This is the peer reviewd version of the followng article:

Optimal Placement of Micro-services Chains in a Fog Infrastructure / Canali, C.; Di Modica, G.; Lancellotti,
R.; Scotece, D.. - In: CLOSER. - ISSN 2184-5042. - (2022), pp. 199-206. (Intervento presentato al
convegno 12th International Conference on Cloud Computing and Services Science, CLOSER 2022
tenutosi a online streaming nel APR 27-29, 2022) [10.5220/0011049500003200].

Science and Technology Publications, Lda
Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

28/04/2024 19:33

(Article begins on next page)

Optimal placement of micro-services chains in a Fog infrastructure

Claudia Canali!, Giuseppe Di Modica?, Riccardo Lancellotti', Domenico Scotece?
Y Department of Engineering "Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

2Department of Engineering and Computer Science, University of Bologna, Bologna, Italy

claudia.canali@unimore.it, giuseppe.dimodica@unibo.it, riccardo.lancellotti@unimore.it, domenico.scotece @unibo.it

Keywords:

Abstract:

Micro-services Placement, Fog Computing, Genetic Algorithms, Performance Evaluation

Fog computing emerged as a novel approach to deliver micro-services that support innovative applications.
This paradigm is consistent with the modern approach to application development, that leverages the compo-
sition of small micro-services that can be combined to create value-added applications. These applications
typically require the access from distributed data sources, such as sensors located in multiple geographic lo-
cations or mobile users. In such scenarios, the traditional cloud approach is not suitable because latency
constraints may not be compatible with having time-critical computations occurring on a far away data-center;
furthermore, the amount of data to exchange may cause high costs imposed by the cloud pricing model. A
layer of fog nodes close to application consumers can host pre-processing and data aggregation tasks that can
reduce the response time of latency-sensitive elaboration as well as the traffic to the cloud data-centers. How-
ever, the problem of smartly placing micro-services over fog nodes that can fulfill Service Level Agreements
is far more complex than in the more controlled scenario of cloud computing, due to the heterogeneity of
fog infrastructures in terms of performance of both the computing nodes and inter-node connectivity. In this
paper, we tackle such problem proposing a mathematical model for the performance of complex applications
deployed on a fog infrastructure. We adapt the proposed model to be used in a genetic algorithm to achieve
optimized deployment decisions about the placement of micro-services chains. Our experiments prove the
viability of our proposal with respect to meeting the SLA requirements in a wide set of operating conditions.

1 Introduction

According to the OpenFog Consortium Byers and
Swanson (2017), ... fog computing is a horizontal
system-level architecture that distributes computing,
storage, control, and networking functions closer to
users along a cloud-to-things continuum”. The fog
paradigm grounds on the idea that by putting comput-
ing resources closer to both mobile users and sensors,
a better guarantee of service quality can be ensured
in all demanding scenarios that cloud computing has
proven unfit to serve.

If on the one hand the fog has shown the poten-
tial to provide such a guarantee, on the other one a
typical fog data center is not even comparable to a
cloud one in terms of both offered computing capac-
ity and homogeneity of owned resources. Unlike the
cloud, the fog fails to provision flexibility and large
availability of resources to requesting users. A fog-
based computing environment typically requires that
accurate schemes of resource management and ser-
vice allocation are put into force in order to sustain the

promised service quality. Furthermore, a fog infras-
tructure is a geographically distributed system, mean-
ing that network-related delay in fog-to-fog commu-
nications are typically not negligible, thus placing ad-
ditional concerns for the deployment of complex ap-
plications.

In the depicted computing context, we deal with
the service placement problem, i.e., the problem of
how to best place services on the limited resources of-
fered by the fog in a way that meets the performance
expectation of service consumers. In particular, we
consider the common case of applications composed
of multiple and interconnected micro-services, which
in turn can be deployed independently of each other in
any of the available fog resources. The employment
of small software computing units rather than mono-
lithic applications makes the service placement prob-
lem even harder, as the number of potential micro-
service/resource mappings may grow very high.

In this paper, we tackle the definition of an analyti-
cal model to represent the placement of micro-service
based software applications on the computing nodes

of a fog data center. We leverage the potential of ge-
netic algorithms to propose a strategy that explores
the space of service-resource mappings to discover
the configuration that best matches the end users ex-
pectation in terms of service response time. Finally,
we discuss the results of tests run to assess the vi-
ability of the proposed strategy on several boundary
conditions.

In summary, the paper proposes the following in-
novative contributions:

* an analytical framework to model the placement
of micro-service chains in a fog environment;

* an optimal placement strategy leveraging a ge-
netic algorithm approach;

* asensitivity analysis aimed to assess the ability of
the devised strategy to find suitable solutions.

The rest of the paper is structured in the following
way. In Section 2, we report a survey of the state of art
addressing the placement of services in fog infrastruc-
tures. In Section 3, we introduce the motivation of the
paper along with a basic use case scenario. We dis-
cuss a theoretical model to represent the performance
of services deployed in a fog infrastructure in Section
4. In Section 5, we present the results of experiments
aimed at evaluating the proposed approach. Finally, in
Section 6 we conclude the paper and anticipate some
future directions of the work.

2 Literature review

While service placement in terms of Virtual Ma-
chine allocation in cloud datacenters has been ex-
tensively studied Mann (2015); Canali and Lancel-
lotti (2017), the placement of micro-services over the
nodes of a fog computing infrastructure has received
far less attention.

Several studies propose mechanisms for service
placement over the geographically distributed nodes
of a fog infrastructure starting by the simplifying as-
sumption that an IoT application only consist of one
independent micro-service. Among them, the solu-
tion proposed in Yu et al. (2018) is based on an opti-
mization model to jointly study application placement
and data routing. The authors in Skarlat et al. (2017)
proposes a solution for the placement of IoT services
on fog resources, taking into account their QoS re-
quirements. They rely on the concept of fog colonies
and model the fog service placement problem as an
Integer Linear Programming problem. The study pre-
sented in Canali and Lancellotti (2019) proposes for
the first time a service placement for fog comput-
ing systems based on genetic algorithms, demonstrat-

ing the efficacy of this kind of solution in a fog en-
vironment. However, in the reality complex appli-
cations usually are made up of multiple dependent
micro-services, while all the cited studies did not con-
sider the existence of a chain of multiple dependent
services and the consequent constraints, that signifi-
cantly increase the complexity of the solution.

Other studies focus on service placement in com-
bined fog-to-cloud architectures Souza et al. (2018);
Gupta et al. (2017); Yousefpour et al. (2017). The
study in Souza et al. (2018) proposes novel strate-
gies to offload services execution within the whole set
of cloud and fog resources, according to the specific
services needs and resources characteristics. The so-
lutions proposed in Gupta et al. (2017); Yousefpour
et al. (2017) place services with low latency require-
ments on the fog nodes, not powerful enough to host
all services. In our solution, we focus on placing
the micro-services only on the nodes of the fog layer
in order to maximize the user satisfaction, assuming
that, for the considered service chains, fog nodes are
able to process every request.

Only a minor number of studies have consid-
ered the problem of modeling the service chains and
their placement over the fog nodes. Among them,
some solutions are based on completely distributed
approaches Kayal and Liebeherr (2019); Xiao and
Krunz (2017). In Kayal and Liebeherr (2019) authors
seek to optimize energy consumption and communi-
cation costs based on a game-theoretic approximation
method. In Xiao and Krunz (2017), fog nodes cooper-
atively determine the optimal amount of workload to
be forwarded and processed by each other to improve
the users’ quality of experience. On the other hand,
in Santos et al. (2020) a centralized service chain con-
troller optimizes the placement of service chains in
fog environments.Our solution relies on Genetic Al-
gorithms to cope with the non linear nature of the
optimization problem used to minimize the response
time of the service chains, and proposed a wide sen-
sitivity analysis to consider the impact of varying ser-
vice chain length, load level and number of fog nodes.

3 Motivating scenario

The fog computing paradigm aims at compensat-
ing the inability of cloud computing to guarantee low
latency requirements typically required by applica-
tions in IoT contexts. This is typically achieved by
deploying services close to the source of data they
need to process and/or users they need to serve. Un-
fortunately, the processing and storage power of fog
nodes is limited compared with that offered by the

Microservice-node mapping

— ——— s

Inter-node virtual network link

Figure 1

cloud. Furthermore fog resources are typically het-
erogeneous, i.e., computing nodes provided in the fog
may exhibit non-uniform capacity. In such an envi-
ronment it is paramount to devise smart resource allo-
cation mechanisms that optimise resource occupancy
and grant service level agreements at the same time.
The problem is further exacerbated by the fact that
an application is often composed of multiple, smaller
micro-services that, in their turn, can be deployed in
any of the available fog nodes independently of each
other.

In this paper, we tackle a typical problem of ser-
vice placement in a fog environment. Input to the
problem are: i) a set of applications subject to SLAS;
ii) a list of fog nodes with known capacity features;
iii) a demand for applications whose expected load in
the short-to-mid term is known a priori. We aim to
find an optimal application deployment scheme that
meet customers’ SLAs. Also, assuming that all appli-
cations are natively decomposed into smaller micro-
services, when seeking for optimal micro-service to
node placement, we will also monitor metrics such as
the average number of nodes spanned by applications,
the network delay the deployment incurs into and the
load balance.

In Figure 1, we depict a sample service deploy-
ment scenario where four distinct applications are
placed on four fog nodes. The applications will serve
requests originated by four groups of end users. Each
group of users targets just one application. The way
user requests are conveyed to the targeted application
running in the fog layer is not relevant for the purpose
of this work. In the figure, each application is mod-

eled by means of a service chain composed of at least
two micro-services. Without loss of generality, we as-
sume that a service chain ¢; is actually implemented
by pipelining an ordered sequence of micro-services
Mgz, € 1,2,..n. For j > 1, my; takes input from
m;j—1) and, for 7 < n sends its output to m;(;1).
The micro-service occupying the first position in the
chain (m;;) will take ¢; input while m;, ends the
processing either sending the results to a cloud-based
storage or by sending the final result back trough the
chain to requesting users. By length of a service chain
we will refer to the number of micro-services com-
posing the chain. Micro-services composing a service
chain may be placed into one or multiple fog nodes.
Obviously, the number of fog nodes hosting a service
chain may not exceed the service chain length. In its
turn, a fog node may host micro-services belonging
to different service chains. In the figure, service chain
c3’s three micro-services are hosted by three distinct
fog nodes, while the entire service chain ¢4 is placed
in one fog node. A fog node f}, is the recipient of all
user requests addressed to the service chain(s) having
their first micro-service hosted by f;. By way of ex-
ample, fog node f; will receive all requests addressed
to service chain ¢ and co, as f; is hosting mq;1 and
mo1 Which are the first micro-service in the service
chains ¢y and c3, respectively. Fog nodes show differ-
ent computing capacity and are interconnected with
each other via homogeneous high-speed network.

In this paper, we focus on the performance rep-
resented by the time taken by the application to re-
ply to an end user’s request (i.e., the service response
time). Such an index is affected by some factors,

among which the most impacting ones are i) the ap-
plication’s request load, ii) the average service time of
all micro-services composing the service chain, and
iii) the computing capacity of fog nodes hosting the
micro-services. We aim to define a service placement
strategy that, taking in consideration the mentioned
boundary conditions, strives to minimize the applica-
tions response time.

4 Performance model

We now discuss the theoretical model used to de-
scribe the service placement problem as well as the
heuristic approach adopted to solve the problem. We
consider a framework such as the one described in
Section 3, with service chains composed of multiple
micro-services that needs to be deployed on a set of
fog nodes. Each chain receives data or activation re-
quests that can be either generated by devices or by
mobile users. We call these sources of events simply
sensors.

4.1 Performance metric

In our formulation, the main performance metric is
the application response time, that is the time incur-
ring between the moment a sensor sends some data
and the time the service chain has processed the re-
quest. Indeed, optimizing this metric brings benefits
with respect to several other more specialized perfor-
mance indicators. For example, significantly unbal-
anced load may cause overload on part of the fog in-
frastructure, with a resulting penalty on the response
time; in a similar way, a placement that distributes the
micro-services of a service chain on many fog nodes
incur in a higher network-related delay compared to a
solution that tries to place micro-services on the same
or on nearby nodes. In our model we explicitly intro-
duce a maximum acceptable response time for each
service chain, that is the considered SLA.

In the following model, we refer to notation pre-
sented in Table 1, that can be used as a summary. For
the sake of brevity, we identify a micro-service sim-
ply as m, without explicitly showing the double index
of service chain and progressive position within the
chain as in Sec. 3.

The fist critical element of our model is the per-
formance of a single micro-service. Service time of a
generic micro-service m is modeled with a Gaussian
distribution with average S,,, and standard deviation
om- The service time corresponds to the time mea-
sured at server side to process a request when the ser-
vice is located on a fog node in an idle status. Service

Table 1: Notation and parameters for the proposed model.

Model parameters

M Set of micro-services
F Set of fog nodes
¢ Set of service chains
Am Incoming req. rate to micro-service m
Af Incoming req. rate to fog node f
Ac Incoming req. rate to service chain ¢
A Incoming global request rate
Sm Avg. service time for micro-service m
Om Standard deviation of S,,
Py Computational power of fog node f
Ry Avg. response time for services on node f
R, Avg. response time for service chain ¢
R Global avg. response time
TSLA SLA of service chain ¢
Om,,ms Services order of execution in a chain
Oty fo network delay between nodes f1 and f2
Model indices
f A fog node
c A service chain
m A micro-service
Decision variables
T, f Allocation of micro-service m to fog f

time contains no network delay nor waiting time due
to other services being processed.

For the purpose of model description, we make
the assumption that the system is in a steady state
condition, i.e., fog nodes are not overloaded. As
such, we can assume that, in every micro-service of
a service chain, the incoming load equals the out-
going load, i.e., for a generic service chain ¢ € C,
Amy = Am,Vmi, mo € c. Furthermore, we antici-
pate that the decisions on the placement of services
will be represented by a matrix of Boolean variables
X={vmypmeM,feF}tbeingry ;=1
service m is assigned to fog node f.

A micro-service must be assigned to exactly one
fog node. However, multiple micro-services may co-
exist on a fog node, and the incoming requests may be
interleaved and enqueued. To model the performance
of a fog node we recur to a queuing theory model for
a multi-class application. We assume each fog node f
to be target of this multi-class workload. Each class is
one of the micro-services allocated on the fog node f.
As the service time of each micro-service is a Gaus-
sian distribution, the resulting multi-class system will
present a service time described as a mixture of Gaus-
sian distributions. Furthermore, we consider that each
node is characterized by a computational power Py
that represents a speedup factor for the service time.
The resulting composite service time can thus be de-

scribed with an average value Sy and a standard devi-
ation oy as follows:

1 A
1
o7 = (P2 D wmsy (S%+ai)> - 5% @
' mem

where Ay = > \(Tm,;An is the total incoming
load on node f. From this definition, we can derive
the expected response time Ry for node f from the
Pollaczek Khinchin formula:
Sf+of)\

2 1= XSy

For a generic service chain c, the response time
R, is the sum of the response times of the nodes
where the micro-services belonging to that chain have
been deployed, plus the network delay associated
with the data transfer between each couple of subse-
quent micro-services in the chain.

RfZSf+ 3)

R. = Z T, p - Rp+

mec

+ Z Z Omy,my " Tmy,f1 * Tma, fo '5f1’f2
f1,f2€F mi,ma2€c
4)

where 0,,, m, represents the order of execution
of micro-services in service chain c. Specifically
Omy,ms = 1 <= mi < mgy, meaning that service
m 18 ahead of ms in the service chain.

4.2 Optimization problem

We now present the optimization problem that de-
scribes the allocation of micro-services on the fog
nodes. We rely on the notation in Table 1 and exploit
the performance metrics introduced in Section 4.1.

min obj(X) = chRc Q)
ceC
subject to:
d amp=1 YmeM, (6)
feF
1
Af <5 VfeF, (7
Sy
R. <TSt4 veeg, (8)
Tm,f ={0,1}, YmeM,feF,)

The objective function (5) is the weighted sum of
the response time of each service chain, that is calcu-
lated using Eq. (4). The weights w,. are chosen in a

way that) . w. = 1. In the basic definition of the
problem we can simply assume that w. = A./A, that
is, weights are proportional to the incoming traffic in
each service chain (A is the sum of all A, s € S).

The optimization problem is characterized by
three constraints. The constraint expressed in Eq. (6)
imposes that each micro-service need to be allocated
on one and only one fog node. The constraint ex-
pressed in Eq. (7) imposes that fog nodes need not to
be in an overload condition (if the average processing
rate is 1/S t, this is the maximum allowed incoming
traffic). The next constraint, in Eq. (8) ensures the
respect of the SLA for each service chain. Finally,
Eq. (9) describes the Boolean nature of the decision
variable.

4.3 Genetic algorithm

The considered problem has a nonlinear nature (due
to its objective function) that makes it difficult to find
a solution. To tackle it, we adopted a heuristic ap-
proach inspired to evolutionary algorithms. Evolu-
tionary algorithms have been largely used in litera-
ture Binitha et al. (2012); Yusoh and Tang (2010) to
cope with cloud and fog infrastructure management
problems. In this paper, we leverage a heuristic ap-
proach based on Genetic Algorithms (GAs).

We briefly recall the main elements of a genetic
algorithm. The solution is encoded in a chromosome
composed by genes that represent the single parame-
ters characterizing a solution of the problem. In the
solution we consider a population of individuals, be-
ing each individual a potential solution of the problem
described by the individual chromosome. The initial
population is randomly generated.

In our problem, we map the optimization model
described in Section 4.2 by defining a chromosome
as a set of M = | M| genes, with M being the num-
ber of micro-services. Each gene is an integer num-
ber between 1 and F' = |F]|, that is the number of
fog nodes. The generic m!”" gene in a chromosome
gm can be defined as: g, = {f : Zm y = 1}. By
virtue of constraint (6), only one fog node will host
the micro-service m, so the encoding of the chromo-
some will automatically produce solutions that satisfy
Egs. (6) and (9).

To each individual we assign a value of the fit-
ness score, that is based on the objective function
of the optimization problem defined in Eq. (5). To
take full advantage of the genetic algorithm poten-
tial, we should allow the genetic pool to roam free
over the possible configurations. This approach con-
flicts with constraints (7) and (8) concerning the fog
node overload and SLA satisfaction. Instead of em-

bedding the notion of unacceptable solution in the
problem encoding, we prefer to cope with this fea-
ture of the problem using the fitness function. Specif-
ically, individuals providing a solution featuring one
or more overloaded fog nodes are characterized by a
poor fitness score (we consider in Eq. (3) that Ay Sy =
0.999; furthermore we multiply the response time by
1+ Ay — 1/5; to make the penalty proportional to
the overload level). In a similar way we introduce
a significant penalty when one or more chains don’t
meet their SLA. As a consequence, such individuals
are likely to be pruned from the genetic pool.

In the genetic algorithm, the population evolves
through a set of generations aiming to reach higher
fitness scores through a set of operators. Specifically,
in our experiments we consider a random mutation
operator to explore new areas of the solution space;
a uniform crossover to merge individuals; and a four-
nament selection to select the fittest individuals for
the next generation. The genetic algorithm has been
implemented using the DEAP! library. Preliminary
tests were carried out to tune the main algorithm pa-
rameters. Specifically, in our analysis we consider a
mutation and crossover probability (that is the proba-
bility of an individual to be chosen for mutation and
crossover, respectively) such that: Pp,.; = 0.8%,
P., = 0.8%. From the same preliminary tuning we
set the initial population to 600 individuals and the
generations to 600.

5 Experimental results

5.1 Experimental setup

In this section, we discuss a set of experiments we
ran to assess the ability of the proposed GA-based ap-
proach to find suitable solution to the service place-
ment problem in a fog infrastructure.

In our analysis, we generate several random prob-
lems with pre-defined characteristics and evaluate the
quality of the solution found by our heuristic.

Each problem is defined in terms of:

* Service chain length L., that is the number of
micro-services composing a chain;

 Service time of a service chain S;
* Average network delay § between two fog nodes;

* Problem size, that is the number of fog nodes and
of service chains considered.

"DEAP: Distributed Evolutionary Algorithms in Python
- https://deap.readthedocs.io/en/master/

In our analysis we consider chains of equal length,
that is L, = |{m € c}| is constant Vc € C. The
impact of this parameter is evaluated in Section 5.2,
while in the other analyses we consider chains com-
posed of 5 micro-services.

Throughout our experiments, the incoming load is
set in such a way that the average utilization of fog
nodes is in the order of 60%.

Concerning the problem size, the number of nodes
can be identified as ||, while the number of chains
is |C|. As default values, used everywhere except for
the scalability evaluation of Section 5.3, we consider
a set of 10 fog nodes supporting 4 service chains.

For this analysis we assume that the SLA is set to
10x the service time of the chain, that is a common
value used in cloud applications. In our experiments,
this SLA is automatically satisfied as long as no over-
load occurs, motivating our choice of not performing
a specific analysis with respect to this parameter.

We consider the the response time of the service
chains and the average number of hops in the chain
deployments, normalized against the chain length
(ranging in [0,1]) as significant performance mea-
sure in our analyses. Another critical performance
metric of interest is the Jain index: fairness measure
that quantifies the ability of the genetic algorithm to
achieve load balancing over the fog infrastructure.

The Jain index is defined as J = 1/(1 +
CoV(py)?), where py is the utilization of each node
f € F and CoV(-) is the coefficient of variation (i.e.,
the ratio between standard deviation and mean) com-
puted over all fog nodes. An index of 1 means perfect
balancing, while a lower value means that the load is
unevenly distributed among the fog nodes.

5.2 Sensitivity to service chain length

T 0.8

=4 07

ogs—
108

085/

Jain index
L
o
B

of hops

<4 03

08
Jain index —=—

Normalized # hops —ll—
0.75 I I I h | I

0
3 4 5 6 7 8 9 10
microservices / chain

Figure 2: Load balancing and hops vs. chain length L.

Fig. 2 shows the Jain index (purple line with
empty squares) and the average number of hops of

each chain (green line with filled squares) as a func-
tion of the service chain length L.. We observe that,
when the number of micro-services in a chain is low,
the load balancing is difficult as there are long ser-
vices that, alone, can exhaust the processing power of
a fog node. On the other hand, as we have multiple,
smaller service (that is, when L. is higher), the ability
of the genetic algorithm to find a good load balanc-
ing is proved by the Jain index value being close to
1. At the same time, due to the finer-grain placement
options, also the average number of hops for each ser-
vice is reduced by roughly 35%, confirming the abil-
ity of the proposed algorithm to reduce the impact of
network delays, being the normalized number of hops
close to 0.5, meaning that, on average, every two ser-
vices in a chain, there is one hop.

50 T T T
Std. deviation
45 Avg response time —H— |

35 T
30 T
25

20 b

Response time [ms]

0 I I I L L I
3 4 5 6 7 9 10

microservices / chain

Figure 3: Response times vs. chain length L.

Fig. 3 shows the average response time for dif-
ferent service chains length. The poor load balanc-
ing for low values of L. causes an increase of the
average response time as local near-overload condi-
tion may arise on some fog nodes. The purple aura
provides a measure of the variance of response times
within each problem (dark purple) and between differ-
ent problems (light purple). Due to the coarse-grained
placement when L. < 5 we observe both a response
time higher by up to 30% compared to longer service
chains and an increase of the variance of the samples
by a factor of 4.

5.3 Scalability analysis

Finally, in Fig. 4 we report the study on the algorithm
scalability as the number of fog nodes |F| grows by
5x from 5 to 25 nodes. The number of service chains
|C| is increased proportionally from 2 to 10, with each
chain hosting 5 services. We observe that, as the con-
figuration space to explore increases, the genetic algo-
rithm presents a steady growth in the execution time
(green line with filled squares). This result can be ex-

50 T T * 200

Response time [ms]
GA execution time [s]

Std. deviation
Avg response time —5—
GA execution time —l— . o

5 10 15 20 25
#1fog

Figure 4: Response and execution time vs. | F|

plained by considering that the chromosome length
corresponds to the number of micro-services to place.
As the chromosome grows, the cost of most genetic
operators (from the computation of the objective func-
tion to mutation and crossover) increases, thus caus-
ing the growth in the execution time that is nearly
doubled as the problem size increases by 5x. Also,
as the search space for the solutions grows, the ge-
netic algorithm is less effective in identifying the best
solutions. This explains the growth of the response
time (54%) as well as its standard deviation (more
than 4x), suggesting that for extremely large prob-
lems the algorithm may provide lower quality solu-
tions.

6 Conclusions and future work

Starting from applications designed as chains of
micro-services, we propose a model to optimize the
placement of these services over the nodes of the fog
infrastructure. Our model considers both the network
delay effect and the impact of computational load
over the achieved performance, taking into account
the inherent heterogeneity in the service time of the
various micro-services and in the computation power
of each fog node. In our paper we propose the perfor-
mance model, its application to an optimization prob-
lem for the deployment of fog applications and a ge-
netic algorithm heuristic for the problem solution. A
thorough experimental evaluation demonstrates that
our approach can provide adequate deployment solu-
tions, respecting SLA requirements, for a wide range
of service chain characteristics, load conditions and
problem sizes. This paper is just a first step in a new
research line. Our future research directions spans
both the modeling, with more complex problems and
SLA formulations, and the evaluation, to test our ap-
proach with realistic fog applications through small-

scale prototypes and large-scale simulations.

REFERENCES

Binitha, S., Sathya, S. S., et al. (2012). A survey
of bio inspired optimization algorithms. Infterna-
tional Journal of Soft Computing and Engineering,
2(2):137-151.

Byers, C. and Swanson, R. (2017). Openfog consor-
tium openfog reference architecture for fog com-
puting. OpenFog Consortium Archit. Working
Group, Fremont, CA, USA, Tech. Rep. OPFRAO001,
20817.

Canali, C. and Lancellotti, R. (2017). Scalable and
automatic virtual machines placement based on be-
havioral similarities. Computing, 99(6):575-595.

Canali, C. and Lancellotti, R. (2019). A Fog Com-
puting Service Placement for Smart Cities based on
Genetic Algorithms. In Proc. of International Con-

ference on Cloud Computing and Services Science
(CLOSER 2019), Heraklion, Greece.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and
Buyya, R. (2017). ifogsim: A toolkit for modeling
and simulation of resource management techniques
in the internet of things, edge and fog computing

environments. Software: Practice and Experience,
47(9):1275-1296.

Kayal, P. and Liebeherr, J. (2019). Distributed service
placement in fog computing: An iterative combi-
natorial auction approach. In 2019 IEEE 39th In-
ternational Conference on Distributed Computing
Systems (ICDCS), pages 2145-2156.

Mann, Z. A. (2015). Allocation of virtual machines
in cloud data centers—a survey of problem mod-
els and optimization algorithms. ACM Computing
Surveys, 48(1).

Santos, J., Wauters, T., Volckaert, B., and De Turck, F.
(2020). Towards delay-aware container-based ser-
vice function chaining in fog computing. In NOMS
2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, pages 1-9.

Skarlat, O., Nardelli, M., Schulte, S., and Dustdar, S.
(2017). Towards qos-aware fog service placement.
In 2017 IEEE Ist International Conference on Fog
and Edge Computing (ICFEC), pages 89—96.

Souza, V., Masip-Bruin, X., Marin-Tordera, E.,
Sanchez-Loépez, S., Garcia, J., Ren, G., Jukan, A.,

and Juan Ferrer, A. (2018). Towards a proper ser-
vice placement in combined Fog-to-Cloud (F2C)
architectures. Future Generation Computer Sys-
tems, 87:1-15.

Xiao, Y. and Krunz, M. (2017). Qoe and power ef-
ficiency tradeoff for fog computing networks with
fog node cooperation. In IEEE INFOCOM 2017
- IEEE Conference on Computer Communications,
pages 1-9.

Yousefpour, A., Ishigaki, G., and Jue, J. P. (2017).
Fog computing: Towards minimizing delay in the
internet of things. In 2017 IEEE International Con-
ference on Edge Computing (EDGE), pages 17-24.

Yu, R., Xue, G., and Zhang, X. (2018). Application
provisioning in fog computing-enabled internet-of-
things: A network perspective. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communi-
cations, pages 783-791.

Yusoh, Z. I. M. and Tang, M. (2010). A penalty-based
genetic algorithm for the composite saas placement
problem in the cloud. In IEEE Congress on Evolu-
tionary Computation, pages 1-8.

