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Abstract: A distributed binary hypothesis testing (HT) problem involving two parties, a remote
observer and a detector, is studied. The remote observer has access to a discrete memoryless source,
and communicates its observations to the detector via a rate-limited noiseless channel. The detector
observes another discrete memoryless source, and performs a binary hypothesis test on the joint
distribution of its own observations with those of the observer. While the goal of the observer is
to maximize the type II error exponent of the test for a given type I error probability constraint, it also
wants to keep a private part of its observations as oblivious to the detector as possible. Considering
both equivocation and average distortion under a causal disclosure assumption as possible measures
of privacy, the trade-off between the communication rate from the observer to the detector, the type II
error exponent, and privacy is studied. For the general HT problem, we establish single-letter inner
bounds on both the rate-error exponent-equivocation and rate-error exponent-distortion trade-offs.
Subsequently, single-letter characterizations for both trade-offs are obtained (i) for testing against
conditional independence of the observer’s observations from those of the detector, given some additional
side information at the detector; and (ii) when the communication rate constraint over the channel is zero.
Finally, we show by providing a counter-example where the strong converse which holds for distributed
HT without a privacy constraint does not hold when a privacy constraint is imposed. This implies that
in general, the rate-error exponent-equivocation and rate-error exponent-distortion trade-offs are not
independent of the type I error probability constraint.

Keywords: Hypothesis testing; privacy; testing against conditional independence; error exponent;
equivocation; distortion; causal disclosure

1. Introduction

Data inference and privacy are often contradicting objectives. In many multi-agent system,
each agent/user reveals information about its data to a remote service, application or authority, which in
turn, provides certain utility to the users based on their data. Many emerging networked systems
can be thought of in this context, from social networks to smart grids and communication networks.
While obtaining the promised utility is the main goal of the users, privacy of data that is shared is
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becoming increasingly important. Thus, it is critical that the users ensure a desired level of privacy for the
sensitive information revealed, while maximizing the utility subject to this constraint.

In many distributed learning or distributed decision-making applications, typically the goal is to
learn the joint probability distribution of data available at different locations. In some cases, there may
be prior knowledge about the joint distribution, for example, that it belongs to a certain set of known
probability distributions. In such a scenario, the nodes communicate their observations to the detector,
which then applies hypothesis testing (HT) on the underlying joint distribution of the data based on
its own observations and those received from other nodes. However, with the efficient data mining
and machine learning algorithms available today, the detector can illegitimately infer some unintended
private information from the data provided to it exclusively for HT purposes. Such threats are becoming
increasingly imminent as large amounts of seemingly irrelevant yet sensitive data are collected from users,
such as in medical research [1], social networks [2], online shopping [3] and smart grids [4]. Therefore, there
is an inherent trade-off between the utility acquired by sharing data and the associated privacy leakage.

There are several practical scenarios where the above-mentioned trade-off arises. For example,
consider the issue of consumer privacy in the context of online shopping. A consumer would like to
share some information about his/her shopping behavior, e.g., shopping history and preferences, with the
shopping portal to get better deals and recommendations on relevant products. The shopping portal
would like to determine whether the consumer belongs to its target age group (e.g., below 30 years old)
before sending special offers to this customer. Assuming that the shopping patterns of the users within
and outside the target age groups are independent, the shopping portal performs a hypothesis test to
check if the consumer’s shared data is correlated with the data of its own customers. If the consumer is
indeed within the target age group, the shopping portal would like to gather more information about this
potential customer, particular interests, more accurate age estimation, etc.; while the user is reluctant to
provide any further information. Yet another relevant example is the issue of user privacy in the context
of wearable Internet of Things (IoT) devices such as smart watches and fitness trackers, which collect
information on routine daily activities, and often have a third-party cloud interface.

In this paper, we study distributed HT (DHT) with a privacy constraint, in which an observer
communicates its observations to a detector over a noiseless rate-limited channel of rate R nats per
observed sample. Using the data received from the observer, the detector performs binary HT on the joint
distribution of its own observations and those of the observer. The performance of the HT is measured by
the asymptotic exponential rate of decay of the type II error probability, known as the type II error exponent
(or error exponent henceforth), for a given constraint on the type I error probability (definitions will be
given below). While the goal is to maximize the performance of the HT, the observer also wants to
maintain a certain level of privacy against the detector for some latent private data that is correlated with
its observations. We are interested in characterizing the trade-off between the communication rate from the
observer to the detector over the channel, error exponent achieved by the HT and the amount of information
leakage of private data. A special case of HT known as testing against conditional independence (TACI) will
be of particular interest. In TACI, the detector tests whether its own observations are independent of those
at the observer, conditioned on additional side information available at the detector.

1.1. Background

Distributed HT without any privacy constraint has been studied extensively from an information-
theoretic perspective in the past, although many open problems remain. The fundamental results for
this problem are first established in [5], which includes a single-letter lower bound on the optimal error
exponent and a strong converse result which states that the optimal error exponent is independent of the
constraint on the type I error probability. Exact single-letter characterization of the optimal error exponent
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for the testing against independence (TAI) problem, i.e., TACI with no side information at the detector,
is also obtained. The lower bound established in [5] is further improved in [6,7]. Strong converse is studied
in the context of complete data compression and zero-rate compression in [6,8], respectively, where in the
former, the observer communicates to the detector using a message set of size two, while in the latter using
a message set whose size grows sub-exponentially with the number of observed samples. The TAI problem
with multiple observers remains open (similar to several other distributed compression problems when a
non-trivial fidelity criterion is involved); however, the optimal error exponent is obtained in [9] when the
sources observed at different observers follow a certain Markov relation. The scenario in which, in addition
to HT, the detector is also interested in obtaining a reconstruction of the observer’s source, is studied
in [10]. The authors characterize the trade-off between the achievable error exponent and the average
distortion between the observer’s observations and the detector’s reconstruction. The TACI is first studied
in [11], where the optimality of a random binning-based encoding scheme is shown. The optimal error
exponent for TACI over a noisy communication channel is established in [12]. Extension of this work to
general HT over a noisy channel is considered in [13], where lower bounds on the optimal error exponent
are obtained by using a separation-based scheme and also using hybrid coding for the communication
between the observer and the detector. The TACI with a single observer and multiple detectors is studied
in [14], where each detector tests for the conditional independence of its own observations from those of
the observer. The general HT version of this problem over a noisy broadcast channel and DHT over a
multiple access channel is explored in [15]. While all the above works consider the asymmetric objective of
maximizing the error exponent under a constraint on the type I error probability, the trade-off between the
exponential rate of decay of both the type I and type II error probabilities are considered in [16–18].

Data privacy has been a hot topic of research in the past decade, spanning across multiple disciplines
in computer and computational sciences. Several practical schemes have been proposed that deal with
the protection or violation of data privacy in different contexts, e.g., see [19–24]. More relevant for our
work, HT under mutual information and maximal leakage privacy constraints have been studied in [25,26],
respectively, where the observer uses a memoryless privacy mechanism to convey a noisy version of its
observed data to the detector. The detector performs HT on the probability distribution of the observer’s
data, and the optimal privacy mechanism that maximizes the error exponent while satisfying the privacy
constraint is analyzed. Recently, a distributed version of this problem has been studied in [27], where
the observer applies a privacy mechanism to its observed data prior to further coding for compression,
and the goal at the detector is to perform a HT on the joint distribution of its own observations with those
of the observer. In contrast with [25–27], we study DHT with a privacy constraint, but without considering a
separate privacy mechanism at the observer. In Section 2, we will further discuss the differences between
the system model considered here and that of [27].

It is important to note here that the data privacy problem is fundamentally different from that of
data security against an eavesdropper or an adversary. In data security, sensitive data is to be protected
against an external malicious agent distinct from the legitimate parties in the system. The techniques for
guaranteeing data security usually involve either cryptographic methods in which the legitimate parties
are assumed to have additional resources unavailable to the adversary (e.g., a shared private key) or the
availability of better communication channel conditions (e.g., using wiretap codes). However, in data
privacy problems, the sensitive data is to be protected from the same legitimate party that receives the
messages and provides the utility; and hence, the above-mentioned techniques for guaranteeing data
security are not applicable. Another model frequently used in the context of information-theoretic security
assumes the availability of different side information at the legitimate receiver and the eavesdropper [28,29].
A DHT problem with security constraints formulated along these lines is studied in [30], where the authors
propose an inner bound on the rate-error exponent-equivocation trade-off. While our model is related to
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that in [30] when the side information at the detector and eavesdropper coincide, there are some important
differences which will be highlighted in Section 2.3.

Many different privacy measures have been considered in the literature to quantify the amount of
private information leakage, such as k-anonymity [31], differential privacy (DP) [32], mutual information
leakage [33–35], maximal leakage [36], and total variation distance [37] to count a few; see [38] for a detailed
survey. Among these, mutual information between the private and revealed information (or, equivalently,
the equivocation of private information given the revealed information) is perhaps the most commonly
used measure in the information-theoretic studies of privacy. It is well known that a necessary and
sufficient condition to guarantee statistical independence between two random variables is to have zero
mutual information between them. Furthermore, the average information leakage measured using an
arbitrary privacy measure is upper bounded by a constant multiplicative factor of that measured by mutual
information [34]. It is also shown in [33] that a differentially private scheme is not necessarily private when
the information leakage is measured by mutual information. This is done by constructing an example that
is differentially private, yet the mutual information leakage is arbitrarily high. Mutual information-based
measures have also been used in cryptographic security studies. For example, the notion of semantic
security defined in [39] is shown to be equivalent to a measure based on mutual information in [40].

A rate-distortion approach to privacy is first explored by Yamamoto in [41] for a rate-constrained
noiseless channel, where in addition to a distortion constraint for legitimate data, a minimum distortion
requirement is enforced for the private part. Recently, there have been several works that have used
distortion as a security or privacy metric in several different contexts, such as side-information privacy
in discriminatory lossy source coding [42] and rate-distortion theory of secrecy systems [43,44]. More
specifically, in [43], the distortion-based security measure is analyzed under a causal disclosure assumption,
in which the data samples to be protected are causally revealed to the eavesdropper (excluding the
current sample), yet the average distortion over the entire block has to satisfy a desired lower bound.
This assumption ensures that distortion as a secrecy measure is more robust (see ([43], Section I-A)),
and could in practice model scenarios in which the sensitive data to be protected is eventually available
to the eavesdropper with some delay, but the protection of the current data sample is important. In this
paper, we will consider both equivocation and average distortion under a causal disclosure assumption as
measures of privacy. In [45], error exponent of a HT adversary is considered to be a privacy measure. This
can be considered to be the opposite setting to ours, in the sense that while the goal here is to increase the
error exponent under a privacy leakage constraint, the goal in [45] is to reduce the error exponent under a
constraint on possible transformations that can be applied on the data.

It is instructive to compare the privacy measures considered in this paper with DP. Towards this, note
that average distortion and equivocation (see Definitions 1 and 2) are “average case” privacy measures,
while DP is a “worst case” measure that focuses on the statistical indistinguishability of neighboring
datasets that differ in just one entry. Considering this aspect, it may appear that these privacy measures are
unrelated. However, as shown in [46], there is an interesting connection between them. More specifically,
the maximum conditional mutual information leakage between the revealed data Y and an entry in the
dataset Xi given all the other n− 1 entries X−i = Xn \ {Xi}, i.e., I(Y; Xi|X−i), is sandwiched between the
so-called ε- DP and (ε, δ)-DP in terms of the strength of the privacy measure, where the maximization is
over all distributions PXn on Xn and entries i ∈ [1 : n] ([46], Theorem 1). This implies that as a privacy
measure, equivocation (equivalent to mutual information leakage) is weaker than ε- DP, and stronger
than (ε, δ)-DP, at least for some probability distributions on the data. On the other hand, equivocation
and average distortion are relatively well-behaved privacy measures compared to DP, and often result in
clean and exact computable characterizations of the optimal trade-off for the problem at hand. Moreover,
as already shown in [39,40,47,48], the trade-off resulting from “average” constraints turns out to be the
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same as that with more stricter constraints in many interesting cases. Hence, it is of interest to consider
such average case privacy measures as a starting point for further investigation with stricter measures.

DP has been used extensively in privacy studies including those that involve learning and HT [49–59].
More relevant to the distributed HT problem at hand is the local differentially private model employed
in [49–51,56], in which, depending on the privacy requirement, a certain amount of random noise is injected
into the user’s data before further processing, while the utility is maximized subject to this constraint.
Nevertheless, there are key differences between these models and ours. For example, in [49], the goal is
to learn from differentially private “examples”, the underlying “concept” (model that maps examples to
“labels”) such that the error probability in predicting the label for future examples is minimized, irrespective
of the statistics of the examples. Hence, the utility in [49] is to learn an unknown model accurately,
whereas our objective is to test between two known probability distributions. Furthermore, in our setting
(unlike [49–51,56]), there is an additional requirement to satisfy in terms of the communication rate. These
differences perhaps also make DP less suitable as a privacy measure in our model relative to equivocation
and average distortion. On one hand, imposing a DP measure in our setting may be overly restrictive since
there are only two probability distributions involved and DP is tailored for situations where the statistics
of the underlying data is unknown. On the other hand, DP is also more unwieldy to analyze under a rate
constraint compared to mutual information or average distortion.

The amount of private information leakage that can be tolerated depends on the specific application
at hand. While it may be possible to tolerate a moderate amount of information leakage in applications
like online shopping or social networks, it may no longer be the case in matters related to information
sharing among government agencies or corporations. While it is obvious that maximum privacy can be
attained by revealing no information, this typically comes at the cost of zero utility. On the other hand,
maximum utility can be achieved by revealing all the information, but at the cost of minimum privacy.
Characterizing the optimal trade-off between the utility and the minimum privacy leakage between these
two extremes is a fundamental and challenging research problem.

1.2. Main Contributions

The main contributions of this work are as follows.

1. In Section 3, Theorem 1 (resp. Theorem 2), we establish a single-letter inner bound on the rate-error
exponent-equivocation (resp. rate-error exponent-distortion) trade-off for DHT with a privacy
constraint. The distortion and equivocation privacy constraints we consider, which is given in (6)
and (7), respectively, are slightly stronger than what is usually considered in the literature (stated in
(8) and (9), respectively).

2. Exact characterizations are obtained for some important special cases in Section 4. More specifically,
a single-letter characterization of the optimal rate-error exponent-equivocation (resp. rate-error
exponent-distortion) trade-off is established for:

(a) TACI with a privacy constraint (for vanishing type I error probability constraint) in Section 4.1,
Proposition 1 (resp. Proposition 2),

(b) DHT with a privacy constraint for zero-rate compression in Section 4.2, Proposition 4
(resp. Proposition 3).

Since the optimal trade-offs in Propositions 3 and 4 are independent of the constraint on the type I
error probability, they are strong converse results in the context of HT.

3. Finally, in Section 5, we provide a counter-example showing that for a positive rate R > 0, the strong
converse result does not hold in general for TAI with a privacy constraint.
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1.3. Organization

The organization of the paper is as follows. Basic notations are introduced in Section 2.1. The problem
formulation and associated definitions are given in Section 2.2. Main results are presented in Section 3 to
Section 5. The proofs of the results are presented either in the Appendix or immediately after the statement
of the result. Finally, Section 6 concludes the paper with some open problems for future research.

2. Preliminaries

2.1. Notations

N, R and R≥0 stand for the set of natural numbers, real numbers and non-negative real numbers,
respectively. For a ∈ R≥0, [a] := {i ∈ N, i ≤ a} and for a ∈ R, a+ := max{0, a} (:= represents equality
by definition). Calligraphic letters, e.g., A, denotes sets, while |A| and Ac denotes its cardinality and
complement, respectively. 1(·) denotes the indicator function, while O(·), o(·) and Ω(·) stands for the
standard asymptotic notations of Big-O, Little-O and Big-Ω, respectively. For a real sequence {an}n∈N

and b ∈ R, an
(n)−→ b represents limn→∞ an = b. Similar notations apply for asymptotic inequalities,

e.g., an
(n)
≥ b, means that limn→∞ an ≥ b. Throughout this paper, the base of the logarithms is taken to be e,

and whenever the range of the summation is not specified, it means summation over the entire support,
e.g., ∑u denotes ∑u∈U .

All the random variables (r.v.’s) considered in this paper are discrete with finite support unless
specified otherwise. We denote r.v.’s, their realizations and support by upper case, lower case and
calligraphic letters (e.g., X, x and X ), respectively. The joint probability distribution of r.v.’s X and Y is
denoted by PXY, while their marginals are denoted by PX and PY. The set of all probability distributions
with support X and X ×Y are represented by P(X ) and P(X ×Y), respectively. For j, i ∈ N, the random
vector (Xi, . . . , Xj), j ≥ i, is denoted by X j

i , while X j stands for (X1, . . . , Xj). Similar notation holds for
the vector of realizations. X − Y − Z denotes a Markov chain relation between the r.v.’s X, Y and Z.
PP(E) denotes the probability of event E with respect to the probability measure induced by distribution
P, and EP[·] denotes the corresponding expectation. The subscript P is omitted when the distribution
involved is clear from the context. For two probability distributions P and Q defined on a common support,
P << Q denotes that P is absolutely continuous with respect to Q.

Following the notation in [60], for PX ∈ P(X ) and δ ≥ 0, the PX-typical set is

T n
[PX ]δ

:=

{
xn ∈ X n :

∣∣∣∣∣PX(x′)− 1
n

n

∑
i=1

1(xi = x′)

∣∣∣∣∣ ≤ δ, ∀ x′ ∈ X
}

,

and the PX-type class (set of sequences of type or empirical distribution PX) is T n
PX

:= T n
[PX ]0

. The set of all
possible types of sequences of length n over an alphabet X n and the set of types in T n

[PX ]δ
are denoted by

Pn(X ) and Pn

(
T n
[PX ]δ

)
, respectively. Similar notations apply for pairs and larger combinations of r.v.’s,

e.g., T n
[PXY ]δ

, T n
PXY

, Pn(X ×Y) and Pn

(
T n
[PXY ]δ

)
. The conditional PY|X type class of a sequence xn ∈ X n is

T n
PY|X

(xn) :=
{

yn : (xn, yn) ∈ T n
PXY

}
. (1)

The standard information-theoretic quantities like Kullback–Leibler (KL) divergence between
distributions PX and QX, the entropy of X with distribution PX, the conditional entropy of X given
Y and the mutual information between X and Y with joint distribution PXY, are denoted by D(PX ||QX),
HPX (X), HPXY (X|Y) and IPXY (X; Y), respectively. When the distribution of the r.v.’s involved are clear
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from the context, the last three quantities are denoted simply by H(X), H(X|Y) and I(X; Y), respectively.
Given realizations Xn = xn and Yn = yn, He(xn|yn) denotes the conditional empirical entropy given by

He(yn|xn) := HPX̃Ỹ
(Ỹ|X̃), (2)

where PX̃Ỹ denotes the joint type of (xn, yn). Finally, the total variation between probability distributions
PX and QX defined on the same support X is

||PX −QX || :=
1
2 ∑

x∈X
|PX(x)−QX(x)|.

2.2. Problem Formulation

Consider the HT setup illustrated in Figure 1, where (Un, Vn, Sn) denote n independent and identically
distributed (i.i.d.) copies of triplet of r.v.’s (U, V, S). The observer observes Un and sends the message
index M to the detector over an error-free channel, where M ∼ fn(·|Un) and fn : Un → P(M),M = [enR].
Given its own observation Vn, the detector performs a HT on the joint distribution of Un and Vn with
null hypothesis

H0 : (Un, Vn) ∼
n

∏
i=1

PUV ,

and alternate hypothesis

H1 : (Un, Vn) ∼
n

∏
i=1

QUV .

Let H and Ĥ denote the r.v.’s corresponding to the true hypothesis and the output of the HT,
respectively, with support H = Ĥ = {0, 1}, where 0 denotes the null hypothesis and 1 the alternate
hypothesis. Let gn : M× Vn → P(Ĥ) denote the decision rule at the detector, which outputs
Ĥ ∼ gn(M, Vn). Then, the type I and type II error probabilities achieved by a ( fn, gn) pair are given by

αn ( fn, gn) := P(Ĥ = 1|H = 0) = PĤ(1),

and

βn ( fn, gn) := P(Ĥ = 0|H = 1) = QĤ(0),

respectively, where

PĤ(1) = ∑
un ,m,vn

[
n

∏
i=1

PUV(ui, vi)

]
fn(m|un) gn(1|m, vn),

and

QĤ(0) = ∑
un ,m,vn

[
n

∏
i=1

QUV(ui, vi)

]
fn(m|un) gn(0|m, vn).
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Observer Detector

Figure 1. DHT with a privacy constraint.

Let PUnVnSn MĤ and QUnVnSn MĤ denote the joint distribution of (Un, Vn, Sn, M, Ĥ) under the null and
alternate hypotheses, respectively. For a given type I error probability constraint ε, define the minimum
type II error probability over all possible detectors as

β̄n ( fn, ε) := inf
gn

βn ( fn, gn) , (3)

such that αn ( fn, gn) ≤ ε.

The performance of HT is measured by the error exponent achieved by the test for a given constraint
ε on the type I error probability, i.e., lim infn→∞− 1

n log
(

β̄n( fn, ε)
)
. Although the goal of the detector

is to maximize the error exponent achieved for the HT, it is also curious about the latent r.v. Sn that is
correlated with Un. Sn is referred to as the private part of Un, which is distributed i.i.d. according to the
joint distribution PSUV and QSUV under the null and alternate hypothesis, respectively. It is desired to
keep the private part as concealed as possible from the detector. We consider two measures of privacy
for Sn at the detector. The first is the equivocation defined as H(Sn|M, Vn). The second one is the average
distortion between Sn and its reconstruction Ŝn at the detector, measured according to an arbitrary bounded
additive distortion metric d : S × Ŝ → [0, Dm] with multi-letter distortion defined as

d(sn, ŝn) :=
n

∑
i=1

d(si, ŝi). (4)

We will assume the causal disclosure assumption, i.e., Ŝi is a function of Si−1 in addition to (M, Vn).
The goal is to ensure that the error exponent for HT is maximized, while satisfying the constraints on the
type I error probability ε and the privacy of Sn. In the sequel, we study the trade-off between the rate, error
exponent (henceforth also referred to simply as the error exponent) and privacy achieved in the above
setting. Before delving into that, a few definitions are in order.

Definition 1. For a given type I error probability constraint ε, a rate-error exponent-distortion tuple (R, κ, ∆0, ∆1)

is achievable, if there exists a sequence of encoding and decoding functions fn : Un → P(M), and gn :M×Vn →
P(Ĥ) such that

lim inf
n→∞

− log
(

β̄n( fn, ε)
)

n
≥ κ, (5)

and for any γ > 0, there exists an n0 ∈ N such that

inf{
g(r)i,n

}n

i=1

E
[
d
(
Sn, Ŝn) |H = j

]
≥ n∆j − γ, ∀ n ≥ n0, j = 0, 1, (6)
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where Ŝi ∼ g(r)i,n (·|M, Vn, Si−1), and g(r)i,n : [enR] × Vn × S i−1 → P(Ŝi) denotes an arbitrary stochastic
reconstruction map at the detector. The rate-error exponent-distortion region Rd(ε) is the closure of the set
of all such achievable (R, κ, ∆0, ∆1) tuples for a given ε.

Definition 2. For a given type I error probability constraint ε, a rate-error exponent-equivocation (It is well known
that equivocation as a privacy measure is a special case of average distortion under the causal disclosure assumption
and log-loss distortion metric [43]. However, we provide a separate definition of the rate-error exponent-equivocation
region for completeness.) (R, κ, Λ0, Λ1) tuple is achievable, if there exists a sequence of encoding and decoding
functions fn : Un → P(M) and gn : [enR]× Vn → P(Ĥ) such that (5) is satisfied, and for any γ > 0, there
exists a n0 ∈ N such that

H(Sn|M, Vn, H = i) ≥ nΛi − γ, ∀ n ≥ n0, i ∈ {0, 1}. (7)

The rate-error exponent-equivocation region Re(ε) is the closure of the set of all such achievable (R, κ, Λ0, Λ1)

tuples for a given ε.

Please note that the privacy measures considered in (6) and (7) are stronger than

lim inf
n→∞

inf{
g(r)i,n

}n

i=1

E
[

1
n

d
(
Sn, Ŝn) |H = i

]
≥ ∆i, i = 0, 1, (8)

and lim inf
n→∞

1
n

H(Sn|M, Vn, H = i) ≥ Λi, i = 0, 1, (9)

respectively. To see this for the equivocation privacy measure, note that if H(Sn|M, Vn, H = i) = nΛ∗i − na,
i = 0, 1, for some a ∈ (0, 1), then an equivocation pair (Λ∗0 , Λ∗1) is achievable under the constraint given in
(9), while it is not achievable under the constraint given in (7).

2.3. Relation to Previous Work

Before stating our results, we briefly highlight the differences between our system model and the
ones studied in [27,30]. In [27], the observer applies a privacy mechanism to the data before releasing it to
the transmitter, which performs further encoding prior to transmission to the detector. More specifically,
the observer checks if Un ∈ T n

[PU ]δ
and if successful, sends the output of a memoryless privacy mechanism

applied to Un, to the transmitter. Otherwise, it outputs a n-length zero-sequence. The privacy mechanism
plays the role of randomizing the data (or adding noise) to achieve the desired privacy. Such randomized
privacy mechanisms are popular in privacy studies, and have been used in [25,26,61]. In our model,
the tasks of coding for privacy and compression are done jointly by using all the available data samples
Un. Also, while we consider the equivocation (and average distortion) between the revealed information
and the private part as the privacy measure, in [27], the mutual information between the observer’s
observations and the output of the memoryless mechanism is the privacy measure. As a result of these
differences, there exist some points in the rate-error exponent-privacy trade-off that are achievable in our
model, but not in [27]. For instance, a perfect privacy condition Λ0 = 0 for testing against independence
in ([27], Theorem 2) would imply that the error exponent is also zero, since the output of the memoryless
mechanism has to be independent of the observer’s observations (under both hypotheses). However,
as we later show in Example 2, a positive error exponent is achievable while guaranteeing perfect privacy
in our model.

On the other hand, the difference between our model and [30] arises from the difference in the privacy
constraint as well as the privacy measure. Specifically, the goal in [30] is to keep Un private from an
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illegitimate eavesdropper, while the objective here is to keep a r.v. Sn that is correlated with Un private
from the detector. Also, we consider the more general average distortion (under causal disclosure) as a
privacy measure, in addition to equivocation in [30]. Moreover, as already noted, the equivocation privacy
constraint in (7) is more stringent than (9) that is considered in [30]. To satisfy the distortion requirement or
the stronger equivocation privacy constraint in (7), we require that the a posteriori probability distribution
of Sn given the observations (M, Vn) at the detector is close in some sense to a desired “target" memoryless
distribution. To achieve this, we use a stochastic encoding scheme to induce the necessary randomness for
Sn at the detector, which to the best of our knowledge has not been considered previously in the context of
DHT. Consequently, the analysis of the type I and type II error probabilities and privacy achieved are novel.
Another subtle yet important difference is that the marginal distributions of Un and the side information
at the eavesdropper are assumed to be the same under the null and alternate hypotheses in [30], which is
not the case here. This necessitates separate analysis for the privacy achieved under the two hypotheses.

Next, we state some supporting results that will be useful later for proving the main results.

2.4. Supporting Results

Let

g(d)An
(m, vn) = 1 ((m, vn) ∈ Ac

n) (10)

denote a deterministic detector with acceptance region An ⊆ [enR]× Vn for H0 and Ac
n for H1. Then,

the type I and type II error probabilities are given by

αn ( fn, gn) := PMVn(Ac
n) = EP

[
1 ((M, Vn) ∈ Ac

n)
]
, (11)

βn ( fn, gn) := QMVn(An) = EQ
[
1 ((M, Vn) ∈ An)

]
. (12)

Lemma 1. Any error exponent that is achievable is also achievable by a deterministic detector of the form given in
(10) for some An ⊆ [enR]× Vn, where An and Ac

n denote the acceptance regions for H0 and H1, respectively.

The proof of Lemma 1 is given in Appendix A for completeness. Due to Lemma 1, henceforth we
restrict our attention to a deterministic gn as given in (10).

The next result shows that without loss of generality (w.l.o.g), it is also sufficient to consider g(r)i,n
(in Definition 1) to be a deterministic function of the form

g(r)i,n = {φ̄i,n(·, ·, ·)}n
i=1 (13)

for the minimization in (6), where φ̄i,n : M × Vn × S i−1 → Ŝ , i ∈ [n], denotes an arbitrary
deterministic function.

Lemma 2. The infimum in (6) is achieved by a deterministic function g(r)i,n as given in (13), and hence it is sufficient

to restrict to such deterministic g(r)i,n in (6).

The proof of Lemma 2 is given in Appendix B. Next, we state some lemmas that will be handy for
upper bounding the amount of privacy leakage in the proofs of the main results stated below. The following
one is a well-known result proved in [60] that upper bounds the difference in entropy of two r.v.’s (with a
common support) in terms of the total variation distance between their probability distributions.
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Lemma 3. ([60], Lemma 2.7) Let PX and QX be distributions defined on a common support X and let ρ :=
||PX −QX ||. Then, for ρ ≤ 1

4

|HPX − HQX | ≤ −2ρ log
(

2ρ

|X |

)
.

The next lemma will be handy in proving Theorems 1 and 2, Proposition 3 and the counter-example
for strong converse presented in Section 5.

Lemma 4. Let (Xn, Yn) denote n i.i.d. copies of r.v.’s (X, Y), and PXnYn = ∏n
i=1 PXY and QXnYn = ∏n

i=1 QXY
denote two joint probability distributions on (Xn, Yn). For δ > 0, define

Π(xn, δ, PX) := 1

(
xn /∈ T n

[PX ]δ

)
. (14)

If PX 6= QX, then for δ > 0 sufficiently small, there exists δ̄ > 0 and n0(δ, |X |, |Y|) ∈ N such that for all
n ≥ n0(δ, |X |, |Y|),

‖QYn(·)−QYn |Π(Xn ,δ,PX)
(·|1)‖ ≤ e−nδ̄. (15)

If PX = QX, then for any δ > 0, there exists δ̄ > 0 and n0(δ, |X |, |Y|) ∈ N such that for all n ≥
n0(δ, |X |, |Y|),

‖QYn(·)−QYn |Π(Xn ,δ,PX)
(·|0)‖ ≤ e−nδ̄, (16)

Also, for any δ > 0, there exists δ̄ > 0 and n0(δ, |X |, |Y|) ∈ N such that for all n ≥ n0(δ, |X |, |Y|),

‖PYn(·)− PYn |Π(Xn ,δ,PX)
(·|0)‖ ≤ e−nδ̄. (17)

Proof. The proof is presented in Appendix C.

In the next section, we establish an inner bound onRe(ε) andRd(ε).

3. Main Results

The following two theorems are the main results of this paper providing inner bounds forRe(ε) and
Rd(ε), respectively.

Theorem 1. For ε ∈ (0, 1), (R, κ, Λ0, Λ1) ∈ Re(ε) if there exists an auxiliary r.v. W, such that (V, S)−U−W, and

R ≥ IP(W; U|V), (18)

κ ≤ κ∗(PW|U , R), (19)

Λ0 ≤ HP(S|W, V), (20)

Λ1 ≤ 1 (PU = QU) HQ(S|W, V) + 1 (PU 6= QU) HQ(S|V), (21)

where

κ∗(PW|U , R) := min
(

E1(PW|U), E2(R, PW|U)
)

,

E1(PW|U) := min
PŨṼW̃∈L1(PUW ,PVW )

D(PŨṼW̃ ||QUV PW|U), (22)
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E2(R, PW|U) :=

{
min

PŨṼW̃∈L2(PUW ,PV) D(PŨṼW̃ ||QUV PW|U) + (R− IP(U; W|V)), if IP(U; W) > R,

∞, otherwise,
(23)

L1(PUW , PVW) := {PŨṼW̃ ∈ P(U × V ×W) : PŨW̃ = PUW , PṼW̃ = PVW},
L2(PUW , PV) := {PŨṼW̃ ∈ P(U × V ×W) : PŨW̃ = PUW , PṼ = PV , HP(W|V) ≤ H(W̃|Ṽ)},

PSUVW := PSUV PW|U , and QSUVW := QSUV PW|U .

Theorem 2. For a given bounded additive distortion measure d(·, ·) and ε ∈ (0, 1), (R, κ, ∆0, ∆1) ∈ Rd(ε) if there
exist an auxiliary r.v. W and deterministic functions φ :W ×V → Ŝ and φ′ : V → Ŝ, such that (V, S)−U −W
and (18) and (19),

∆0 ≤ min
φ(·,·)

EP [d (S, φ(W, V))] , (24)

and ∆1 ≤ 1 (PU = QU) min
φ(·,·)

EQ [d (S, φ(W, V))] + 1 (PU 6= QU) min
φ′(·)

EQ
[
d
(
S, φ′(V)

)]
, (25)

are satisfied, where PSUVW and QSUVW are as defined in Theorem 1.

The proof of Theorems 1 and 2 is given in Apppendix D. While the rate-error exponent trade-off in
Theorems 1 and 2 is the same as that achieved by the Shimokawa-Han-Amari (SHA) scheme [7], the coding
strategy achieving it is different due to the requirement of the privacy constraint. As mentioned above,
in order to obtain a single-letter lower bound for the achievable distortion (and achievable equivocation)
of the private part at the detector, it is required that the a posteriori probability distribution of Sn given the
observations (M, Vn) at the detector is close in some sense to a desired “target” memoryless distribution.
For this purpose, we use the so-called likelihood encoder [62,63] (at the observer) in our achievability
scheme. The likelihood encoder is a stochastic encoder that induces the necessary randomness for Sn at the
detector, and to the best of our knowledge has not been used before in the context of DHT. The analysis of
the type I and type II error probabilities and the privacy achieved by our scheme is novel and involves
the application of the well-known channel resolvability or soft-covering lemma [62,64,65]. Properties of the
total variation distance between probability distributions mentioned in [43] play a key role in this analysis.
The analysis also reveals the interesting fact that the coding schemes in Theorems 1 and 2, although quite
different from the SHA scheme, achieves the same lower bound on the error exponent.

Theorems 1 and 2 provide single-letter inner bounds onRd(ε) andRe(ε), respectively. A complete
computable characterization of these regions would require a matching converse. This is a hard problem,
since such a characterization is not available even for the DHT problem without a privacy constraint,
in general (see [5]). However, it is known that a single-letter characterization of the rate-error exponent
region exists for the special case of TACI [11]. In the next section, we show that TACI with a privacy
constraint also admits a single-letter characterization, in addition to other optimality results.

4. Optimality Results for Special Cases

4.1. TACI with a Privacy Constraint

Assume that the detector observes two discrete memoryless sources Yn and Zn, i.e., Vn = (Yn, Zn).
In TACI, the detector tests for the conditional independence of U and Y, given Z. Thus, the joint distribution
of the r.v.’s under the null and alternate hypothesis are given by

H0 : PSUYZ := PS|UYZPU|ZPY|UZPZ, (26a)
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and
H1 : QSUYZ := QS|UYZPU|ZPY|ZPZ, (26b)

respectively.
Let Re and Rd denote the rate-error exponent-equivocation and rate-error exponent-distortion

regions, respectively, for the case of vanishing type I error probability constraint, i.e.,

Re := lim
ε→0
Re(ε) andRd := lim

ε→0
Rd(ε).

Assume that the privacy constraint under the alternate hypothesis is inactive. Thus, we are interested
in characterizing the set of all tuples (R, κ, Λ0, Λ1) ∈ Re and (R, κ, ∆0, ∆1) ∈ Rd, where

Λ1 ≤ Λmin := HQ(S|U, Y, Z),

and ∆1 ≤ ∆min := min
φ(u,y,z)

EQ [d (S, φ(U, Y, Z))] . (27)

Please note that Λmin and ∆min correspond to the equivocation and average distortion of Sn at the detector,
respectively, when Un is available directly at the detector under the alternate hypothesis. The above
assumption is motivated by scenarios, in which the observer is more eager to protect Sn when there is
a correlation between its own observation and that of the detector, such as the online shopping portal
example mentioned in Section 1. In that example, Un, Sn and Yn corresponds to shopping behavior, more
information about the customer, and customers data available to the shopping portal, respectively.

For the above-mentioned case, we have the following results.

Proposition 1. For the HT given in (26), (R, κ, Λ0, Λmin) ∈ Re if and only if there exists an auxiliary r.v. W,
such that (Z, Y, S)−U −W, and

κ ≤ IP(W; Y|Z), (28)

R ≥ IP(W; U|Z), (29)

Λ0 ≤ HP(S|W, Z, Y), (30)

for some joint distribution of the form PSUYZW := PSUYZPW|U .

Proof. For TACI, the inner bound in Theorem 1 yields that for ε ∈ (0, 1), (R, κ, Λ0, Λ1) ∈ Re(ε) if there
exists an auxiliary r.v. W, such that (Y, Z, S)−U −W, and

R ≥ IP(W; U|Y, Z), (31)

κ ≤ κ∗(PW|U , R), (32)

Λ0 ≤ HP(S|W, Y, Z), (33)

Λ1 ≤ HQ(S|W, Y, Z), (34)

where

κ∗(PW|U , R) := min
(

E1(PW|U), E2(R, PW|U)
)

,

E1(PW|U) := min
PŨỸZ̃W̃∈L1(PUW ,PYZW )

D(PŨỸZ̃W̃ ||QUYZPW|U), (35)

E2(R, PW|U)
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:=

{
min

PŨỸZ̃W̃∈L2(PUW ,PYZ) D(PŨỸZ̃W̃ ||QUYZPW|U) + (R− IP(U; W|Y, Z)), if IP(U; W) > R,

∞, otherwise,
(36)

L1(PUW , PYZW) := {PŨỸZ̃W̃ ∈ P(U × Y ×Z ×W) : PŨW̃ = PUW , PỸZ̃W̃ = PYZW},
L2(PUW , PYZ) := {PŨỸZ̃W̃ ∈ P(U × Y ×Z ×W) : PŨW̃ = PUW , PỸZ̃ = PYZ, HP(W|Y, Z) ≤ H(W̃|ỸZ̃)},
PSUYZW := PSUYZPW|U , QSUYZW := QS|YZPU|ZPY|ZPZPW|U .

Please note that since (Y, Z, S)−U −W, we have

IP(W; U) ≥ IP(W; U|Y, Z). (37)

Let B′ := {PW|U : IP(U; W|Z) ≤ R}. Then, for PW|U ∈ B′, we have,

E1(R, PW|U) = min
PŨỸZ̃W̃∈L1(PUW ,PYZW )

D(PŨỸZ̃W̃ ||QUYZPW|U) = IP(Y; W|Z),

E2(R, PW|U) ≥ IP(U; W|Z)− IP(U; W|Y, Z) = IP(Y; W|Z).

Hence,

κ∗(PW|U , R) ≥ IP(Y; W|Z). (38)

By noting that Λmin ≤ HQ(S|W, Y, Z) (by the data processing inequality), we have shown that for
Λ1 ≤ Λmin, (R, κ, Λ0, Λ1) ∈ Re if (28)–(30) are satisfied. This completes the proof of achievability.

Converse: Let (R, κ, Λ0, Λ1) ∈ Re. Let T be a r.v. uniformly distributed over [n] and independent
of all the other r.v.’s (Un, Yn, Zn, Sn, M). Define an auxiliary r.v. W := (WT , T), where Wi :=
(M, Yi−1, Si−1, Zi−1, Zn

i+1), i ∈ [n]. Then, we have for sufficiently large n that

nR ≥ HP(M) ≥ HP(M|Zn) ≥ IP(M; Un|Zn)

= ∑n
i=1 IP(M; Ui|Ui−1, Zn)

= ∑n
i=1 IP(M, Ui−1, Zi−1, Zn

i+1; Ui|Zi) (39)

= ∑n
i=1 IP(M, Ui−1, Zi−1, Zn

i+1, Yi−1, Si−1; Ui|Zi) (40)

≥∑n
i=1 IP(M, Zi−1, Zn

i+1, Yi−1, Si−1; Ui|Zi)

= ∑n
i=1 IP(Wi; Ui|Zi) = nIP(WT ; UT |ZT , T)

= nIP(WT , T; UT |ZT) (41)

= nIP(W; U|Z). (42)

Here, (39) follows since the sequences (Un, Zn) are memoryless; (40) follows since (Yi−1, Si−1) −
(M, Ui−1, Zn)−Ui form a Markov chain; and, (41) follows from the fact that T is independent of all the
other r.v.’s.

The equivocation of Sn under the null hypothesis can be bounded as follows.

H(Sn|M, Yn, Zn, H = 0) = ∑n
i=1 H(Si|M, Si−1, Yn, Zn, H = 0)

≤∑n
i=1 H(Si|M, Yi−1, Si−1, Zi−1, Zn

i+1, Yi, Zi, H = 0) (43)

= ∑n
i=1 H(Si|Wi, Yi, Zi, H = 0)

= nH(ST |WT , YT , ZT , T, H = 0)
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= nHP(S|W, Y, Z), (44)

where PSUYZW = PSUYZPW|U for some conditional distribution PW|U . In (43), we used the fact that
conditioning reduces entropy.

Finally, we prove the upper bound on κ. For any encoding function fn and decision region An ⊆
M×Yn ×Zn for H0 such that εn → 0, we have,

D (PMYnZn ||QMYnZn) ≥ PMYnZn(An) log
(

PMYnZn(An)

QMYnZn(An)

)
+ PMYnZn(Ac

n) log
(

PMYnZn(Ac
n)

QMYnZn(Ac
n)

)
(45)

≥ −H(εn)− (1− εn) log
(

β̄n ( fn, εn)
)

.

Here, (45) follows from the log-sum inequality [60]. Thus,

lim sup
n→∞

− log
(

β̄n ( fn, εn)
)

n
≤ lim sup

n→∞

1
n

D (PMYnZn ||QMYnZn)

= lim sup
n→∞

1
n

IP(M; Yn|Zn) (46)

= HP(Y|Z)− lim inf
n→∞

1
n

HP(Yn|M, Zn), (47)

where (46) follows since QMYnZn = PMZn PYn |Zn . The last term can be single-letterized as follows:

HP(Yn|M, Zn) = ∑n
i=1 HP(Yi|Yi−1, M, Zn)

≥∑n
i=1 HP(Yi|Yi−1, Si−1, M, Zn)

= ∑n
i=1 HP(Yi|Zi, Wi)

= nHP(YT |ZT , WT , T)

= nHP(Y|Z, W). (48)

Substituting (48) in (47), we obtain

κ ≤ IP(Y; W|Z). (49)

Also, note that (Z, Y) − U −W holds. To see this, note that (Ui, Yi, Zi, Si) are i.i.d across i ∈ [n].
Hence, any information in Wi on (Yi, Zi, Si) is only through M as a function of Ui, and so given Ui, Wi is
independent of (Yi, Zi, Si). The above Markov chain then follows from the fact that T is independent of
(Un, Yn, Zn, Sn, M). This completes the proof of the converse and the theorem.

Next, we state the result for TACI with a distortion privacy constraint, where the distortion is
measured using an arbitrary distortion measure d(·, ·). Let ∆min := minφ(u,y,z) EQ [d (S, φ(U, Y, Z))].

Proposition 2. For the HT given in (26), (R, κ, ∆0, ∆min) ∈ Rd if and only if there exist an auxiliary r.v. W and a
deterministic function φ :W ×Y ×Z → Ŝ such that

R ≥ IP(W; U|Z), (50)

κ ≤ IP(W; Y|Z), (51)

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W, Y, Z))] , (52)
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for some PSUYZW as defined in Proposition 1.

Proof. The proof of achievability follows from Theorem 2, similarly to the way Proposition 1 is obtained
from Theorem 1. Hence, only differences will be highlighted. Similar to the inequality Λmin ≤
HQ(S|U, Y, Z) in the proof of Proposition 1, we need to prove the inequality ∆min ≤ EQ [d (S, φ(W, Y, Z))],
where QSUYZW := QSUYZPW|U for some conditional distribution PW|U . This can be shown as follows:

min
φ(·,·,·)

EQ [d (S, φ(W, Y, Z))]

= ∑
u,y,z

QUYZ(u, y, z) ∑
w

PW|U(w|u) min
φ(w,y,z)

∑
s

QS|UYZ(s|u, y, z) d(s, φ(w, y, z))

≥ ∑
u,y,z

QUYZ(u, y, z) ∑
w,s

PW|U(w|u) QS|UYZ(s|u, y, z) d(s, φ∗(u, y, z)) (53)

≥ ∑
u,y,z

QUYZ(u, y, z) min
φ(u,y,z)

∑
w,s

PW|U(w|u) QS|UYZ(s|u, y, z) d(s, φ(u, y, z))

= ∑
u,y,z

QUYZ(u, y, z) min
φ(u,y,z)

∑
s

QS|UYZ(s|u, y, z) d(s, φ(u, y, z))

= min
φ(·,·,·)

EQ [d (S, φ(U, Y, Z))] := ∆min,

where in (53), φ∗(u, y, z) is chosen such that

φ∗(u, y, z) := arg min
φ(w,y,z),w∈W

∑
s

QS|UYZ(s|u, y, z) d(s, φ(w, y, z)).

Converse: Let W = (WT , T) denote the auxiliary r.v. defined in the converse of Proposition 1.
Inequalities (50) and (51) follow similarly as obtained in Proposition 1. We prove (52). Defining
φ̃n(M, Yn, Zn, Si−1, i) := φ̄i,n(M, Yn, Zn, Si−1), we have

min
g(r)i,n

E
[
d
(
Sn, Ŝn) ∣∣∣H = 0

]
= min
{φ̃n(m,yn ,zn ,si−1,i)}n

i=1

E
[

n

∑
i=1

d
(

Si, φ̃n(M, Yn, Zn, Si−1, i)
) ∣∣∣H = 0

]
(54)

= min
{φ̃n(·,·,·,·,·)}n

i=1

E
[

n

∑
i=1

d
(
Si, φ̃n(Wi, Zi, Yi, Yn

i+1, i)
) ∣∣∣H = 0

]

≤ min
{φ(wi ,zi ,yi ,i)}

E
[

n

∑
i=1

d (Si, φ(Wi, Zi, Yi, i))
∣∣∣H = 0

]
= n min

{φ(·,·,·,·)}
E
[
E
[
d (ST , φ(WT , ZT , YT , T))

∣∣T] ∣∣∣H = 0
]

= n min
{φ(·,·,·,·)}

E
[
d (ST , φ(WT , ZT , YT , T))

∣∣∣H = 0
]

= n min
{φ(w,z,y)}

E
[
d (S, φ(W, Z, Y))

∣∣∣H = 0
]

,

where (54) is due to (A1) (in Appendix B). Hence, any ∆0 satisfying (6) satisfies

∆0 ≤ min
{φ(w,z,y)}

EP [d (S, φ(W, Z, Y))] .

This completes the proof of the converse and the theorem.
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A more general version of Propositions 1 and 2 is claimed in [66] as Theorems 7 and 8, respectively,
in which a privacy constraint under the alternate hypothesis is also imposed. However, we have identified
a mistake in the converse proof; and hence, a single-letter characterization for this general problem
remains open.

To complete the single-letter characterization in Propositions 1 and 2, we bound the alphabet size of
the auxiliary r.v. W in the following lemma, whose proof is given in Appendix E.

Lemma 5. In Propositions 1 and 2, it suffices to consider auxiliary r.v.’s W such that |W| ≤ |U|+ 2.

The proof of Lemma 5 uses standard arguments based on the Fenchel–Eggleston–Carathéodory’s
theorem and is given in Appendix E.

Remark 1. When QS|UYZ = QS|YZ, a tight single-letter characterization ofRe andRd exists even if the privacy
constraint is active under the alternate hypothesis. This is due to the fact that given Yn and Zn, M is independent of
Sn under the alternate hypothesis. In this case, (R, κ, Λ0, Λ1) ∈ Re if and only if there exists an auxiliary r.v. W,
such that (Z, Y, S)−U −W, and

κ ≤ IP(W; Y|Z), (55)

R ≥ IP(W; U|Z), (56)

Λ0 ≤ HP(S|W, Z, Y), (57)

Λ1 ≤ HQ(S|Z, Y), (58)

for some PSUYZW as in Proposition 1. Similarly, we have that (R, κ, ∆0, ∆1) ∈ Rd if and only if there exist an
auxiliary r.v. W and a deterministic function φ :W ×Y ×Z → Ŝ such that (55) and (56),

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W, Y, Z))] , (59)

∆1 ≤ min
φ(·,·,·)

EQ [d (S, φ(Y, Z))] , (60)

are satisfied for some PSUYZW as in Proposition 1.

The computation of the trade-off given in Proposition 1 is challenging despite the cardinality bound
on the auxiliary r.v. W provided by Lemma 5, as closed form solutions do not exist in general. To see this,
note that the inequality constraints defining Re are not convex in general, and hence even computing
specific points in the trade-off could be a hard problem. This is evident from the fact that in the absence
of the privacy constraint in Proposition 1, i.e., (30), computing the maximum error exponent for a given
rate constraint is equivalent to the information bottleneck problem [67], which is known to be a hard
non-convex optimization problem. Also, the complexity of brute force search is exponential in |U |,
and hence intractable for large values of |U |. Below we provide an example which can be solved in closed
form and hence computed easily.

Example 1. Let V = U = S = {0, 1}, V = Y, Z = constant, V − S−U, PU(0) = QU(0) = 0.5, PS|U(0|0) =
PS|U(1|1) = QS|U(0|0) = QS|U(1|1) = 1− q, PV|S(0|0) = PV|S(1|1) = 1− p and QV|S(0|0) = QV|S(1|1) =
0.5. Then, (R, κ, Λ0, 0) ∈ Re if there exists r ∈ [0, 0.5] such that

R ≥ 1− hb(r), (61)

κ ≤ 1− hb((r ∗ q) ∗ p), (62)
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Λ0 ≤ hb(p) + hb(q ∗ r)− hb(p ∗ (q ∗ r)), (63)

where for a, b ∈ R, a ∗ b := (1− a) · b + (1− b) · a, and hb : [0, 1] 7→ [0, 1] is the binary entropy function given by

hb(t) = −(1− t) log(1− t)− t log(t).

The above characterization (Numerical computation shows that the characterization given in (61)–(63) is exact
even when q ∈ (0, 1).) is exact for q = 0, i.e., (R, κ, Λ0, 0) ∈ Re only if there exists r ∈ [0, 0.5] such that (61)–(63)
are satisfied.

Proof. Taking W = {0, 1}, and PW|U(0|0) = PW|U(1|1) = 1− r, the constraints defining the trade-off
given in Proposition 1 simplifies to

IP(U; W) = 1− hb(r),

IP(V; W) = 1− hb((r ∗ q) ∗ p),

HP(S|V, W) = HP(S|W)− IP(S; V|W)

= HP(S|W) + HP(V|S)− HP(V|W)

= hb(r ∗ q) + hb(p)− hb(p ∗ (q ∗ r)).

On the other hand, if q = 0, note that S = U. Hence, the same constraints can be bounded as follows:

IP(U; W) = 1− HP(U|W),

IP(V; W) = 1− HP(V|W) ≤ 1− hb

(
h−1

b (H(U|W)) ∗ p
)

, (64)

HP(U|V, W) = HP(U|W) + HP(V|U)− HP(V|W)

≤ hb(p) + HP(U|W)− hb

(
h−1

b (HP(U|W)) ∗ p
)

, (65)

where h−1
b : [0, 1] 7→ [0, 0.5] is the inverse of the binary entropy function. Here, the inequality in (64) and

(65) follows by an application of Mrs Gerber’s lemma [68], since V = U ⊕ Np under the null hypothesis
and Np ∼ Ber(p) is independent of U and W. Also, Λmin = 0 since S = U. Noting that HP(U|W) ∈ [0, 1],
and defining r := h−1

b (HP(U|W)) ∈ [0, 0.5], the result follows.

Figure 2 depicts the curve (1− hb(r), 1− hb(p ∗ (q ∗ r)), hb(p) + hb(r ∗ q)− hb(p ∗ (r ∗ q))) for q = 0
and p ∈ {0.15, 0.25, 0.35}, as r is varied in the range [0, 0.5]. The projection of this curve on the R− κ and
κ −Λ0 plane is shown in Figures 3a,b, respectively, for q ∈ {0, 0.1} and the same values of p. As expected,
the error exponent κ increases with rate R while the equivocation Λ0 decreases with κ at the boundary
ofRe.

Proposition 1 (resp. Proposition 2) provide a characterization ofRe (resp. Rd) under the condition
of vanishing type I error probability constraint. Consequently, the converse part of these results are
known as weak converse results in the context of HT. In the next subsection, we establish the optimal error
exponent-privacy trade-off for the special case of zero-rate compression. This trade-off is independent of
the type I error probability constraint ε ∈ (0, 1), and hence known as a strong converse result.
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Figure 2. (R, κ, Λ0) trade-off at the boundary ofRe in Example 1 (Axes units are in bits)
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Figure 3. Projections of Figure 2 in the R− κ plane and κ −Λ0 plane

4.2. Zero-Rate Compression

Assume the following zero-rate constraint on the communication between the observer and
the detector,

lim
n→∞

log(|M|)
n

= 0. (66)

Please note that (66) does not imply that |M| = 0, i.e., nothing can be transmitted, but that the message
set cardinality can grow at most sub-exponentially in n. Such a scenario is motivated practically by low
power or low bandwidth constrained applications in which communication is costly. Propositions 3 and 4
stated below provide an optimal single-letter characterization ofRd(ε) andRe(ε) in this case. While the
coding schemes in the achievability part of these results are inspired from that in [6], the analysis of
privacy achieved at the detector is new. Lemma 4 serves as a crucial tool for this purpose. We next state
the results. Let

∆max
0 := min

φ′(·)
EP
[
d
(
S, φ′(V)

)]
, (67a)
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and ∆max
1 := min

φ′(·)
EQ
[
d
(
S, φ′(V)

)]
. (67b)

Proposition 3. For ε ∈ (0, 1), (0, κ, ∆0, ∆1) ∈ Rd(ε) if and only if it satisfies,

κ ≤ min
PŨṼ∈L′(PU ,PV)

D(PŨṼ ||QUV), (68)

∆0 ≤ ∆max
0 , (69)

∆1 ≤ ∆max
1 , (70)

where φ′ : V → Ŝ is a deterministic function and

L′(PU , PV) = {PŨṼ ∈ P(U × V) : PŨ = PU , PṼ = PV}.

Proof. First, we prove that (0, κ, ∆0, ∆1) satisfying (68)–(70) is achievable. While the encoding and
decoding scheme is the same as that in [6], we mention it for the sake of completeness.
Encoding: The observer sends the message M = 1 if Un ∈ T n

[PU ]δ
, δ > 0, and M = 0 otherwise.

Decoding: The detector declares Ĥ = 0 if M = 1 and Vn ∈ T n
[PV ]δ

, δ > 0. Otherwise, Ĥ = 1 is declared.
We analyze the type I and type II error probabilities for the above scheme. Please note that for any

δ > 0, the weak law of large numbers implies that

P
(

Un ∈ T n
[PU ]δ
∩Vn ∈ T n

[PV ]δ
)
∣∣H = 0

)
= P

(
M = 1∩Vn ∈ T n

[PV ]δ
)
∣∣H = 0

)
(n)−→ 1.

Hence, the type I error probability tends to zero, asymptotically. The type II error probability can be
written as follows:

βn( fn, gn) = P(Un ∈ T n
[PU ]δ
∩Vn ∈ T n

[PV ]δ
)|H = 1)

= ∑
un∈T n

[PU ]δ
,

vn∈T[PV ]δ

QUnVn(un, vn) ≤ (n + 1)|U ||V|e−n(κ∗−O(δ)) = e−n
(

κ∗− |U ||V| log(n+1)
n −O(δ)

)
,

where

κ∗ = min
PŨṼ∈L′(PU ,PV)

D(PŨṼ ||QUV).

Next, we lower bound the average distortion for Sn achieved by this scheme at the detector. Defining

Π(Un, δ, PU) := 1

(
Un /∈ T n

[PU ]δ

)
, (71)

ρ
(0)
n (δ) :=

∥∥∥PSnVn(·)− PSnVn |Π(Un ,δ,PU)(·|0)
∥∥∥ , , (72)

ρ
(1)
n (δ) :=

∥∥∥QSnVn(·)−QSnVn |Π(Un ,δ,PU)(·|1)
∥∥∥ , (73)

φ′n(v
n) := (φ′(v1), · · · , φ′(vn)),

we can write∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) ∣∣H = 0

]
− n min

φ′(v)
EP
[
d
(
S, φ′(V)

)] ∣∣∣
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=
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) ∣∣H = 0

]
− min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣H = 0

] ∣∣∣
≤
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) ∣∣H = 0

]
− P (M = 1|H = 0) min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 1, H = 0

] ∣∣∣
+ P (M = 0|H = 0) min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 0, H = 0

]
≤
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) ∣∣H = 0

]
− min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 1, H = 0

] ∣∣∣
+ P (M = 0|H = 0)

[
min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 1, H = 0

]
+ min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 0, H = 0

] ]
=
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) ∣∣H = 0

]
− min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|Π(Un, δ, PU) = 0, H = 0

] ∣∣∣
+ P

(
Π(Un, δ, PU) = 1

∣∣H = 0
) [

min
φ′n(vn)

E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 1, H = 0

]
+ min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
) ∣∣M = 0, H = 0

] ]
(74)

≤ nDmρ
(0)
n (δ) + 2 e−nΩ(δ)nDm (75)

(n)−→ 0, (76)

where (74) is since Π(Un, δ, PU) = 1−M with probability one by the encoding scheme; (75) follows from

P (Π(Un, δ, PU) = 1|H = 0) = P
(

Un /∈ T n
[PU ]δ
|H = 0

)
≤ e−nΩ(δ) (77)

and ([43], Property 2(b)); and, (76) is due to (17). Similarly, it can be shown using (16) that if QU = PU , then∣∣∣∣ min
{φ̄i,n(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) |H = 1

]
− n min

φ′(v)
EQ
[
d
(
S, φ′(V)

)] ∣∣∣∣ (n)−→ 0. (78)

On the other hand, if QU 6= PU and δ is small enough, we have

P (M = 0|H = 1) = P (Π(Un, δ, PU) = 1|H = 1) ≥ 1− e−n(D(PU ||QU)−O(δ)) (n)−→ 1. (79)

Hence, we can write for δ small enough,∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) |H = 1

]
− n min

φ′(v)
EQ
[
d
(
S, φ′(V)

)] ∣∣∣
=
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) |H = 1

]
− min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|H = 1

] ∣∣∣
≤
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) |H = 1

]
− P (M = 0|H = 0) min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|M = 0, H = 1

] ∣∣∣
+ P (M = 1|H = 1) min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|M = 1, H = 1

]
≤
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) |H = 1

]
− min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|M = 0, H = 1

] ∣∣∣
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+ P (M = 1|H = 1)
[

min
φ′n(vn)

E
[
d
(
Sn, φ′n(V

n)
)
|M = 1, H = 1

]
+ min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|M = 0, H = 1

] ]
=
∣∣∣ min
{φ̄i(m,vn ,si−1)}n

i=1

E
[
d
(
Sn, Ŝn) |H = 1

]
− min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|Π(Un, δ, PU) = 1, H = 1

] ∣∣∣
+ P (Π(Un, δ, PU) = 0|H = 1)

[
min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|M = 1, H = 1

]
+ min

φ′n(vn)
E
[
d
(
Sn, φ′n(V

n)
)
|M = 0, H = 1

] ]
(80)

≤ nDmρ
(1)
n (δ) + 2 e−n(D(PU ||QU)−O(δ))nDm (81)

(n)−→ 0, (82)

where (80) is since Π(Un, δ, PU) = 1−M with probability one; (81) is due to (79) and ([43], Property 2(b));
and, (82) follows from (15). This completes the proof of the achievability.

We next prove the converse. Please note that by the strong converse result in [8], the right hand side
(R.H.S) of (68) is an upper bound on the achievable error exponent for all ε ∈ (0, 1) even without a privacy
constraint (hence, also with a privacy constraint). Also,

min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = 0

]
≤ min
{φ′(vi)}n

i=1

n

∑
i=1

EPSiVi

[
d
(
Si, φ′(Vi)

)]
(83)

= n min
{φ′(v)}

EP
[
d(S, φ′(V))

]
.

Here, (83) follows from the fact that the detector can always reconstruct Ŝi as a function of Vi for
i ∈ [n]. Similarly,

min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = 1

]
≤ n min

{φ′(v)}
EQ
[
d(S, φ′(V))

]
.

Hence, any achievable Λ0 and Λ1 must satisfy (69) and (70), respectively. This completes the proof.

The following Proposition is the analogous result to Proposition 3 when the privacy measure
is equivocation.

Proposition 4. For ε ∈ (0, 1), (0, κ, Λ0, Λ1) ∈ Re(ε) if and only if it satisfies (68) and

Λ0 ≤ HP(S|V), (84)

Λ1 ≤ HQ(S|V). (85)

Proof. For proving the achievability part, the encoding and decoding scheme is the same as in
Proposition 3. Hence, the analysis of the error exponent given in Proposition 3 holds. To lower bound the
equivocation of Sn at the detector, defining Π(Un, δ, PU), ρ

(0)
n (δ) and ρ

(1)
n (δ) as in (71)–(73), we can write∣∣nHP(S|V)− H(Sn|M, Vn, H = 0)

∣∣
=
∣∣H(Sn|Vn, H = 0)− H(Sn|M, Vn, H = 0)

∣∣
≤
∣∣H(Sn, Vn|H = 0)− H(Sn, Vn|M, H = 0)

∣∣
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≤
∣∣H(Sn, Vn|H = 0)− P (M = 1|H = 0) H(Sn, Vn|M = 1, H = 0)

∣∣
+ P (M = 0|H = 0) H(Sn, Vn|M = 0, H = 0)

≤
∣∣H(Sn, Vn|H = 0)− H(Sn, Vn|M = 1, H = 0)

∣∣
+ P (M = 0|H = 0)

(
H(Sn, Vn|M = 1, H = 0) + H(Sn, Vn|M = 0, H = 0)

)
≤
∣∣H(Sn, Vn|H = 0)− H(Sn, Vn|Π(Un, δ, PU) = 0, H = 0)

∣∣
+ P (Π(Un, δ, PU) = 1|H = 0)

(
H(Sn, Vn|M = 1, H = 0) + H(Sn, Vn|M = 0, H = 0)

)
(n)
≤ −2ρ

(0)
n (δ) log

(
ρ
(0)
n (δ)

|S|n|V|n

)
+ 2 e−nΩ(δ) log (|S|n|V|n) (86)

(n)−→ 0, (87)

where (86) follows due to Lemma 3, ([60], Lemma 2.12) and the fact that entropy of a r.v. is bounded by the
logarithm of cardinality of its support; and, (87) follows from (17) in Lemma 4 since δ > 0. In a similar
way, it can be shown using (16) that if QU = PU , then

∣∣H(Sn|Vn, H = 1)− H(Sn|M, Vn, H = 1)
∣∣ (n)−→ 0. (88)

On the other hand, if QU 6= PU and δ is small enough, we can write

|nHQ(S|V)− H(Sn|M, Vn, H = 1)|
= |H(Sn|Vn, H = 1)− H(Sn|M, Vn, H = 1)|
≤ |H(Sn, Vn|H = 1)− H(Sn, Vn|M, H = 1)|
≤ |H(Sn, Vn|H = 1)− H(Sn, Vn|M = 0, H = 1)|

+ P
(
Π(Un, δ, PU) = 0|H = 1

)
(H(Sn, Vn|M = 0, H = 1) + H(Sn, Vn|M = 1, H = 1))

≤ −2ρ
(1)
n (δ) log

(
ρ
(1)
n (δ)

|S|n|V|n

)
+ 2 e−n(D(PU ||QU)−O(δ)) log (|S|n|V|n) , (89)

where (89) follows from Lemma 3 and (79). It follows from (15) in Lemma 4 that for δ > 0 sufficiently
small, ρ

(1)
n (δ) ≤ e−nδ̄ for some δ̄ > 0, thus implying that the R.H.S. of (89) tends to zero. This completes

the proof of achievability.
The converse follows from the results in [6,8] that the R.H.S of (68) is the optimal error exponent

achievable for all values of ε ∈ (0, 1) even when there is no privacy constraint, and the following inequality

H(Sn|M, Vn, H = j) ≤ H(Sn|Vn, H = j), j = 0, 1. (90)

This concludes the proof of the Proposition.

In Section 2.2, we mentioned that it is possible to achieve a positive error exponent with perfect
privacy in our model. Here, we provide an example of TAI with an equivocation privacy constraint under
both hypothesis, and show that perfect privacy is possible. Recall that TAI is a special case of TACI,
in which Z = constant, and hence, the null and alternate hypothesis are given by

H0 : (Un, Yn) ∼
n

∏
i=1

PUY,
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and H1 : (Un, Yn) ∼
n

∏
i=1

PU PY.

Example 2. Let S = U = {0, 1, 2, 3}, Y = {0, 1},

PSU = 0.125 ·


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 , PY|U =


1 0
0 1
1 0
0 1

 ,

PSUY := PSU PY|U and QSUY := PSU PY, where PY = ∑u∈U PU(u)PY|U(y|u). Then, we have HQ(S|Y) =

HP(S) = HP(U) = 2 bits. Also, noting that under the null hypothesis, Y = U mod 2, HP(S|Y) = 2 bits.
It follows from the inner bound given by Equations (31)–(34), and, (37) and (38) that (R, κ, Λ0, Λ1) ∈ Re(ε),
ε ∈ (0, 1) if

R ≥ IP(W; U),

κ ≤ IP(W; Y),

Λ0 ≤ HP(S|W, Y),

Λ1 ≤ HQ(S|W, Y) = HQ(S|W),

where PSUYW := PSUYPW|U and QSUYW := QSUYPW|U for some conditional distribution PW|U . If we set
W := U mod 2, then we have IP(U; W) = 1 bit, IP(Y; W) = HP(Y) = 1 bit, HP(S|W, Y) = HP(S|Y) = 2
bits, and HQ(S|W) = HP(S|Y) = 2 bits. Thus, by revealing only W to the detector, it is possible to achieve a
positive error exponent while ensuring maximum privacy under both the null and alternate hypothesis, i.e., the tuple
(1, 1, 2, 2) ∈ Re(ε), ∀ ε ∈ (0, 1).

5. A Counter-Example to the Strong Converse

Ahlswede and Csiszár obtained a strong converse result for the DHT problem without a privacy
constraint in [5], where they showed that for any positive rate R, the optimal achievable error exponent
is independent of the type I error probability constraint ε. Here, we explore whether a similar result
holds in our model, in which an additional privacy constraint is imposed. We will show through a
counter-example that this is not the case in general. The basic idea used in the counter-example is a
“time-sharing” argument which is used to construct from a given coding scheme that achieves the optimal
rate-error exponent-equivocation trade-off under a vanishing type I error probability constraint, a new
coding scheme that satisfies the given type I error probability constraint ε∗ and the same error exponent as
before, yet achieves a higher equivocation for Sn at the detector. This concept has been used previously
in other contexts, e.g., in the characterization of the first-order maximal channel coding rate of additive
white gaussian noise (AWGN) channel in the finite block-length regime [69], and subsequently in the
characterization of the second order maximal coding rate in the same setting [70]. However, we will
provide a self-contained proof of the counter-example by using Lemma 4 for this purpose.

Assume that the joint distribution PSUV is such that HP(S|U, V) < HP(S|V). Proving the strong
converse amounts to showing that any (R, κ, Λ0, Λ1) ∈ Re(ε) for some ε ∈ (0, 1) also belongs to Re.
Consider TAI problem with an equivocation privacy constraint, in which R ≥ HP(U) and Λ1 ≤ Λmin.
Then, from the optimal single-letter characterization of Re given in Proposition 1, it follows by taking
W = U that (HP(U), IP(V; U), HP(S|V, U), Λmin) ∈ Re. Please note that IP(V; U) is the maximum error
exponent achievable for any type I error probability constraint ε ∈ (0, 1), even when Un is observed
directly at the detector. Thus, for vanishing type I error probability constraint ε → 0 and κ = IP(V; U),
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the term HP(S|V, U) denotes the maximum achievable equivocation for Sn under the null hypothesis.
From the proof of Proposition 1, the coding scheme achieving this tuple is as follows:

1. Quantize un to codewords in Bn = {un(j) ∈ T n
[PU ]δ

, j ∈ [en(HP(U)+η)]} and send the index of
quantization to the detector, i.e., if un ∈ T n

[PU ]δ
, send M = j, where j is the index of un in Bn. Else,

send M = 0.
2. At the detector, if M = 0, declare Ĥ = 1. Else, declare Ĥ = 0 if (un(M), vn) ∈ T n

[PUV ]δ′
for some δ′ > δ,

and Ĥ = 1 otherwise.

The type I error probability of the above scheme tends to zero asymptotically with n. Now, for a fixed
ε∗ > 0, consider a modification of this coding scheme as follows:

1. If un ∈ T n
[PU ]δ

, send M = j with probability 1 − ε∗, where j is the index of un in Bn, and with
probability ε∗, send M = 0. If un /∈ T n

[PU ]δ
, send M = 0.

2. At the detector, if M = 0, declare Ĥ = 1. Else, declare Ĥ = 0 if un(M), vn) ∈ T n
[PUV ]δ′

for some δ′ > δ,

and Ĥ = 1 otherwise.

It is easy to see that for this modified coding scheme, the type I error probability is asymptotically
equal to ε∗, while the error exponent remains the same as I(V; U) since the probability of declaring Ĥ = 0
is decreased. Recalling that Π(un, δ, PU) := 1

(
un /∈ T n

[PU ]δ

)
, we also have

1
n

H
(
Sn|M, Vn, H = 0

)
= (1− γn)(1− ε∗)

1
n

H
(
Sn|Un, Vn, Π(Un, δ, PU) = 0, H = 0

)
+ (1− γn) ε∗

1
n

H
(
Sn|M = 0, Vn, Π(Un, δ, PU) = 0, H = 0

)
+ γn

1
n

H
(
Sn|M = 0, Vn, Π(Un, δ, PU) = 1, H = 0

)
≥ (1− γn)(1− ε∗)

(
HP (S|U, V)− γ′′n

)
+ (1− γn) ε∗

1
n

H
(
Sn|M = 0, Vn, Π(Un, δ, PU) = 0, H = 0

)
+ γn

1
n

H
(
Sn|M = 0, Vn, Π(Un, δ, PU) = 1, H = 0

)
(91)

> (1− γn)(1− ε∗)
(

HP (S|U, V)− γ′′n
)
+ (1− γn) ε∗

(
HP(S|U, V)− γ′n

n

)
+ γn

1
n

H
(
Sn|M = 0, Vn, H = 0, Π(Un, δ, PU) = 1

)
(92)

= (1− γn)(1− ε∗)
(

HP (S|U, V)− γ′′n
)
+ (1− γn) ε∗

(
HP (S|U, V)− γ′n

n

)
+ γ′′′n (93)

= (1− γn)HP (S|U, V)− γ̄n, (94)

where {γ′′n}n∈N denotes some sequence of positive numbers such that γ′′n
(n)−→ 0, and

γn := P
(

Un /∈ T n
[PU ]δ

∣∣H = 0
)
≤ e−nΩ(δ) (n)−→ 0, (95)

γ′n := −2ρ∗n log
(

2ρ∗n
|S|n

)
,

ρ∗n :=
∥∥∥PSnVn |Π(Un ,δ,PU),M(·|0, 0)− PSnVn(·)

∥∥∥ =
∥∥∥PSnVn |Π(Un ,δ,PU)(·|0)− PSnVn(·)

∥∥∥ , (96)

γ′′′n :=
γn

n
H(Sn|M = 0, Vn, , H = 0, Π(Un, δ, PU) = 1)

(n)−→ 0, (97)
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γ̄n := (1− γn)(1− ε∗)γ′′n + (1− γn) ε∗
γ′n
n
− γ′′′n .

Equation (91) follows similarly to the proof of Theorem 1 in [71]. Equation (92) is obtained as follows:

1
n

H (Sn|M = 0, Vn, IU(Un, δ) = 0, H = 0)

≥ 1
n

H (Sn|Vn, H = 0)− γ′n
n

(98)

> HP(S|U, V)− γ′n
n

. (99)

Here, (98) is obtained by an application of Lemma 3; and (99) is due to the assumption that
HP(S|U, V) < HP(S|V).

It follows from Lemma 4 that ρ∗n
(n)−→ 0, which in turn implies that

γ′n
n

(n)−→ 0. (100)

From (95), (97) and (100), we have that γ̄n
(n)−→ 0. Hence, equation (94) implies that

(HP(U), IP(V; U), Λ∗0 , Λmin) ∈ Re(ε∗) for some Λ∗0 > HP(S|U, V). Since (HP(U), IP(V; U), Λ∗0 , Λmin) /∈
Re, this implies that in general, the strong converse does not hold for HT with an equivocation privacy
constraint. The same counter-example can be used in a similar manner to show that the strong converse
does not hold for HT with an average distortion privacy constraint either.

6. Conclusions

We have studied the DHT problem with a privacy constraint, with equivocation and average distortion
under a causal disclosure assumption as the measures of privacy. We have established a single-letter inner
bound on the rate-error exponent-equivocation and rate-error exponent-distortion trade-offs. We have
also obtained the optimal rate-error exponent-equivocation and rate-error exponent-distortion trade-offs
for two special cases, when the communication rate over the channel is zero, and for TACI under a privacy
constraint. It is interesting to note that the strong converse for DHT does not hold when there is an
additional privacy constraint in the system. Extending these results to the case when the communication
between the observer and detector takes place over a noisy communication channel is an interesting
avenue for future research. Yet another important topic worth exploring is the trade-off between rate,
error probability and privacy in the finite sample regime for the setting considered in this paper.
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Appendix A. Proof of Lemma 1

Please note that for a stochastic detector, the type I and type II error probabilities are linear functions
of PĤ|M,Vn . As a result, for each fixed n and fn, αn ( fn, gn) and βn ( fn, gn) for a stochastic detector gn

can be thought of as the type I and type II errors achieved by “time-sharing” among a finite number of
deterministic detectors. To see this, consider some ordering on the elements of the setM×Vn and let
νi := PĤ|M,Vn(0|i), i ∈ [1 : N], where i denotes the ith element ofM×Vn and N = |M × Vn|. Then,
we can write

PĤ|M,Vn =


ν1 1− ν1

ν2 1− ν2
...

...
νN 1− νN

 .

Then, it is easy to see that PĤ|M,Vn = ∑N
i=1 νi Ii, where Ii := [ei 1− ei] and ei is an N length vector with

1 at the ith component and 0 elsewhere. Now, suppose (α
(1)
n , β

(1)
n ) and (α

(2)
n , β

(2)
n ) denote the pair of type

I and type II error probabilities achieved by deterministic detectors g(1)n and g(2)n , respectively. Let A1,n

and A2,n denote their corresponding acceptance regions for H0. Let g(θ)n denote the stochastic detector
formed by using g(1)n and g(2)n with probabilities θ and 1− θ, respectively. From the above-mentioned
linearity property, it follows that g(θ)n achieves type I and type II error probabilities of αn

(
fn, g(θ)n

)
=

θα
(1)
n + (1− θ)α

(2)
n and βn

(
fn, g(θ)n

)
= θβ

(1)
n + (1− θ)β

(2)
n , respectively. Let r(θ) = min(θ, 1− θ). Then,

for θ ∈ (0, 1),

− 1
n

log
(

βn

(
fn, g(θ)n

))
≤ min

(
− 1

n
log β

(1)
n ,− 1

n
log β

(2)
n

)
− 1

n
log(r(θ)).

Hence, either

α
(1)
n ≤ αn

(
fn, g(θ)n

)
and − 1

n
log β

(1)
n ≥ −

1
n

log
(

βn

(
fn, g(θ)n

))
+

1
n

log(r(θ)),

or

α
(2)
n ≤ αn

(
fn, g(θ)n

)
and − 1

n
log β

(2)
n ≥ −

1
n

log
(

βn

(
fn, g(θ)n

))
+

1
n

log(r(θ)).

Thus, since 1
n log(r(θ))

(n)−→ 0, a stochastic detector does not offer any advantage over deterministic
detectors in the trade-off between the error exponent and the type I error probability.

Appendix B. Proof of Lemma 2

Let P̃(Cn ,0)
SnUnVn MŜn = PSnUnVn M ∏n

i=1 P̃Ŝi |M,Vn ,Si−1 and P̃(Cn ,1)
SnUnVn MŜn = QSnUnVn M ∏n

i=1 P̃Ŝi |M,Vn ,Si−1

denote the joint distribution of the r.v.’s (Sn, Un, Vn, M, Ŝn) under hypothesis H0 and H1, respectively,
where P̃Ŝi |M,Vn ,Si−1 denotes g(r)i,n for i ∈ [n]. Then, we have
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min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = j

]
= min{

P̃Ŝi |M,Vn ,Si−1

}n

i=1

EP̃(j)

[
d
(
Sn, Ŝn)]

= min{
P̃Ŝi |M,Vn ,Si−1

}n

i=1

1
n

n

∑
i=1

EP̃(j)

[
d
(
Si, Ŝi

)]
=

1
n

n

∑
i=1

∑
(m,vn ,si−1)

P̃(j)
MVnSi−1(m, vn, si−1) min

P̃Ŝi |M,Vn ,Si−1 (·|m,vn ,si−1)
∑̂
si

P̃Ŝi |M,Vn ,Si−1(ŝi|m, vn, si−1)

E
P̃(j)

Si |M,Vn ,Si−1 (·|m,vn ,si−1)
[d (Si, ŝi)]

=
1
n

n

∑
i=1

∑
m,vn ,si−1

P̃(j)
MVnSi−1(m, vn, si−1) E

P̃(j)
Si |M,Vn ,Si−1 (·|m,vn ,si−1)

[
d
(

Si, φij(m, vn, si−1)
)]

,

where

φij(m, vn, si−1) = arg min
ŝ∈Ŝ

E
P̃(j)

Si |M,Vn ,Si−1 (·|m,vn ,si−1)
[d(Si, ŝ)] .

Continuing, we have

min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = j

]
=

1
n

n

∑
i=1

∑
m,vn ,si−1

P̃(j)
MVnSi−1(m, vn, si−1) min

φi(m,vn ,si−1)
E

P̃(j)
Si |M,Vn ,Si−1 (·|m,vn ,si−1)

[
d
(

Si, φi(m, vn, si−1)
)]

= min
{φi(m,vn ,si−1)}n

i=1

1
n

n

∑
i=1

EP̃(j)

[
d
(

Si, φi(M, Vn, Si−1)
)]

. (A1)

This completes the proof.

Appendix C. Proof of Lemma 4

We will first prove (15). Fix δ > 0. For γ > 0, define the following sets:

Bδ
0,γ :=

{
yn ∈ T n

[PY ]γ
: PYn(yn) ≥ PYn |Π(Xn ,δ,PX)

(yn|0)
}

, (A2)

Cδ
0,γ :=

{
yn ∈ T n

[PY ]γ
: PYn(yn) < PYn |Π(Xn ,δ,PX)

(yn|0)
}

, (A3)

Bδ
1,γ :=

{
yn ∈ T n

[QY ]γ
: QYn(yn) ≥ QYn |Π(Xn ,δ,PX)

(yn|0)
}

,

Cδ
1,γ :=

{
yn ∈ T n

[QY ]γ
: QYn(yn) < QYn |Π(Xn ,δ,PX)

(yn|0)
}

,

Bδ
2,γ :=

{
yn ∈ T n

[QY ]γ
: QYn(yn) ≥ QYn |Π(Xn ,δ,PX)

(yn|1)
}

,

Cδ
2,γ :=

{
yn ∈ T n

[QY ]γ
: QYn(yn) < QYn |Π(Xn ,δ,PX)

(yn|1)
}

.

Then, we can write∥∥QYn(·)−QYn |Π(Xn ,δ,PX)
(·|1)

∥∥
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=
1
2 ∑

yn

∣∣QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1)

∣∣
=

1
2 ∑

yn /∈T n
[QY ]γ

∣∣QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1)

∣∣+ 1
2 ∑

yn∈T n
[QY ]γ

∣∣QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1)

∣∣
≤ 1

2 ∑
yn /∈T n

[QY ]γ

QYn(yn) + QYn |Π(Xn ,δ,PX)
(yn|1) + 1

2 ∑
yn∈T n

[QY ]γ

∣∣QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1)

∣∣. (A4)

Next, note that

QYn |Π(Xn ,δ,PX)
(yn|1) = QYn(yn)

QΠ(Xn ,δ,PX)|Yn(1|yn)

QΠ(Xn ,δ,PX)
(1)

≤ QYn(yn)

QΠ(Xn ,δ,PX)
(1)
≤ 2QYn(yn), (A5)

for sufficiently large n (depending on |X |), since QΠ(Xn ,δ,PX)
(1)

(n)−→ 1. Thus, for n large enough,

∑
yn /∈T n

[QY ]γ

QYn(yn) + QYn |Π(Xn ,δ,PX)
(yn|1) ≤ 3 ∑

yn /∈T n
[QY ]γ

QYn(yn) ≤ e−nΩ(γ). (A6)

We can bound the last term in (A4) as follows:

∑
yn∈T n

[QY ]γ

∣∣QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1)

∣∣
= ∑

yn∈Bδ
2,γ

QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1) + ∑

yn∈Cδ
2,γ

QYn |Π(Xn ,δ,PX)
(yn|1)−QYn(yn)

= ∑
yn∈Bδ

2,γ

QYn(yn)−QYn |Π(Xn ,δ,PX)
(yn|1) + ∑

yn∈Cδ
2,γ

QYn |Π(Xn ,δ,PX)
(yn|1)−QYn(yn)

= ∑
yn∈Bδ

2,γ

QYn(yn)

(
1−

QYn |Π(Xn ,δ,PX)
(yn|1)

QYn(yn)

)
+ ∑

yn∈Cδ
2,γ

QYn(yn)

(
QYn |Π(Xn ,δ,PX)

(yn|1)
QYn(yn)

− 1

)
(A7)

= ∑
yn∈Bδ

2,γ

QYn(yn)

(
1−

QΠ(Xn ,δ,PX)|Yn(1|yn)

QΠ(Xn ,δ,PX)
(1)

)
+ ∑

yn∈Cδ
2,γ

QYn(yn)

(
QΠ(Xn ,δ,PX)|Yn(1|yn)

QΠ(Xn ,δ,PX)
(1)

− 1

)

≤ ∑
yn∈Bδ

2,γ

QYn(yn)
(

1−QΠ(Xn ,δ,PX)|Yn(1|yn)
)
+ ∑

yn∈Cδ
2,γ

QYn(yn)

(
1

QΠ(Xn ,δ,PX)
(1)
− 1

)
. (A8)

Let PỸ denote the type of yn and define

En(δ, γ) := min
PỸ∈Pn

(
T n
[QY ]γ

) min
PX̃∈Pn

(
T n
[PX ]δ

)D(PX̃|Ỹ||QX|Y|PỸ).

Then, for yn ∈ T n
[QY ]γ

, arbitrary γ̃ > 0 and n sufficiently large (depending on |X |, |Y|, δ, γ), it follows
from ([60], Lemma 2.6) that

QΠ(Xn ,δ,PX)|Yn(1|yn) ≥ 1− e−n(En(δ,γ)−γ̃), (A9)

and QΠ(Xn ,δ,PX)
(1) ≥ 1− e−n(D(PX ||QX)−γ̃). (A10)
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From (A4), (A6) and (A8)–(A10), it follows that

‖QYn(·)−QYn |Π(Xn ,δ,PX)
(·|1)‖ ≤ e−nΩ(γ) + e−n(En(δ,γ)−γ̃) + e−n(D(PX ||QX)−γ̃). (A11)

We next show that En(δ, γ) > 0 for sufficiently small δ > 0 and γ > 0. This would imply
that the R.H.S of (A11) converges exponentially to zero (for γ̃ small enough) with exponent δ̄ :=
min (Ω(γ), En(δ, γ)− γ̃, D(PX ||QX)− γ̃), thus proving (15). We can write,

En(δ, γ) ≥ min
PỸ∈T n

[QY ]γ

min
PX̃∈T n

[PX ]δ

D(PX̃ ||Q̂X) (A12)

≥ 2

[
min

PỸ∈T n
[QY ]γ

min
PX̃∈T n

[PX ]δ

‖PX̃ − Q̂X‖2

]
, (A13)

where

Q̂X(x) := ∑
y

PỸ(y)QX|Y(x|y).

Here, (A12) follows due to the convexity of KL divergence (A13) is due to Pinsker’s inequality [60].
We also have from the triangle inequality satisfied by total variation that,∥∥PX̃ − Q̂X

∥∥ ≥ ∥∥PX −QX
∥∥− ∥∥PX̃ − PX

∥∥− ∥∥Q̂X −QX
∥∥.

For yn ∈ T n
[QY ]γ

,

∥∥Q̂X −QX
∥∥ ≤ ∥∥QX|YPỸ −QXY

∥∥ ≤ ∥∥PỸ −QY
∥∥ ≤ O(γ).

Also, for PX̃ ∈ T n
[PX ]δ

,

∥∥PX̃ − PX
∥∥ ≤ O(δ).

Hence,

En(δ, γ) ≥ 2
(∥∥PX −QX

∥∥−O(γ)−O(δ)
)2 .

Since PX 6= QX , En(δ, γ) > 0 for sufficiently small γ > 0 and δ > 0. This completes the proof of (15).
We next prove (17). Similar to (A4) and (A5), we have,∥∥PYn(·)− PYn |Π(Xn ,δ,PX)

(·|0)
∥∥

≤ 1
2 ∑

yn /∈T n
[PY ]γ

[
PYn(yn) + PYn |Π(Xn ,δ,PX)

(yn|0)
]
+

1
2 ∑

yn∈T n
[PY ]γ

∣∣PYn(yn)− PYn |Π(Xn ,δ,PX)
(yn|0)

∣∣, (A14)

and

PYn |Π(Xn ,δ,PX)
(yn|0) ≤ 2PYn(yn), (A15)

since PΠ(Xn ,δ,PX)
(0)

(n)−→ 1.
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Also, for γ < δ
|Y| and sufficiently large n (depending on δ, γ, |X |, |Y|), we have

∑
yn∈T n

[PY ]γ

∣∣PYn(yn)− PYn |Π(Xn ,δ,PX)
(yn|0)

∣∣
= ∑

yn∈Bδ
0,γ

PYn(yn)− PYn |Π(Xn ,δ,PX)
(yn|0) + ∑

yn∈Cδ
0,γ

PYn |Π(Xn ,δ,PX)
(yn|0)− PYn(yn)

≤ ∑
yn∈Bδ

0,γ

PYn(yn)
(

1− PΠ(Xn ,δ,PX)|Yn(0|yn)
)
+ ∑

yn∈Cδ
0,γ

PYn(yn)

(
1

PΠ(Xn ,δ,PX)
(0)
− 1

)

≤ ∑
yn∈Bδ

0,γ

PYn(yn)e−nΩ(δ−γ|Y|) + ∑
yn∈Cδ

0,γ

PYn(yn)e−nΩ(δ) (A16)

≤ e−nΩ(δ−γ|Y|), (A17)

where to obtain (A16), we used

PΠ(Xn ,δ,PX)
(0) ≥ 1− e−nΩ(δ), (A18)

and PΠ(Xn ,δ,PX)|Yn(0|yn) ≥ 1− e−nΩ(δ−γ|Y|), for yn ∈ Bδ
0,γ and γ <

δ

|Y| . (A19)

Here, (A18) follows from ([60], Lemma 2.12), and (A19) follows from ([60], Lemmas 2.10 and 2.12),
respectively. Thus, from (A14), (A15) and (A17), we can write that,

∥∥PYn(·)− PYn |Π(Xn ,δ,PX)
(·|0)

∥∥ ≤ e−nΩ(γ) + e−nΩ(δ−γ|Y|) (n)−→ 0.

This completes the proof of (17). The proof of (16) is exactly the same as (17), with the only difference
that the sets Bδ

1,γ and Cδ
1,γ are used in place of Bδ

0,γ and Cδ
0,γ, respectively.

Appendix D. Proof of Theorems 1 and 2

We describe the encoding and decoding operations which are the same for both Theorems 1 and 2.
Fix positive numbers (small) η, δ > 0, and let δ′ := δ

2 , δ̂ := |U |δ, δ̃ := 2δ and δ̄ := δ′

|V| .

Codebook Generation: Fix a finite alphabetW and a conditional distribution PW|U . Let Bn =
{

Wn(j), j ∈
[M′n]

}
, M′n := en(IP(U:W)+η), denote a random codebook such that each Wn(j) is randomly and

independently generated according to distribution ∏n
i=1 PW(wi), where

PW(w) = ∑
u∈U

PU(u)PW|U(w|u).

Denote a realization of Bn by Bn and the support of Bn by Bn.
Encoding: For a given codebook Bn, let

P(Bn)
Eu

(j|un) :=
∏n

i=1 PU|W(ui|wi(j))

∑j′ ∏
n
i=1 PU|W(ui|wi(j′)))

, (A20)

denote the likelihood encoding function. If IP(U; W) + η + |U ||W| log(n+1)
n > R, the observer performs

uniform random binning on the indices in [M′n], i.e., for each j ∈ [M′n], it selects an index uniformly

at random from the set M̃n :=
[

en
(

R−|U||W| log(n+1)
n

)]
. Denote the random binning function by fB and
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a realization of it by fB. If IP(U; W) + η + |U ||W| log(n+1)
n ≤ R, set fB as the identity function with

probability one, i.e., fB(j) = j. If un ∈ T n
[PU ]δ′

, then the observer outputs the message m = (t, fB(j)) if

IP(U; W) + η + |U ||W| log(n+1)
n > R or m = (t, j) otherwise, where j ∈ [M′n] is chosen randomly with

probability P(Bn)
Eu

(j|un) and t denotes the index of the joint type of (un, wn(j)) in the set of typesPn(U ×W).
If un /∈ T n

[PU ]δ′
, the observer outputs the error message M = 0. Please note that |M| ≤ enR since the total

number of types in Pn(U ×W) is upper bounded by (n + 1)|U ||W| ([60], Lemma 2.2). Let Cn := (Bn, fB),
and let Cn = (Bn, fB) and µn(·) denote its realization and probability distribution, respectively. For a
given Cn, let f (Cn)

n represent the encoder induced by the above operations, where f (Cn)
n : Un → P(M) and

M := [enR].
Decoding: If M = 0 or t /∈ T n

[PUW ]δ
, Ĥ = 1 is declared. Else, given m = (t, fB(j)) and Vn = vn, the detector

decodes for a codeword ŵn := wn( ĵ) ∈ T n
[PW ]δ̂

in the codebook Bn such that

ĵ = arg min
l: fB(l)= fB(j),
wn(l)∈T n

[PW ]
δ̂

He(wn(l)|vn), if IP(U; W) + η +
1
n
|U ||W| log(n + 1) > R,

ĵ = j, otherwise.

Denote the above decoding rule by P(Cn)
ED , where P(Cn)

ED : M×Vn → J . The detector declares Ĥ = 0 if

(ŵn, vn) ∈ T n
[PWV ]δ̃

and Ĥ = 1 otherwise. Let g(Cn)
n :M×Vn → Ĥ stand for the decision rule induced by

the above operations.
System induced distributions and auxiliary distributions:
The system induced probability distribution when H = 0 is given by

P̃(Cn ,0)(sn, un, vn, j, wn, m, ĵ, ŵn)

=

[
n

∏
i=1

PSUV(si, ui, vi, zi)

]
P(Bn)
Eu

(j|un)1(wn(j) = wn)1( fB(j) = m) 1
(

ĵ = P(Cn)
ED (m, vn)

)
1(wn( ĵ) = ŵn), if un ∈ T n

[PU ]δ′
, (A21)

and

P̃(Cn ,0)(sn, un, vn, m) =

[
n

∏
i=1

PSUV(si, ui, vi)

]
1(m = 0), if un /∈ T n

[PU ]δ′
. (A22)

Consider two auxiliary distribution Ψ̃ and Ψ given by

Ψ̃(Cn ,0)(sn, un, vn, j, wn, m, ĵ, ŵn)

:=

[
n

∏
i=1

PSUV(si, ui, vi)

]
P(Bn)
Eu

(j|un)1(wn(j) = wn)1( fB(j) = m) 1
(

ĵ = P(Cn)
ED (m, vn)

)
1(wn( ĵ) = ŵn), (A23)

and

Ψ(Cn ,0)(sn, un, vn, j, wn, m, ĵ, ŵn)
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:=
1

M′n
1(wn(j) = wn)

[
n

∏
i=1

PU|W(ui|wi)

] [
n

∏
i=1

PVS|U(vi, si|ui)

]
1( fB(j) = m) 1

(
ĵ = P(Cn)

ED (m, vn)
)

1(wn( ĵ) = ŵn). (A24)

Let P̃(Cn ,1) and Ψ̃(Cn ,1) denote probability distributions under H = 1 defined by the R.H.S. of
(A21)–(A23) with PSUV replaced by QSUV , and let Ψ(Cn ,1) denote the R.H.S. of (A24) with PVS|U replaced

by QVS|U . Please note that the encoder f (Cn)
n is such that P(Bn)

Eu
(j|un) = Ψ(Cn ,0)(j|un) and hence, the only

difference between the joint distribution Ψ(Cn ,0) and Ψ̃(Cn ,0) is the marginal distribution of Un. By the
soft-covering lemma [62,64], it follows that for some γ1 > 0,

Eµn

[∥∥∥Ψ(Cn ,0)
Un − Ψ̃(Cn ,0)

Un

∥∥∥] ≤ e−nγ1
(n)−→ 0. (A25)

Hence, from ([43], Property 2(d)), it follows that

Eµn

[∥∥∥Ψ(Cn ,0) − Ψ̃(Cn ,0)
∥∥∥] ≤ e−nγ1 . (A26)

Also, note that the only difference between the distributions P̃(Cn ,0) and Ψ̃(Cn ,0) is P(Bn)
Eu

when Un /∈
T n
[PU ]δ′

. Since

P
(

Un /∈ T n
[PU ]δ′
|H = 0

)
≤ e−nΩ(δ′), (A27)

it follows that

Eµn

[∥∥∥P̃(Cn ,0) − Ψ̃(Cn ,0)
∥∥∥] ≤ e−nΩ(δ′). (A28)

Equations (A26) and (A28) together imply via ([43], Property 2(c)) that

Eµn

[∥∥∥P̃(Cn ,0) −Ψ(Cn ,0)
∥∥∥] ≤ e−nΩ(δ′) + e−nγ1

(n)−→ 0. (A29)

Please note that for l ∈ {0, 1}, the joint distribution Ψ(Cn ,l) satisfies

Si − (wi(J), Vi)− (M, wn(J), Vn, Si−1), i ∈ [n]. (A30)

Also, since IP(U; W) + η > 0, by the application of soft-covering lemma,

Eµn

[
n

∑
i=1

∥∥∥PW −Ψ(Cn ,l)
Wi(J)

∥∥∥ ∣∣∣∣H = l

]
≤ e−γ3n (n)−→ 0, l = 0, 1, (A31)

for some γ3 > 0.
If QU = PU , then it again follows from the soft-covering lemma that

Eµn

[∥∥∥Ψ(Cn ,1)
Un − Ψ̃(Cn ,1)

Un

∥∥∥] ≤ e−γ1n (n)−→ 0, (A32)

thereby implying that

Eµn

[∥∥∥Ψ(Cn ,1) − Ψ̃(Cn ,1)
∥∥∥] ≤ e−γ1n. (A33)
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Also, note that the only difference between the distributions P̃(Cn ,1) and Ψ̃(Cn ,1) is P(Bn)
Eu

when Un /∈
T n
[PU ]δ′

. Since QU = PU implies P
(

Un /∈ T n
[PU ]δ′

∣∣H = 1
)
≤ e−nΩ(δ′), it follows that

Eµn

[∥∥∥P̃(Cn ,1) − Ψ̃(Cn ,1)
∥∥∥] ≤ e−nΩ(δ′). (A34)

Equations (A33) and (A34) together imply that

Eµn

[∥∥∥P̃(Cn ,1) −Ψ(Cn ,1)
∥∥∥] ≤ e−nΩ(δ′) + e−γ1n (n)−→ 0. (A35)

Let P̄P̃(Cn ,0) = Eµn

[
PP̃(Cn ,0)

]
and P̄P̃(Cn ,1) = Eµn

[
PP̃(Cn ,1)

]
denote the expected probability measure

(random coding measure) induced by PMF’s P̃(Cn ,0) and P̃(Cn ,1), respectively. Then, note that from (A24),
(A29), (A31) and the weak law of large numbers,

P̄P̃(Cn ,0)

((
Un, Wn(J)

)
∈ T n

[PUW ]δ

)
≥ 1− e−nΩ(δ) (n)−→ 1. (A36)

Analysis of type I and type II error probabilities:
We analyze type I and type II error probabilities of the coding scheme mentioned above averaged over the
random ensemble Cn.
Type I error probability:
Please note that a type I error occurs only if one of the following events occur:

ETE =
{
(Un, Vn) /∈ T n

[PUV ]δ̄

}
,

ESE =
{

T /∈ Pn

(
T n
[PUW ]δ

)}
,

EME =
{(

Vn, Wn(J)
)

/∈ T n
[PVW ]δ̃

}
,

EDE =
{
∃ l ∈

[
en(IP(U;W)+η)

]
, l 6= J : fB(l) = fB(J), Wn(l) ∈ T n

[PW ]δ̂
,

He
(
Wn(l)|Vn) ≤ He

(
Wn(J)|Vn)}.

Let E := ETE ∪ ESE ∪ EME ∪ EDE. Then, the expected type I error probability over Cn be upper
bounded as

Eµn

[
αn

(
f (Cn)
n , g(Cn)

n

)]
≤ P̄P̃(Cn ,0)(E). (A37)

Please note that P̄P̃(Cn ,0)(ETE) tends to 0 asymptotically by the weak law of large numbers. From (A36),

P̄P̃(Cn ,0)(ESE)
(n)−→ 0. Given E c

SE and E c
TE holds, it follows from the Markov chain relation V −U −W and

the Markov lemma [68] that P̄P̃(Cn ,0)(EME)
(n)−→ 0. Also, as in the proof of Theorem 2 in [13], it follows that

P̄P̃(Cn ,0)(EDE| Vn = vn, Wn(J) = wn, E c
ME ∩ E

c
SE ∩ E

c
TE) ≤ e−n

(
R−IP(U;W|V)−δ

(1)
n

)
, (A38)

where δ
(1)
n

(n)−→ η + O(δ). Thus, if R > IP(U; W|V), it follows by choosing η = O(δ) that for δ > 0 small
enough, the R.H.S. of (A38) tends to zero asymptotically. By the union bound on probability, the R.H.S. of
(A37) tends to zero.
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Type II error probability:

Let δ′′ = |W|δ̃. Please note that a type II error occurs only if Vn ∈ T n
[PV ]δ′′

and M 6= 0, i.e., Un ∈ T n
[PU ]δ′

and T ∈ T n
[PUW ]δ

. Hence, we can restrict the type II error analysis to only such (Un, Vn). Denoting the event
that a type II error occurs by D0, we have

Eµn

[
βn

(
f (Cn)
n , g(Cn)

n

)]
= ∑

un ,vn
P̄P̃(Cn ,1)(Un = un, Vn = vn) P̄P̃(Cn ,1)(D0|Un = un, Vn = vn). (A39)

Let ENE := E c
SE ∩

{
Vn ∈ T n

[V]δ′′

}
∩
{

Un ∈ T n
[U]δ′

}
. The last term in (A39) can be upper bounded

as follows:

P̄P̃(Cn ,1)(D0|Un = un, Vn = vn)

= P̄P̃(Cn ,1)(ENE|Un = un, Vn = vn) P̄P̃(Cn ,1)(D0|Un = un, Vn = vn, ENE)
≤ P̄P̃(Cn ,1)(D0|Un = un, Vn = vn, ENE)
= ∑

j,m̃
P̄P̃(Cn ,1)(J = j, fB(J) = m̃|Un = un, Vn = vn, ENE)

P̄P̃(Cn ,1)(D0| Un = un, Vn = vn, J = j, fB(J) = m̃, ENE) (A40)

= P̄P̃(Cn ,1)(D0| Un = un, Vn = vn, J = 1, fB(J) = 1, ENE) (A41)

= ∑
wn∈Wn

P̄P̃(Cn ,1)(Wn(1) = wn|Un = un, Vn = vn, J = 1, fB(J) = 1, ENE)

P̄P̃(Cn ,1)(D0|Un = un, Vn = vn, J = 1, fB(J) = 1, Wn(1) = wn, ENE). (A42)

where (A41) follows since the term in (A40) is independent of the indices (j, m̃) due to the symmetry of the
codebook generation, encoding and decoding procedure. The first term in (A42) can be upper bounded as

P̄P̃(Cn ,1)(Wn(1) = wn|Un = un, Vn = vn, J = 1, fB(J) = 1, ENE)

≤ 1
|TPW̃|Ũ

| ≤ e−n(H(W̃|Ũ)− 1
n |U ||W| log(n+1)). (A43)

To obtain (A43), we used the fact that P(Bn)
Eu

(1|un) in (A20) is invariant to the joint type PŨW̃ of
(Un, Wn(1)) = (un, wn) (keeping all the other codewords fixed). This in turn implies that given ENE, each
sequence in the conditional type class TPW̃|Ũ

(un) is equally likely (in the randomness induced by Bn and

stochastic encoding in (A20)) and its probability is upper bounded by 1∣∣TPW̃|Ũ

∣∣ . Defining the events

EBE :=
{
∃ l ∈

[
M′n
]

, l 6= J, fB(l) = M, Wn(l)) ∈ T n
[PW ]δ̂

, (Vn, Wn(l)) ∈ T n
[PVW ]δ̃

}
, (A44)

F := {Un = un, Vn = vn, J = 1, fB(J) = 1, Wn(1) = wn, ENE}, (A45)

F1 := {Un = un, Vn = vn, J = 1, fB(J) = 1, Wn(1) = wn, ENE, E c
BE}, (A46)

and F2 := {Un = un, Vn = vn, J = 1, fB(J) = 1, Wn(1) = wn, ENE, EBE}, (A47)

the last term in (A42) can be written as

P̄P̃(Cn ,1)(D0|F ) = P̄P̃(Cn ,1)(E c
BE|F ) P̄P̃(Cn ,1)(D0|F1) + P̄P̃(Cn ,1)(EBE|F ) P̄P̃(Cn ,1)(D0|F2). (A48)
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The analysis of the terms in (A48) is essentially similar to that given in the proof of Theorem 2 in [13],
except for a subtle difference that we mention next. To bound the binning error event EBE, we require an
upper bound similar to

P̄P̃(Cn ,1) (Wn(l) = w̃n|F ) ≤ 2 P̄P̃(Cn ,1)(Wn(l) = w̃n), ∀ w̃n ∈ Wn, (A49)

that is used in the proof of Theorem 2 in [13]. Please note that the stochastic encoding scheme considered
here is different from the encoding scheme in [13]. In place (A49), we will show that for l 6= 1,

P̄P̃(Cn ,1)(Wn(l) = w̃n| F ) ≤ 3 P̄P̃(Cn ,1)(Wn(l) = w̃n), (A50)

which suffices for the proof. Please note that

P̄P̃(Cn ,1)(Wn(l) = w̃n|F )

= P̄P̃(Cn ,1)(Wn(l) = w̃n|Un = un, Vn = vn)
P̄P̃(Cn ,1)(Wn(1) = wn|Wn(l) = w̃n, Un = un, Vn = vn)

P̄P̃(Cn ,1)(Wn(1) = wn|Un = un, Vn = vn)

P̄P̃(Cn ,1)(J = 1|Wn(1) = wn, Wn(l) = w̃n, Un = un, Vn = vn)

P̄P̃(Cn ,1)(J = 1|Wn(1) = wn, Un = un, Vn = vn)
(A51)

P̄P̃(Cn ,1)( fB(J) = 1|J = 1, Wn(1) = wn, Wn(l) = w̃n, Un = un, Vn = vn)

P̄P̃(Cn ,1)( fB(J) = 1|J = 1, Wn(1) = wn, Un = un, Vn = vn)

P̄P̃(Cn ,1)(ENE| fB(J) = 1, J = 1, Wn(1) = wn, Wn(l) = w̃n, Un = un, Vn = vn)

P̄P̃(Cn ,1)(ENE| fB(J) = 1, J = 1, Wn(1) = wn, Un = un, Vn = vn)
(A52)

Since the codewords are generated independently of each other and the binning operation is done
independent of the codebook generation, we have

P̄P̃(Cn ,1)(Wn(1) = wn|Wn(l) = w̃n, Un = un, Vn = vn) = P̄P̃(Cn ,1)(Wn(1) = wn|Un = un, Vn = vn), (A53)

and

P̄P̃(Cn ,1)( fB(J) = 1|J = 1, Wn(1) = wn, Wn(l) = w̃n, Un = un, Vn = vn)

= P̄P̃(Cn ,1)( fB(J) = 1|J = 1, Wn(1) = wn, Un = un, Vn = vn). (A54)

Also, note that

P̄P̃(Cn ,1)(ENE| fB(J) = 1, J = 1, Wn(1) = wn, Wn(l) = w̃n, Un = un, Vn = vn)

= P̄P̃(Cn ,1)(ENE| fB(J) = 1, J = 1, Wn(1) = wn, Un = un, Vn = vn). (A55)

Next, consider the term in (A51). Let

F ′ := {Wn(1) = wn, Un = un, Vn = vn},
F ′′ := {Wn(1) = wn, Wn(l) = w̃n, Un = un, Vn = vn}.

Then, the numerator and denominator of (A51) can be written as

P̄P̃(Cn ,1)(J = 1|F ′′)
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= Eµn

[
∏n

i=1 PU|W(ui|wi)

∏n
i=1 PU|W(ui|wi) + ∏n

i=1 PU|W(ui|w̃i) + ∑j 6=1,l ∏n
i=1 PU|W(ui|Wi(j))

]

≤ Eµn

[
∏n

i=1 PU|W(ui|wi)

∏n
i=1 PU|W(ui|wi) + ∑j 6=1,l ∏n

i=1 PU|W(ui|Wi(j))

]
, (A56)

and

P̄P̃(Cn ,1)(J = 1|F ′) = Eµn

[
∏n

i=1 PU|W(ui|wi)

∏n
i=1 PU|W(ui|wi) + ∑j 6=1 ∏n

i=1 PU|W(ui|Wi(j))

]
, (A57)

respectively. The R.H.S. of (A56) (resp. (A57)) denote the average probability that J = 1 is chosen by P(Bn)
Eu

given Wn(1) = wn, Un = un and M′n − 2 (resp. M′n − 1) other independent codewords in Bn. Let

El :=

{
n

∏
i=1

PU|W(ui|Wi(l)) ≥ max

({
n

∏
i=1

PU|W(ui|Wi(j)), j ∈ dM′ne\{1}
}
∪
{

n

∏
i=1

PU|W(ui|wi)

})}
.

Please note that

Eµn |E c
l

[
∏n

i=1 PU|W(ui|wi)

∏n
i=1 PU|W(ui|wi) + ∑j 6=1 ∏n

i=1 PU|W(ui|Wi(j))

]

≥ 1
2
Eµn |E c

l

[
∏n

i=1 PU|W(ui|wi)

∏n
i=1 PU|W(ui|wi) + ∑j 6=1,l ∏n

i=1 PU|W(ui|Wi(j))

]
. (A58)

Hence, denoting by µ̄n the probability measure induced by µn, we have

P̄P̃(Cn ,1) (J = 1|F ′′)
P̄P̃(Cn ,1) (J = 1|F ′)

≤
Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1 ∏n

i=1 PU|W (ui |Wi(j))

]

≤
Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
µ̄n(E c

l )Eµn |E c
l

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1 ∏n

i=1 PU|W (ui |Wi(j))

]

≤
Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
1
2 µ̄n(E c

l )Eµn |E c
l

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

] (A59)

=

Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
1
2Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
− 1

2 µ̄n(El)Eµn |El

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

] (A60)

≤
Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
1
2Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
− 1

2 µ̄n(El)

(A61)



Entropy 2020, 22, 665 38 of 44

≤
Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
1
2Eµn

[
∏n

i=1 PU|W (ui |wi)

∏n
i=1 PU|W (ui |wi)+∑j 6=1,l ∏n

i=1 PU|W (ui |Wi(j))

]
− e−en(IP (U;W)+η′ )

(A62)

≤ 2 + o(1) ≤ 3, (A63)

where (A59) is due to (A58); (A61) is since the term within Eµn |El
[·] in (A60) is upper bounded by one;

(A62) is since µ̄n(El) ≤ e−en(IP(U;W)+η′)
for some η′ > 0 which follows similar to ([68], Section 3.6.3),

and (A63) follows since the term within the expectation which is exponential in order dominates the
double exponential term. From (A52)–(A55), (A63) and (A50) follows. The analysis of the other terms
in (A48) is the same as in the SHA scheme in [7], and results in the error exponent (within an additive
O(δ) term) claimed in the Theorem. We refer the reader to ([13], Theorem 2) for a detailed proof (In [13],
the communication channel between the observer and the detector is a DMC. However, since the coding
scheme used in the achievability part of Theorem 2 in [13] is a separation-based scheme, the error exponent
when the channel is noiseless can be recovered by setting E3(·) and E4(·) in Theorem 2 to ∞). By the random
coding argument followed by the standard expurgation technique [72] (see ([13], Proof of Theorem 2)),
there exists a deterministic codebook and binning function pair Cn = (Bn, fB) such that the type I and type
II error probabilities are within a constant multiplicative factor of their average values over the random
ensemble Cn, and

Si − (wi(J), Vi)− (M, wn(J), Vn, Si−1), i ∈ [n], (A64)∥∥P̃(Cn ,0) −Ψ(Cn ,0)∥∥ ≤ e−γ4n, (A65)∥∥P̃(Cn ,1) −Ψ(Cn ,1)∥∥ ≤ e−γ4n, if QU = PU , (A66)

and
n

∑
i=1

∥∥PW −Ψ(Cn ,l)
wi(J)

∥∥ ≤ e−γ5n, l = 0, 1, (A67)

where γ4 and γ5 are some positive numbers. Since the average type I error probability for our scheme
tends to zero asymptotically, and the error exponent is unaffected by a constant multiplicative scaling of
the type II error probability, this codebook achieves the same type I error probability and error exponent
as the average over the random ensemble. Using this deterministic codebook for encoding and decoding,
we first lower bound the equivocation and average distortion of Sn at the detector as follows:

First consider the equivocation of Sn under the null hypothesis.

HP̃(Cn ,0)(Sn|M, Vn) ≥ PP̃(Cn ,0)(M 6= 0)H(Sn|M 6= 0, Vn)

≥ (1− e−nΩ(δ)) HP̃(Cn ,0)(Sn|M 6= 0, Vn) (A68)

≥ (1− e−nΩ(δ)) HP̃(Cn ,0)(Sn|wn(J), Vn) (A69)

= (1− e−nΩ(δ)) HP̃(Cn ,0)(Sn|wn(J), Vn) (A70)

≥ (1− e−nΩ(δ)) HΨ(Cn ,0)(Sn|wn(J), Vn)− 2e−γ4n log
(
|S|n|V|n

e−γ4n

)
(A71)

=
n

∑
i=1

HΨ(Cn ,0)(Si|wi(J), Vi)− e−nΩ(δ)
n

∑
i=1

HΨ(Cn ,0)(Si|wi(J), Vi)− o(1) (A72)

≥
n

∑
i=1

HΨ(Cn ,0)(Si|wi(J), Vi)− ne−nΩ(δ)HP(S|V)− o(1) (A73)
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=

[
n

∑
i=1

HΨ(Cn ,0)(Si|wi(J), Vi)

]
− o(1) (A74)

= nHP(S|W, V)− o(1). (A75)

Here, (A68) follows from (A27); (A69) follows since M is a function of wn(J) for a deterministic
codebook; (A71) follows from (A65) and Lemma 3; (A72) follows from (A24); and (A75) follows from
(A67) and Ψ(0)

SiVi |wi
= P(0)

SV|W , i ∈ [n].
If QU = PU , it follows similarly to above that

HP̃(Cn ,1)(Sn|M, Vn) ≥
(

1− e−nΩ(δ)
)

HΨ(Cn ,1)(Sn|wn(J), Vn)− 2e−γ4n log
(
|S|n|V|n

e−γ4n

)
(A76)

=
n

∑
i=1

HΨ(Cn ,1)(Si|wi(J), Vi)− e−nΩ(δ)
n

∑
i=1

HΨ(Cn ,1)(Si|wi(J), Vi)− o(1) (A77)

≥
n

∑
i=1

HΨ(Cn ,1)(Si|wi(J), Vi)− ne−nΩ(δ)HQ(S|V)− o(1) (A78)

=

[
n

∑
i=1

HΨ(Cn ,1)(Si|wi(J), Vi)

]
− o(1) (A79)

= nHQ(S|W, V)− o(1). (A80)

Finally, consider the case H = 1 and QU 6= PU . We have for δ′ small enough that

PP̃(Cn ,1) (M = 0) = PP̃(Cn ,1)

(
Un /∈ T n

[PU ]δ′

)
≥ 1− e−n(D(PU ||QU)−O(δ′)) (n)−→ 1. (A81)

Hence, for δ′ small enough, we can write

HP̃(Cn ,1)(Sn|M, Vn) ≥ HP̃(Cn ,1)(Sn|M, Vn, Π(Un, δ′, PU))

≥
(

1− e−n(D(PU ||QU)−O(δ′))
)

HP̃(Cn ,1)(Sn|M, Vn, Π(Un, δ′, PU) = 1) (A82)

=
(

1− e−n(D(PU ||QU)−O(δ′))
)

HP̃(Cn ,1)(Sn|Vn, Π(Un, δ′, PU) = 1) (A83)

≥
(

1− e−n(D(PU ||QU)−O(δ′))
) (

HP̃(Cn ,1)(Sn|Vn)− o(1)
)

(A84)

= nHQ(S|V)− ne−n(D(PU ||QU)−O(δ′))HQ(S|V)− o(1) = nHQ(S|V)− o(1). (A85)

Here, (A82) follows from (A81); (A83) follows since Π(Un, δ′, PU) = 1 implies M = 0; (A84) follows
from Lemma 3 and (15). Thus, since δ > 0 is arbitrary, we have shown that for ε ∈ (0, 1), (R, κ, Λ0, Λ1) ∈
Re(ε) if (18)–(21) holds.

On the other hand, average distortion of Sn at the detector can be lower bounded under H = 0
as follows:

min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = 0

]
= min{

φ̄i,n(m,vn ,si−1)
}n

i=1

EP̃(Cn ,0)

[
n

∑
i=1

d
(

Si, φ̄i(m, vn, si−1)
)]

(A86)
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≥ min{
φ̄i(m,vn ,si−1)

}n

i=1

EΨ(Cn ,0)

[
n

∑
i=1

d(Si, φ̄i(m, vn, si−1))

]
− ne−nγ4 Dm (A87)

≥ min{
φ̄i(·,·)

}n

i=1

EΨ(Cn ,0)

[
n

∑
i=1

d(Si, φ̄i(wi(J), Vi))

]
− ne−nγ4 Dm (A88)

≥ n min{
φ(·,·)

}EP [d(S, φ(W, V))]− n
(
e−nγ4 + e−nγ5

)
Dm (A89)

= n min{
φ(·,·)

}n

i=1

EP [d(S, φ(W, V))]− o(1). (A90)

Here, (A86) follows from Lemma 2; (A87) follows from ([43], Property 2(b)) due to (A65) and
boundedness of distortion measure; (A88) follows from the Markov chain in (A64); (A89) follows from
(A67) and the fact that Ψ(0)

SiVi |wi(J) = P(0)
SV|W , i ∈ [n].

Next, consider the case H = 1 and QU = PU . Then, similarly to above, we can write

min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = 1

]
= min{

φ̄i(m,vn ,si−1)
}n

i=1

EP̃(Cn ,1)

[
n

∑
i=1

d
(

Si, φi(M, Vn, Si−1)
)]

≥ min{
φ̄i(m,vn ,si−1)

}n

i=1

EΨ(Cn ,1)

[
n

∑
i=1

d(Si, φi(M, Vn, Si−1))

]
− ne−nγ4 Dm (A91)

≥ min{
φi(·,·)

}n

i=1

EΨ(Cn ,1)

[
n

∑
i=1

d(Si, φi(wi, Vi))

]
− ne−nγ4 Dm (A92)

≥ n min{
φ(·,·)

}n

i=1

EQ [d(S, φ(W, V))]− n(e−nγ4 + e−nγ5)Dm. (A93)

= n min{
φ(·,·)

}n

i=1

EQ [d(S, φ(W, V))]− o(1). (A94)

If H = 1 and QU 6= PU , we have

min
g(r)i,n

E
[
d
(
Sn, Ŝn) |H = 1

]
≥ PP̃(Cn ,1) (M = 0|H = 1) min{

φ̄i(m,vn ,si−1)
}n

i=1

n

∑
i=1

EP̃(Cn ,1)

[
d
(

Si, φi(0, Vn, Si−1)
)]

≥ PP̃(Cn ,1) (M = 0|H = 1)

 min{
φ′i (v)

}n

i=1

EQ

[
n

∑
i=1

d(Si, φ′i(Vi))

]
− Dmo(1)

 (A95)

= n min{
φ′(·)

}EQ
[
d(S, φ′(V))

]
− o(1). (A96)

Here, (A95) follows from (15) in Lemma 4 and (A96) follows from (A81). Thus, since δ > 0 is arbitrary,
we have shown that (R, κ, ∆0, ∆1) ∈ Rd(ε), ε ∈ (0, 1), provided that (18), (19), (24) and (25) are satisfied.
This completes the proof of the theorem.
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Appendix E. Proof of Lemma 5

Consider the |U |+ 2 functions of PU|W ,

PU(ui) = ∑
w∈W

PW(w)PU|W(ui|w), i = 1, 2, . . . , |U | − 1, (A97)

HP(U|W, Z) = ∑
w

PW(w)g1(PU|W , w), (A98)

HP(Y|W, Z) = ∑
w

PW(w)g2(PU|W , w), (A99)

HP(S|W, Y, Z) = ∑
w

PW(w)g3(PU|W , w), (A100)

where

g1(PU|W , w) = −∑
u,z

PU|W(u|w)PZ|U(z|u) log

(
PU|W(u|w)PZ|U(z|u)

∑u PU|W(u|w)PZ|U(z|u)

)
,

g2(PU|W , w) = − ∑
y,z,u

PU|W(u|w)PYZ|U(y, z|u) log

(
∑u PU|W(u|w)PYZ|U(y, z|u)

∑u PU|W(u|w)PZ|U(z|u)

)
,

g3(PU|W , w) = − ∑
s,y,z,u

PU|W(u|w)PSYZ|U(s, y, z|u) log

(
∑u PU|W(u|w)PSYZ|U(s, y, z|u)

∑u PU|W(u|w)PYZ|U(y, z|u)

)
.

Thus, by the Fenchel–Eggleston–Carathéodory’s theorem [68], it is sufficient to have at most |U | − 1
points in the support of W to preserve PU and three more to preserve HP(U|W, Z), HP(Y|W, Z) and
HP(S|W, Z, Y). Noting that HP(Y|Z) and HP(U|Z) are automatically preserved since PU is preserved (and
(Y, Z, S)−U −W holds), |W| = |U |+ 2 points are sufficient to preserve the R.H.S. of Equations (28)–(30).
This completes the proof for the case ofRe. Similarly, considering the |U |+ 1 functions of PW|U given in
(A97)–(A99) and

EP [d (S, φ(W, Y, Z))] = ∑
w

PW(w)g4(w, PW|U),

where

g4(w, PW|U) = ∑
s,u,y,z

PU|W(u|w)PYZS|U(y, z, s|u) d(s, φ(w, y, z)),

similar result holds also for the case ofRd.
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