [33] and described in [56]. Knn, Logit Boost
and DT classifiers detected 3 ‘‘bad’’ auscultations over 504 files. Bad
auscultations belongs to the same 4 patients. From a subjective and
perceptive analysis of physicians, these bad auscultations have been
probably discarded since breathing cycles cannot be detected. NB de-
tected 14 ‘‘bad’’ auscultations over 504 files. From a subjective and
perceptive analysis of physicians, these bad auscultations have been
probably discarded for a combination of weak breath sound, cough and
artifacts.

5.3. Diagnosis of ILD

The diagnosis of ILD is based on the HRCT as explained in Section 2.
True positives denote patients affected by ILD, true negatives represent
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Fig. 11. Confusion matrices of the DNN processing the clean CTD-ILD data set: (a) Knn, (b) LogitBoost, (c) NB, (d) DT. True positives denote patients affected by ILD, true
negatives represent patients not affected by ILD.
Table 4
Summary of the performance of the DNN in the diagnosis of ILD on the CTD-ILD data
set. The maximum uncertainty entailed by the five-fold cross validation is ±2%.

Metric Raw Knn LogitBoost NB DT

Accuracy 88% 97% 91% 87% 81%
F1-score 88% 97% 91% 87% 81%
F2-score 93% 97% 94% 89% 82%
Recall 94% 96% 95% 90% 82%
Precision 87% 98% 89% 88% 84%

patients not affected by ILD. Each data set, namely CTD-ILD and RA-
ILD, goes through the pipeline of Section 3 yielding 4 distinct data
sets, one for each classification method (see Section 3.6), namely Knn,
LogiBoost, NB and DT. The raw, i.e. original, data set is considered
for comparison. These distinct data sets feed the DNN presented in
Section 4.

The confusion matrices related to the CTD-ILD data sets are shown
in Fig. 11, whereas the performance metrics of the DNN are summa-
rized in Table 4. The proposed pipeline for data cleaning can provide
significant performance improvement in the diagnosis of ILD with
respect to the raw, i.e. original, data set. The most significant improve-
ment is entailed by the Knn classifier. This leads to a data set suitable
to the DNN for achieving F1-score and F2-score of 97.4% and 96.7%,
respectively, whereas the scores of the DNN on the original CTD-ILD
data set are 88.1% and 92.8%. The LogitBoost classifier can provide
a limited performance improvement, in fact, the related F1-score and
F2-score are 90.5% and 93.8%, respectively. NB and DT cannot work
well enough to increase the performance of the DNN in the diagnosis of
ILD. Despite the similar capability of Knn and LogitBoost in classifying
good and bad signals (see Table 1), their different performance in the
diagnosis of ILD can be attributed to their inherent properties. Knn
can effectively capture the underlying patterns and remove outliers by
considering local similarity among neighboring samples. The resulting
data set provides a more accurate representation of patterns, so that
the DNN can be better trained. On the other hand, LogitBoost aims at
11
Fig. 12. ROC/AUC diagram of the considered data sets related to CTD-ILD. The 95%
confidence interval (CI) is also shown to ease the comparison.

optimizing the overall predictive performance and may not be adequate
to effectively remove outliers. The remaining misclassified instances
hinder the classification capability of the DNN.

The results summarized in Table 4 are confirmed by the receiver op-
erating characteristic/area under curve (ROC/AUC) diagram of Fig. 12.
The 95% confidence interval (CI) is also shown to ease the comparison.
Knn involves the largest AUC of 0.99. LogiBoost data set outperforms
the raw CTD-ILD data set with an AUC of 0.97 versus 0.93, respectively.
NB and DT deserve a particular discussion, since in these cases the DNN
was impaired by the large amount of instances labeled as ‘bad’ reducing
the size of the useful data set. The severe imbalance between ‘good’ and
‘bad’ instances in the raw data set poses further challenges. Although 5-
fold validation was applied to mitigate classification uncertainty, large
output fluctuations are observed and the DNN leads to inconsistent
AUC/ROC values. As a consequence, despite the AUC of NB is as high
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Fig. 13. Confusion matrices of the DNN processing the clean RA-ILD data set: (a) Knn, (b) LogitBoost. True positives denote patients affected by ILD, true negatives represent
patients not affected by ILD.
Table 5
Summary of the performance of the DNN in the diagnosis of ILD on the RA-ILD data
set.

Metrics Only DNN Knn LogitBoost

Accuracy 68% ± 1% 64% ± 1% 62% ± 2%
F1-score 68% ± 2% 64% ± 1% 61% ± 1%
F2-score 62% ± 2% 57% ± 1% 64% ± 1%
Precision 65% ± 1% 68% ± 2% 60% ± 1%
Recall 61% ± 2% 55% ± 1% 65% ± 2%

as 0.98, the performance of the DNN on the NB data set is poor. The
application of data balancing techniques might improve the consistency
and performance of NB and DT in the context of ILD diagnosis, at least
partially.

The performance of the developed DNN has been also assessed
with respect to the RA-ILD data set. The confusion matrices are shown
in Fig. 13, whereas the DNN performance metrics are summarized
in Table 5. Only Knn and LogitBoost classifiers are considered for
cleaning the RA-ILD data set, as NB and DT cannot provide satisfying
performance on these data. The proposed pipeline is not suitable to
clean the RA-ILD data set and to improve the performance of the DNN
in the diagnosis of ILD. The same comments expressed at the end of
Section 5.1 hold also in this case.

5.4. Comparison to other data sets and works

The pre-processing pipeline presented in Section 3 has been also
applied to publicly available data sets, for instance the ICBHI 2017
Challenge data set. The number of auscultations classified as bad is
negligible as expected, since during the annotation process noisy signal
has been probably discarded by physicians. For the sake of complete-
ness, the performance of the techniques presented in [6,26] for the
classification of lung sounds are summarized in Table 6 and compared
to our results devised in Section 5.3 for the CTD-ILD data set (see
Table 4). Although the comparison cannot be deemed totally fair since
the data sets are different, some general indications can be devised. The
pipeline proposed in [6] is composed by a feature extraction based on
STFT and MFCCs and Knn classification. The achieved accuracy is 93%.
The pipeline proposed in [26] exploits EMD for denoising, MFFCs and
12
time domain parameters for feature extraction. Knn and Boosted Trees
are employed for classification with an accuracy of 77% and 87.40%,
respectively. We can presume that the clean data set provided by our
pipeline leads our DNN to significantly outperform its counterparts.

6. Conclusions

Our findings highlight the prominent role of Knn and LogitBoost
classifiers in cleaning the data set and enhancing the quality of aus-
cultations processed by the DNN. Knn evidenced a peculiar capacity
to capture local similarities and to reject outliers, so delivering a clean
data set and promoting an efficient learning. The DNN designed for the
diagnosis of CTD-ILD from lung sounds can provide formidable perfor-
mance, namely accuracy, F1-score and F2-score of 97%. Considering
that the screening of ILD in patients affected by chronic autoimmune
diseases is still an open issue, the proposed DNN represents the enabling
technology for raising the early diagnostic suspicion of CTD-ILD. This
tool is safe, reliable and cheap. Then HRCT can be selectively pre-
scribed, thus reducing the exposition of patients to ionizing radiation
and decreasing the cost for the national health system.
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Table 6
Comparison of the performance of the proposed processing pipeline and DNN on the CTD-ILD data set with respect to
counterparts available in the literature.

Algorithm Accuracy Recall F1-score Precision Specificity

Our DNN - Knn 97% ± 1% 96% ± 1% 97% ± 1% 98% ± 1% 98% ± 1%
Knn [6] 93% ± 1% 93% ± 1% 93% ± 1% 94% ± 1%
Knn [26] 77% ± 2% 64% ± 2% 95% ± 2%
Our DNN - LogitBoost 91% ± 1% 95% ± 1% 91% ± 1% 89% ± 1% 85% ± 1%
Boosted trees [26] 87% ± 2% 97% ± 1% 78% ± 2%
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