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ABSTRACT 

Glass materials can crystallize in particular conditions. When the crystallization process happens in an 

uncontrolled way a loss of performance and transparency is obtained, and we talk about devitrification. 

Instead, controlled crystallization is desired because it improves mechanical, optical and chemical 

properties, obtaining glass-ceramic materials. Glass-ceramics are polycrystalline materials obtained by the 

partial crystallization of crystalline phases in a glass matrix, through a thermal process. The first glass-

ceramic discovered was based on Lithium Disilicate (Li2Si2O5, LS2) composition and its nucleation has 

been extensively studied to improve the manufacturing process and enhance the properties. Although LS2 

is mainly known to nucleate homogeneously, researchers have also observed the participation of metastable 

phases (such as Lithium Metasilicate, LS) in nucleation. Experimentally it is difficult to obtain clear 

information about the formation of the very first embryo of crystallization because it is a phenomenon that 

takes place at the nanometer level. On the other hand, computational techniques that study phenomena at 

an atomistic level can provide information at the interested length scale. Molecular Dynamics is widely 

used in the study of the structure and mechanical properties of glasses, but only recently its potentialities 

have been tested in the field of nucleation. The main problem of MD is the accessible timescale: glasses 

have a high viscosity leading to nucleation time longer than accessible MD simulation time. Metadynamics 

(MetaD) has been successfully applied to study the nucleation of several molecular or metallic systems. 

However, its application in the glass-forming system is limited to SiO2, giving excellent results. 

My PhD project was focused on the application of MD and MetaD to study LS2 crystallization using several 

methods and protocols. The following are summaries of the chapters that make up the thesis itself. 

The first chapter is a presentation of glasses and glass ceramics, pointing out the most important features 

of these materials. A brief literature review of experimental and computational studies about the 

crystallization of LS2 is also reported. 

The second chapter describes some of the most popular nucleation theories. The Classical Nucleation 

Theory, CNT, is based on the formation of a spherical nucleus that can grow when it reaches a critical 

dimension. Although CNT is widely accepted and used, it has some shortcomings derived from the 

necessary approximations that are made in the formulation. The Generalized Gibbs approach, GGA, is an 

evolution of the CNT that considers the formation of intermediate states between the liquid and the crystal, 

while the two-step method separates the nucleation process in density and structural fluctuations.  

The third chapter is dedicated to the presentation of computational methods employed in this thesis, starting 

from Molecular Dynamics and the force-field used to simulate the system, moving to Metadynamics, 

including the reweighting technique to recover the free energy surface (FES) from the biased simulation, 

and the temperature rescaling method used to recover the FES at a temperature starting from the simulation 
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at a different temperature. Finally, a presentation of Collective Variables (CVs), which are used either to 

drive a simulation or to analyze it. 

The calculation of the melting temperature is a requirement to study the crystallization by computational 

technique because it depends on the employed force-field and is thus different from the experimental one. 

In chapter four the mechanical and thermodynamic melting temperatures of LS2 and LS are determined. 

The mechanical melting temperature, obtained following the phase transition during the heating of the 

system, overestimates the computational melting temperature because it depends on the heating rate used 

and on the hysteresis of the system. The phase-coexistence method is used to calculate the thermodynamic 

melting temperature, which is more reliable because it seeks the temperature at which a system composed 

of both crystal and liquid phases interfaced, can coexist without dissolving nor crystallizing.  

In chapter five, we developed two approaches to studying nucleation with MD. The first is an exploring 

method, which looks for structural similarities between the crystal and the glass and identifies a propensity 

for the crystallization of that crystal. The presence of crystalline embryos of LS2, LS and LP (Li3PO4) was 

investigated in bulk and surface models of glasses with the stoichiometric composition of LS2 and with the 

inclusion of a small amount of P2O5, LS2P1 (33Li2O 66SiO2 1P2O5). LS2 embryos are found preferentially 

in the bulk assisted by the presence of the P2O5, while LS embryos form on the surfaces, due to a higher 

concentration of Li ions.  

The Free Energy Seeding method, FESM, is presented in the same chapter, and used to extract 

thermodynamic information of crystallization in a glass matrix. The critical radii and the activation energies 

extracted for LS2 and LS are in fair agreement with experimental data, even though with a large error on 

the nucleation free energies. Interfacial energy is considered intrinsically using this method. Studying the 

change of the Steinhardt order parameter from the center of the nucleus to the glass matrix, the width of the 

interface is investigated, and increases as the temperature increases. 

In the sixth chapter, the crystallization of β-cristobalite from SiO2 melt is used as a prime example for 

testing MetaD simulation. We have investigated the effect of MetaD parameters, temperature and size 

dimensions on the convergence of the simulations and the estimation of the Free Energy Surfaces. Advice 

on how to set up a MetaD simulation with glass-forming liquids is provided, and the efficiency of the 

temperature-rescaling method is proved. 

Finally, MetaD has been applied to the LS2 system to study its nucleation mechanism in chapter 7. The CV 

chosen for driving the MetaD simulation is the intensity of a particular X-ray diffraction peak. One CV is 

used initially, and one crystallization path is observed, with the exploration of a small region of the phase 

space. The FES associated with this transformation is extracted and a step mechanism is recognized. When 

two CVs are used a much broader phase space is explored, giving access to three distinct nucleation 

pathways. The most favorable one passes through the formation of a disordered layered structure (obtained 
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also with 1 CV). The second pathway involves the formation of phase-separated structures composed of 

nuclei of β-cristobalite crystals surrounded by lithium-rich phases in which metasilicate chains are formed. 

The conversion of these structures to the stable lithium disilicate crystal involves an intermediate structure 

whose silicate layers are connected by silicate rings with a low energy barrier. The third pathway is highly 

unlikely because of the huge energy barrier involved. This path also involves the passage through a phase-

separated structure of an indefinite silica region surrounded mainly by amorphous lithium oxide. 

 



 

 

Chapter 1. Introduction 

Crystallization is a ubiquitous phenomenon and highly relevant to many industrial and technological 

applications (e.g., bone formation, pharmaceuticals, meteorology, and metallurgy) (1–4). Understanding 

this process is a basic requirement in glass science for either developing glass-ceramic materials with 

tailored properties or avoiding uncontrolled devitrification. 

Devitrification, mostly observed on the glass surface, is an undesired phenomenon in glass manufacturing 

because the formation of crystals in the products often deteriorates their transparency, strength, and in 

general, their performances. In the case of nuclear waste vitrification, radiogenic heat induces the formation 

of soluble crystalline phases (5,6), resulting in radioactive pollution due to the leakage of radioactive waste 

from the glassy matrix. On the other hand, technologies for controlling crystallization have contributed to 

society since they enable us to develop glass-ceramic products with exceptional optical, mechanical and 

chemical properties (7). Thus, knowledge of the mechanism, kinetics and thermodynamics of crystal 

nucleation and crystallization in oxide glass is fundamental to designing a glass-ceramic system that exactly 

fulfills the requirements for any application. 

Crystallization is a two-step process involving nucleation and crystal growth. Nucleation starts with the 

appearance of subcritical crystalline nuclei, which must reach a critical dimension to initiate the growth of 

the crystal. The formation of nuclei can occur through two mechanisms: heterogeneous and homogeneous. 

Heterogeneous, or surface, nucleation is triggered by the presence of foreign solid particles, impurities, 

catalysts, or the surface. On the other hand, homogeneous nucleation starts from the bulk, from random 

fluctuations of the structure that lead to the formation of the crystalline embryo. Among silicate glasses, 

there are compositions that are more reluctant to homogeneously crystallize, due to the stability of the 

liquid, the crystalline phase, or the viscosity. Most glass-forming substances, in fact, undergo surface 

nucleation and there are instead only a few cases where the predominant and favorable nucleation occurs 

in the bulk (8). 

Crystallization and glass formation are competitive processes, and nucleation is the “bottleneck” of 

crystallization; therefore, it is fundamental to understand the thermodynamics and kinetics of this 

transformation. Unraveling the origin of the nucleation mechanism in glass forming liquids is still a 

challenging issue in the glass science community. Several theories have been developed to describe the 

thermodynamics and kinetics of nucleation, such as the classical nucleation theory (CNT) or the two-step 
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model presented in chapter 2. However, the identification of the sub-nanometer nuclei hampers the clear 

observation of nucleation dynamics at the atomic scale, limiting the descriptions proposed by the theories, 

which are usually based on experimental observations. For these reasons, in recent years, computational 

techniques, such as molecular dynamics, have been applied to study nucleation. 

Among computational techniques, molecular dynamics (MD) is established to be the most efficient in glass 

science, especially to obtain a description of the microscopic structure and mechanical properties (9–11). 

MD allows the simulation of systems containing up to tens of thousands of atoms, giving a reliable 

description of the glass studied. Moreover, it is useful to describe the dynamics of the system up to 

microseconds. However, the main issue in studying nucleation in glassy systems by molecular dynamics is 

their slow crystallization rate and high viscosity, which make this phenomenon a rare event and not 

accessible in the simulation time. 

In this PhD project, supported by AGC Inc. (Japan), we have applied and developed suitable computational 

protocols and techniques to approach this process in vitreous materials already investigated experimentally, 

such as silica (SiO2) and lithium disilicate (Li2O·2 SiO2: LS2). Prediction of the nucleation features in more 

complex systems is the ultimate purpose of our investigation. 

1.1. Definition of glass 

 

FIG. 1.1. Enthalpy versus temperature plot for a generic glass-forming material. 
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“Glass is a nonequilibrium, non-crystalline condensed state of matter that exhibits a glass transition. The 

structure of glasses is similar to that of their parent supercooled liquids (SCL), and they spontaneously 

relax toward the SCL state. Their ultimate fate, in the limit of infinite time, is to crystallize.” 

There exist several definitions to describe the glass state, but the one proposed by Zanotto and Mauro in a 

recent paper (12) is probably one of the most accurate and complete, and it is commonly understood using 

the enthalpy versus temperature diagram, in figure 1.1. 

Liquids that are stable thermodynamically exist only at temperatures higher than the melting point, 𝑇𝑚, 

while below this temperature, the crystalline phase is the most thermodynamically stable structure, which 

is characterized by a short, medium and long-range order. The crystalline phases are obtained when a liquid 

is cooled down with a sufficiently slow quenching rate below 𝑇𝑚. Some materials have a very slow 

crystallization rate; thus, they can be undercooled below 𝑇𝑚 without crystallizing, obtaining the so-called 

“supercooled liquid”, SCL. The SCL is a metastable phase that exists between the 𝑇𝑚 and glass transition 

temperature, 𝑇𝑔, and eventually, after a certain time, it undergoes crystallization, if it overcomes a 

thermodynamic barrier. The time necessary for SCL to crystallize depends mainly on the temperature and 

the chemical composition of the material, and some materials may reach the vitreous state without 

crystallizing, when the crystallization rate is very slow. The glassy state exits below the glass transition 

temperature, 𝑇𝑔, and it is thermodynamically unstable, therefore, spontaneously relaxes to the SCL state, at 

any temperature different from 0 K. Glasses are characterized, unlike crystal state, by a short, sometimes 

medium-range order, but they lack in long-range order. The 𝑇𝑔 is defined as the temperature at which the 

glass transition takes place, and the average relaxation time of the SCL, 𝜏𝑅, is about of the same order of 

magnitude of the observation time, 𝑡𝑜𝑏𝑠, experimental time during which an event is observed. Below 𝑇𝑔 

the relaxation time, 𝜏𝑅, is larger than the observation time, thus apparently the liquid “freezes” without 

crystallizing and the atoms are undetectably moving. Either way, at any temperature different from 0 K, for 

observation time sufficiently long, 𝑡𝑜𝑏𝑠 ≫ 𝜏𝑅, any glass or SCL relaxes and finally crystallizes. 

In the definition proposed at the beginning there is no limitation to the chemical nature of the glass material. 

In the past century numerous glass compositions have been discovered: from oxide glasses, most 

traditionally known, but still subject of countless studies because of their versatility and almost infinite 

possibilities in application they offer; relatively novel non-oxide glasses, such as chalcogenide, fluoride, 

bromide, oxyfluoride, oxynitride and others (13,14). Moreover, the number of known organic, polymer and 

metallic alloys glass materials is increasing (15,16). Glasses are an outstanding class of materials with a 

wide variety of possible applications and opportunities for improvement. 

1.2. Silicate glasses and the atomic-scale structure 

Oxide glasses are a class of materials that contain one oxide or a combination of several oxides to impart 

certain properties to the material (17). The backbone of oxide glasses is made up of network formers that 
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form covalent bonds with oxygen. The most common glass-forming non-metal oxides are silica (SiO2), 

borate (B2O3) and phosphate (P2O5). The network former cations are connected to one another by bridging 

oxygen (BO), creating a three-dimensional network. The high 𝑇𝑚 and high 𝑇𝑔 of oxide glasses are 

determined by the presence of covalent bonds between oxygen and non-metal cations, making their 

industrial production highly expensive. 

Network modifier oxides like Li2O, Na2O and K2O are added to lower the working temperatures (18). These 

metal ions, mainly alkaline or alkaline earth, form ionic bonds with oxygen and generate non-bridging 

oxygen (NBO) in the glass forming network. The presence of metallic ions reduces the connectivity and 

the number of covalent bonds in the glass, with the consequent decrease in the working temperatures. Some 

other oxides can be added to the glass composition for substituting the former cations in the network. These 

oxides can behave either as network formers or as modifiers, which is why they are called intermediates. 

TiO2, PbO and Al2O3 are a couple of examples (19–21). 

The silicate glasses, on which this work is focused, are largely utilized as bulk glass in windows, containers, 

and other applications (22,23). They are made of SiO2 mixed with network modifiers oxides and/or other 

additives. The network-forming cations are silicon atoms, which combine with oxygen atoms to form 

tetrahedral structural units with four Si-O bonds (24,25). 

Glass structure is investigated at the short and medium-range order. The short-range order refers to the local 

order around cations (bond distances, intra-tetrahedral angles and coordination numbers). The medium-

range order is usually described by reporting the Qn distributions, where Q stands for quaternary and 

indicates the tetrahedral coordination and 𝑛 is the number of BOs bonded to the Si atom. In pure SiO2, all 

Si atoms are connected to 4 BOs, and the network consists of only Q4 units. When network modifiers are 

added to the composition, NBOs are formed, and a distribution of different Qn species is generated. The 

possible Qn species are represented in figure 1.2. The distribution of Qn species provides an indication of 

the degree of polymerization of the structure. 

The connectivity of the network formers, the distance correlations between network formers and network 

modifiers, the spatial distribution of the network modifier species, as well as the ring size distributions, all 

contribute to the description of the intermediate-range order. 
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FIG. 1.2. Qn structural units. Silicon atoms are represented with yellow tetrahedra, red spheres are oxygen 

and pink spheres are a generic modifier cation. 

1.3. Glass ceramics 

Glass-ceramics (GC) are polycrystalline materials formed through the controlled nucleation and partial 

crystallization of inorganic glasses (26) with one or more crystalline phases dispersed in the glass matrix. 

The degree of crystallinity varies between 0.5 % and 99.5 %, but it is generally between 30 – 70 %. 

The manufacture of glass-ceramics materials is based on a simple thermal process properly devised to 

control nucleation and crystal growth. An optimal GC product should be composed of nanosized and 

randomly oriented grains generally without the formation of voids, microcracks or other porosity. The 

productive process is divided into two steps. During the first step, the glass is produced with the fast quench 

of a melt, with the desired shape. In the second step the glass is heated up to a temperature near the glass 

transition temperature, 𝑇𝑔, to allow structural rearrangement and achieve nucleation, then the system is 

heated up to a higher temperature to allow the growth of crystals (27). This second thermal process can be 

repeated several times. In most cases, some nucleating agents are added to the glass composition to improve 

the nucleating process, such as TiO2, ZrO2, CeO2, Fe2O3 (28), non-metal oxides, P2O5 (29,30), or colloidal 

metal nanoparticles (31). 

The material produced has indeed many advantages: relatively fast productive process, the possibility to 

tailor the nano and micro-structure, very low or absence of porosity, the possibility of spanning a large 

variety of compositions. The properties of GC materials depend on both the composition and the micro-

structure. The chemical composition controls the workability and the glass-forming ability, while the micro-

structure affects most of the mechanical and optical properties (32). 
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The peculiarities of these materials have led to the development of products that find applications both in 

common use and in specialized fields. Non-porous materials and materials with a low thermal expansion 

coefficient can be employed in the production of pots, plates or mirror for telescopes, GC insulator are used 

in the hard-disk technology, while the high toughness, strength and opalescence of GC such lithium 

disilicate, are exploited in dentistry for teeth restoration (33). 

It is thus clearly important to understand the kinetic and thermodynamic characteristics of the nucleation 

process, to develop and make the most of these extraordinary materials and meet the requirements to any 

application (34). 

1.4. An interesting case of study: lithium disilicate 

The first glass-ceramic material was discovered in 1950 by Stookey (35) and was based on the lithium 

disilicate system. The enhanced mechanical and thermal properties of lithium disilicate glass-ceramics 

make them ideal substrates to produce heat and corrosion-resistant coatings and to fabricate dental 

restoration prostheses (36–38). 

Since the discovery of the first lithium disilicate glass-ceramic, many efforts have been devoted to disclose 

the nucleation and crystallization mechanisms relating to glass compositions, thermal treatment, and the 

addition of nucleating agents in order to understand and control the microstructures that in turn affect 

properties (39–41). Albeit LS2 glass is expected to be one of the few compositions that exhibits 

homogeneous nucleation, the precipitation of metastable phases in the early stage of crystallization of LS2 

glass or in neighboring compositions was observed in several studies (39,40,42–52). Studies on nearly 

stoichiometric compositions have reported the formation of lithium metasilicate (Li2O·SiO2; LS) at low 

temperatures and short periods of thermal treatment (43,46,47,53,54). But it is also claimed that this phase 

disappears for longer treatments and does not interfere with the overall crystallization kinetics of lithium 

disilicate, which is the main phase that forms homogeneously. 

Instead, in non-stoichiometric compositions and/or in the presence of nucleating agents, the LS phase was 

proposed as a precursor of the LS2 phase through heterogeneous crystallization (39,40,42,48–50,55,56). In 

these cases, the most accepted mechanism is that, at low temperature, LS is the primary phase in initial 

crystallization, which increases the concentration of SiO2 in the residual glass matrix and, thus, triggers 

cristobalite formation. At elevated temperatures, the two phases combine, giving rise to lithium disilicate 

crystals. 

Metastable phases different from LS have also been detected (42,45,46,57,58). Both Deubener and Iqbal 

(42,45) discussed the involvement of intermediate phases in the nucleation process of the lithium disilicate. 

Metastable phases with stoichiometry close to the LS2 composition have been observed by XRD during the 

crystallization stages (45,57,58). The first to appear, referred to as α’-LS2, has several peaks not in common 

with the stable LS2. The conversion to another intermediate phase, β’-LS2, is proposed, which has a better 
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match in the XRD pattern with the stable LS2. The crystallization concludes with the conversion into the 

equilibrium LS2 phase. 

In contrast to the aforementioned works, Burgner (59,60) and Zanotto (61,62) did not identify any 

metastable phase formation in the nucleation process of the LS2. Burgner (60) investigated possible causes 

for this discrepancy, namely, the glass preparation procedure, the glass composition, the water content or a 

deficiency of the XRD technique to detect the possible appearance of metastable phases. 

 

FIG. 1.3. Structure of the LS and LS2 crystals along different orientations and unit cell parameters. Yellow 

tetrahedral represents silicon, red and pink spheres represent oxygen and lithium ions, respectively. 
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The prior formation of intermediate phases was also suggested because it would justify the underestimation 

of several orders of magnitude of the nucleation rate of LS2, since the formation of metastable phases in the 

early stage of crystallization would decrease the activation energy of the process. 

An argument in favor of homogeneous nucleation is the structure of the stable LS2 (63) and LS (64) 

crystalline systems, which are presented in figure 1.5. LS2 crystal has a double layer of silica structure with 

Li ions in the interlayers, whereas LS crystal has chain-like silica structures surrounded by Li ions. The two 

phases have quite different stoichiometry and symmetry, so the conversion from one phase to another looks 

like a high-energy process. 

Very recently, the problem of the crystallization of LS2 was approached using computational techniques 

(65–68). The first work was proposed by McKenzie et al. (65,66) who combine molecular dynamics and 

Monte Carlo methods to calculate the nucleation free energy of both LS2 and LS. The Monte Carlo 

technique was used for cluster formation, building clusters with different sizes and shapes, and an implicit 

solvent model was used to describe the environment in which nucleation takes place. They find that the LS 

is more likely to precipitate out of solution, but for larger nuclei, the two crystals become equally stable, 

and they also find the critical crystal dimension, which agrees well with experiments. One of the main 

advantages of this technique is that it considers the shape of the crystal to be different from the spherical 

one, which is an assumption of CNT (see chapter 2). The main issue is assuming a uniform density and 

charge in the background of the crystalline nucleus. In particular, the formation of LS crystal from an LS2 

glass would inevitably result in a local phase separation, which would increase the strain at the nucleus 

interface. 

Sun et al. (67) investigated the growth of lithium disilicate, beginning with a slab-model composed of a 

crystalline and a glass layer, resulting in a glass/crystal interface. They considered several orientations of 

the LS2 crystal, and they studied the evolution of the slab during an MD simulation. They observed the 

ordering of the atoms in the glass in an LS2-fashion near the crystal surface, and according to the 

investigated surface, there was a higher or lower level of ordering. However, they could observe only the 

very first stages of growth because the viscosity of the glass phase hampers the simulation of this event. 

The last work combines experiment and simulation observations to investigate structural rearrangements 

below 𝑇𝑔 (68). Studying the crystallization of LS2 using solid-state NMR and RAMAN techniques, they 

observed relaxation and nucleation without detectable changes in the network former unit distribution of 

the glassy silicon-oxide network. Instead, relaxation of the frozen supercooled melt and nucleation of LS2 

crystals occurs principally in terms of a changing lithium local environment. They used MD simulations to 

confirm the distribution of Li cations in the glass, which in their model are not randomly distributed in the 

LS2 glass but show a certain degree of clustering. In this work, they confirmed the good reliability of the 

modeled structure; however, the mechanism of nucleation was not investigated. 
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Despite the many efforts made in the past, the major controversy concerns the participation and influence 

of metastable phases in the LS2 crystallization kinetics and is still being debated, remaining an extremely 

important open question. 

 

 

  



 

 

Chapter 2. Nucleation Theories 

The theoretical knowledge of nucleation, growth, crystallization processes in glass-forming melts is a key 

issue not only to avoid undesirable crystallization (devitrification) in glass formation, but also for the 

control of desired crystallization (glass-ceramics) (69,70). 

Nucleation (1,69,71–75) is usually described by resorting to Classical Nucleation Theory (CNT). Therefore, 

we will present it first. However, since several approximations are made, the CNT usually does not provide 

nucleation rates matching the experimental ones and alternative theories have been proposed. One of the 

most successful, the two-step theory, will be briefly presented at the end of the chapter. 

2.1. Classical nucleation theory (CNT) 

The nucleation process can take place through two mechanisms: 

• Homogeneous nucleation, which is a stochastic process, where the probability of the formation of 

crystalline nuclei is the same throughout the entire sample volume. 

• Superficial nucleation or heterogeneous nucleation, which takes place in preferential sites, such as 

solid particles, surfaces, and interfaces. 

This theory provides kinetics and thermodynamics description to both mechanisms, which are detailed in 

the following paragraphs. 

2.1.1. Homogeneous nucleation 

The CNT is based on some hypothesis: (i) whatever its size, the crystalline nucleus has the same 

macroscopic (such as density, structure, composition) and thermodynamic properties of the stable 

crystalline phase that will form; (ii) the initial germ of nucleation have spherical shape with radius 𝑟, to 

minimize the surface between crystal and supercooled liquid; (iii) the surface energy is constant, it does not 

depend on the nucleus dimension (capillarity approximation) and on the temperature. 

When the glass is heated up near or above the glass transition temperature, 𝑇𝑔, the viscosity of the system 

decreases, and the particles have a higher mobility. At this condition there is a non-zero probability of 
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forming structural units similar to the crystalline phase. The stability of these structural units, called 

embryos, depends on their dimensions, radius 𝑟, and it is described with the nucleation free energy, ∆𝐺 or 

𝑊, equation 2.1. 

𝑊(𝑟) = −
4

3
𝜋𝑟3(∆𝐺𝑣 − 𝜀) + 4𝜋𝑟2𝛾𝑠𝑙  (2.1) 

The nucleation free energy is composed of two positive contributions and one negative. The interfacial 

energy per unit area, 𝛾𝑠𝑙, corresponds to the formation of a melt/crystal surface, therefore, is a positive 

contribution to 𝑊. The second positive term is the strain, 𝜀, that is created due to the difference in the 

density between the two phases. While the negative term is due to the volume formation of a crystalline 

phase, ∆𝐺𝑣, which corresponds to the free energy difference between liquid (𝐺𝑙) and crystal (𝐺𝑐) per unit 

volume ∆𝐺𝑣 =
𝐺𝑙−𝐺𝑐

𝑉𝑚
, where 𝑉𝑚 is the molar volume of the crystal phase. Since the crystalline phase below 

the melting temperature is the most stable phase, the volume contribution is negative (∆𝐺𝑣 > 0) and it 

stabilizes the embryo formed. The nucleation free energies and the three contributions are shown as a 

function of the nucleus dimension in figure 2.1. 

 

FIG. 2.1. Variation of the work of formation, 𝑊, and its surface, strain, and volume components as a 

function of the nuclei size, 𝑟. 

The nucleation free energy has a maximum in the position of the critical radius, 𝑟𝑐. Therefore, if the embryo 

formed has dimension lower than the critical size, it dissolves back to liquid, because the surface and strain 

terms are predominant over the volume term, while if the dimensions are bigger than 𝑟𝑐, the nucleus 

becomes energetically stable and may grow to minimize the system energy. 
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The strain, 𝜀, is usually neglected because nucleation takes place in a liquid that can easily relax to reduce 

the stresses while the nucleus is forming. The formula can be rewritten as: 

𝑊(𝑟) = −
4

3
𝜋𝑟3∆𝐺𝑣 + 4𝜋𝑟2𝛾𝑠𝑙 . (2.2) 

The maximum of the nucleation free energy, ∆𝐺∗ or 𝑊∗, is the critical work of formation of a critical cluster 

with radius 𝑟𝑐 and corresponds to the thermodynamic barrier for the nucleation process. It can be determined 

imposing 𝜕𝑊 𝜕𝑟⁄ = 0, obtaining: 

𝑟∗ =
2𝛾𝑠𝑙

∆𝐺𝑣
 (2.3) 

𝑊∗ =
16

3
𝜋

𝛾
𝑠𝑙
3

∆𝐺𝑣
2

 (2.4) 

The ∆𝐺𝑣 can be determined from equation 2.5: 

∆𝐺𝑣𝑉𝑚 = ∆𝐻𝑚 (
𝑇𝑚 − 𝑇

𝑇𝑚
) − ∫ ∆𝐶𝑝(𝑇′)𝑑𝑇′

𝑇𝑚

𝑇

+ 𝑇 ∫
∆𝐶𝑝(𝑇′)

𝑇′
𝑑𝑇′

𝑇𝑚

𝑇

 (2.5) 

Where ∆𝐻𝑚 and 𝑇𝑚 are respectively the molar enthalpy of fusion and the melting temperature, and ∆𝐶𝑝 =

𝐶𝑝
𝑙 − 𝐶𝑝

𝑐 is the difference between the thermal capacity of the liquid and the crystal at constant pressure. 

However, the ∆𝐺𝑣 is usually calculated using the Turnbull approximation (76), assuming ∆𝐶𝑝 = 0, 

described by equation 2.6: 

∆𝐺𝑣 =
∆𝐻𝑚

𝑉𝑚
(

𝑇𝑚 − 𝑇

𝑇𝑚
) (2.6) 

The nucleation free energy is the thermodynamic contribution to the steady-state nucleation rate, 𝐼𝑠𝑡, as 

predicted by CNT. 𝐼𝑠𝑡 corresponds to the number of formed nuclei per time unit at a given temperature: 

𝐼𝑠𝑡 = 𝐼0 𝑒𝑥𝑝 (−
𝑊∗ + ∆𝐺𝐷

𝑘𝐵𝑇
) , 𝐼0 = 2𝑁1

𝑘𝐵𝑇

ℎ
(

𝑎2𝛾𝑠𝑙

𝑘𝐵𝑇
)

1
2

 (2.7) 

Where 𝑘𝐵 is the Boltzmann constant, 𝐼0 is a pre-exponential factor, with 𝑁1 the number of atoms in the unit 

volume of 𝑎 dimension, and ℎ is the Planck constant. ∆𝐺𝐷 is the activation free energy of the diffusive 

process, that describes the transfer of a species through the melt/liquid surface and represents the kinetic 

barrier of nucleation, thus it is usually difficult to estimate. 

The ∆𝐺𝐷 is related to the diffusion coefficient, 𝐷, which can, for reasons of simplicity, be approximated to 

a transport property easily measurable, the viscosity, 𝜂, by using the Stokes-Einstein relation (77): 

 𝑒𝑥𝑝 (−
∆𝐺𝐷

𝑘𝐵𝑇
) ∝ 𝐷 =

𝑘𝐵𝑇

3𝜋𝜆𝜂
 (2.8) 
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With 𝜆 the jump distance, ~ twice the ionic radius. With this approximation equation 2.7 can be rewritten 

as: 

𝐼𝑠𝑡 = 𝐼0  
𝑘𝐵𝑇

3𝜋𝜆𝜂
 𝑒𝑥𝑝 (−

𝑊∗

𝑘𝐵𝑇
) (2.9) 

In this formulation only a few parameters must be known to calculate the nucleation rate of a certain system: 

the viscosity, which is easy to obtain since it is a macroscopic property, and 𝑊∗, where ∆𝐺𝑣 is easily 

extracted from experimental values of melting enthalpy, while 𝛾𝑠𝑙 is the most complex term. The 

latter can be determined by a fitting procedure of the experimental 𝐼𝑠𝑡 at different temperatures, 

combining equation 2.9 with equation 2.4 obtaining: 

𝑙𝑜𝑔
𝜂

𝑇
= −

16𝜋𝛾𝑠𝑙
3

3𝑘𝐵

1

∆𝐺𝑣
2𝑇

+ 𝑙𝑜𝑔
𝐼0

𝐼

𝑘𝐵

3𝜋𝜆
(2.10) 

If the CNT equation is correct, it is possible to obtain a linear trend from the log
𝜂

𝑇
 against 

1

∆𝐺𝑣
2𝑇

 and extract 

𝛾𝑠𝑙 from the slope (78). 

The nucleation rate is affected by the temperature, for the CNT we must analyze how both the 

thermodynamic and kinetic terms are affected. With a decrease of temperature, the thermodynamic 

barrier decreases, on the opposite side the kinetic inhibition increases, because the system becomes 

more viscous. Therefore, the nucleation rate has a maximum, 𝐼𝑚𝑎𝑥, at a temperature 𝑇𝑚𝑎𝑥 where 

the two contributions are balanced. CNT reproduces well the temperature dependence of the 

nucleation rate, even though it fails in the prediction of the magnitude of 𝐼𝑠𝑡, with calculated values 

several orders of magnitude lower than the experimental result (79–81). 

2.1.2. Problematics of the CNT in homogeneous nucleation 

A first explanation of the discrepancy between experiments and CNT results is the formation of metastable 

phases that act as precursors of the energetically stable phase. If the metastable phase forms it can change 

the mechanism of nucleation, therefore the CNT is not able to explain this behavior. On the other hand, if 

the metastable phases have a “short life”, as in the case of lithium disilicate as reported in several studies 

(see paragraph 1.4), and dissolve back to liquid they do not interfere with the kinetic of nucleation of the 

main crystalline phase (61). 

We have seen that the contribution of the strain, 𝜀, has been neglected in the calculation of the nucleation 

free energy, however, this term can be considered and the critical work of formation of a critical cluster 

becomes: 

𝑊∗ =
16

3
𝜋

𝛾𝑠𝑙
3

(∆𝐺𝑣 − 𝜀)2
(2.11) 
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The inclusion of this term in CNT has been tested and observed that this is not the cause of the failure of 

the theory (82). 

The capillarity approximation is also a limitation to the derivation of CNT, in fact it is assumed that the 

interfacial energy 𝛾𝑠𝑙 is independent from the nuclei dimensions and the temperature. The temperature 

dependence of the surface energy has been investigated by fitting the surface energy as a function of the 

temperature using experimental nucleation rates. The interfacial energy presents a linear trend above the 

temperature at which the nucleation rate is maximum 𝑇𝑚𝑎𝑥, 𝛾𝑠𝑙(𝑇) = 𝑎 + 𝑏 𝑇, while below 𝑇𝑚𝑎𝑥, 𝛾𝑠𝑙(𝑇) 

is no longer linear and the reason is still unclear (72). However, the fitted 𝛾𝑠𝑙(𝑇) is calculated using 

experimental nucleation rates that depend on the critical nuclei, which indeed depends on the temperature. 

Therefore, the temperature and size of crystal dependency of 𝛾𝑠𝑙 must be separated in two factors: 

dependency on a planar surface at the temperature 𝑇, and on the dimension of the crystal. These two 

contributions are decoupled in the formulation of Tolman (83): 

𝛾𝑠𝑙(𝑟) =
𝛾0

1 +
2𝛿
𝑟

(2.12)
 

Where 𝛾0 is surface energy for the planar surface and 𝛿 is the Tolman parameter, which is the width of the 

interfacial region between the coexistence phases. When the fitting of the nucleation rate is done using the 

relation in equation 2.10, it is possible to recover the agreement between the experimental and calculated 

magnitude of the nucleation rate, however, the temperature dependency below 𝑇𝑚𝑎𝑥 is not reproduced (84). 

Recently, Zanotto et al. (85,86) have reconsidered the alleged failure of the CNT below 𝑇𝑚𝑎𝑥, proposing 

another possible issue, which is the experimental time to investigate the nucleation process. In fact, if the 

steady-state regime has not been reached it will inevitably introduce error in the measurement of the 

nucleation rate. Therefore, they measured the nucleation rate applying a steady-state criterion and they 

found a good agreement between experimental results and CNT, in most of investigated cases, proving that 

the break at 𝑇𝑚𝑎𝑥 is not a common feature of all glass-formers. 

2.1.3. Heterogeneous nucleation 

The theory to describe heterogeneous nucleation is more complex than the homogeneous case, for this 

reason other approximations are assumed. Firstly, it is assumed that the surface of the heterogeneity is large 

compared to the size of the nucleating particle, moreover the total interfacial energy is isotropic and thus 

minimized if the transformation product has the shape of a spherical cap on the heterogeneity surface. The 

minimization of the surface energy contribution reduces the thermodynamic barrier of the heterogeneous 

mechanism, which is usually lower than the barrier for the bulk formation of a crystalline nucleus. 

The thermodynamic barrier of nucleation over a planar surface, 𝑊ℎ𝑒𝑡
∗ , is described by equation 2.13. 

𝑊ℎ𝑒𝑡
∗ = 𝑊∗𝜙(𝜃), 𝜙(𝜃) =

1

2
−

3

4
𝑐𝑜𝑠 𝜃 +

1

4
𝑐𝑜𝑠3 𝜃 (2.13) 
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Where 𝜙(𝜃) is a function ranging between 0 and 1 that depends on the contact angle 𝜃. 

The nucleation rate for the heterogeneous nucleation becomes: 

𝐼𝑠𝑡
ℎ𝑒𝑡 = 𝑁𝑠  

𝑘𝐵𝑇

ℎ
 𝑒𝑥𝑝 (−

𝑊∗𝜙(𝜃) + ∆𝐺𝐷

𝑘𝐵𝑇
) (2.14) 

Where 𝑁𝑠 substitutes 𝑁1 in the pre-exponential factor as the number of structural units in contact with the 

surface per volume unit. The surfaces can be represented by dispersed solid particles acting as nucleating 

sites. The availability of these sites influences the nucleation rate, which becomes constant when the 

saturation of the sites is approached. 

The measurement of the heterogeneous nucleation rate is experimentally tricky because the small number 

of sites is usually saturated before the crystalline nuclei become visible thanks to the high activity of 

nucleation, therefore 𝐼𝑠𝑡
ℎ𝑒𝑡 must be calculated at saturation level (87). 

2.1.4. Homogeneous vs heterogeneous 

We have discussed that heterogeneous nucleation is in general energetically favored over homogeneous 

nucleation, however, the latter is easier to control, forming a more uniform distribution of crystals in the 

liquid matrix, thus preferred from an applicative point of view. Since there are several cases of glasses that 

present homogeneous nucleation, it is interesting and fundamental to understand in which cases and the 

reasons why this mechanism can be preferred. 

In literature (88–90), it was proposed the correlation between the mechanism of crystallization and the 

reduced glass transition temperature 𝑇𝑔𝑟 = 𝑇𝑔 𝑇𝑚⁄ . When 𝑇𝑔𝑟 increases, the maximum nucleation rate 𝐼𝑚𝑎𝑥 

decreases until the system does not exhibit homogeneous nucleation on laboratory time scales, the threshold 

value is about 𝑇𝑔𝑟 ≅ 0.58 − 0.60. If a glass has 𝑇𝑔𝑟 < 0.6 it presents homogeneous nucleation and 𝑇𝑚𝑎𝑥 

can be both measured and calculated by the CNT at a temperature higher than the 𝑇𝑔, whereas if 𝑇𝑔𝑟 > 0.6 

the experimental 𝑇𝑚𝑎𝑥 cannot be measured and the expected value from CNT is lower than the 𝑇𝑔, resulting 

in a preference for the heterogenous mechanism. A low 𝑇𝑔𝑟 suggests a larger range of temperature where 

the liquid is undercooled before crystallizing, therefore a high undercooling represents a high 

thermodynamic driving force for internal nucleation. 

In the last decades, researchers have reported the emergence of a connection between structural features of 

the glass and the mechanism of crystallization, in particular highlighting that structural similarities between 

glass and crystal, especially at short and medium range, indicate a tendency to homogeneous nucleation 

(8). Let’s consider two extreme cases: if the structure of the liquid is similar to the crystalline, the necessary 

structural reorganization will be limited, with a low kinetic barrier and low interfacial energy 𝛾𝑠𝑙, with 

instead a reduce in the volume contribution ∆𝐺𝑣. However, the nucleation rate depends on the 

thermodynamic barrier 𝑊∗, which in turn depend on the ratio 𝛾𝑠𝑙
3 ∆𝐺𝑣

2⁄  as seen in equation 2.4, hence the 



 2. Nucleation theories 

22 

 

contribute of 𝛾𝑠𝑙 is predominant and 𝐼𝑠𝑡 increases. In the opposite case, if the two structures are dissimilar, 

there will be a higher volume contribution, but the structural reorganization needed will be consistent, as 

well as the surface energy, resulting in low homogeneous nucleation rates. 

2.2. Other theories 

As presented in the previous paragraphs, in CNT the energy barrier for nucleation results from a change in 

size rather than composition and structure. This simplification limits the applicability to only simple 

crystallization, and it might be a reason why CNT severely underestimates the nucleation rates in silicate 

systems (69,91). 

2.2.1. Generalized Gibbs approach (GGA) 

The Generalized Gibbs approach (GGA) (92,93) is based on experimental observations showing that the 

properties and structure of the nuclei can deviate from those of the macroscopic phases (52,59,94,95). This 

theory predicts the possibility of reaching the final stable state through a discrete series of metastable phases 

for which the energetic barrier to be overcome is small, as proposed with Ostwald’s rule of stages (70,96). 

GGA is based on the CNT but properly considering a change in composition during the nucleation process, 

as shown in figure 2.2. 

 

FIG. 2.2. Schematic representation of nucleation considering different metastable intermediate phases (A, 

B, C) before reaching the stable crystal phase (97). 

Critical parameters (𝑟𝑐 and 𝑊∗) are similar to those obtained from CNT, but considering the composition 

𝛼 of the nucleus: 

𝑟𝑐 = −
2𝛾𝑠𝑙

𝑐𝛼∆𝐺𝑣
, 𝑊∗ =

16𝜋𝛾𝑠𝑙
3

3(𝑐𝛼∆𝐺𝑣)2
(2.15) 
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𝑐𝛼, is the volume concentration of the new phase, therefore, 𝑟c is defined not only in the maximum of 𝑊, 

but also as the minimum value of 𝑊∗ among all allowed compositions. In GGA the nucleus size changes 

during the nucleation process, meanwhile the composition changes from the initial state until, once the 

critical dimensions are reached, structure and composition evolve to those of the macroscopic crystal, and 

eventually grow. The energetic barrier 𝑊∗ in GGA is lower than in CNT because the composition changes 

reduce the interfacial energy (69). 

2.2.2. Two-step model 

During the crystallization of a solid from a liquid phase, two order parameters must be considered to 

distinguish the two phases: density and structure. As explained, CNT considers that the two parameters 

evolve simultaneously, thus the germ of crystallization has the density and atomic organization of the stable 

crystal. If the two parameters do not evolve, contemporary CNT does not provide a correct description of 

the nucleation process. 

 

FIG. 2.3. Energetic barriers in the two step models compared to CNT model (98). 

Based on experimental observation, the two-steps model (74,98,99), assumes a temporal separation 

between the density and structural fluctuations. First, local disordered regions with composition and density 

different, usually higher, from those of the initial liquid phase are formed, and then a structural 

reorganization inside this region leads to the appearance of the crystals, as shown in figure 2.3. As in the 

case of GGA, the two energetic barriers to overcome in the step model are lower than the single energy 

barrier from CNT.  



 

 

Chapter 3. Computational techniques: 

MD and MetaD 

This chapter offers a general overview of the methodologies and the simulation techniques applied in the 

present thesis. Each property of a system can be analyzed and investigated by employing the correct 

methodology. 

Molecular dynamics is a technique based on classical mechanics that operates at atomistic level, thus often 

applied to condensed phase systems (solid or liquid state), with the aim of extracting bulk properties of a 

system starting from an atomistic basis. It is the most efficient technique for studying the properties of non-

crystalline materials, such as glasses thanks to the accessible length scale that can be used. The theory of 

molecular dynamics is briefly introduced with a description of the force field employed in the study of the 

lithium disilicate system. 

The second part of this chapter describes metadynamics which is an enhanced sampling technique that is a 

well-known technique used to study rare events, such as crystallization. Metadynamics is based on altering 

the stability of the phases visited during the molecular dynamics simulation, thus it is not a stand-alone 

technique, but it is extremely powerful to understand events that are not accessible to the molecular 

dynamics solely. The theory of metadynamics is presented, with descriptions of algorithms and collective 

variables used to investigate the crystallization of lithium disilicate. 

3.1. Molecular Dynamics simulations 

Molecular Dynamics (100,101), MD, is a technique based on classical mechanics used to study structural, 

dynamic and thermodynamic features of a system. The system is generally represented by point particles 

with a mass and a charge interacting through bonding and non-bonding terms. 

MD generates points correlated in the time and in the phase space, propagating an initial set of coordinates 

and velocities using Newton’s second law of motion. The initial coordinates of the particles in an MD 

simulation can be selected from x-ray diffraction studies, especially when dealing with crystals, while the 

velocities are assigned in accordance with the target temperature through a Maxwell-Boltzmann distribution 

(102). An interatomic potential (𝑈) must be defined to describe the interaction between the particles, and 
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the gradient allows the calculation of the forces acting on each particle of the system (𝐹𝑖). The system is 

then allowed to evolve in time by solving the equation of motion (eq. 3.1). 

𝐹𝑖(𝑡) =
−𝑑𝑈(𝑡)

𝑑𝑟𝑖
=

𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
𝑚𝑖 (3.1) 

The force 𝐹𝑖 acting on the 𝑖-th atom with mass 𝑚𝑖 generates an acceleration on the atom causing the change 

of the velocity (𝑣𝑖) and position (𝑟𝑖) of the particle: 

𝑑𝑣𝑖(𝑡)

𝑑𝑡
=

1

𝑚𝑖
𝐹𝑖 (3.2) 

𝑑𝑟𝑖(𝑡)

𝑑𝑡
= 𝑣𝑖 (3.3) 

Equations 3.2 and 3.3 are the analytical expressions for Newton’s equation, while we need discrete 

equations for MD applications (103). There are several algorithms that can approximate the solution and 

they are implemented in MD software. The algorithm allows the simulation of the evolution of a system 

within small temporal steps of finite size called time-step (∆𝑡). The most common algorithm, the Verlet 

leapfrog (104,105), requires values of the position, 𝑟𝑖(𝑡), and forces, 𝐹𝑖(𝑡), at a time 𝑡 while velocities are 

half a step behind, 𝑣𝑖. Velocities and positions are alternatively evaluated each time-step with the following 

formula: 

𝑣𝑖 (𝑡 +
1

2
∆𝑡) ←  𝑣𝑖 (𝑡 −

1

2
∆𝑡) + ∆𝑡 

𝐹𝑖(𝑡)

𝑚𝑖

(3.4) 

𝑟𝑖(𝑡 + ∆𝑡) ←  𝑟𝑖(𝑡) + ∆𝑡 𝑣𝑖 (𝑡 +
1

2
∆𝑡) (3.5) 

The velocity at the time 𝑡 is evaluated from the average of the velocities calculated half a time-step either 

side of time 𝑡. From the evaluation of the instantaneous position and velocities, several properties can be 

calculated, kinetic energy, potential energy, temperature, etc. If these properties have large fluctuations or 

drifts, the time-step is probably too large. Therefore, the choice of the time-step is indeed a key factor in an 

MD simulation. 

In the simulation of realistic systems in condensed phase, the dimension of the simulation box should be 

extremely large to reproduce the bulk properties excluding the influences of the surface. However, the 

number of atoms in macroscopic structures is out of the range of possibility of MD. To reduce the 

computational effort, the simulation box can be represented as a three-dimensional cell with virtual walls 

that define a unit of repetition in the three-dimensional space, called periodic cell. This is the basis of the 

periodic boundary conditions (PBC) (106). The periodic cell is assumed to be surrounded by replicated 

images of the main periodic cell and each image is an exact replica of the others, meaning that the contents 

and the dynamics of all images are the same. Only the dynamics of the main periodic cell is computed. The 

total number of atoms is conserved, since if a particle leaves the box from one side of the simulation box, 

its image-particle will enter from the opposite side of the box, and the motion of the atoms is described in 

an almost infinite system, removing the surface effects. 
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The main factor to consider with PBC is to prevent particles from interacting with their images, which 

would introduce long-range symmetry and artifacts in the simulation. A cut-off radius must be defined as 

a maximum distance for the evaluation of the interatomic potential, which is not longer than half the length 

of the shortest side of the simulation box. 

3.1.1. The potential energy 

The total internal energy of a model is calculated as the summation of the kinetic and the potential energies. 

The kinetic energy depends on the velocities of each particle of the system while the potential energy is 

described by a function that depends on the coordinates of the N particles in the model, 𝑈(𝑟1, … 𝑟𝑁). The 

potential function, or force field, uses implicitly the Born-Oppenheimer approximation (107), thus, there is 

no explicit inclusion of the electronic structure of the system: such effects are subsumed into the potential 

function. The potential function is commonly expanded as follows: 

𝑈(𝑟1, … 𝑟𝑁) = ∑ 𝜑𝑖(𝑟𝑖)

𝑁

𝑖=1

+ ∑ ∑ 𝜑𝑖𝑗(𝑟𝑖, 𝑟𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ ∑ ∑ ∑ 𝜑𝑖𝑗𝑘(𝑟𝑖, 𝑟𝑗, 𝑟𝑘)

𝑁

𝑘=𝑗+1

𝑁−1

𝑗=𝑖+1

𝑁−2

𝑖=1

+. . . (3.6) 

Where 𝜑𝑖 is the potential energy acting on atom 𝑖 due to an external field, if present, 𝜑𝑖𝑗 is the two-body 

energy which depends only on the positions of pairs of atoms 𝑖 and 𝑗, 𝜑𝑖𝑗𝑘 are the three-body terms 

depending on the positions of atoms 𝑖, 𝑗 and 𝑘. The expansion extends to four-body terms which are used 

in inorganic materials, especially for modeling planar-trigonal anions, such as carbonates or borates, not 

subject of this thesis. 

In many cases, especially for oxides and silicates, it is common to approximate 𝑈 by including only the 

two-body components (108–113). Energy is assumed to depend on the inter-ion distance 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗| and 

may be usefully decomposed into a long-range coulombic term and a short-range term: 

𝜑𝑖𝑗(𝑟𝑖𝑗) =
𝑧𝑖𝑧𝑗𝑒2

𝑟𝑖𝑗
+ 𝑉𝑖𝑗(𝑟𝑖𝑗) (3.7) 

where 𝑧𝑖 and 𝑧𝑗 are the ionic charges and 𝑉𝑖𝑗(𝑟𝑖𝑗) is the short-range interaction which can be attributed to 

the repulsion between electron charge clouds, van der Waals attraction, electron polarizability. 

3.1.2. Description of employed force field 

In most cases, the force fields available in literature for the study of oxide glasses are composed only by 

dispersive-repulsion and van der Waals attraction (113). In this thesis we have used a modification of the 

potential developed in 2006 by Pedone et al. (114), called PMMCS, which is based on a rigid ionic model, 

with partial charges to handle the partial covalency. It is composed of a short-range Morse function with a 

repulsive contribution (𝐵𝑖𝑗 𝑟12⁄ ) necessary to model the interactions at high temperature and pressure; a 

repulsive part of the Buckingham potential for the Li-Li interactions The analytical form of the potential 

function is 
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𝑈𝑖𝑗(𝑟𝑖𝑗) =
𝑧𝑖𝑧𝑗𝑒2

𝑟𝑖𝑗
+ 𝐷𝑖𝑗 ({1 − 𝑒𝑥𝑝[−𝑎𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑖𝑗

0)]}
2

− 1) +
𝐵𝑖𝑗

𝑟𝑖𝑗
12 + 𝐴𝑖𝑗𝑒𝑥𝑝 (−

𝑟𝑖𝑗

𝜌𝑖𝑗
) (3.8) 

where 𝐷𝑖𝑗, 𝑎𝑖𝑗 and 𝑟𝑖𝑗
0  are pair parameters of atoms 𝑖 and 𝑗 of the Morse function, 𝐵𝑖𝑗 is the repulsive 

contribution constant for the couple 𝑖 − 𝑗, 𝐴𝑖𝑗 and 𝜌𝑖𝑗 are pair parameters for the repulsive part of the 

Buckingham potential. The original version of the PMMCS was parameterized using structural parameters 

and elastic constants of several crystalline oxide, silicates and aluminosilicates and it was composed only 

of pairwise interactions with the Morse and the repulsive part (𝑟−12) of equation 3.8. However, since it is 

known that the inclusion of only pairwise interactions leads to structure with large overestimation of the 

inter-tetrahedral angles T-O-T (115–117), we have included a three-body term to better reproduce the Si-

O-Si, Si-O-P and P-O-P inter-tetrahedral angles. The screened harmonic exponential decaying three-body 

function has been used: 

𝑈(𝑟𝑖𝑗 , 𝑟𝑖𝑘 , 𝜃𝑖𝑗𝑘) =
𝑘ijk

2
(𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘

0 )
2

exp (− (
rij

ρ1
+

ri𝑘

ρ2
)) (3.9) 

Where 𝑘𝑖𝑗𝑘, 𝜃𝑖𝑗𝑘
0 , 𝜌1 and 𝜌2 are parameters connected to the force constant, reference angle of the 𝑖 − 𝑗 − 𝑘 

triplet and the decay function along the 𝑖 − 𝑗 and 𝑖 − 𝑘 bonds, respectively. 

The three-body term parameters have been fitted using as training set the PES of the (HO)3Si-O-Si-(OH)3, 

(HO)3Si-O-PO-(OH)2 and (HO)2-OP-O-PO-(OH)2 dimers computed as a function of the inter-tetrahedral 

angles at the PBE0/6-311+G(d,p) level using the Gaussian09 code (118). 

The 𝐴𝑖𝑗 and 𝜌𝑖𝑗 parameters for the Li-Li interactions have been fitted using the structure of the Li2Si2O5 

and Li2SiO3 crystal. All parameters are reported in table 3.1. 

TABLE 3.1. Charges and parameters for modified PMMCS potential. 

MORSE 

Pairs Dij (𝐞𝐕) aij (Å-2) rij
0 (Å) Bij (eV Å12) 

Si
2.4

-O-1.2 0.340554 2.006700 2.100000 1.0 

Li
0.6

-O-1.2 0.001114 3.429500 2.681360 2.0 

P3.0-O-1.2 0.831326 2.585830 1.770790 1.0 

O-1.2-O-1.2 0.042395 1.379316 3.618701 100.0 

BUCKINGHAM 

Pairs Aij (𝐞𝐕) ρij (Å-2)   
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Li
0.6

-Li
0.6

 176990.1 0.1736   

SCREENED HARMONIC THREE-BODY 

Angle 𝒌𝒊𝒋𝒌 (eV rad-2) 𝜽ijk
0  (𝐝𝐞𝐠) 𝝆𝟏 (Å) 𝝆𝟐 (Å) 

Si-O-Si 16.9 109.47 1.0 1.0 

Si-O-P 32.4 75.00 1.0 1.0 

P-O-P 34.4 81.00 1.0 1.0 

In principle the interaction potentials have infinite range, because the contribution of the interatomic 

potential has a non-zero value no matter the separation between atoms. However, the value of the potential 

becomes negligible once the separation gets beyond a certain distance, thus a cut-off condition for any pair 

is usually applied. By calculating the interaction within the cut-off distance only, it is assumed that the 

interaction is zero with farther distances. The entity and the chosen scheme of the cut-off is important 

because it can create discontinuities in the calculated forces, which can give rise to artifacts. This parameter 

is usually optimized during the parametrization of the force-field. In PMMCS force-field the cut-off is 

different in the calculation of long-range coulombic interactions and short-range function, whose magnitude 

decreases faster, and values of 12 Å and 5.5 Å are the respective cut-off distances. Especially for the long-

range cut-off should be considered the limitation imposed by the PBC, so the cut-off must agree with the 

box dimension, as discussed above. 

3.1.3. Coulombic interactions 

The classical approach to evaluate Coulomb energies and related forces in a simulation with periodic 

boundary conditions (PBC) is the Ewald summation method (119,120), where the sum over all Coulomb 

pair interactions is decomposed into a real space and a reciprocal space part: 

𝑈𝑒𝑙𝑒𝑐,𝐸𝑤𝑎𝑙𝑑 =
1

2
∑ ∑ [𝑞𝑖𝑞𝑗 (∑

erfc(𝛼|𝑟𝑖𝑗 + 𝑛|)

|𝑟𝑖𝑗 + 𝑛|
+

1

𝜋𝐿3
∑

4𝜋2

|𝑘|2
exp (−

𝜋2|𝑘|2

𝛼2 ) cos(𝑘 ∙ 𝑟𝑖𝑗)

𝑘≠0𝑛

)]

𝑁

𝑗=1

𝑁

𝑖=1

−
𝛼

𝜋1 2⁄
∑ 𝑞𝑖

2

𝑁

𝑖=1

(3.10)

 

𝑁 is the number of electrostatic particles, the sum over 𝑛 is a sum over all periodic box replicas with integer 

coordinates 𝑛 = (𝑙, 𝑚, 𝑛), and the prime indicates 𝑖 = 𝑗 are neglected for 𝑛 = 0. 𝐿 is the cell length, 𝛼 is 

the damping or convergence parameter with units of Å-1, 𝑘 are the reciprocal vectors and are equal to 

2𝜋 𝑛 𝐿2⁄  and 𝑒𝑟𝑓𝑐 is the complementary error function. 
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The first two terms are convergent summations, the first one is in the real space (shorter range), the second 

in the reciprocal space (longer range). The last term is a particle self-term that is constant. The convergence 

parameter 𝛼 plays an important role in balancing the computational cost between the two terms of the 

summation. Usually, this method involves utilization of the fast Fourier transform (for the evaluation of the 

second term) obtaining a not negligible computational effort. 

An approximation of Ewald is usually applied, the Smoothed Particle Mesh Ewald (SPME) (121), which 

has the main difference in the treatment of reciprocal terms. By means of an interpolation procedure 

involving (complex) B-splines, the sum in reciprocal space is represented on a three-dimensional 

rectangular grid. In this form the Fast Fourier Transform (FFT) may be used to perform the primary 

mathematical operation, which is a 3D convolution. The efficiency of these procedures greatly reduces the 

cost of the reciprocal space sum when the range of 𝑘 vectors are large. 

However, if the assumption that long range Coulomb interactions (the reciprocal term in eq 3.10) in ionic 

or condensed systems gives a small contribution to the total potential, due to screening effect, it should be 

possible to neglect that term (122). A cutoff radius (𝑅𝑐) must be defined which allows one to include all 

the interactions needed to have a good description of the system. Usually, a cutoff radius of about 10 Å is 

necessary to obtain a good agreement with the Ewald method (123) then it is possible to eliminate the 

reciprocal part and assume zero interactions at higher distance than 𝑅𝑐. This is the Wolf summation method, 

which, for a good description of the system, needs a correction that considers the neutralization of the 

charge contained within the cutoff radius and the continuity of energy and force at 𝑅𝑐. The first problem 

can be solved by placing the opposite charge on the cutoff radius surface, that, it is important to underline, 

in a glass should be close to neutrality. For the continuity, from potential formula and its derivative which 

can be found in the reference (123), the Wolf potential, or damped shifted force model, is 

𝑈𝑒𝑙𝑒𝑐,𝑊𝑜𝑙𝑓(𝑟) = 𝑞𝑖𝑞𝑗 [
erfc(𝛼𝑟)

𝑟
−

erfc(𝛼𝑅𝑐)

𝑅𝑐
+ (

erfc(𝛼𝑅𝑐)

𝑅𝑐
2 +

2𝛼

𝜋1 2⁄

𝑒−𝛼2𝑅𝑐
2

𝑅𝑐
) (𝑟 − 𝑅𝑐)] , 𝑟 ≤ 𝑅𝑐 (3.11) 

All terms described are in the real space with a correction which depends on 𝑅𝑐. This approximation is a 

computationally efficient alternative to the Ewald summation for typical modern molecular simulations. 

3.1.4. Statistical ensembles 

In MD simulations, the Newtonian dynamics that describes the evolution of a system maintaining constant 

energy, volume and particle numbers is used, sampling the microcanonical ensemble (NVE). However, this 

situation is unrealistic since the conditions do not correspond to the experimental one, where the 

temperature is constant, and the energy and the volume can usually fluctuate. The two most common 

alternative ensembles are the NVT and NPT ensembles. 
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In simulations performed in the canonical NVT ensemble (124), the system is combined with a thermostat 

that gradually adds and subtracts energy to the system to maintain the temperature at the desired reference 

value. The kinetic energy is in fact modified by scaling the atomic velocities with an adequate frequency. 

When the isobaric-isothermal NPT ensemble is invoked (125), both temperature and pressure are 

maintained constant. In addition to the thermostat, a barostat is coupled to the system to control the pressure. 

The barostat adjusts the volume of the system, scaling all atomic coordinates. 

Another statistical-mechanics ensemble employed is the isoenthalpic-isobaric NPH one which maintains 

constant enthalpy and pressure. It is the analogue of the microcanonical ensemble constant-volume, 

constant energy, in which the size of the unit cell is allowed to vary. Enthalpy remains constant when the 

pressure is maintained fixed without any temperature control. 

3.1.5. Ergodic hypothesis and calculation of average properties 

The resolution obtained with classical MD cannot find counterevidence with experimental data, because no 

experiment can provide information about position and velocities in a certain moment for each atom of a 

system. An experimental measure is a temporal average of the property for macroscopic samples, made of 

an Avogadro number of atoms. Therefore, we need to extract average information from the simulation to 

compare them with experiments. 

If in an MD simulation the phase space is properly sampled, the ergodic hypothesis is valid. An ensemble 

average (over many copies of the system) can be replaced by a time average for a single copy of the system. 

This is valid for sufficiently long averaging time 𝑡, where the time average does not depend on the initial 

conditions (126). 

The experimental property 𝐴𝑜𝑏𝑠, measured as the average over a large number of atoms, close to Avogadro 

number, can be represented as the temporal average of the property 𝐴(𝛤(𝑡)) starting from a point of the 

phase space accumulated during the trajectory. 

𝐴𝑜𝑏𝑠 = 〈𝐴(𝛤(𝑡))〉𝑡𝑖𝑚𝑒 = 𝑙𝑖𝑚
𝑡𝑜𝑏𝑠→∞

1

𝑡𝑜𝑏𝑠
∫ 𝐴(𝛤(𝑡))𝑑𝑡

𝑡𝑜𝑏𝑠

0

(3.12) 

Obviously, it is not possible to extend the integration in an infinite time, therefore the average is calculated 

during a sufficiently long time 𝑡𝑜𝑏𝑠 to satisfy equation 3.12. In MD simulation the motion equations are 

solved over a finite number of time-steps 𝜏𝑜𝑏𝑠, and equation 3.12 can be written in terms of this variable. 

𝐴𝑜𝑏𝑠 = 〈𝐴(𝛤(𝑡))〉𝑡𝑖𝑚𝑒 =
1

𝜏𝑜𝑏𝑠
∑ 𝐴(𝛤(𝑡))

𝜏𝑜𝑏𝑠

𝜏=1

(3.13) 
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3.2. Metadynamics 

Molecular dynamics (MD) simulations are limited to the study of events occurring at a short timescale (of 

the order of few ms). Therefore, MD simulations can provide information related to the structure but are 

not effective to study the complete rare event, such as crystallization in glass-forming liquids, because 

crystals form and grow slowly over time. Brute-force MD simulations are applicable to study nucleation 

only for model Lennard-Jones liquids, compounds, and metallic alloys in which the phase transition occurs 

with very high nucleation rates (>1035 nuclei·cm-3s-1) (76,127–129). For systems exhibiting lower 

nucleation rates due to higher viscosity, other techniques accelerating the nucleation have been developed 

and applied. These rare events need an extended timescale to be observed because the relevant systems are 

characterized by several metastable states separated by high barriers that lead to kinetic bottlenecks. The 

low possibility to cross the barriers slows down the sampling of the phase space and thus the simulation of 

the event. 

Advanced sampling methods aim to overcome the time-scale limitation of computer simulation (130). Most 

enhanced sampling techniques are based on the identification of a few important order parameters named 

collective variables (CVs). The fluctuations of these CVs are critical for the occurrence of the rare event 

thus, it is introduced a bias to sample these variables. In the last decade, enhanced sampling techniques 

have been used to explore the phase space reconstructing the free energy surface (FES) as a function of 

CVs appropriate to describe and follow crystallization. Metadynamics (MetaD) (131,132) is one of the most 

used enhanced sampling techniques. It has been applied to a wide range of systems from the nucleation of 

molecules (133,134) and compounds (135) to metals (136) and alloys (137–139). Recently, the method has 

been applied to study the crystallization of glass-forming liquids such as silica (140). 

In this section these enhanced sampling techniques will be briefly presented. Starting from Metadynamics 

to Well-Tempered Metadynamics, presenting the importance of the choice of the collective variables (CVs) 

and the techniques to evaluate the free energy surface. Finally, the temperature rescaling procedure will be 

introduced. 

3.2.1. The collective variable space 

Considering a phenomenon, it can be hard to describe it in the phase space associated with the atomic 

coordinates (𝑹). It is often possible to describe a physical/chemical process in terms of a small number of 

coarse descriptors of the system (𝒔): 

𝐬(𝑹) = (𝒔1(𝑹), 𝒔2(𝑹) … , 𝒔𝑑(𝑹)) (3.14) 

This coarse-grained descriptor is defined as collective variable (CV) which is a non-linear function of the 

atomic coordinates. The CV should be able to: a) describe all key features of the transformation we are 
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interested in, b) distinguish between the metastable states involved, c) include all slow degrees of freedom. 

Once CVs are defined, the equilibrium distribution of the CVs (𝑃(𝒔)) can be defined as well: 

𝑃(𝒔) = ∫ 𝛿[𝒔 − 𝒔(𝑹)]𝑃(𝑹)𝑑𝑹 = 〈𝛿[𝒔 − 𝒔(𝑹)]〉 (3.15) 

where 𝑃(𝑹) is the equilibrium distribution with respect to the atomic coordinates. From the distribution 

defined in equation 3.15, the free energy surface (FES) (𝐹(𝒔)) can be extracted: 

𝐹(𝒔) = −
1

𝛽
log 𝑃(𝒔) (3.16) 

where 𝛽 = 1 𝑘𝐵𝑇⁄  is the inverse thermal energy. If the choice of the CV is appropriate, the FES contains 

all relevant information about the investigated system (141,142). 

The FES is studied to understand the relative stability of the metastable phases involved. The relative free 

energy difference between two states A and B can be calculated from the integration of the probability of 

the regions associated to the states in the CV space: 

∆𝐹𝐴,𝐵 = −
1

𝛽
log

∫ 𝑑𝒔𝑒−𝛽𝐹(𝒔)
𝐴

∫ 𝑑𝒔𝑒−𝛽𝐹(𝒔)
𝐵

 (3.17) 

In an ergodic system, it is in principle possible to sample the phase space in a conventional simulation and 

accumulate the 𝑃(𝒔) simply by counting. However, since the timescale of the simulation is usually not 

sufficiently long and because of the high barriers that can be encountered, the sampling of the phase space 

is non-ergodic. The simulation will observe only the fluctuation in the region of the local equilibrium state, 

remaining stuck in one state, producing a non-realistic 𝐹(𝒔). 

3.2.2. Enhanced sampling techniques 

The sampling of the phase space can be enhanced by considering a bias potential 𝑉(𝒔(𝑹)) that depends on 

the CV value. Considering this potential, introduced as umbrella sampling the first time in 1977 (143), the 

distribution of the CV can be reformulated: 

𝑃𝑉(𝒔) = ∫ 𝛿[𝒔 − 𝒔(𝑹)]𝑃𝑉(𝑹)𝑑𝑹 =
𝑒−𝛽[𝐹(𝒔)+𝑉(𝒔)]

∫ 𝑑𝒔 𝑒−𝛽[𝐹(𝒔)+𝑉(𝒔)]
 (3.18) 

where 𝑃𝑉(𝒔) is the distribution of the biased ensemble. This potential allows a proper sampling of the phase 

space, thus knowing 𝑉(𝒔) allows us to reconstruct the FES of the system. Collecting the biased distribution 

and the bias potential, the unbiased distribution can be recovered and the 𝐹(𝒔) can be computed from the 

distribution. From the CV space, it is possible to estimate R-dependent functions 𝑂(𝑹). Knowing the 
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relation 𝑃(𝑹) ∝ 𝑃𝑉(𝑹)𝑒𝛽𝑉(𝒔(𝑹)), 𝑂(𝑹) of the unbiased ensemble is evaluated by reweighting each 

configuration obtained in the biased ensemble by the value of the acting bias: 

〈𝑂(𝑹)〉 =
〈𝑂(𝑹)𝑒𝛽𝑉(𝒔(𝑹))〉𝑉

〈𝑒𝛽𝑉(𝒔(𝑹))〉𝑉

 (3.19) 

where the right side of these equations is calculated in the biased ensemble. This equation is valid in a static 

bias regime. 

In the umbrella sampling case, the bias potential is designed to fill completely the wells of the CV phase 

space, producing an equal probability of exploring any point of the phase space. Indeed, in this case the 

𝐹(𝒔) = −𝑉(𝒔). In an unknown system, we do not know a priori the FES, thus the bias cannot be defined 

at the beginning of the simulation. How the bias potential is built is one of the main differences between 

enhanced sampling techniques. 

From the first designed, umbrella sampling (144), going through one of the most popular, metadynamics 

(MetaD) (145,146), and its evolutions (132,147–149), enhanced sampling methods are proving to be an 

essential tool to disclose the property of molecule or materials and otherwise inaccessible phenomena. 

3.2.3. From Metadynamics to Well-tempered metadynamics 

In standard MetaD simulations (145), the potential energy is built on-the-fly with a history-dependent bias 

potential 𝑉(𝒔, 𝑡), which is composed of Gaussian functions accumulated along the simulation: 

𝑉(𝒔, 𝑡) = ∑ 𝜔 exp [− ∑
(𝒔𝛼 − 𝒔𝛼(𝑡′))

2

2𝜎𝛼
2

𝑁𝐶𝑉

𝛼=1

]

𝑡′<𝑡

, 𝑡′ = 𝑘𝜏 (3.20) 

Considering 𝑁𝐶𝑉 the number of CV used for the MetaD simulation, and 𝛼 the identifier for each CV, 𝜔 is 

the height of the Gaussian centered in the visited point of the CV space, 𝒔𝛼(𝑡′), at each MetaD step, 𝑡′, with 

a width 𝜎𝛼. Each MetaD step is 𝑘-times the Gaussian deposition time, 𝜏. Therefore, at each deposition time 

a new Gaussian is added to the potential, and the final potential, at time 𝑡 is the sum of all accumulated 

Gaussians in the CV phase space. The free energy landscape along the selected set of CVs is evaluated by 

considering that at infinite time the FES is the inverse of the bias potential except for a constant value 

𝐶:

𝑉(𝒔, 𝑡 → ∞) = −𝐹(𝒔) + 𝐶 (3.21) 

MetaD does not require a priori knowledge of the landscape, but on the other hand the convergence is in 

theory reached at infinite time and very long simulation time or several runs are required. Moreover, 

overfilling is a disadvantage and a waste of computational resources. Several techniques have been 

developed to improve MetaD and the Well-Tempered case is an effective example. 



 3. Computational techniques: MD and MetaD 

34 

 

In Well-Tempered Metadynamics (WTMetaD) (147), the height of the Gaussian added at each timestep is 

scaled down by a factor, which depends on the bias already accumulated in the explored point and a bias 

factor, 𝛾: 

𝑉(𝒔, 𝑡) = ∑ 𝜔 exp [−
1

𝛾 − 1
𝛽𝑉(𝒔(𝑡′), 𝑡′)]  exp [− ∑

(𝒔𝛼 − 𝒔𝛼(𝑡′))
2

2𝜎𝛼
2

𝑁𝐶𝑉

𝛼=1

]

𝑡′<𝑡

, 𝑡′ = 𝑘𝜏 (3.22) 

where 𝛽 is the inverse thermal energy, the factor (𝛾 − 1)𝛽−1 is sometime referred to as 𝑘𝐵∆𝑇. The bias 

factor is an indicator of how fast the height of Gaussians will decrease during the simulation, and it 

determines a fictitious temperature along the biasing CV, which is (𝑇 + ∆𝑇) = 𝛾𝑇. In the WTMetaD, the 

bias potential tends to increase with the same intensity at each point in the CV space, which results in faster 

convergence than non-tempered MetaD by avoiding the exploration of very high-energy regions. From the 

accumulated bias potential, the free energy surface of the investigated transition in a converged regime can 

be estimated as: 

𝐹(𝒔) = −
𝛾

𝛾 − 1
𝑉(𝒔) (3.23) 

The procedure to determine the bias potential is crucial for accurately reconstructing the FES, and the 

selection of the parameters is sensitive to convergence time of the simulation. The collective variable is the 

first and most important choice when MetaD or WTMetaD are used. Height, 𝜔, width, 𝜎, and bias factor, 

𝛾, are the WTMetaD parameters, which define the shape of the Gaussians added during the simulation and 

the deposition time, 𝜏, defines the frequency of construction of the bias potential. In the WTMetaD 

environment the convergence and overfilling issues are solved. 

As discussed above, in the case of the unbiased MD simulations, the FES is computed by unbiased ensemble 

averages 〈𝑂(𝑹)〉, where 𝑹 represents the atomic configurations of the system. Contrarily, in WT case the 

FES can be calculated using the reweighting procedure (150), which recovers the FES along CVs biased in 

the WTMetaD simulations. Each configuration of the trajectory is weighted according to the bias deposited. 

Then, the unbiased Boltzmann probability distribution 𝑃(𝑹) of the 𝑹 coordinates is estimated by 

reweighting the biased distribution 𝑃𝑉(𝑹, 𝑡): 

𝑃(𝑹) = 𝑃𝑉(𝑹, 𝑡)𝑤𝑉(𝑹), 𝑤𝑉(𝑹) = 𝑒𝛽(𝑉(𝒔(𝑹),𝑡)−𝑐(𝑡)) (3.24) 

where the exponential part is the weight for each configuration 𝑤𝑉(𝑹), and 𝑐(𝑡) is a time-dependent 

function of the offset energy, which estimates the work done by the bias. An increase of the offset energy 

indicates that the FES approaches an asymptotic approximation. In fact, once the applied bias becomes 

quasi-stationary, the adiabatic limit is reached, and, thus, the FES is recovered. The offset energy, 𝑐(𝑡), can 

be evaluated using different formulas (150,151), in this work we used the one suggested in the review of 

Valsson et al. (130): 
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𝑐(𝑡) =
1

𝛽
log

∫ 𝑑𝒔 exp [
𝛾

𝛾 − 1 𝛽𝑉(𝒔, 𝑡)]

∫ 𝑑𝒔 exp [
1

𝛾 − 1
𝛽𝑉(𝒔, 𝑡)]

(3.25) 

The average of a general observable can be estimated from the trajectory as the unbiased ensemble 〈𝑂(𝑹)〉: 

〈𝑂(𝑹)〉 = 〈𝑂(𝑹)𝑒𝛽(𝑉(𝒔(𝑹),𝑡)−𝑐(𝑡))〉𝑉 (3.26) 

It is thus possible to extract the probability distribution for each CV, 𝒔′, using eq. 3.24 and 3.26. Then, 

according to equation 3.18, we obtain: 

𝑃(𝒔′) = ∫ 𝛿[𝒔′ − 𝒔′(𝑹)]𝑃(𝑹)𝑑𝑹 = ∫ 𝛿[𝒔′ − 𝒔′(𝑹)]𝑃(𝑹, 𝑡)𝑒𝛽(𝑉(𝒔(𝑹),𝑡)−𝑐(𝑡))𝑑𝑹 (3.27) 

from which the FES along any CV, biased or not biased, can be easily calculated using equation 3.16. 

3.2.4. The block analysis 

The error of the FES is evaluated using the so-called block analysis (152). 

A set of block dimensions is defined 𝒏. For each size of the set 𝑛𝑖  

• the total trajectory of the simulation is divided into blocks containing 𝑛𝑖 configurations; 

• the FES is computed in each block of configurations generated; 

• the error is computed from the comparison between the FESs obtained. 

The simulation is judged to be converged when the error remains constant with an increase of the block 

sizes. 

3.2.5. The temperature rescaling procedure 

Usually, it is necessary to recover the probability distribution at a temperature different from the one used 

in the original simulation. The data contained in the trajectory can be reweighted to obtain ensemble 

averages at different temperatures. We call this procedure temperature rescaling. In this method, the 

probability distribution, 𝑃𝑇(𝑹), calculated by a WTMetaD simulation at temperature 𝑇 is reweighted to 

estimate the probability distribution at a different temperature 𝑇′, 𝑃𝑇′(𝑹). The idea is similar to the 

reweighting calculation using eq. 3.24. The reweighting factors, 𝑤, for a canonical ensemble (NVT) and an 

isothermal-isobaric ensemble (NPT) are respectively defined as: 

𝑃𝑇′(𝑹) = 𝑃𝑇(𝑹)𝑤𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑹),

𝑤𝑁𝑉𝑇(𝑹) = 𝑒(𝛽−𝛽′)𝑈(𝑹)

𝑤𝑁𝑃𝑇(𝑹) = 𝑒(𝛽−𝛽′)(𝑈(𝑹)+𝑝𝑉) (3.28)
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where 𝑈(𝑹) is the internal energy of each configuration, 𝑈(𝑹) + 𝑝𝑉 is the enthalpy, and 𝛽 and 𝛽′ are the 

inverse thermal energies using the original and target temperatures. 

The above equation is impractical in an unbiased simulation since the overlap between the distributions of 

energy at different temperatures is only significant for neighboring temperatures. But when the distributions 

are altered because of the presence of a bias potential, the overlap increases. Thus, the rescaling temperature 

procedure must be combined with a reweighting procedure to start from a biased distribution. 

3.2.6. Collective variable for crystallization 

The central aspect of collective variable-based techniques is to define one or more CVs to describe the slow 

degrees of freedom of the system. As described above, the CV’s fluctuations are enhanced to sample 

metastable states in the phase space. In the context of crystallization, the CVs are designed to distinguish 

between the particles in the crystal and liquid or dispersed in solution phases (141,153,154). Unfortunately, 

it can be hard to define a CV that describes all the slow degrees of freedom of a system, because of the 

complexity of the system. A collective variable is in this case “suboptimal”, therefore reaching convergence 

becomes more difficult and requires longer simulations, but it is still possible to converge them (140,142). 

In literature, several different CVs have been applied in the study of crystallization. In the next paragraphs, 

the three CVs used in this research for biasing or analyzing the investigated system are summarized: 

intensity of X-ray diffraction peak, Steinhardt order parameter and the local entropy fingerprint. 

3.2.6.1. Intensity of X-ray diffraction peaks 

The intensity of a particular X-ray diffraction (XRD) peak was chosen as the CV in a recent paper of Niu 

et al. (140), which studied the crystallization of liquid silica. 

The choice of using this property is a fair choice since the XRD peak’s intensity depends on the long-range 

order of a structure, which is present in a crystalline structure but absent in non-crystalline systems. Also, 

XRD can be obtained experimentally and compared with computed results, as shown in other two works 

where the crystallization of perovskites was investigated (137,139). Therefore, the intensity of the XRD 

peak can be a good choice. 

It is usually calculated using Debye formula (155): 

𝐼(𝑸) =
1

𝑁
∑ ∑ 𝑓𝑖(𝑸)𝑓𝑗(𝑸)

sin (𝑸 ∙  𝑟𝑖𝑗)

𝑸 ∙  𝑟𝑖𝑗
𝑊(𝑟𝑖𝑗)

𝑁

𝑖=1

𝑁

𝑗=1

(3.29) 

where 𝑓𝑖(𝑸) and 𝑓𝑗(𝑸) are the atomic scattering form factors, 𝑸 is the scattering vector modulus and 𝑟𝑖𝑗 is 

the distance between atoms 𝑖 and 𝑗. 𝑊(𝑟𝑖𝑗) is the Lorch function used to overcome the artifacts due to the 

finite simulation box, and it is calculated as: 
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𝑊(𝑟𝑖𝑗) =
sin (𝜋  𝑟𝑖𝑗 𝑅𝑐⁄ )

𝜋  𝑟𝑖𝑗 𝑅𝑐⁄
(3.30) 

where 𝑅𝑐 is the upper limit of 𝑟𝑖𝑗. 

Contrarily to the previous work by Niu et al., where 𝐼(𝑸) was evaluated using all atoms, it can be convenient 

to evaluate this property only on a certain type of atoms to reduce the computational cost (139,156,157). 

This topic will be discussed when the CV is chosen according to the studied system. 

By comparing the XRD patterns of crystalline and glass/liquid structures, the 𝑸 value exhibiting the biggest 

difference in the intensity peak is selected as an effective CV. Note that 𝑸 value is converted to a scattering 

angle 2𝜃 as: 

𝑄 =
4𝜋

𝜆
sin 𝜃 (3.31) 

where 𝜆 is the wavelength of the radiation. 

3.2.6.2. Steinhardt local order parameters 

An order parameter that is sensitive to an ordered or disordered environment of the atoms contained in the 

model can be used when a mixed crystal/amorphous system must be studied, since it allows us to distinguish 

between the crystalline nucleus and its interface with the glassy/liquid matrix. 

The Steinhardt order parameters has been widely used to distinguish between the liquid or glassy state to 

one or more crystal phases (158) and has proven to be one of the most efficient. The 𝑙-order Steinhardt 

parameter 𝑄𝑙(𝑖) for atom 𝑖 is defined by: 

𝑄𝑙(𝑖) = √
4𝜋

2𝑙 + 1
∑ |𝑞𝑙𝑚(𝑖)|2

𝑙

𝑚=−𝑙

(3.32) 

where 

𝑞𝑙𝑚(𝑖) =
1

𝑁(𝑖)
∑ 𝑌𝑙𝑚(𝑟𝑖𝑗)

𝑁(𝑖)

𝑗=1

(3.33) 

Where the index 𝑗 runs on the 𝑁(𝑖) neighbors of atom 𝑖 within a certain cutoff (𝑅1). 𝑌𝑙𝑚(𝑟𝑖𝑗) is a spherical 

harmonic with a vector displacement 𝑟𝑖𝑗 from atoms 𝑖 and 𝑗. The subscript 𝑙 is a free integer parameter that 

confines 𝑚 between – 𝑙 and +𝑙. To calculate the local degree of order around a central ion we have also 

computed the local 𝑄𝑙
𝑙𝑜𝑐(𝑖) parameter by taking the average dot product between the complex 𝑞𝑙

∗(𝑖) vector 

on the central atom and the 𝑞𝑙(𝑗) vector on the atoms in the first coordination sphere: 
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𝑄𝑙
𝑙𝑜𝑐(𝑖) =

1

𝑁(𝑖)
∑ ∑ 𝑞𝑙𝑚

∗ (𝑖)

+𝑙

𝑚=−𝑙

𝑞𝑙𝑚(𝑗)

𝑁(𝑖)

𝑗=1

(3.34) 

This parameter measures the extent to which the orientation of the atoms in the first coordination sphere of 

atom j, defined by (𝑅2), matches the orientation of the central atom. 

The average 𝑄̅𝑙(𝑖) and local average 𝑄̅𝑙
𝑙𝑜𝑐(𝑖) parameter for atom i can be computed as the average of the 

𝑄𝑙(𝑖) and 𝑄𝑙
𝑙𝑜𝑐(𝑖) parameters of its neighboring atoms with a certain radius (𝑅2). 

𝑄̅𝑙(𝑖) =
𝑄𝑙(𝑖) + ∑ 𝜎(𝑟𝑖𝑗)𝑄𝑙(𝑗)𝑗

1 + ∑ 𝜎(𝑟𝑖𝑗)𝑗

(3.35) 

𝑄̅𝑙
𝑙𝑜𝑐(𝑖) =

𝑄𝑙
𝑙𝑜𝑐(𝑖) + ∑ 𝜎(𝑟𝑖𝑗)𝑄𝑙

𝑙𝑜𝑐(𝑗)𝑗

1 + ∑ 𝜎(𝑟𝑖𝑗)𝑗

(3.36) 

Where 𝜎(𝑟𝑖𝑗) is a switching function that acts on the distance between atoms 𝑖 and 𝑗. This function should 

define the first coordination sphere, assuming a value of 1 when the atom j belongs to the first coordination, 

and it is 0 otherwise. 

This order parameter can be used as CV, computing the average of all interested atoms, or individually to 

describe the structure. 

3.2.6.3. Local entropy fingerprint 

The local entropy fingerprint is useful to identify atoms with a crystal-like environment in a structure. The 

entropy of the atom 𝑖 is calculated with the following formula (136): 

𝑠𝑆
𝑖 = −2𝜋𝜌𝑘𝐵 ∫ [𝑔𝑚

𝑖 (𝑟) log 𝑔𝑚
𝑖 (𝑟) − 𝑔𝑚

𝑖 (𝑟) + 1]𝑟2𝑑𝑟
𝑅𝑚𝑎𝑥

0

(3.37) 

where 𝑅𝑚𝑎𝑥 is an upper integration limit that in principle should be tend to infinity, 𝜌 is system’s density 

and 𝑔𝑚
𝑖 (𝑟) is the radial distribution function centered at the 𝑖-th atom and defined as: 

𝑔𝑚
𝑖 (𝑟) =

1

4𝜋𝜌𝑟2
∑

1

√2𝜋𝜎𝑆
2

𝑒−(𝑟−𝑟𝑖𝑗)
2

(2𝜎𝑆
2)⁄

𝑗

(3.38) 

where 𝑗 are the neighbors of atom 𝑖 and 𝜎𝑆 is a broadening parameter. 

The average local entropy 𝑠̅𝑆
𝑖  for atom 𝑖 is computed as the average of the local entropies of its neighboring 

atoms within a certain radius 𝑅𝑎: 

𝑠̅𝑆
𝑖 =

𝑠𝑆
𝑖 + ∑ 𝜎(𝑟𝑖𝑗)𝑠𝑆

𝑗
𝑗

1 + ∑ 𝜎(𝑟𝑖𝑗)𝑗

(3.39) 
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where 𝜎(𝑟𝑖𝑗) is a switching function that acts on the distance between atoms i and j. This function should 

define the first coordination sphere, assuming a value of 1 when the atom j belongs to the first coordination, 

and it is 0 otherwise. 

The average local entropy can be calculated only on a selected type of atom to improve the ability to 

discriminate between crystalline and non-crystalline environments.  



 

 

Chapter 4. Melting temperature 

The computational determination of the melting point (𝑇𝑚) is a prerequisite for studying crystallization 

phenomena. The computational melting temperature depends strongly on the interatomic potential, the 

system size and the method used to compute it. Despite this, once this temperature is individuated, all the 

other events are considered relative to this temperature. 

There are different methods to evaluate the melting point of a crystal. The most used are described in ref 

(159). In general, depending on the way it is determined we can distinguish between the so-called 

mechanical and thermodynamic melting temperature. The first one, which is obtained by a 

heating/quenching procedure, depends mostly on the hysteresis of the system in response to a chosen 

heating/quenching rate. The thermodynamic melting temperature is obtained from the thermal equilibration 

of a crystal-liquid interface. This is obtained when the difference in free energy between the phases is zero, 

thus has more significant physical meaning. 

The mechanical and thermodynamic melting temperature of lithium disilicate (LS2) and lithium metasilicate 

(LS) have been evaluated. 

4.1. Mechanical melting point 

To determine the mechanical melting temperature, we first equilibrated the crystalline phases (both LS2 and 

LS), starting from the experimental obtained crystalline structure (63,64), at a temperature of 300 K and a 

pressure of 0 bar. The supercells used were obtained by multiplying the LS2 and LS unit cell, respectively, 

for 6x2x5 and 3x5x6, obtaining simulation boxes containing 2160 atoms each. Then we heated up to 3000 

K the system with a heating rate of 5 K/ps in the NPT ensemble. We followed the changing volume and 

potential energy per formula unit (f.u.) during the heating procedure, and we plot it in figure 3.1. 

The estimation of the melting point is measured in the jump of both the volume and the potential energy, 

obtaining 𝑇𝑚 ≅ 1800 K and ≅ 1750 K for LS2 and LS respectively. Both values overestimate the 

experimental data (LS2: 1307 K and LS: 1474 K) (8). 
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FIG. 4.1. Volume and potential energy per formula unit (f.u.) as a function of temperature during the heating 

of LS2 and LS crystal with a heating rate of 5 K/ps. The dashed line represents the extracted melting point. 

The original procedure, described in (159,160), foresees the heating and cooling of the system and the 

extraction of the superheating and supercooling temperatures from the evolution of the potential energy. 

The melting point is computed as the average between the two temperatures However, because it is not 

possible to observe the crystallization of LS2 and LS crystal during the quench of the melt phase, it was not 

possible to extract the supercooling temperature in our study. The temperature that we have extracted is 

thus the superheating temperature and it overestimates the melting point. The overestimation of this value 

is due to the application of PBC, which eliminates surfaces where melting is initiated in real samples. Thus 

a huge cooling rate is used in computer simulations with respect to the one used in experiments, as discussed 

in ref (161,162). The resulting value of this method depends strongly on the hysteresis of the system; hence 

it is important to choose a more precise method. 

4.2. Thermodynamic melting point 

To obtain the thermodynamic melting temperature, we used the phase-coexistence technique. In literature, 

different versions of this technique have been developed, two of them will be presented in this section. 
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4.2.1. The Dozhdikov method 

The following technique has been proposed by Dozhdikov et al. (157,160,163). In this method, the starting 

configurations are built as rectangular parallelepipeds with one of the three dimensions around 3 times 

larger than the other two dimensions by replicating the crystalline unit cell to obtain a super-cell, we choose 

here for example that the z-direction is three times x and y. During the first stage, the cell is equilibrated in 

the NVE ensemble. It is then brought to an expected melting temperature, 𝑇𝑒𝑠, at atmospheric pressure in 

the NPT ensemble. In the third stage, position and velocities of half atoms along z-axis of the system are 

fixed, while the other half is heated to higher temperature, 𝑇ℎ, in the NPzzT ensemble to reach complete 

melting of this region. In this way half of the system is liquid whereas the other is crystalline. Subsequently, 

the melted region is cooled to 𝑇𝑒𝑠 in the NPzzT thermostat-barostat obtaining a box where the two regions 

are in different phases but same pressure and temperature. During the fifth stage, the whole system is 

allowed to relax in the NPH ensemble at atmospheric pressure. After 10 ns of MD simulation, the system 

reaches equilibrium where different situations may occur. If the crystalline side melts or the melted region 

crystallizes, the procedure must be repeated starting from stage 2 changing 𝑇𝑒𝑠 or 𝑇ℎ. If the two phases 

coexist then melting temperature can be extracted from the statistical temperature, stage 6. 

 

FIG. 4.2. Example of mean square displacement of Si atoms in the crystal side (upper) and glassy or liquid 

side (bottom) in the two-phases super-cell at three different temperatures. 

To check the phase coexistence we first used a visual inspection of the interface, using VMD (164) to 

visualize the structure. The stability and persistence of the crystalline phase confirm that the temperature is 

equal or lower than the 𝑇𝑚. However, we do not observe the crystallization of the liquid side, thus 
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understanding the phase coexistence visually may be tricky and eventually inaccurate. A more reliable 

method is to compute the mean square displacement (MSD) of the group of Si atoms both for the crystal 

and liquid/glass phases. The two groups are defined at the beginning of the procedure, when the two-phase 

model is built. It is known, that in liquid the displacement depends linearly on time and the slope of this 

line is proportional to the self-diffusion coefficient. In the solid phase the Si mean-square displacement 

fluctuates near a certain constant value and the coefficient of self-diffusion equals to zero. Figure 4.2 reports 

how the MSD of Si atoms in the crystal and glass/liquid side changes according to the temperature. The 

melting temperature in the example is 1200 K, in fact in the liquid side the MSD has a linear trend, while 

in the crystalline side the MSD is almost constant. At 𝑇 > 𝑇𝑚, Si atoms in the crystalline side start to 

diffuse, while at 𝑇 < 𝑇𝑚 Si atoms in the liquid/glassy side are less mobile. 

4.2.1.1. Effect of the box dimension on the melting temperature 

The Dozhdikov method has been applied to investigate how the melting temperature changes with the 

system dimension. The supercells used for LS2 and LS were obtained by replicating the respective unit cells 

for the factors reported in table 4.1, containing the reported number of atoms. 

TABLE 4.1. Replicating factors and number of atoms in each created supercell for LS2 and LS systems. 

LS2 2x2x2 3x3x3 4x5x5 5x6x6 6x7x7 

n° atoms 288 972 3600 6480 10584 

LS 3x2x2 5x3x3 7x4x4 8x5x6 9x6x7 

n° atoms 288 1080 2688 5760 9072 

The direction along which the crystal/melt surface was generated is, respectively, x and y for LS2 and LS, 

according to the super-cells that were created. The biphasic systems are depicted in figures 4.4 and 4.5, 

where the interface is clearly visible. The temperature range, 𝑇𝑒𝑠, under investigation is 800 K to 1400 K, 

with intervals of 50 K, while 𝑇ℎ values tested are 2000 K, 2500 K and 3000 K. The calculated melting 

temperatures are reported in figure 4.3 and decrease, increasing the number of atoms. 

When the number of atoms is 3600 or higher, the LS2 melting temperature converges at 1200 K, while LS 

reaches convergence from 5760 atoms at 1150 K. Therefore, we obtain a 𝑇𝑚 of 1200 ± 50 K for LS2 and 

1150 ± 50 K for LS, both values are in fair agreement with the experimental values (LS2 1307 K, LS 1474 

K) (8) even though the relative trend is not reproduced. 

These observations confirm that the calculated melting temperature depends on the size of the system 

investigated, therefore for obtaining reliable results it is fundamental to use large boxes. 
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FIG. 4.3. Calculated melting temperature versus the number of atoms contained in the simulation box. 
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FIG. 4.4. Examples of biphasic systems generated for the calculation of the melting temperature of LS2 

crystals. Yellow tetrahedra represent silicon coordination, red and pink spheres represent oxygen and 

lithium ions, respectively. From up to bottom the supercells are obtained by replicating the unit cell 15x2x6, 

5x6x6, 5x2x18 times and contain 6480, 6480, 6480 atoms, respectively. 
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FIG. 4.5. Examples of biphasic systems generated for the calculation of the melting temperature of LS 

crystals. Yellow tetrahedra represent silicon coordination, red and pink spheres represent oxygen and 

lithium ions, respectively. From up to bottom the supercells are obtained by replicating the unit cell 8x5x6, 

3x16x6, 5x2x18 times containing 5760, 6912 7776 atoms, respectively. 
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4.2.1.2. Effect of the crystal orientation on the melting 

temperature 

It is also interesting to investigate if the direction along which the melt/crystalline interface created 

influences or not the resulting melting temperature. The super-cells reported in table 4.2 have been created 

for this purpose and shown in figures 4.4 and 4.5. 

TABLE 4.2. Replicating factors, number of atoms and melting temperature of created supercell for LS2 and 

LS systems with liquid/solid surface in x – y – z directions. 

  x-direction y-direction z-direction 

LS2 

Replication 15x2x6 5x6x6 5x2x18 

n° atoms 6480 6480 6480 

𝑇𝑚 (K) 1100 1200 950 

LS 

Replication 8x5x6 3x16x6 3x6x18 

n° atoms 5760  6912  7776  

𝑇𝑚 (K) 1150 1100 900 

The direction of creation of the interface affects the face of the crystal exposed, that, as we can see from 

table 4.2, influences the 𝑇𝑚. In LS2, y-direction has the highest melting temperature since the crystal is cut 

in the interlayer (figure 4.4), while it has a lower 𝑇𝑚 when the layer is interrupted by the interface, x, and z 

directions. LS has a similar 𝑇𝑚 in x and y-direction where the chains are parallel to the interface, and a 

lower 𝑇𝑚 when the chains are perpendicular to the interface (figure 4.5). Therefore, depending on which 

face a crystalline nucleus exposes in the glass matrix it will have a different stability. 

4.2.2. The Chen method 

The second phase-coexistence technique presented, has been developed by Chen et al. (165) and employed 

in several studies (159,166,167). For the LS2 crystal, a super-cell containing 6480 atoms has been used and 

the solid/liquid interface has been created replicating the crystalline box 5x6x6. For the LS crystal a super-

cell containing 5760 atoms has been employed and the starting configuration to obtain the solid/liquid 

interface has been created by replicating the crystalline cell 8x5x6, considering the minimum reliable 

dimension obtained in paragraph 4.2.1.1. The following procedure has been applied on both samples. The 

starting system is heated up to 1000 K, temperature assumed lower than the 𝑇𝑚, and then the box is divided 

along one direction into two equal parts (y-direction for LS2, and x-direction for LS). The position of the 

atoms in one of the two sides are kept fixed, while the other side is melted at 3000 K for 500 ps in NVT 

ensemble to generate the melt and then cooled down at 1000 K to create a glassy side. The box is finally 
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relaxed at 1000 K in the NPT ensemble without fixing any atomic position for 500 ps. The biphasic systems 

produced using the described procedure are reported in figures 4.4 and 4.5, which is the same used with the 

first method, paragraph 4.2.1. An interface is generated between the two phases which is submitted to a 

free energy difference between the two sides, larger difference if the temperature is far from the 𝑇𝑚, lower 

if the working temperature is near the 𝑇𝑚. This difference is the driving force for the dissolution or, 

eventually, growth of the crystalline side. 

To find the temperature at which the two phases coexist, it is necessary to heat up the system at different 

temperatures, increasing from 1100 K to 1400 K in 50 K intervals. At each temperature the potential energy 

is monitored for 20 ns of simulation. In figure 4.6 it is reported the evolution of the potential energy, 

normalized for the number of formula units, and calculated as a difference from the beginning of 20 ns of 

simulation. The enthalpy of the system can also be used for this purpose; however, the fluctuations are 

significantly larger than the potential energy and because it provides the same results, the potential energy 

has been chosen as monitored observable. 

 

FIG. 4.6. Potential energy of LS2 (on the left) and LS (on the right) versus time at selected temperatures 

above and below melting temperature. It is calculated as a difference from the potential energy of the 

starting configuration. For temperatures above melting point, the potential energy increases, whereas at and 

below it, the potential energy is practically constant. 

Above 1200 K in the LS2 system, the potential energy increases as the liquid phase progresses, whereas at 

1200 K and 1150 K, the energy remains constant. The dissolution of the crystalline phase is affected by the 

simulation time; to observe the growth of the crystalline side, simulation times out of the accessible 

timescale of MD should be simulated. Therefore, we obtain a melting temperature of 1200 ± 50 K. The LS 

shows a similar behavior, however at the end of the 20 ns the crystalline side starts to melt at 1200 K, 
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resulting in a melting temperature of 1150 ± 50 K. Both values are in perfect agreement with the Dozhdikov 

method. Therefore, both methods seem to be reliable for the determination of the thermodynamic melting 

temperature. 

  



 

 

Chapter 5. Simulating crystallization by 

Molecular Dynamics 

Several experimental techniques are used to study nucleation, i.e., optic and electronic microscopies, 

differential scanning calorimetry, atomic force microscopy and X-ray experiments. It is indeed hard to 

obtain spatial and temporal information with high resolution since nucleation takes place at the length scale 

of the nanometer. Therefore, the comprehension of this phenomenon is far from exhausted. 

Computer simulations are a fundamental tool to overcome the length scale problem and Molecular 

Dynamics, MD, is the most suitable technique to address this topic (chapter 3). 

In this chapter different approaches to study the nucleation using the MD will be presented. It is first 

investigated how the similarity between the glassy structure and the crystalline phases gives indication 

about the possible crystallization of a phase. Thus, we investigate the structure of bulk and surface of two 

glass models, and we look for the presence of crystalline embryos in the models. The first glass structure is 

composed of Li2O 2SiO2 (LS2), and the second one differs by the addition of a small amount of P2O5, 

33Li2O 66SiO2 1P2O5 (LS2P1). P2O5 is usually used as a nucleating agent in the industry. The crystalline 

phases searched are Li2Si2O5 (LS2), Li2SiO3 (LS) and Li3PO4 (LP). 

The second approach is based on the seeding method, where a crystalline nucleus is inserted into a glass 

matrix and its evolution, dissolution or growth, is followed. However, the high viscosity of oxide glasses 

does not allow us to observe the growth of a crystalline nucleus in the time frame of the simulation. 

Therefore, it is evaluated the free energy of systems containing nuclei with different sizes, to follow the 

stability of these nuclei and find the critical one. Crystalline nuclei of LS2 and LS are inserted into a glass 

matrix with the overall composition of LS2. The nuclei have spherical shapes with different radii ranging 

from 6 Å to 14 Å and their evolution is studied and compared with expected results from the Classical 

Nucleation Theory (CNT). 
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5.1. Research of embryos: CLUSTER program 

5.1.1. Cluster analysis: the algorithm 

The aim of this analysis is to explore atomic aggregates whose stoichiometry and structure are similar to a 

particular crystalline phase that is thought to nucleate and crystallize from the glass forming liquid. The 

cluster analysis has been performed using a new FORTRAN90 code based on the one developed in the past 

by Pedone (168) (Cluster code). The program analyses the glass structure generated through MD 

simulations and systematically samples the stoichiometry and local structure around each atomic species 

(for example lithium, oxygen, or silicon in lithium silicate glasses). Then, it compares the extracted clusters 

with a reference crystal phase (Li2Si2O5 for example), which is expected to form in the glass. 

A similar approach, known as the Adaptive Template Method, has been applied to identify crystal lattice 

types (FCC, BCC and HPC) in hard sphere systems (169). In our algorithm, a similar idea with the Adaptive 

Template Method was combined with our original Cluster code (168), which enables us to investigate more 

complicated crystals with multiple species in multicomponent glasses. Here, we introduce the detailed 

procedure of the extended algorithm. 

The program performs the following steps: 

1. Read a trajectory file of MD simulations (in this work, DL_POLY REVCON file) and a crystal 

structure with a unit cell (P1 symmetry) to be explored. Then, specify a reference atom of the crystal 

structure. 

2. Count the number of each atomic species within a spherical region with radius 𝑟𝑘  around the 

reference atom of the crystal structure. The numbers of species are stored in a reference vector 𝑅𝐴, 

which is noted as (NLi, NSi, NO) for the LS2 glass, for example. In the case of the LS2P1 glass, the 

reference vector 𝑅𝐴 has one more dimension as (NLi, NSi, NO, NP). 

3. Subsequently, put a center of a spherical probe on an atom whose atomic type is the same with the 

reference atom in the MD trajectory. Then, count the number of each species in the spherical probe 

with a radius 𝑟𝑘, which defines a vector 𝜒𝐴,𝑗 for atom 𝑗. 

4. Evaluate the Hamming distance 𝛿𝑗(𝑟𝐾) = |𝑅𝐴(𝑖) − 𝜒𝐴,𝑗(𝑖)| to measure the similarity of the local 

structure in the MD trajectory to the reference crystal. 

5. Repeat the steps from #2 to #4 with varying the proof radius 𝑟𝑘 from a minimum (𝑟𝑚𝑖𝑛) to a 

maximum (𝑟𝑚𝑎𝑥) value every small increment (𝑑𝑟). Then, evaluate the cumulative distance for 

atom 𝑗 at the radius 𝑟𝑘 is computed, as ∆𝑗(𝑟𝑘) = ∑ 𝛿𝑗(𝑟𝑘)𝑟𝑘
𝑟𝑚𝑖𝑛

. The atom with smaller cumulative 

displacement is judged to possess more similar microstructure to that of the crystal explored. 
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At the end, the code outputs: i) PDB files with atomic structure of the best cluster found for each radius; ii) 

a statistic on the best clusters found at each radius and a distribution of the cumulative distances of all the 

target species in the glass. 

It is worth to note that when the increment 𝑑𝑟 is small (i.e. 0.1 Å), the cumulative distance of atom 𝑗 ∆𝑗(𝑟𝑘) 

gives an idea of the degree of matching between the total distribution function of the reference atom in the 

crystal and the total distribution function of each atom in the glass. In this work, the analysis has been 

carried out using 𝑟𝑚𝑖𝑛 = 2.0 Å, 𝑟𝑚𝑎𝑥 = 6.0 Å, 𝑑𝑟 = 0.2 Å without considering oxygen atoms. 

5.1.2. Computational details 

The LS2 and LS2P1 glasses were generated using MD simulations by employing the modified PMMCS 

force-field described in chapter 3.1.2. The LS2P1 composition was investigated to understand the effect of 

P2O5 on the structure and nucleation of Li2Si2O5 and Li2SiO3 crystals in the glass since it is well known that 

addition of P2O5 promotes the precipitation of the LS2 crystal and the formation of glass-ceramics (29,40). 

Glass structural models containing 13500 and 12160 atoms were generated for LS2 and LS2P1 glasses, 

respectively, through the melt and quench approach by MD simulations (10) described below. Four replicas 

of each glass model have been examined to confirm the reproducibility of the results and to estimate the 

variability in the glass properties. The DL_POLY2.14 package (170) was used to integrate the equation of 

motions with a time step of 2 fs. The initial configurations were generated by randomly placing the atoms 

in a cubic box, whose size corresponds to the experimental density. Table 5.1 lists the number of the atomic 

species and the experimental density used to determine the unit cell size (5.4 nm for LS2 and 5.2 nm for 

LS2P1). 

TABLE 5.1. Number of atomic species in the simulation boxes, cubic box side (𝐿𝑏𝑜𝑥) and experimental 

density used to determine it. 

 Li Si P O Lbox (Å) 
Density 

(g/cm3) 

LS2 Glass 3000 3000 - 7500 54.26 2.34 

LS2P1 Glass 2640 2640 80 6800 52.41 2.35 

The systems were heated and held at 3500 K for 100 ps, which is sufficient to melt the samples and remove 

the memory of the initial configurations. The liquids were then monotonically cooled to 300 K with a 

cooling rate of approximately 5 K/ps. The cooled glass structures were subjected to a final equilibration 

run of 200 ps. In these cases, the canonical ensemble (NVT) was employed, and Nosé-Hoover thermostat 

was used to control the temperature (frictional constants set to 0.2 ps). The coulomb interactions were 

calculated by the Ewald summation method with a cut-off distance of 12 Å. The short-range interactions 
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were evaluated using cut-off values of 5.5 Å. Snapshots of the final glass structures are reported in figure 

5.1. 

 

FIG. 5.1. Snapshot of the MD-derived bulk structural model of the LS2 glass showing all the ions in the 

box (a) and Li ions only (b). Snapshot of the LS2P1 glass showing all the ions in the box (c) and Li ions 

(cyan spheres) and PO4 tetrahedra (pink) only (d). 

In addition to the bulk glass models with periodic conditions, slab models with two surfaces were created 

by eliminating periodic boundary conditions in the z-axis. The slab models were replicated in x-axis one 

time to have larger surface areas and thus more statistics, then the systems were heated from 300 K to 1800 

K with a heating rate of 5 K/ps and cooled down at 300 K with the same cooling rate to relax the surface 

structure. In figure 5.2 the top and lateral views of the slabs created are reported, and two rough surfaces 

are generated along the z-axis. 
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FIG. 5.2. Top and lateral view of the surface of the LS2 and LS2P1 glasses. Li, Si and O ions are, 

respectively, represented by violet, yellow and red spheres. Orthophosphate units are represented as green 

tetrahedral. 

5.1.3. Bulk and surface structures 

Homogeneous nucleation is usually associated with the similarity of short and intermediate-range structures 

between the glass forming liquid and the crystal that crystallizes from it (8,73,171,172). Since the short-

range structures measured by the cation-oxygen distances, coordination numbers and the O-Si-O, O-Li-O 

bond angle distributions are not distinguishable between LS2 and LS crystals as well as between the crystals 

and the frozen melts, we only give our attention to the structural differences in intermediate-range order. 

The intermediate-range structures are described by Li-Li distributions and the Qn distributions, representing 

the degree of polymerization of the network. 

Figure 3.4 shows the bulk structures of the LS2 and LS2P1 glasses at 300 K. A visual inspection of the 

atomistic configurations reveals that phosphorous atoms form orthophosphate units and tend to segregate 

each other. The units attract Li ions, forming Li-richer regions around PO4 units. Indeed, the Qn distribution 

of the P species (not reported) reveals that 98.8% of PO4 units are Q0 species, in excellent agreement with 

NMR experiments on similar glasses (52). 

TABLE 5.2. Qn distribution and network connectivity (NC) of the silica network for the LS2 and LS2P1 

glasses. 

 Q1 Q2 Q3 Q4 NC 
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LS2 Glass 2.2 21.0 51.3 25.4 3.0 

LS2P1 Glass 1.4 18.7 49.4 30.5 3.1 

Table 5.2 compares the Qn distribution of silicon and the network connectivity (NC) representing the 

average number of BO per silicon for the two glasses. More Q4 silicon and larger NC of the LS2P1 glass 

reveal that the silica network is slightly more polymerized than the LS2 glass. This is a consequence of the 

existence of the orthophosphate units, which attract Li ions to balance their negative charge, depleting Li 

ions around the silica network and thus Q4 silicon increases. In both glasses, silicon is predominantly 

present as Q3 species as in the case of LS2 crystal, which is formed by two tetrahedral layers of silicon 

(100% Q3 species) (figure 1.3). The amount of the Q2 silicon species, which are the majority in the LS 

crystal, are around 20% in both glasses. The Li-rich regions can be seen in figure 5.3 as a formation of 

percolation channels of Li ions; these are highlighted by the worm-like Li distribution sandwiched between 

chains and sheets of silica. An extended ordering over four alkali coordination shells is also revealed by the 

Li-Li pair distribution function (PDF) drawn in figure 5.3. In this figure, the Li-Li PDFs of LS and LS2 

crystals and LS2 and LS2P1 glasses at 300 K are also compared. The Li-Li PDF of LS2 crystal is composed 

of pairs of peaks thanks to the symmetry of the crystalline structure, figure 1.3. The Li-Li coordination peak 

at 2.7 Å is observed for all investigated systems, however the remaining peaks do not match between the 

different structures. 

 

FIG. 5.3. Li-Li Pair Distribution Function of the LS2 and LS2P1 glasses compared to LS2 and LS crystals. 

The other useful parameter, for probing structural resemblance or dissimilarity between crystalline and 

glassy phases, is the Li-Li homonuclear 𝑀2 second moment (171). The 𝑀2 second moment is related to the 



 5. Simulating crystallization by Molecular Dynamics 

56 

 

Li-Li distance correlation and can be an ability index of a glass to be transferred to a crystal with the same 

stoichiometry. It is computed using the van Vleck equation (173): 

𝑀2,𝐿𝑖−𝐿𝑖 = 0.9562
1

𝑁𝐿𝑖
(

𝜇0

4𝜋
)

2

𝛾𝐿𝑖
4 ħ2 ∑ ∑ 𝑟𝑖𝑗

−6

𝑁𝐿𝑖

𝑗=𝑖+1

𝑁𝐿𝑖−1

𝑖=1

(5.1) 

where 𝑁𝐿𝑖 is the number of the Li atoms in the simulation box, 𝜇0 is the vacuum permittivity, 𝛾𝐿𝑖 is the 

gyromagnetic ratio and 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗. The calculated 𝑀2,𝐿𝑖−𝐿𝑖 for the LS2 and 

LS2P1 glasses are of 49.7 and 49.6·106 rad2s-2 and closer to that of the LS2 crystal (𝑀2,𝐿𝑖−𝐿𝑖=57.8·106 rad2s-

2) than the LS crystal (𝑀2,𝐿𝑖−𝐿𝑖=75.7·106 rad2s-2). 

Another criterion to judge the structural similarity between glass and crystal is the comparison of densities. 

If glass and crystal structures are similar, densities must be similar as well. Experimental data, concerning 

the correlation between the density and the nucleation mechanism (174), demonstrate that when the density 

difference between the two phases (∆𝜌 𝜌𝑔𝑙𝑎𝑠𝑠⁄  %) is higher than 10% the homogeneous nucleation does 

not occur in observable time. In these cases, heterogeneous nucleation is usually favored. However, the 

condition of the small difference of density is a necessary but not sufficient condition to guarantee the 

structural similarity and the nucleation mechanism. In fact, two structures can be extremely different but 

have similar densities (174). In table 5.3 experimental and calculated values of the densities of LS2 and LS 

crystal and LS2 glass are reported. 

TABLE 5.3. Experimental and calculated values of density for LS2 glass and crystal and LS crystal, with 

relative density difference (∆𝜌 𝜌𝑔𝑙𝑎𝑠𝑠⁄  %). 

 
Experimental 

𝝆 (g/cm3) 

Calculated  

𝝆 (g/cm3) 

Relative error 

% 

 
∆𝝆 𝝆𝒈𝒍𝒂𝒔𝒔⁄  % 

LS2 Glass 2.35 2.38 1.28 
 

 

LS2 Crystal 2.45 2.40 -2.04 

 
Exp 4.26 

Calc 0.84 

LS Crystal 2.52 2.45 -3.16 

 
Exp 7.23 

Calc 2.94 

The LS crystal presents a larger difference in density with the LS2 glass than the stoichiometric crystal both 

from experimental data and calculated results. The calculated values are lower than the experimental, but 

the trend is kept. Both have a relative difference lower than 10% meaning that the homogeneous nucleation 

is possible for both crystalline structures. 
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Combining the two analysis, it seems unlikely, but not impossible, that the LS crystal can nucleate 

homogeneously from the bulk of the melt, as suggested in some of the previous experimental (43) and 

computational works (65), while LS2 has a higher probability to nucleate homogeneously. 

5.1.4. Nucleus of crystals in bulk and on surface 

Another hypothesis to explain and predict the crystallization of a specific phase from a glass forming liquid 

involves the clustering of specific atoms forming embryos of the crystal with subcritical dimensions. These 

embryos, formed during the fast quenching of the melt, can trigger the nucleation during heat treatment and 

be considered as structural markers for the prediction of the crystallization of a particular phase. MD 

simulation is an exceptional method to detect such extremely small embryos, which is indeed difficult to 

be found experimentally. To test this hypothesis, we performed a cluster analysis on the bulk structure of 

the two simulated glasses using the modified Cluster code described in chapter 5.1.1. 

 

FIG. 5.4. Distribution of cumulative distances (with respect to Li2SiO3, Li2Si2O5 and Li3PO4 crystals) of 

clusters of radii 3.6, 4.0 and 4.6 Å centered on Silicon (left), Lithium (middle) and Phosphorous (right) for 

the LS2 and LS2P1 glasses. 

Figure 5.4 reports the distribution of the cumulative displacements of atomic clusters similar to the Li2SiO3, 

Li2Si2O5 and Li3PO4 crystals in the LS2 and the LS2P1 glass within a sphere of radius of 3.6, 4.0 and 4.6 Å 

centered on Li, Si and P, respectively. The figure shows that silicon and lithium environments in the glass 
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structure are similar to the LS2 crystal rather than the LS one at any radii. However, the discrepancy is more 

evident for silicon since the two distributions are more separated than the ones for the clusters centered on 

lithium. It is interesting to note that the distribution of the clusters centered on Li shifts to higher cumulative 

distances by P2O5 addition, revealing that the formation of embryos similar to the metasilicate phase is 

disfavored in the LS2P1 glass. Figure 3.8 shows the most LS2 crystal–like embryo obtained by means of a 

sphere of 4.6 Å radius centered on Li in the LS2P1 glass. The embryo contains 7 Li and 6 Si atoms as in the 

reference cluster of the crystal and shows a layered structure like the one of the LS2 crystal. Moreover, an 

embryo whose stoichiometry and structure resembles the LP crystals (see figure 5.5), is also found in the 

LS2P1 glass when the radius of sphere is 4.0 Å, agrees with the experimental fact that the lithium 

orthophosphate crystal phase appears as a secondary phase (52). 

 

FIG. 5.5. Embryos of Li2Si2O5 (LS2), Li2SiO3 (LS) and Li3PO4 (LP) found in LS2P1 glass and structures of 

the three crystals. 

Interestingly, the situation drastically changes at the glass surfaces. Figure 5.2 shows the top and lateral 

views of the slab models for the LS2 and LS2P1 glasses. The figure demonstrates that the surface is much 

richer in Li ions than the bulk. During the formation of the glass surface the structure undergoes a drastic 

rearrangement with Li ions (violet spheres) aggregating in layers and forming percolation channels that 

flow to a surface to the other side. The abundance of Li ions at the glass surface is also confirmed by 

analysing the fraction of each element along the z-direction as shown in figure 5.6. Indeed, the first atomic 

layer at the surface is exclusively composed of lithium ions, the second by oxygen ions and the third by 

silicon ions. The concentration profiles also show that the P ions, albeit present in small quantities, tend to 

gather at the subsurface rather than in the bulk. 
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FIG. 5.6. Z-depth profiles of the atomic fraction of Li, Si, P and O ions and Qn distributions of Si ions in 

the LS2 and LS2P1 glass surface models. 

In addition, the Qn distributions of silicon change considerably during the surface formation since the 

migration of Li ions to the surface leads to breaking of Si-O-Si bonds and reducing the connectivity of 

silicon. In fact, figure 5.6 reveals that silicon ions at the glass surface are almost exclusively Q2 species 

(~80 – 90% in the LS2 and 100% in the LS2P1 glass) as in the case of the LS crystal. This finding is 

extremely interesting and demonstrates that the surface provides favorable stoichiometric conditions for 

the nucleation and crystallization of the LS crystal rather than LS2 one. Indeed, figure 5.5 shows an atomic 

cluster possessing analogous structure and stoichiometry analogous to the LS crystal found on the LS2 glass 

surface. The cluster is constituted by a chain of three SiO4 units surrounded by 10 Li ions, similarly to the 

chain present in the LS crystal. On the contrary, LS-like embryos with the same cumulative displacements 

were not found in the bulk of the glass model. It seems thus unlikely that the LS crystal phase nucleates 

homogeneously from the bulk of the glass in these glasses. 

5.2. Seeding method 

In addition to the morphological analysis, we have also evaluated the thermodynamics on the nucleation of 

both LS2 and LS crystals inside the LS2 glass. 

According to CNT, as shown in chapter 2.1.1, the growing of a spherical crystalline embryo into a glass 

matrix produces an increase in the 𝑊 of the transformation. The maximum of the curve (𝑊∗) is reached 

when the critical crystalline embryo is formed (with 𝑁𝑐 number of atoms or radius 𝑟𝑐). If the nucleus 
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overcomes this size, the free energy of the transformation decreases monotonically. Once the critical radius 

is determined as well as free energy difference between the fluid and the crystal (∆𝐺𝑣) and the attachment 

rate of particles at the critical cluster, the nucleation rate (𝐼𝑠𝑡) can be calculated, see formula 2.2. In theory 

it is possible to evaluate all thermodynamics and kinetic parameters that describe the transformation with 

the CNT formula. 

Espinosa et al. (175) described a procedure to evaluate the required parameters, the “seeding method”. It 

consists in inserting an embryo of a given shape (named “seed”) in the supercooled fluid. The seed has a 

spherical shape with a crystalline structure and has a different stability according to the working 

temperature. Starting from such configuration, the number of particles is monitored at different 

temperatures. If the temperature is higher than the one at which the seed is stable, the seed will melt, while 

if the temperature is lower, the seed will grow, and particles will attach to the crystalline seed. This method 

has been applied to different systems (175–180), to identify at each 𝑇𝑐 the critical embryo 𝑁𝑐, followed by 

the computation of the attachment rate of particles. 

The big limitation that is encountered in the present study is that it is not possible to observe the growth of 

the crystalline embryo because of the high viscosity of the glassy matrix. In chapter 4.2.2, in 20 ns of 

simulation of the biphasic system, we could never observe the growth of the crystalline side, even though 

the dimensions were bigger than the critical cluster (crystalline side replicated in two dimensions) and the 

temperature was lower than the melting point. This analysis proves the non-applicability of the seeding 

method to our system. 

Therefore, we developed a modification of the seeding method to evaluate the critical radius and the free 

energy barrier of the nucleation, the Free-Energy Seeding Method (FESM). 

5.3. Free-Energy Seeding Method 

The idea of this method is not to simulate dissolution and nucleation, explicitly, even though our approach 

also embeds a spherical nucleus of the LS or LS2 crystal with different radii into a fully explicit lithium 

disilicate (LS2) glass melt. Instead, we evaluated the energy profile as a function of the cluster radius. From 

this energy profile, it is possible to extract the nucleation activation energy, the critical size of the cluster, 

and the interfacial free energy, which can avoid the possible timescale problem to observe dissolution and 

growth in our highly viscous systems. 

5.3.1. Generation of the starting configurations 

The embedded systems have been built as follows. First, we built a crystal model. For the modeling of LS2 

nucleus in the LS2 glass, we replicated the unit cell of the LS2 crystal 10x4x10 times to generate a box 

containing 14400 atoms, and the side lengths of the simulation box varied accordingly to the experimental 

density of the LS2 glass. On the other hand, to model the LS nucleus in the LS2 glass matrix, after replicating 
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the lithium metasilicate unit cell by 5x10x8 times to create a supercell with 9600 atoms, subsequently, the 

simulation box was enlarged to have the same density of the LS2 glass. Then, 1600 SiO2 formula units were 

randomly added in the vacuum space in the simulation box to maintain the overall compositions and 

density, same as those of LS2 glass. It is worth mentioning that system size effect is presumable in these 

calculations, and thus, we restricted the volume of the embedded crystal nucleus to less than 10 % of the 

total simulation box to avoid the artifact. 

Finally, in both cases, an atom was randomly chosen and the positions of the atoms locating within a 

distance 𝑟𝑠𝑝ℎ𝑒𝑟𝑒 from the central atom were fixed as an embedded crystal cluster (seed). Then, the cluster 

embedded systems were melted and quenched using the same procedure employed to generate the bulk 

structural models (described in chapter 5.1.2) with fixing the position of the seed, generating a model with 

a crystal embedded in a glassy matrix. The structure is then fully relaxed at room temperature for 500 ps in 

the NVT ensemble. In figures 5.7 and 5.8 the starting configurations and the glassy matrix containing the 

crystalline seed (8 Å as an example) are shown in a frontal and lateral views for the LS2 and LS crystals, 

respectively. 

 

FIG. 5.7. (a, b) Two views of the starting box (Li2Si2O5 crystal) and (c, d) the final box at 300 K with a LS2 

crystal nucleus with a radius of 8 Å, embedded into the LS2 glass matrix. Orange tetrahedral represent 

silicon whereas red and pink spheres represent oxygen and lithium ions, respectively. 
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FIG. 5.8. (a, b) Two views of the starting box (Li2SiO3 crystal with SiO2 random placed in the vacuum 

space) and (c, d) the final box at 300 K with a LS crystal nucleus with a radius of 8 Å, embedded into the 

remaining glass matrix. Orange tetrahedral represent silicon whereas red and pink spheres represent oxygen 

and lithium ions, respectively. 

Finally, the model was equilibrated for 2.4 ns at 800 K and 1000 K to investigate the temperature effect. 

During this equilibration, the positions of the atoms of the embedded crystals were also relaxed without 

constraints. Nuclei with 𝑟𝑠𝑝ℎ𝑒𝑟𝑒 from 6 to 14 Å were created and 7 replicas for each system were examined 

to have sufficient statistics. 

5.3.2. Free energy calculation 

To evaluate the energy differences between crystal, glass, and the cluster-embedded models, MD 

simulations on the LS2 glass and LS2 and LS crystals were also performed (four replicas each). For all the 

aforementioned systems, the internal energy (𝐸𝑆) of the system was accumulated and the Helmholtz free 

energy (𝐴𝑆) of the state 𝑆 (𝑆 refer to the crystal, glass and embedded system states) computed using the 

thermodynamic formulas (181) 
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𝐴𝑆 = −𝑘𝐵𝑇 𝑙𝑜𝑔 〈𝑒
−

𝐸𝑆
𝑘𝐵𝑇〉 (5.1) 

The free energy of nucleation (𝑊) with cluster radius 𝑟 is then computed as 

𝑊(𝑟) = 𝐴𝐶𝑟𝑦𝐺𝑙𝑎𝑠𝑠(𝑟) − 𝐴𝐺𝑙𝑎𝑠𝑠 (5.2) 

Where 𝐴𝐶𝑟𝑦𝐺𝑙𝑎𝑠𝑠 and 𝐴𝐺𝑙𝑎𝑠𝑠 are Helmholtz free energy of the crystal embedded system and the glass, 

respectively. In our calculations, we used the Helmholtz free energy of the glass as a reference. In CNT, 

the free energy of nucleation of a spherical nucleus with negligible strain energy is assumed to be composed 

of surface free energy and volume free energy as described in chapter 2.1.1. We try to reproduce the trend 

describe by CNT plotting the 𝑊 with different crystalline radii, which allows us to individuate the 𝑟𝑐. 

The interfacial free energy, 𝛾𝑠𝑙, which governs largely the crystal nucleation rate, is assumed to be equal to 

that of a planar interface and thus to be independent on the nucleus size. This is known as the capillarity 

approximation and is one of the most serious shortcomings of CNT, paragraph 2.1.2 for details. A benefit 

of our approach is that the interfacial free energy is not an input parameter independent of the nucleus size 

and temperature but is a property that varies inherently with the nucleus dimension and the temperature. 

The interfacial free energy can be computed from the MD simulations using equation 5.3 obtained from 

equation 2.2: 

𝛾𝑠𝑙(𝑟) =
𝑊(𝑟) + 4

3
𝜋𝑟3∆𝐴𝑣

4𝜋𝑟2
(5.3) 

It is thus necessary to calculate the ∆𝐴𝑉 at a defined temperature, which is the free energy difference 

between the melt and the crystal per unit volume of the crystal (𝑉𝑚). 

∆𝐴𝑉 =
𝐴𝐺𝑙𝑎𝑠𝑠/𝑚𝑒𝑙𝑡 − 𝐴𝐶𝑟𝑦

𝑉𝑚

(5.4) 

We used T = 800 K in this work to make our results comparable to that reported by McKenzie et al. (65) 

(that used a hybrid MD/MC/implicit approach to compute the free energy of nucleation of the LS and LS2 

crystals inside the LS2 glass) and to the experimental data (72). 

It should be noted that since the temperature, 800 and 1000 K, are below the computational melting point, 

the effect of the temperature on the free energy profiles is investigated assuming that the topology of the 

crystal/glass interface is similar. In other words, we do not investigate the dynamic evolution of the crystal 

growth with temperature but generate equilibrated model systems containing a crystal nucleus in an 

amorphous LS2 matrix, as previous Monte Carlo simulations (65). 

5.3.3. Free energy of crystal nucleation 

We apply the FESM method described above to obtain further insights on the possible mechanisms of 

nucleation from the LS2 glass forming liquid, computing the Helmholtz free energies of the LS and LS2 

crystals formation. In this free energy calculation, we modeled a spherical crystal nucleus embedded into a 
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glass model as seen in figure 5.7 and 5.8 and examined the size dependency of the nucleation free energy 

for both LS2 and LS crystals at 800 K. The Helmholtz free energy profiles are reported in figure 5.9. The 

error bar in this figure represents standard deviation of free energies evaluated by seven independent 

replicas. As expected from CNT, the free energy first increases and then decreases after reaching the 

maximum energy (barrier for nucleation) at the critical radius, figure 5.10. It is worth highlighting that LS2 

clusters with radius less than 5 Å were not considered to build the free energy profile in figure 5.9 (a). The 

free energy of such embryos formed during the glass formation is expected to be almost zero, because, as 

shown in chapter 5.1.4, crystalline clusters up to radii of 4.6 Å have a certain probability to form in the pure 

glass. Moreover, LS clusters of such small sizes lose the crystalline structure during relaxation at room 

temperature, which indicates their instability. According to the figure, at 800 K the critical radii for both 

LS and LS2 crystals are around 7 Å in excellent agreement with previous experimental estimations (182). 

 

FIG. 5.9. Free energy of nucleation for (a) the LS and LS2 crystals in the LS2 glass at 800 K and (b) the LS2 

crystals in the LS2 glass at 800 K and 1000 K with relative standard deviation. 
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FIG. 5.10. Structure of boxes with critical size nuclei. On the left glass with LS2 composition with the 

critical nucleus of Li2Si2O5 crystal. On the right, glass with LS2 composition with the critical nucleus of 

Li2SiO3 crystal. 

The computed Helmholtz free energy barrier for nucleation (𝑊) of the LS2 crystal at 800 K is about 59 kT, 

which agrees fairly well with the experimentally estimated ones, which are ranging from 35 and 50 kT at 

the temperature from 700 to 800 K (72). The large variability associated with the free energy is due to the 

variability of the energy of frozen liquid structures generated through the standard MD quenching protocols. 

In fact, the fast quenching of the melts prevents the good sampling of the free energy surface and thus glass 

structures with different energies are easily generated (183). Nevertheless, considering the unfavorable 

conditions in stoichiometry and structural similarities for the LS crystal in the bulk glass as discussed above, 

it is expected that the LS crystal can crystallize preferentially on the glass surface through the heterogeneous 

nucleation mechanism. Indeed, the energy barrier of heterogeneous nucleation (𝑊ℎ𝑒𝑡
∗ ) is lower than that of 

the homogeneous one (𝑊ℎ𝑜𝑚
∗ ) according to a geometric factor 𝜙(𝜃), which depends on the wetting angle 

between the solid and liquid at the interface (71) as shown in chapter 2.1.3. Further developments are 

required to extend the FESM method to investigate heterogeneous nucleation. 

McKenzie et al. (65) used a hybrid MD/MC approach to compute the free energy of nucleation of the LS 

and LS2 crystals inside the LS2 glass considered as an implicit medium. In their method, the nucleation free 

energy (NFE, 𝑊) was evaluated by considering three contributions: the cluster formation, the cluster to 

crystal transition and the cluster solvation energy. The thermodynamic barrier was estimated to be 40 kT 

and 34.5 kT for the LS2 and LS crystals, respectively. 

They showed that the NFE is higher for the LS2 than for the LS at smaller cluster dimension, but its value 

crossovers at around 4–5 formula units, and thus it was stated that the LS crystal first nucleates, and then it 

transforms to the LS2 with a thermodynamic barrier of 28.3 kT. A smaller free energy of nucleation at small 

cluster radius for the LS phase is also observed in our simulations, but since none of the two methods 
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investigates the reactive pathway and the kinetics associated to an eventual crystalline phase transition from 

the LS to LS2, explicitly, it is difficult to make speculation on the phase transformation. Both our results 

and those by McKenzie et al. (65) are in good agreement with the facts experimentally measured by 

Differential Thermal Analysis (DTA) and SEM observations by Soares et al. (184). In fact, the DTA data 

values have shown that two exothermic peaks appear at 615–680 °C and 750–800 °C, and these peaks are 

associated with the crystallization of the LS and LS2 phases, respectively, by XRD measurement. 

Morphological observations by SEM have also confirmed the occurrence of these two crystallization 

mechanisms since needle-like and granular crystals were detected in the microstructure of samples 

including LS and LS2, respectively. The authors have also found that, in the early stage of crystallization in 

the LS2 glass, both the LS and LS2 crystals nucleate simultaneously and independently (43), as explained 

in paragraph 1.4. Further, the analysis of the crystallization kinetics through the Johnson–Mehl–Avrami 

equation suggested that the surface crystallization (Avrami exponent n = 1) associated to the first peak 

rather than volume crystallization (Avrami exponent n = 3) associated to the second peak is dominant in 

the crystallization process. This is because the activation energy (225–275 kJ/mol) of the former is 

substantially lower than that of the latter (425–500 kJ/mol). Therefore, the LS crystal nucleates at the glass 

surface because favorable stoichiometric and thermodynamic conditions for its precipitation are present, 

whereas the LS2 crystal appears in the bulk of the glass. 

The effect of the temperature on the nucleation free energy profile was investigated only for the nucleation 

of the LS2 crystal, as shown in figure 5.9 (b). Although error bars are relatively large, both the critical size 

and the activation energy barrier increases with temperature as expected. 

In conclusion of this section, it is worth summarizing advantages of the FESM method, despite the not 

negligible error associated with the calculation of the free energy of the glass state. Firstly, it should be 

emphasized that our method inherently includes the surface energy penalty during the creation of the 

melt/crystal interface and the strain energy at the interface. To the best of our knowledge, the surface energy 

contribution was implicitly subsumed in the solvation term (parameterized for a particular system) of the 

hybrid MC method used by McKenzie et al. (65,66) The MC simulation highlighted that the strain energy 

term does not play an important role in nucleation above the glass transition temperature, thereby the 

contribution is usually neglected (82). 

The interfacial free energy, 𝛾𝑠𝑙, associated to the formation of the melt/crystal interface for the LS2 nucleus 

with critical size using equation 5.3 calculated at 800 K and 1000 K is respectively 0.3 ± 0.1 and 0.4 ± 0.1 

J/m2. These values are comparable to the value estimated by Fokin et al. (185) when accounting both the 

temperature and size dependence of the crystal/liquid surface energy. 

Moreover, as shown above, our approach can be used to compute the thermodynamic barrier for 

homogeneous crystal nucleation at different temperatures. This would be useful because the 

thermodynamic barrier has been shown to exhibit an unusual increase with a decrease in temperature below 
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the maximum nucleation rate for a variety of oxide glass-forming liquids (82). Although the internal elastic 

stresses arising from the density misfits between the crystal and liquid phases might play a role, the 

phenomenon is still not completely understood and should be the object of future investigations (82). 

The approach is applicable to any system of interest since the parameters needed are only the interatomic 

force field for MD simulations. An advantage with respect to the original seeding method (175) is that it 

allows extracting thermodynamic parameters of the nucleation process in high viscous liquids. Finally, all-

atomistic MD simulations can provide information on the structure of the melt/crystal interface, which are 

hardly accessible from experiments. For instance, figure 5.11 (a) shows the computed local order 𝑄6
𝑙𝑜𝑐 

Steinhardt parameter (see chapter 3.2.6.2) of silicon atoms from the center of the LS and LS2 crystal nuclei 

(of radius 10 Å shown in figure 5.11 (b)) to the glass matrix at 800 K. The ability of the Steinhardt 

parameters to distinguish between the crystalline and glass phases was assessed. The most satisfying 

parameter obtained was indeed 𝑄6
𝑙𝑜𝑐, calculated on Si ions, using 𝑅1 = 5.3 Å and 𝑅2 = 3.7 Å, with a home-

made script. 

 

FIG. 5.11. (a) 𝑄6
𝑙𝑜𝑐 Steinhardt parameter of silicon atoms from the center of the LS or LS2 crystal nuclei to 

the glass matrix at 800 K. (c) Computed 𝑄6
𝑙𝑜𝑐 parameter for silicon atoms from the center of the LS2 crystal 

nuclei (with radius of 10 Å) to the glass matrix at 800 K, 1000 K and 1200 K. (b, d) Glass with LS2 

composition with an embedded nucleus of Li2Si2O5 crystal with radius of 10 Å equilibrated at 800 K (b) 

and 1200 K (d). 
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The gradual change of 𝑄6
𝑙𝑜𝑐 Steinhardt parameter demonstrates gradual structural transition from the crystal 

to the glass (melt) structure and the profile allows us to measure the interface thickness in both cases. The 

LS2 crystal/LS2 glass interface thickness is of about 4 Å and less than that of the LS crystal/LS2 glass, which 

is about 6 Å. This may be due to the greater flexibility of the Q2 chains in the LS crystal that easily lose the 

perfect order at the interface with the glass. In figure 5.11 (c), the 𝑄6
𝑙𝑜𝑐 parameters were compared at 800 

K, 1000 K and 1200 K to understand the effect of the temperature on the LS2 crystal/glass interface. The 

figure shows that the interface slightly enlarges in about 1–2 Å at 1000 K, while the 𝑄6
𝑙𝑜𝑐 value in the cluster 

approaches to that in the glass matrix and the crystalline order is almost lost at 1200 K. A visual inspection 

according to figure 5.11 (d) reveals that the layered structure of the crystal is still maintained even though 

some of the Si–O bonds in the silicate network break and form again. The seed has disordered layers 

structure at 1200 K. 

5.4. Limits of molecular dynamics 

Classical MD simulations were used to shed light on the crystal nucleation process in the bulk and at the 

surface of the stoichiometric lithium disilicate glasses. We employed a modified cluster-exploring 

algorithm to detect subnano-scale nuclei in the initial crystallization stage, and the free energy calculation 

using a modified seeding method for the first time in multicomponent oxide glasses. Our simulations 

suggest that lithium disilicate and lithium metasilicate crystals nucleate independently. The former would 

appear homogeneously from the bulk, whereas the latter can heterogeneously nucleate only on the glass 

surface where favorable exogenous conditions are present. Therefore, the failure of CNT in predicting the 

magnitude of the steady state nucleation rate is not due to the formation of metastable phases as suggested 

in some of earlier investigations (43,52,184). 

As observed in previous works, homogeneous nucleation is associated with the similarity in intermediate 

range-order morphology of modifier cations between the crystal and the glass. In fact, the Li–Li second 

moments computed on the bulk glass model is remarkably close to that of the LS2 crystal. The structural 

analysis using the improved cluster algorithm reveals that embryos with radii of 4 – 4.5 Å nucleate during 

glass formation both in the bulk and on the surface, with the stoichiometry and structure very similar to 

those of the LS2 and LS crystals. Another interesting finding is that the addition of the nucleating agent 

P2O5 leads isolated orthophosphate units’ formation that attracts Li ions and promotes Li3PO4 embryos in 

the glass. This phenomenon facilitates crystallization of lithium metasilicate crystals on the surface where 

chains of Q2 silica species surrounded by Li ions are dominant, rather than inside the bulk. 

The FESM allowed us to compute the free energy of nucleation for the LS2 and LS crystals in the 

stoichiometric LS2 glass and to investigate the effect of the temperature. The critical radii obtained are in 

excellent agreement with experimental estimations, and the activation energy barriers are comparable to 

the experimental data. This seems to confirm that both crystal phases form obeying the CNT if the 

capillarity approximation is overcome. That is inherently assumed in the FESM, the values of 
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thermodynamic properties such as the interfacial free energy are indeed size dependent. Therefore, we 

confirm that the FESM is a powerful approach to study nucleation in glass, for instance to predict which 

crystals would nucleate easier or extract key thermodynamic parameters as a function of nucleus size, 

temperature, and pressure. 

Unfortunately, the limitations that we encountered in using these techniques are of prime importance. The 

formation of the crystalline embryo is a non-accessible phenomenon as well as the formation of different 

metastable phases. It is not possible to simulate the transformation from a phase to another or the dynamics 

of nucleation or growth. The viscosity, the low mobility of the atoms, is the constraints that we must 

overcome. Another approximation is the shape of the crystalline embryo: in the FESM we have assumed 

that the stable crystalline nucleus has a spherical structure, following the CNT. But according to the 

symmetry of a crystalline phase it is possible that the surface energy is optimized if the nucleating crystal 

has a different shape.  



 

 

Chapter 6. Assessment of the 

Metadynamics parameters on 

the crystallization process 

In chapter 3.2, metadynamics (MetaD) has been presented as a technique capable of driving crystallization 

in highly viscous materials. However, the literature on the application of such techniques on glass forming 

liquids is limited to the study of silica crystallization (140). To apply it on our target system, lithium 

disilicate, it is important to understand how to set-up the MetaD simulation parameters and recover 

converged free energy surfaces (FES) depending on the system we are working with. 

To obtain converged FESs (141,186) simulations time of microseconds can be required (140) and to 

minimize the time needed to reach convergence, optimization of the MetaD simulation set-up is 

fundamental. Several review articles (186) provide guidelines to appropriately choose the CVs and other 

parameters in MetaD simulations for organic and biological systems where CVs usually depend on few 

constitutive atoms, and FESs converge in nanoseconds. Contrarily, for the study of 

nucleation/crystallization the CVs depend on a large number of atoms. For example, one of the most used 

CVs to represent the degree of crystallinity is the intensity of specific peaks in the XRD patterns, which is 

evaluated from the positions of hundreds of atoms in the simulation box (140). Therefore, in the study of 

crystallization of highly viscous systems the MetaD simulation set-up used for molecular systems cannot 

be applied, and further investigation is necessary for effective MetaD simulations. 

A systematic study of the effect of MetaD parameters, temperature, and system dimension is carried out in 

this chapter to effectively obtain converged Free-Energy Surfaces in glass-forming liquids. We selected 

silica as a prototypical material of silicates because β-cristobalite can relatively easily crystalize through 

MetaD simulations owing to its simple microstructure. 

6.1. Description of SiO2 

Silica, SiO2, is one of the most abundant minerals in the Earth’s crust and it is widely used in many fields, 

from engineering to pharmaceutical industries and microelectronics. Silica basic units are SiO4 tetrahedra 

that are connected to each other sharing a corner, edges or faces. Therefore, there are many silica 
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polymorphs depending on how the tetrahedra are interconnected and organized (187). Clearly the stability 

of different polymorphs is different depending on temperature and pressure. β-cristobalite crystallizes from 

liquid silica at around 2000 K under equilibrium conditions (188,189) and the tetrahedra are arranged in a 

cubic diamond lattice, as shown in figure 6.1. In liquid silica, SiO4 tetrahedra are organized in a disordered 

network. 

 

FIG. 6.1. Models’ structures of β-cristobalite and liquid silica. 

It is not easy to simulate the crystallization of β-cristobalite from liquid silica. The main reasons are the 

number of different polymorphs that can crystallize according to the conditions, and the time limitation of 

the computer simulation itself. Liquid silica is a glass forming liquid; therefore, its crystallization is a rare 

event and its simulation using molecular dynamics would require computer time that is non-accessible 

today. Enhanced sampling techniques make the crystallization process accessible, as shown by the study 

reported in ref. (140) carried out by means of metadynamics. 

6.1.1. Collective variable 

 As discussed in chapter 3.2.6, the CV must be able to distinguish between the phases involved in the 

transformation we are interested in. For the study of the crystallization of silica, the intensity of an XRD 

peak has proven to be efficient to drive the transformation. 
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The formula used is described in chapter 3.2.6.1. The wavelength 𝜆 of the X-ray is set to 1.5406 Å. To 

choose an efficient 2𝜃 value, the XRD pattern of the crystalline and liquid phases is compared in figure 

6.2. In this case we have considered only silicon atoms in the calculation of the intensity of the XRD 

patterns. The WTMetaD simulation accuracy is not sacrificed because oxygen positions are related to 

silicon positions when promoting crystallization. 

 

FIG. 6.2. XRD spectra of the crystalline (β-cristobalite) and silica melt by considering only Si atoms. The 

XRD spectra are averaged along the 2 ns of MD trajectory, and the standard deviation is represented with 

a shaded region. 

The two curves are obtained from 2 ns of unbiased MD simulations of β-cristobalite and silica melt at 2400 

K using 192 atoms, which is the size of the investigated system, if a larger model need to be simulated the 

CV must be evaluated using the corresponding model. The liquid silica has been obtained by melting the 

crystalline model at high temperature, up to 3500 K, and cooling it down until 2400 K. The peak intensity 

at 2𝜃 = 22° is found to be suitable for distinguishing the crystalline and amorphous structures. 

6.2. Computational details 

In this study, all initial configurations were obtained by replicating the β-cristobalite crystalline unit cell 

(190), which contains 24 atoms in a cubic lattice with size of 7.12 Å, to a larger model. We employed the 

interatomic potential developed by Pedone et al. (114) for pair-wise short-range interactions, chapter 3.1.2, 

while long-range Coulomb interactions were described by using Wolf summation method (123). The large-

scale atomic/molecular massively parallel simulator (LAMMPS) (191) software patched with the open-

source, community-developed PLUMED plugin for molecular dynamics (192,193) version 2.6 was used 

for all MD and WTMetaD simulations. In all simulations, the Nosé-Hoover thermostat (194) and barostat 

were employed for performing NVT or NPT simulations at 1 bar. The relaxation times for controlling 

temperature and pressure were 0.1 ps and 10 ps, respectively. All WTMetaD simulations were performed 
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using the NPT ensemble. The equation of motion was integrated using the Verlet algorithm (181) with a 

timestep of 2 fs. 

6.2.1. Choice of tested MetaD parameters 

The starting point for our investigation is the work of Niu et al. (140) were a system containing 192 atoms 

has been investigated in a range of temperatures between 2300 K and 2800 K. They have used a WTMetaD 

simulation where the bias was constructed by depositing Gaussian every 1 ps with width of 5 CV units and 

height of 40 kJ/mol, with a bias factor of 100. However, the force field employed in this work is not the 

same, and the results can be different. 

To choose the MetaD parameters to be tested, we have considered also the guidelines of the work of Bussi 

and Branduardi (186). 

• First the height 𝜔 should be a fraction of 𝑘𝐵𝑇 at the desired temperature. 

• For the width, 𝜎, a preliminary unbiased MD simulation is performed for each phase involved in 

the transformation. For the chosen CV, the probability distribution along the sampled CV range is 

computed and a Gaussian can be fitted on this distribution. This can be done assuming that the free 

energy landscape minimum is a quadratic minimum. Thus, the width is equal to the standard 

deviation of the fitted Gaussian. 

• To obtain a rough estimation of the deposition rate, 𝜏, a short MD run is performed, and the 

autocorrelation of the CV is evaluated. With this rule the system can relax between one deposition 

and the other, avoiding the deposition of Gaussian in the same point of the phase space. 

• The most difficult one is the bias factor, 𝛾, related to the ∆𝑇. This value depends on the barrier that 

separates the metastable basins. Thus, if the barrier is 𝑛-times 𝑘𝐵𝑇 the bias factor is chosen to be 

𝑛. 

We decided to investigate a system containing 192 atoms (2x2x2 unit cell), as in the paper of Niu et al., 

first, at 2700 K. As for the height (𝜔), since 𝑘𝐵𝑇 is equal to 22.4 kJ/mol, we decide to test 20 and 60 kJ/mol. 

Since the standard deviation on the distribution of the CV for unbiased MD simulations of the crystalline 

and the liquid phases is 7 and 9 CV units respectively, we decided to test 2 and 8 CV units. 

We used a fixed deposition rate of 1 ps determined by computing the autocorrelation of the CV in a short 

MD run. Finally, as for the bias factor we tested values above and below the one used by Niu et al. (140): 

20, 50 and 150. The WTMetaD parameters tested are reported in table 6.1. 

TABLE 6.1. List of experimental conditions tested to examine the effect of WTMetaD parameters. 

n° experiment 𝝎 (kJ/mol) 𝜸 𝝈 (CV units) 
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1 20 50 2 

2 20 50 8 

3 20 150 2 

4 60 50 2 

5 60 50 8 

6 60 150 2 

7 60 20 2 

All simulations in this test set were performed with a unit cell containing 192 atoms (2x2x2) at T=2700 K. 

The effect of the temperature was studied at 3200 K and 2700 K. The simulation size effect was studied by 

performing some simulations with unit cells containing 648 (3x3x3) and 1536 (4x4x4) atoms. 

To rigorously investigate the effects of the parameters listed in table 6.1, WTMetaD simulations were 

performed for 10 μs at 2700 K. In the following, we will show the comparison between the above-

mentioned simulations to highlight the most important information. First, we will discuss the procedure 

used to analyze a single simulation, because it will clarify all results that will follow. 

6.3. How to analyze a simulation 

The time evolution of the CV used to bias the simulation gives information about the diffusivity of the 

system between the crystal and amorphous states. In figure 6.3, the simulation n° 4 (ω=60, γ=50, σ=2) is 

chosen as an example. 

FIG. 6.3. Time evolution of the CV in WTMetaD simulation n° 4 at 2700 K. 
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The transitions are frequently observed during the simulation. The crystalline phase is located at the high 

value of the CV, between 150 and 300, while the melt phase is in the region between 0 and 150. The other 

CV-values explored are associated with high-energy structures, which are not important to understand the 

mechanism of crystallization. 

The trend of the offset energy, 𝑐(𝑡), shown in figure 6.4 demonstrates how the applied bias varies. The re-

crossing frequency, which is the number of transitions between solid and liquid per unit time during the 

WTMetaD, can be an indicator of the diffusivity (141). Assuming the adiabatic regime appears from 4 μs, 

the re-crossing frequency of simulation n° 4 is on average 2.5 re-crossings per microsecond. Note that, as 

expected from the theory of MetaD, the 𝑐(𝑡) rapidly increases in the initial stage followed by a slower 

increase in the quasi-stationary bias region that indicates that the asymptotic regime in which WTMetaD is 

valid has been reached. Albeit the achievement of an asymptotic regime has been used as an indication of 

converged simulations in previous works, we will show in the following that this is not always the case. 

FIG. 6.4. The offset energy 𝑐(𝑡) as a function of simulation time for simulation n° 4. 

The FES can be evaluated once the adiabatic regime is reached using two approaches. The first approach 

accumulates the bias and estimates the FES using the equation 3.23. However, if the additional bias is not 

completely stationary (a criterion satisfied only over infinite time) the calculated FES keeps changing. This 

behavior is observed in figure 6.5 (a). In fact, the variation of the FES curve tends to decrease as the 

simulation proceeds, but it does not converge. Interestingly, the estimated FES fluctuates around the correct 

FES beyond the diffusive regime. Therefore, a cumulative average potential and an average of FES can be 

evaluated. This procedure is usually applied in the non-tempered MetaD simulations (146), because for the 

WTMetaD the average FES converges by construction as the applied potential decreases with time (195). 

It is still a useful procedure, not for the estimation of the error in the free energy calculation, but to 

understand the convergence. The average FES is reported in figure 6.5 (b). We started to accumulate the 

potential after the two free-energy wells were filled. Accordingly, the FES curve converges relatively 
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quickly at around 5-6 μs. The last approach is the reweighting procedure described by equations 3.16 and 

3.24. The error of the FES was estimated using the block analysis, paragraph 3.2.4. 

 

FIG. 6.5. Different methods to calculate FES of simulation n° 4. (a) Cumulative bias is evaluated and using 

eq. 3.XX free energy is calculated at each time. (b) After a suitable initial time, the average of the 

cumulative bias at different times is calculated. (c) FESs were evaluated using the reweighting procedure 

applied starting from different simulation times. (d) Comparisons of final FESs obtained with averaging 

and reweighting methods; the second ones report the error calculated with the block analysis. 

The following step is to understand which part of the simulation must be accounted for accumulating the 

probability distribution. According to figure 6.4 and figure 6.5 (a), the quasi-static regime has not been 

reached before 4-5 μs, therefore, we should not take the earlier configurations into account. We selected 

different starting points to see how the calculated FES changes and progresses over time. Figure 6.5 (c) 

shows an overview of some reweighted FESs. In this figure, color ranges are associated with five different 

starting points, as indicated in the legend. Even though the reweighted FESs obtained starting from 0 and 

2 μs are not meaningful from a physical viewpoint, they are also compared to understand what happens in 

the non-adiabatic regime to estimate the FES. 

The choice of the starting time is crucial to calculate the correct FES, because, in fact, the reweighted FES 

keeps changing until 7 μs. After 7 μs, the longer simulation does not vary the FES shape. Figure 6.5 (d) 

compares the FESs obtained by the cumulative averaging and reweighting procedures. The latter FES is 
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shown with standard deviations. The FES reweighted form 7 μs agrees well with cumulative averaged one. 

The sufficiently small error calculated from the block analysis proves the convergence. As shown in figure 

6.6, the error was evaluated with different block sizes. The plateau independent from the block dimension 

after approximately one hundred thousand blocks gives the average error of the FES. 

 

FIG. 6.6. The error of FES obtained from block analysis on probability distribution histogram accumulated 

starting from 7 μs to 10 μs. 

Tiwary and Parrinello (150) defined the time-independent estimator as equation 6.1 to confirm the free 

energy convergence in a given small region of the CV space: 

𝛽𝐹(𝒔) =
−𝛾𝑉(𝒔, 𝑡)

𝑘𝐵∆𝑇
+ log ∫ 𝑑𝒔 𝑒𝛾𝑉(𝒔,𝑡) 𝑘𝐵∆𝑇⁄ (6.1) 

From equation 6.1, the difference between the free energies in two small regions 𝑠1 and 𝑠2 can be obtained: 

∆𝐹𝑠1,𝑠2
=

−𝛾

𝛾 − 1
 ∆𝑉𝑠1,𝑠2

(6.2) 

∆𝐹𝑠1,𝑠2
 is equivalent to the direct difference in free energy obtained by the accumulated bias within the two 

states. Because ∆𝐹𝑠1,𝑠2
 can be calculated during the WTMetaD simulations, it is also an indicator of the FES 

convergence, at least, at the two small regions 𝑠1 and 𝑠2. We call this parameter 𝑑𝑖𝑟𝑒𝑐𝑡 ∆𝐹. 

The ∆𝐹 between the basins can be also calculated from the probability distributions obtained during the 

reweighting procedure. The relative reweighted free energy difference between state 𝐴 and 𝐵 can be 

correctly determined from 𝐹(𝒔) by integrating the probabilities of the two states (according to equation 

3.16) 
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∆𝐹𝐴,𝐵 =
−1

𝛽
 log

𝑃𝐴

𝑃𝐵
=

−1

𝛽
 log

∫ 𝑑𝑠 𝑒−𝛽𝐹(𝒔)
𝐴

∫ 𝑑𝑠 𝑒−𝛽𝐹(𝒔)
𝐵

(6.3) 

By assuming that states 𝐴 and 𝐵 are two wells, the difference in height between the two free energy minima 

is a possible approximation of 𝛥𝐹 (142), if the shapes of the two basins are similar. We call this parameter 

𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 to use as another estimator of FES convergence despite the lower accuracy. Both the 

𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 should converge to the same value if they are calculated in the same region if 

the total free energy surfaces agree with each other. If the 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 does not agree with the 

𝑑𝑖𝑟𝑒𝑐𝑡 𝛥𝐹, the probability distribution might be corrected avoiding the non-adiabatic region. It is important 

to ensure that the accumulation is started from the quasi-stationary regime to collect meaningful probability 

distributions. The 𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 are less accurate but faster and more practical indexes than 

the complete FES. In figure 6.7, these estimators are compared. 

 

FIG. 6.7. 𝛥𝐹 between the minima of the two states obtained directly from the acting bias and from the 

reweighting procedure started at different starting times. The dotted line indicates the final average value 

with a blue stripe representing 1 kBT width. 

The 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 converges faster than the 𝑑𝑖𝑟𝑒𝑐𝑡 𝛥𝐹; however, it converges to the correct value only 

when it is calculated from the adiabatic regime. The block analysis can be used to judge whether the 

sampling is sufficient or not. 

6.4. Effect of MetaD parameters 

In this section, the comparisons between the selected simulations are shown to highlight the importance of 

the parameter choice. We discuss the best parameter set for obtaining a faster and more accurate 

convergence. 
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FIG. 6.8. (a) 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 calculated for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 6 

(𝜔 = 60, 𝛾 = 150, 𝜎 = 2), which differ in 𝛾 value. (b) Comparison between FESs obtained from the two 

simulations using reweighting and cumulative average procedures. 

Figure 6.8 reports the results of simulations n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 6 (𝜔 = 60, 𝛾 = 150, 𝜎 = 2), 

which differ only in the bias factor value. The 𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 are compared to see the effect 

of the bias factor, 𝛾, in figure 6.8 (a). The 𝑑𝑖𝑟𝑒𝑐𝑡 𝛥𝐹 of n° 6 exhibits a greater fluctuation, meaning 

considerable variations of the cumulative FESs over time and a higher re-crossing frequency. Contrarily, 

as shown in figure 6.3, simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) exhibits smaller fluctuations and re-crossing 

frequency. Figure 6.8 (b) shows that in simulation n° 6 (𝜔 = 60, 𝛾 = 150, 𝜎 = 2) the reweighted FESs 

calculated from different starting times do not converge with the average value of the cumulative FES, 

implying that the adiabatic region is not reached. The time evolution of the CV for simulation n° 6 (shown 

in figure 6.9) reveals that the bias factor, 𝛾 = 150, is too high and pushes the system to explore high-energy 

CV regions, which are not important to understand melt-crystal transition. With a high bias factor, a high 

quantity of bias is deposited in a shorter time than the opposite case. If this quantity is higher than necessary, 

it must be compensated with the addition of smaller gaussian. However, the lowering of the height is slower 

with a high 𝛾 and so longer time is needed to reach convergence. The exploration of phases out of the range 

of interest can be controlled, constraining the dynamics in a certain region of the CV (196). However, in 

this case we have not observed an improvement in the convergence speed, since the time spent in the high-

energy region is not significant. 
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FIG. 6.9. Time evolution of the CV in WTMetaD simulation n° 6 (𝜔 = 60, 𝛾 = 150, 𝜎 = 2) at 2700 K. 

This behavior is observed also in simulation n°3 (𝜔 = 20, 𝛾 = 150, 𝜎 = 2), which also has a high value of 

𝛾, shown in figure 6.10. On the other hand, simulation n° 7 (𝜔 = 60, 𝛾 = 20, 𝜎 = 2), which has a low 𝛾-

value, presents small fluctuations but too low diffusivity (figure 6.11 (a)) to obtain the converged FES in 

reasonable simulation time. Indeed, the block analysis reported in figure 6.11 (b) confirms that the 

simulation n° 7 does not reach convergence within 10 μs. 

 

FIG. 6.10. (a) 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 calculated for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 3 

(𝜔 = 20, 𝛾 = 150, 𝜎 = 2). (b) Comparison between FESs obtained from the two simulations using 

reweighting and cumulative average procedures. 
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FIG. 6.11. (left) Time evolution of the CV in WTMetaD simulation n° 7 (𝜔 = 60, 𝛾 = 20, 𝜎 = 2) at 2700 K, 

(right) estimation of the error using the block analysis on the probability distribution. 

 

FIG. 6.12. (a) 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 calculated for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 1 

(𝜔 = 60, 𝛾 = 20, 𝜎 = 2). (b) Comparison between FESs obtained from the two simulations using reweighting 

and cumulative average procedures. 

Figure 6.13 compares simulations differing in the height, 𝜔, which was 20 kJ/mol for simulation n° 1 (𝜔 = 

20, 𝛾 = 50, 𝜎 = 2) and 60 kJ/mol for n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2). Both the FESs and 𝛥𝐹 almost perfectly 

matched. The re-crossing frequency is also not affected by the value of 𝜔. 
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FIG. 6.13. (a) 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 calculated for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 1 

(𝜔 = 20, 𝛾 = 50, 𝜎 = 2), which differ in 𝜔 value. (b) Comparison between FESs obtained from the two 

simulations using reweighting and cumulative average procedures. 

 

FIG. 6.14. (a) 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 calculated for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 5 

(𝜔 = 60, 𝛾 = 50, 𝜎 = 8), which differ in 𝜎 value. (b) Comparison between FESs obtained from the two 

simulations using reweighting and cumulative average procedures. 

Figure 6.14 compares simulations n° 4 and n° 5 differing in the width of the Gaussian: 𝜎 = 2 and 𝜎 = 8, 

respectively. The width must be chosen carefully, because it spreads the bias in the region near the explored 

CV. It accelerates filling the wells in a more efficient way, resulting in a faster decrease in the height of the 

Gaussians. Contrarily, the phase space associated to each state has to be sufficiently larger than the width 

of Gaussians, otherwise the bias affects outside of the interested regions. The standard deviations of the CV 

were approximately 7 CV units and 9 CV units in the crystalline and the melt phases, respectively (see 

paragraph 6.2.1). Indeed, simulation n° 4 whose 𝜎 value is a fraction of the standard deviations converged, 

while simulation n° 5 did not probably due to the larger bias. Similar behaviors were observed for the other 

simulations when the Gaussian width is too large. 

Only a few simulations, n° 1 (𝜔 = 20, 𝛾 = 50, 𝜎 = 2) and n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2), converged at 2700 

K within 10 µs. The agreement between the cumulative average and the reweighted FESs is obtained only 
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in those two simulations, but also simulation n° 2 (𝜔 = 20, 𝛾 = 50, 𝜎 = 8), n° 5 (𝜔 = 60, 𝛾 = 50, 𝜎 = 8) and 

n° 7 (𝜔 = 60, 𝛾 = 20, 𝜎 = 2) obtained similar results (see figure 6.12 and 6.15). These results indicate the 

predominant effect of the bias factor. Increasing the bias factor leads to higher transition rates and affects 

the exploration of the phase space. An appropriate choice of the bias factor may allow overcoming very 

high barriers to see unlikely processes, reaching high-energy configurations. On the other hand, exploring 

such high-energy regions increases the simulation time to reach convergence in the stable regions of 

interest. In our specific case, 𝛾 = 50 is the best choice. 𝜎 = 2 is a good choice since it allows to reach 

convergence faster, while height, 𝜔, is less influential even though simulation n° 1 (𝜔 = 20, 𝛾 = 50, 𝜎 = 2) 

reached convergence slightly earlier than n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2), as shown in figure 6.13 (a). 

 

FIG. 6.15. (a) 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 calculated for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) and n° 2 

(𝜔 = 20, 𝛾 = 50, 𝜎 = 8). (b) Comparison between FESs obtained from the two simulations using reweighting 

and cumulative average procedures. 

6.5. Effect of temperature 

To investigate the effect of the temperature, all experiments in table 6.1 were examined at 3200 K as well, 

but for the sake of brevity we focus only on the results of experiment n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2). Figure 

6.16 shows the time evolution of the biasing CV (peak at 2𝜃 = 22°) at the two temperatures. The frequency 

shuttling between the two states is much higher at 3200 K due to the higher diffusivity and atomic mobility. 

This enables a more efficient sampling of the configurational space and thus to obtain the crystallization 

pathway. Consequently, the simulations at higher temperatures converge easier. Figure 6.17 shows the 

fluctuations of the 𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 for the two temperatures. 
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FIG. 6.16. Time evolution of the CV during 4 μs of WTMetaD simulation of experiment n° 4 (𝜔 = 60, 𝛾 = 

50, 𝜎 = 2) at 2700 K and 3200 K. 

 

FIG. 6.17. Comparison between 𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝛥𝐹 for simulation n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) at 

2700 K (left) and 3200 K (right). 

At 3200 K, the 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 and 𝑑𝑖𝑟𝑒𝑐𝑡 𝛥𝐹 agree well because both converge to the average value within 

4 μs, whereas at 2700 K the simulations do not converge within this time. Moreover, lower fluctuations and 

lower error (6.5 kJ/mol) of the 𝑑𝑖𝑟𝑒𝑐𝑡 𝛥𝐹 are observed at 3200 K with respect to those at 2700 K, at which 

the error is 12 kJ/mol, as shown in figure 6.6. All simulation conditions in table 6.1 at 3200 K converge 

towards the same FES faster than at 2700 K regardless of the parameter sets (reported in figure 6.18). 

Therefore, temperature seems to be the most important factor to reach accurate FES using WTMetaD, 

especially for highly viscous systems such as silicate melts. 



 6. Assessment of the Metadynamics parameters on the crystallization process 

85 

 

To obtain converged FES at the melting temperature or lower, several tens of microseconds of simulations 

would be required for silicates. In such cases, one possible alternative method is reweighting a high-

temperature distribution probability to a lower temperature one, as described in section 3.2.5. 

 

FIG. 6.18. Comparison between direct and reweighted ΔF for simulation n° 1 (𝜔 = 20, 𝛾 = 50, 𝜎 = 2), 2 (𝜔 

= 20, 𝛾 = 50, 𝜎 = 8), 3 (𝜔 = 20, 𝛾 = 150, 𝜎 = 2), 5 (𝜔 = 60, 𝛾 = 50, 𝜎 = 8), 6 (𝜔 = 60, 𝛾 = 150, 𝜎 = 2), 7 (𝜔 

= 60, 𝛾 = 20, 𝜎 = 2) at 3200 K. 

 

FIG. 6.19. (a) Comparison between FESs calculated directly from the simulations n°4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 

2) at 3200 K (starting from 1 μs) and 2700 K (starting from 7 μs) and using the rescaling procedure from 

one temperature to the other. (b) The reweighted FES obtained at 2700 K is compared with a rescaled curve 

from 3200 K using different sampling intervals; the curve becomes smoother as the sampling increases. 
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The reliability of the temperature reweighting method is verified by evaluating the FES associated with the 

crystallization of β-cristobalite from silica melt, as shown in figure 6.19. The rescaling procedure was 

applied at both temperatures using 3 μs of simulations, from 1 to 4 μs at 3200 K and from 7 to 10 μs at 

2700 K. These results show that the temperature reweighted FES (from 3200 K to 2700 K) reproduces well 

(within the simulation error) the FES directly obtained from the WTMetaD simulation at 2700 K, even 

though with a larger error. The same is true if we convert the FES at 2700 K to 3200 K, confirming the 

reliability of this approach. 

The roughness and the error of the rescaled FES from 2700 K to 3200 K (red curve) in figure 6.19 (a) is 

higher than that of the rescaled FES from 3200 K to 2700 K (blue curve) because of the poorer sampling 

performed at lower temperature, 2700 K, and for the large fluctuation of the associated weights. Longer 

simulations are needed to better sample the phase and make the curve smoother, as observed in figure 6.19 

(b). Because it is expected that the roughness of the rescaled FES increases with an increase of the 

temperature gap, the gap should not exceed 500 – 600 K to avoid undesired artifacts. 

6.6. Effect of box dimension 

In real materials, homogeneous nucleation occurs stochastically in the bulk of the melt, leading to the 

formation of several critical nuclei that grow until they impinge on each other to form polycrystalline 

materials or glass-ceramics. The observation of the whole process in computer experiments would require 

extremely large simulation models with at least millions of atoms, which are too expensive for MetaD 

simulations. Because much of the scientific interest is addressed to the formation of critical nuclei, such as 

CNT, it is worth investigating the initial process of nucleation. In principle, crystallization should be 

investigated using simulation boxes much larger than the critical nuclei, but this is not always possible since 

the critical dimensions strongly depend on the materials and in silicates can range from a few angstroms to 

nanometers (197). Nevertheless, it is thus important to investigate the effect of the system dimensions on 

the MetaD results. The FES is expected to change with box dimension since both the intensity of the 

diffraction peaks used as CV and the melting temperature varies as shown in chapter 4.2.1.1 for the lithium 

disilicate. 

6.6.1. Size effect on XRD pattern and melting temperature 

The XRD pattern was calculated on boxes with different sizes. Figure 6.20 shows the XRD patterns 

obtained by averaging the MD-NPT simulations for 2 ns at 2000 K for the simulation boxes containing 

192, 648, 1536, 5182, 12288 and 24000 atoms. The main peaks shift toward lower angle and augment their 

intensity with an increase of the box size. The peak associated to the (111) plane (the one used to bias the 

simulations) does not vary for systems containing more than 5000 atoms, whereas the other two peaks reach 

convergence with the larger boxes. 
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FIG. 6.20. XRD pattern collected during MD run of simulation boxes containing different numbers of atoms 

compared to perfect β-cristobalite in the plot below. 

To investigate how the melting temperature changes system dimension we used the phase coexistence 

method as proposed by Dozhdikov et al. (160,163) and described in chapter 4.2.1. 

The starting configurations were built as rectangular parallelepipeds with z-dimension around 3 times larger 

than the x and y-dimensions. We replicated the β-cristobalite unit cell 2x2x7, 3x3x8, 4x4x14 and 5x5x20 

obtaining simulation boxes with respectively 672, 1728, 5376 and 12000 atoms. Resulting 𝑇𝑚 are plotted 

against box dimensions in figure 6.21. 

Figure 6.21 shows that the melting temperature also varies with the simulation box dimension. 𝑇𝑚 decreases 

as the system size increases, until it reaches convergence at around 2670 K. According to this result, it is 

expected that the FESs might be dependent on the simulation size if the same temperature is assumed. It is 

thus important to determine the computational melting temperature with the simulation size according to 

the force field to define the choice of the temperature in the MetaD simulations. 
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FIG. 6.21. Calculated melting temperature versus system size for silica using the two-phase coexistence 

method. 

6.6.2. Comparison of simulations 

 

FIG. 6.22. Time evolution of the collective variable during 4 and 8 μs of metadynamics simulation of 

experiment n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) at 3200 K using a box containing respectively 192 (blue dots) and 

648 atoms (orange dots). 

Figure 6.22 compares the time evolutions of the biasing CV for MetaD simulations conducted at 3200 K 

using the parameters set of n° 4 (𝜔 = 60, 𝛾 = 50, 𝜎 = 2) on the systems with 192 and 648 atoms. The 

transition frequency decreases, increasing the box size. This is because the increase of the number of atoms 

augments the accessible configurational space, and, therefore, the complete crystallization of the entire 

simulation box becomes more difficult. Consequently, longer simulation times are required at the same 

temperature to obtain the converged FESs with 648 atoms (4 μs) with respect to the system with 192 atoms 

(1-2 μs). 
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FIG. 6.23. (a) Comparison between FES at 3200 K and at the respective melting temperatures of boxes 

containing 192 (3200 K) and 648 (2870 K) atoms; (b) FESs normalized by the unit cell number. 

Figure 6.23 (a) shows the two FESs computed at 3200 K and at the respective melting temperatures of the 

192 (3200 K) and 648 atomic (2870 K) systems. As expected, the energy barrier for crystallization increases 

with box dimensions from 17 to 66 kT. This implies that different bias factors should be used depending 

on the simulation size. In the previous sections, we showed that the bias factor of 𝛾 = 50 was optimal for 

the MetaD simulations with 192 atoms at 2700 K, but not at 3200 K. Indeed, the simulations at 3200 K 

converged faster (1 μs) with the lower bias factor (simulation n° 7, 𝜔 = 60, 𝛾 = 20, 𝜎 = 2). The bias factor 

of 𝛾 = 50 seems to be the best choice for the system with 648 atoms at 3200 K. Contrarily, at lower 

temperature, 𝑇𝑚 = 2870 K, this value is not optimal since the frequency of the transition jumps becomes 

too low to reach convergence. To accelerate the exploration of the phase space, we had to increase 𝛾 to 150. 

The normalization of the FESs with respect to the number of the SiO2 unit cells (figure 6.23 (b)) produces 

curves with comparable energy barrier, which allows us to make a rough estimation of the barrier height of 

the bigger system. By assuming the activation energy of ~2 kT per unit cell, we predict a barrier of 130 kT 

for the system containing 1536 atoms. Indeed, for the larger system, a bias factor of at least 150 or more 

was used to obtain enough crystallization events, as seen in figure 6.24. 
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FIG. 6.24. Time evolution of the CV during the WTMetaD simulation with parameters 𝜔 = 60, 𝛾 = 250, 𝜎 

= 2 at 3200 K with the system containing 1536 atoms. 

Despite a sufficient re-crossing frequency, most of the jumps (red asterisks in figure 6.24) correspond to 

incomplete crystallization. In fact, the perfect crystal is obtained only when the CV value reaches 400 units 

(green asterisks in figure 6.24). Therefore, higher bias factor and longer simulation times are necessary to 

reach converged FES for the larger systems. For instance, the MetaD simulations of 4 µs for a system of 

1536 atoms took 27 days on an Intel Xeon 6230 processor (2.10 GHz) with 20 cores. Such a substantial 

computational cost limits both system size and simulation time. 

Although it is difficult to evaluate the converged FES including the complete crystallization path for the 

larger simulation systems, it is possible to understand the variations of the free energy with the crystal 

nucleation of 𝑛 atoms (𝐹(𝑛)) owing to the sufficient sampling of various configurations. To determine 

𝐹(𝑛) the sampled configurations have been reweighted along the cluster dimension 𝑛 using the same 

procedure proposed by Niu et al. (140). The local entropy fingerprint was used to identify crystal-like 

silicon atoms in the structure (see section 3.2.6.3 for its definition) (136,198). The average local entropy 

(𝑠̅𝑠
𝑖) was calculated only on silicon atoms (𝑖) considering in the computation silicon neighbors (𝑗-atoms) 

within a cutoff 𝑅𝑚𝑎𝑥 = 6.00 Å, with a broadening 𝜎𝑠 = 0.2 Å and averaging within 𝑅𝑎 = 3.75 Å. This 

parameter is able to discriminate the liquid state from the crystalline state and figure 6.25 shows the 

distributions of the local average entropy obtained during 2 ns of MD run of each system. 
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FIG. 6.25. Probability distributions of the average local entropy 𝑠̅𝑠
𝑖 of Si atoms considering in the 

computation (as atoms 𝑗) only silicon atoms using cutoff radius 𝑅𝑚𝑎𝑥 = 6.00 Å, 𝜎𝑠 = 0.2 Å and 𝑅𝑎 = 3.75 

Å. Systems investigated are crystalline and liquid structure in three different dimension boxes. 

We computed the adjacency matrix among those crystal-like atoms, and then the depth first search 

algorithm (199) was used to identify clusters and count the number of silicon atoms in them. As shown in 

figure 6.26, FESs were evaluated as a function of 𝑛 atoms. The free energies (at two temperatures, 3200 K 

and 2870 K) for the systems with 648 and 1536 atoms were calculated up to a critical value of 𝑛 (𝑛𝑐), which 

corresponds to the largest cluster size to avoid self-interaction of the nucleus (113 and 268 atoms, 

respectively) (140). 
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FIG. 6.26. Reweighted free energy per unit cell as a function of cluster size in terms of n° of silicon atoms. 

The free energies at 3200 and 2870 K computed using the systems with 648 (216 Si atoms) and 1536 (512 

Si atoms) atoms are compared. Snapshots (a)-(c) show structures containing a cluster with 15, 42 and 108 

Si atoms. In these figures, only Si atoms are shown to highlight the order inside the structures. 

The free energy curves at the same temperature are almost the same until 55 and 75 Si atoms at 2870 K and 

3200 K, respectively, implying that the initial formation of the crystalline nucleus is independent of the 

system size. After that, the crystal sizes varied in different ways: the crystalline structures appearing in the 

larger system steadily kept increasing, while those in the smaller systems plateaued and then decreased. 

This is clearly a system size effect. 𝐹(𝑛) of the small system reaches a maximum and then decreases, as 

expected from CNT, but the critical nucleus is found to depend on the system size. 

In CNT, the free energy is given by the formula 2.2, and it is reported here as a function of the number of 

particles in the crystalline nucleus 𝑛: 

∆𝐺(𝑛) = −∆𝜇 𝑛 +  𝛾𝑠𝑙  𝑛2 3⁄ (6.4) 

where 𝛥𝜇 is the chemical potential variation associated to melt-crystal phase transition, and 𝛾𝑠𝑙 is the 

interfacial energy. When cluster size is small enough, the free energy for nucleation should follow a 2/3 
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power low since the interfacial energy dominates. However, this is not true for our observations on the free 

energy curves at 2870 K up to 𝑛 ~ 20 Si atoms. At the very beginning of the nucleation where 𝑛 is less than 

20, the free energy variation does not seem to follow the CNT prediction. Subsequently, at 𝑛 > 20, the slope 

of the free energy curve increases more quickly up to 𝑛 = 55 – 60 Si atoms. Figure 6.26 (a) shows that a 

few 6-membered rings form the initial embryo, whereas the larger clusters shown in figure 6.26 (b) and (c) 

are made up by 6-membered rings interconnected to form the β-cristobalite crystal. Therefore, it seems that 

the energy required to form crystalline nuclei whose size is larger than a critical size is not dominated by 

the formation of the 6-membered rings (which were indeed observed in the melt and in the glass structure) 

(200,201) but by the interconnection of these rings and their rearrangement along the right directions to 

form the perfect crystalline structure. Note that the initial slope of 𝐹(𝑛) at small 𝑛 values is steeper at 3200 

K compared to 2870 K, implying that even the formation of embryos is more difficult at higher temperature. 

6.7. Summary 

In this chapter, we systematically investigated the effects of the simulation conditions to efficiently study 

thermodynamics of silica crystallization into β-cristobalite using MetaD simulations. First, we investigated 

the influences of the height (𝜔), width (𝜎) and bias factor (𝛾) used to define the biasing Gaussian potential. 

After that, the effects of the simulation temperature and system size were examined. 

Here is a summary of the results: 

• Among the Metadynamics parameters (𝜔, 𝜎 and 𝛾) the height value has only a minor effect on the 

final FES and the time to reach converged results. The width, 𝜎, is effective to obtain converged 

FES. The appropriate value of 𝜎 depends on the fluctuation amplitude of the CV during 

conventional MD simulations: a half or a third of the fluctuation is a good choice. Too low or too 

large 𝜎 values prevent the convergence. The bias factor 𝛾 is the most important parameter; it 

substantially affects the time to reach convergence. A higher bias factor gives a higher re-crossing 

frequency, but it leads to depositing a large amount of bias and then exploring high energetic 

configurations, which do not take part in the transformation. On the other hand, too low values 

require long simulation to reach the quasi-static regime. This parameter should be chosen in the 

same magnitude as the crystallization barrier. Unfortunately, this is not known as a priori, and, thus, 

its estimation is the most difficult step. 

• Temperature is another important parameter to study crystallization within a reasonable 

computational time. At 𝑇 > 𝑇𝑚 the high mobility of the ions allows a fast exploration of the FES, 

which provides frequent observations of phase transitions. This allows convergence to be reached 

in significantly shorter time. Consequently, by increasing the temperature the optimal bias factor 

decreases. We also demonstrated that for high viscous systems such as silica the reliable FES at or 

below 𝑇𝑚 can be estimated through temperature rescaling procedures. 
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• Size effects were observed for XRD patterns and melting temperature. Consequently, the FES 

depends on the simulation system size. However, the main characteristics of the FES representing 

the mechanism of crystallization are maintained. 

• A large enough model would be necessary to observe the crystal growth until a real critical size, 

but the computational cost is too expensive. Even if the FES is not converged, the MetaD 

simulations provide useful information to understand the mechanism of crystal formation. To do 

so, a larger bias factor is efficient for the larger simulation models. The lower bound of the bias 

factor can be estimated from the barrier height for crystallization using smaller systems. 

• By analyzing the free energy for nucleation of crystalline clusters as a function of their size, we 

found that the 6-membered rings form the initial embryos of nucleation. The energy penalty for the 

cluster formation steeply increases with an increase of the cluster size. The growth of the initial 

embryos is followed by structural rearrangements to build up the ideal crystalline structure. 

  



 

 

Chapter 7. Metadynamics on lithium 

disilicate 

In chapter 5, we approached the crystallization of lithium disilicate using molecular dynamics. We observed 

that in a glass with the stoichiometry of Li2O∙2SiO2 there is a preference for the nucleation of lithium 

disilicate crystalline phase (Li2Si2O5) in the bulk, while on the surface, we found embryos of lithium 

metasilicate crystal (Li2SiO3). Moreover, we could extract an estimation of the nucleation free energy of 

the two phases mentioned, with the critical radii. 

However, the information provided by the MD approach is not complete, since there are many aspects that 

are left aside. The mechanism of nucleation is not detectable due to the high viscosity and low mobility of 

atoms. Also, the approximation of the shape of the crystalline nucleus may limit the investigation of the 

nucleation free energy. We can overcome these limitations and get answers to unsolved questions by using 

enhanced sampling techniques. 

In the last chapter, we have investigated the effect of the parameters used in Well-Tempered Metadynamics 

simulations (WTMetaD) on the Free-Energy Surface (FES) of the crystallization of β-cristobalite from 

fused silica. In this chapter, we demonstrate the applicability of this technique to a more complex layered 

binary silicate system, which is lithium disilicate. 

7.1. Collective variables and order parameters used 

7.1.1. Choice of XRD peaks 

To choose appropriate biasing CVs, we have run unbiased MD simulations of the crystalline lithium 

silicates and the LS2 glass at 300 K and 1500 K. According to the simulations, the XRD spectra were 

computed to find distinguishable peaks of the models, as shown in figure 7.1. The XRD spectra with all 

atoms (Si, O and Li) and those with only Si atoms were compared in this figure. The employment of the 

subset of atoms is more efficient since it reduces the computational cost required to compute the CVs, 

allowing us to simulate larger systems, which is mandatory in crystallization studies. An appropriate biasing 

CV must distinguish the phases formed along the reaction path that one wants to investigate. 
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FIG. 7.1. XRD spectra of the investigated systems (LS2 glass, LS2, and LS crystals) computed considering 

all atomic species or only Si atoms in the simulation box computed along 0.5 ns of unbiased MD simulations 

at 300 K and 1500 K. The XRD spectra are averaged along the MD trajectory. 

Only the peak at 2𝜃 = 23° shows a significant difference between the melt and crystalline phases if all 

atoms are considered in the calculation of the XRD pattern, while several peaks have different intensity 

considering only Si. Clearly, the peak intensity reduces with temperature, but a huge difference is 

conserved. The peak at 2𝜃 = 23° (associated to the plane (040), see figure 7.2) seems the most appropriate 

to distinguish phases at both temperatures, and the other peak at 2𝜃 = 35° (associated to the plane (002), 

see figure 7.2) can also complement the distinction between the different phases. At 1500 K, the XRD peak 

𝐼(2𝜃 = 23°) computed using only Si atoms distinguishes better the LS2 (330) crystal from the LS2 glass 

(140) and LS (160) crystal (the intensity values of the XRD peaks are reported in the parenthesis). 
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FIG. 7.2. The (040) and (002) planes of the LS2 crystal are shown. 

 

FIG. 7.3. XRD pattern computed using only Si ions of the LS2 glass, LS2, and LS crystals of different sizes 

(from 324 to 5400 atoms) at 1500 K. The symbol “*” indicates a different number of atoms for the LS 

crystal. 

Figure 7.3 shows the XRD spectra computed considering only Si atoms of the investigated systems 

comparing different sizes at 1500 K to verify the size effect. The XRD spectra present more intense and 

sharp peaks for larger systems. The only exception is for the LS crystal whose spectrum of the bigger model 

at 1500 K shows that the system is melting (𝑇 > 𝑇𝑚, paragraph 4.2). There is a shift of the main peaks at 
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higher degrees for the LS2 crystal. Anyway, the systems containing 720 atoms reproduce accurately the 

peaks at 2𝜃 values larger than 15° (the peaks at lower values are strongly affected by the system dimension 

as expected) preserving all main information. When a larger system is investigated, the choice of the peak 

must be adjusted according to the corresponding XRD pattern. 

To decide the width of the Gaussians, we evaluated the standard deviation of the CV distribution obtained 

from an unbiased MD run. For 𝐼(23°) the LS2 crystal and melt phases we obtain respectively 4 and 6 CV 

units, for 𝐼(35°) the standard deviation is 4 and 5 CV units respectively for LS2 crystal and melt. 

7.1.2. Order parameters  

 

FIG. 7.4. Probability distributions of the 𝑄6, local 𝑄6
𝑙𝑜𝑐, average 𝑄̅6 and local average 𝑄̅6

𝑙𝑜𝑐 parameters of 

silicon ions in the LS2 glass, LS2, and LS crystals at 800 K. These parameters have been computed 

considering only silicon ions in the coordination sphere of the central Si ion using 𝑅1 = 6 Å and 𝑅2 = 3.75 

Å. 

The Steinhardt parameters, presented in chapter 3.2.6.2, were tested to distinguish between the crystalline 

and glass phases. The most satisfying parameters were obtained using 𝑙 = 6, calculated on Si ions. The 
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probability distributions of these parameters in the LS2 glass, LS2, LS crystals at 800 K are reported in 

figure 7.4. 

The figure shows that using as cutoffs 𝑅1 = 6 Å and 𝑅2 = 3.75 Å the individual 𝑄6 parameter is not able to 

distinguish the glass to the LS2 crystals whereas the other parameters can distinguish the glass to the LS2 

and LS crystals. Silicon ions exhibit well-separated 𝑄̅6
𝑙𝑜𝑐 distributions approximately ranging between (-0.4 

to 0.2), (0.2 to 0.63), and (0.63 to 1) for the glass, LS2, and LS crystals, respectively, without significant 

overlapping. That means that the local structure around each silicon ion can be assigned to one of them. 

7.2. Computational details 

All simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) package (191) patched with the open-source, community-developed PLUMED library 

(192,193), version 2.5 and 2.6. The Nosé-Hoover (194) thermostat and barostat have been used to perform 

the MD simulations in an NPT ensemble. The relaxation time for the temperature was set to 0.1 ps, while 

the relaxation time for pressure was 10 ps with a target pressure of 1 bar. The pairwise PMMCS interatomic 

potentials developed by Pedone et al. (114) have been employed, using the Wolf summation method to treat 

long range coulomb interactions (123). The short-range interactions were evaluated with a cut-off distance 

of 5.5 Å. The equation of motion was integrated using the Verlet algorithm (181) with a timestep of 2 fs. 

For detailed descriptions see chapter 3.1. 

In the following paragraphs are presented several WTMetaD applications at different temperatures, box 

dimensions and mainly different numbers of CVs. In chapter 7.3, the use of one CV is presented using a 

box containing 720 atoms in a range of temperature between 1500 K and 2000 K. The CV is the intensity 

of the peak at 2𝜃 = 23° and the bias is constructed by accumulating Gaussians every 1 ps with width of 2 

CV units and height of 40 kJ/mol with a bias factor of 200. In paragraph 7.4 two CVs are employed: they 

are respectively the intensities of the peaks at 2𝜃 = 23° and 35°. Two box dimensions are investigated with 

720 and 1440 atoms respectively at 1800 K. The Gaussians used to accumulate the bias potential are 

deposited every 1 ps and have a width of 2 and 4 CV units, respectively along the first and second CVs, the 

height is 100 kJ/mol and the bias factor depends on the box dimension employed: 200 for the 720-atoms 

containing box and 300 for 1440-atoms containing box. 

7.3. Results using 1 CV 

From the physical point of view, the melt to crystal transition process should be investigated at the melting 

temperature or below it since crystallization is thermodynamically favored for undercooled liquids. 

The thermodynamic melting temperature of lithium disilicate determined using the coexisting phase method 

(160,163) described in detail in chapter 4.2 is estimated to be 1200 ± 50 K, which is in fair agreement with 
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the experimental value of 1307 K (8). However, as shown in figure 7.5, the mobility of silicon species in 

the timeframes of tens of nanoseconds of MD simulations is extremely low at this temperature, hampering 

the efficient sampling of the free energy surface (FES) of the system. 

 

FIG. 7.5. MSD of Si ions in an unbiased MD simulation of LS2 crystal containing 5400 atoms at 1300, 

1400, 1450 and 1500 K. 

To overcome this computational issue, we have performed the WTMetaD simulations at 1800 K for 28 µs 

and then performed a temperature rescaling to 1200 K, as described in detail in the theoretical section 3.2.5 

and tested in the case of silica in chapter 6.5. 

Thereby, in this work, the simulation model with about 720 atoms was used to evaluate the FES. Note that 

the melt-crystal transition from the LS2 melt to the LS2 crystal can also be observed for the larger models; 

however, the transition frequency was limited and not enough to obtain converged FES. 

7.3.1. Free energy surface calculation 

The evolution of the CV of four simulations at different temperatures, 1500, 1600, 1800 and 2000 K, is 

compared in figure 7.6. The CV varies between two regions, between 0 and 250 and between 250 and 400, 

approximately, that correspond to the melt and crystalline phases, respectively. Several jumps between the 

liquid and crystal phases were observed during the simulations at any temperature. The frequency of the 

transitions increases at higher temperature, but the persistence of crystalline structure shortens because at 

higher temperature the crystalline structure is less stable than the melt one. Contrarily, at lower temperature, 

the crystal phase persists for a longer period since the crystal structure becomes more stable. However, as 

anticipated above, the jump frequency reduces with temperature decreasing because of the reduced silicon 

diffusivity. Therefore, longer simulations are required to accurately explore the FES at lower temperature. 

We focus on the simulation at 1800 K, which is shown for the entire 28 μs of simulation in figure 7.7. 
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FIG. 7.6. Evolution of CV, the intensity peak at 2𝜃 = 23°, during 12 µs of WTMetaD simulations at four 

different temperatures. 

 

FIG. 7.7. Panel (a) reports the evolution of the intensity peak at 2𝜃 = 23° and panel (b) reports the potential 

energy both along the 28 µs of WTMetaD simulations at 1800 K biased by 1 CV. 
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As shown in figure 7.7 (b), the potential energy decreases when 𝐼(23°) corresponds to the value of the LS2 

crystal, implying that the jumps of the CVs effectively represent the melt to crystal transitions. This is also 

confirmed by visual inspection of the simulations and the analysis of the local order parameters that will be 

presented below. 

 

FIG. 7.8. Estimation of the error associated to the FES at 1800 K of the lithium disilicate system through 

the block analysis. 

The block analysis, described in chapter 3.2.4, performed on the WTMetaD at 1800 K reported in figure 

7.8 confirms that the simulation has reached convergence (error of 0.11 kJ/mol per formula unit). The FES 

is calculated using the reweighting procedure proposed by Tiwary et al. (150) and it is reported in figure 

7.9. 

 

FIG. 7.9. Reweighted FES along biased 𝐼(23°) at 1800 K, FES at 1200 K computed with a rescaling of the 

temperature from the simulation at 1800 K. The shadow region indicates the error associated with the curve. 
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The FES possesses a large minimum centered at 𝐼(23°) = 130, associated to the melt state, and a shallower 

minimum centered at 𝐼(23°) = 325 corresponding to the LS2 crystal. As expected, the error is higher in the 

region of the crystal, because of a poorer sampling. In the same figure, the FES at 1200 K is presented and 

it is obtained from a temperature rescaling procedure from the simulation at 1800 K. The chosen 

temperature is the melting temperature obtained from the phase coexistence method (section 4.2); thus, it 

was expected to have both minima at the same value of free energy. The free energy difference between 

the minima significantly reduces from 1800 K to 1200 K, with the simultaneous increase of the error, 

obtaining a FES close to the melting temperature. Moreover, in the rescaled FES there are more minima 

that it is worth investigating if they are artifacts or metastable intermediates of the crystallization process. 

In figure 7.10 we present the evolution of both CVs (𝐼(23°) and 𝐼(35°)) individuated in section 7.1.1. 

 

FIG. 7.10. Panel (a) reports the evolution of the intensity peak at 2𝜃 = 23° and panel (b) reports the evolution 

of the intensity peak at 2𝜃 = 35° during the 28 µs of WTMetaD simulations at 1800 K biased by 1 CV. 

The variation of 𝐼(35°) is less pronounced than 𝐼(23°), but it captures the crystallization events by 

sampling higher values of this variable. The changes in the values of these two CVs are not completely 

correlated, since, as we can observe at 23 µs for example, when 𝐼(23°) increases, 𝐼(35°) decreases. To 

better analyze contemporary the sampling of the two variables, we apply the reweighting procedure to 

calculate the probability distribution along both CVs, calculating a 2D FES. 

The 2D FES as functions of the biasing CV (𝐼(23°)) and the unbiased second CV (𝐼(35°)) at 1800 K is 

shown in figure 7.11 (a). The potential energy reported in figure 7.11 (b) is computed by averaging the 

punctual values of potential energy along the trajectory at 1800 K as a function of the two CVs and we will 

call it potential energy surface (PES) for simplicity. The potential energy is used to estimate the FES at 

1200 K (see figure 7.11 (c)) by temperature rescaling. 
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FIG. 7.11. (a) Reweighted 2D FES along biased 𝐼(23°) and unbiased 𝐼(35°) at 1800 K, (b) potential energy 

surface obtained from the simulation at 1800 K and (c) 2D FES at 1200 K computed with a rescaling of the 

temperature from the simulation at 1800 K. 
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As observed before, the FES at 1800 K possesses a large absolute minimum at 𝐼(23°) ≈ 130 and 𝐼(35°) ≈ 

120, associated to the melt state and the other shallower minimum at 𝐼(23°) ≈ 325 and 𝐼(35°) ≈ 250 

corresponding to the LS2 crystal. A flexion of the FES at (240, 150) is also observed. The error of the curves 

is not shown here for simplicity. 

The PES indicates that intermediate states form along the path from the melt to the crystal, which will 

become more important at lower temperatures, thanks to a low potential energy that increases the value of 

the weights of these configurations (see equation 3.24). Indeed, the melt state corresponds to a high potential 

energy region in the PES, the perfect LS2 crystal phase corresponds to the absolute minimum whereas a 

second minimum at (300, 190) appears. 

The FES at 1200 K shows that the minimum at the melt state does not change with temperature, whereas 

the FES near the crystalline state is substantially affected. The flexion of the curve at around (240, 150) 

unit becomes a shallow minimum whereas the crystalline minimum becomes deeper with decreasing the 

temperature, and the path from the melt state to the crystal becomes more structured, confirming that 

intermediate structure forms before the perfect crystalline structure appears. 

The microstructures at the points A, B, C and D highlighted in figure 7.11 are shown in figure 7.12 and 

reveal that the intermediate structures from A (melt) and D (crystal) are layered disordered structures 

(intermediate B and C). Indeed, a few silicon atoms are displaced from the ideal positions in the LS2 crystal. 

For instance, some Si ions connect the double layers or disrupt the apparent short 4T chain of the layers, as 

shown by the green tetrahedral units in figure 7.12 (B) and (C). Iqbal et al. (45,57) observed the formation 

of two LS2 phases (α' and β') before the stable crystal. They have attributed α'-LS2 to a structure (P21 space 

group) with a unit cell half of the LS2 crystal, while the β' phase was more similar to the stable LS2 but 

disordered. There are indeed some similarities with our results, but the XRD spectra of the phases observed 

experimentally show peaks absent in the intermediate phases that we found. 
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FIG. 7.12. Snapshots representative of the structure of the system at (𝐼(23°), 𝐼(35°)) (130, 132) (A), (240, 

160) (B), (300, 200) (C) and (330, 240) (D) units extracted from WTMetaD simulations at 1800 K. Pink 

atoms represent lithium, red ones are oxygen while yellow and green tetrahedral are silicon. 

7.3.2. Analysis of the crystallization mechanism at atomistic level 

To investigate the mechanism of crystallization we have focused our attention on the WTMetaD simulations 

performed at 1600 K. At this temperature melt-to-crystals transitions are less frequent compared to the case 

at 1800 K due to the slower diffusion of the atoms, but this allowed us to better follow the sequential steps 

leading to the crystal formation. All the transitions reported in figure 7.13 were analysed and considered, 

but a representative transition is highlighted in figure 7.14. 

The analysed features are the CVs discussed, intensities of the two peaks at 2𝜃 = 23° and 35°, plot (a) in 

both figures; (b) is the fraction of Qn specie of silicon ions (paragraph 1.2); (c) shows the average local 

Steinhardt parameter 𝑄̅6
𝑙𝑜𝑐 averaged among the Si atoms in the structure (the use of Q in Qn species has not 

to be confused with the 𝑄6 Steinhardt parameter); (d) is the population of silicon ions with local structure 

similar to melt, LS2, and LS crystal (defined using the average 𝑄̅6
𝑙𝑜𝑐 Steinhardt parameter) with the intervals 

defined in section 7.1.2. The (e) plot, only present in figure 7.13, represents the evolution of dimension of 

the two largest crystalline clusters in the simulation box. 
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FIG. 7.13. Evolution of different parameters along all the simulation at 1600 K: (a) 𝐼(23°) and 𝐼(35°), (b) 

distribution of Qn specie of Si, (c) 𝑄̅6
𝑙𝑜𝑐 averaged over all Si atoms, (d) distribution of the Si ions with LS2 

melt, LS2 and LS crystal-like environments determined using 𝑄̅6
𝑙𝑜𝑐 and (e) size of the two largest LS2 

crystal-like clusters of Si ions. In the last panel the peaks not corresponding to the LS2 crystal formation 

are associated with phase separated high energy structures generated outside the minimum energy 

crystallization path and thus not discussed here. 
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FIG. 7.14. Evolution of (a) 𝐼(23°) and 𝐼(35°), (b) distribution of Qn specie of Si atoms, (c) 𝑄̅6
𝑙𝑜𝑐 averaged 

over all Si atoms and (d) distribution of the Si ions with LS2 glass, LS2 and LS crystals-like environments 

determined using the local average 𝑄̅6
𝑙𝑜𝑐 Steinhardt parameter during WTMetaD simulations at 1600 K. 

The analysis has been performed between 0.55 and 0.75 µs of the trajectory for clarity. On the right are 

reported the structures extracted from the simulation corresponding to the points indicated with the dashed 

line in the left graphs. Only Si atoms are shown and colored according to their value of 𝑄̅6
𝑙𝑜𝑐. 

Figure 7.14 highlights the first melt to crystal transition of the simulation at 1600 K (from figure 7.13), 

between 0.55 and 0.75 µs. According to the 𝑄̅6
𝑙𝑜𝑐 parameter (figure 7.12 (d)), almost all the silicon is in the 

melted condition up to 0.62 µs. At around 0.62 µs, 𝐼(23°) (plot (a)) suddenly increases to about 250 – 300 

units. Simultaneously, the percentage of Q3 species (plot (b)) as well as the 𝑄̅6
𝑙𝑜𝑐 value averaged over all 

silicon ions (plot (c)) starts to increase. In addition, the ratio of silicon ions with an environment similar to 
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the LS2 crystals increases to 10 %, implying that a critical crystal nucleus appears in the melt and starts to 

grow. Interestingly, 𝐼(35°) is still fluctuating around the value close to that assumed in the melt up to 0.65 

µs, indicating that the crystal nucleus is still disordered, and it needs to cross another energy barrier to 

become ordered. In other words, metadynamics simulations explore a variety of intermediate states during 

the melt-to-crystal transition. Several representative snapshots of the structures of (A) the melt state, (B) an 

initial nucleus, (C) a layered but disordered structure, and (D) an almost perfect LS2 crystal are displayed 

in the right panels of figure 7.14. In these snapshots, only silicon ions are displayed in color representing 

the 𝑄̅6
𝑙𝑜𝑐 value. 

 

FIG. 7.15. Evolution of the size of the two biggest LS2 crystal-like clusters of Si ions along a crystallization 

event during WTMetaD simulations at 1600 K. The insets show the structure of the first (orange tetrahedral, 

18 Si atoms) and second (yellow tetrahedral, 10 Si atoms) larger clusters found, Li ions are shown as blue 

spheres. 

To measure the crystal-like cluster size along the WTMetaD simulations, we computed the adjacency 

matrix between Si ions with LS2 crystal-like 𝑄̅6
𝑙𝑜𝑐 values and used a Depth First Search algorithm (199) to 

find the number of Si ions (NSi) in the clusters, the same procedure has been applied on silica in paragraph 

6.6.2. The sizes of the two largest clusters were evaluated, as shown in figure 7.15. The number of Si ions 

in the two largest clusters fluctuates around 8 – 12 at maximum in the melt state, indicating formation and 

dissolution of crystal-like tiny embryos, which is also in agreement with the crystalline embryos studied in 

paragraph 5.1.4. When the crystallization starts, around 0.62 μs, two critical nuclei with about 15 to 30 and 

8 to 15 silicon appear, as shown in figure 7.15. Especially, the largest cluster seems to organize the 
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tetrahedral SiO4 units in a partially layered structure topologically like that of the LS2 crystals. The size 

gradually increases until about 0.65 µs, where 𝐼(35°) apparently increases, as shown in figure 7.14 (a). 

The second largest nucleus appears simultaneously and is located near the largest one. Then, the two 

adjacent nuclei coalesced each other to form a larger crystal-like structure possessing an almost complete 

2T layer composed of about 40 silicon ions. At the same time, lithium ions around the nucleus (blue spheres 

in figure 7.15) formed layered structures and promoted the formation of the second silica layer. 

Consequently, the initial nucleus grows further in a stepwise fashion. After that, both two largest nuclei are 

enlarged with approximately 80 silicon ions, indicating that the two silicate layers are completely formed. 

Following the formation of two layers, the largest cluster size goes back and forth between 80 and 160, 

implying that some disordered silicon ions connect the two layers, as already shown in figure 7.12 (B). 

According to the cluster analysis along all the simulations, the critical nucleus size contains between 20 to 

40 silicon ions. This agrees well with our MD investigation exploiting the Free Energy Seeding Method 

described in paragraph 5.3.3 (202), which estimated the critical nucleus with 26 silicon ions. It is worth to 

highlight that MetaD simulations does not allow to determine the real transient time of the disordered 

layered structure which promotes the formation of the perfect crystal but reveals that the initial nucleus has 

a layered disordered structure instead of the spherical perfect crystalline one assumed in CNT. 

7.4. Results using 2 CVs 

Using 1 CV to drive the WTMetaD, we had access to a single nucleation path. However, we observed that 

to give a better description of the mechanism, we had to consider also 𝐼(35°). The value of this CV changes 

independently from 𝐼(23°), thus it can be used as CV in a metadynamics application. We investigate the 

crystallization pathways from the stoichiometric LS2 glass by performing WTMetaD simulations using two 

CVs, both XRD peaks at 23° and 35°, in order to explore a wider configurational space. We have seen in 

7.1.1 that 𝐼(23°) is associates to the (040) plane and relates to the formation of layers in the structure, while 

𝐼(35°) associates to the (002) plane and can be an indicator to identify the ordering inside the layers as 

demonstrated in the previous chapter. 

Two different simulations using unit cells containing 720 and 1440 atoms, respectively, were performed at 

1800 K with the computational setting described in section 7.2. We want to highlight that using two 

collective variables, the phase space to be sampled becomes much broader than in the simulation with 1 

CV. Instead of reaching convergence, we decided to use exploratory metadynamics to explore the phase 

space and try to find new nucleation pathways, as proposed in literature (139,142). 
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7.4.1. Sampling of the phase space 

The simulations were run for 40 μs to ensure a proper sampling of the phase space. In the small model, 

from the visualization of the time evolution of the CVs in figure 7.16, we can immediately see that 

crystallization events were observed but there are some differences with respects to the simulation with 1 

CV. 

 

FIG. 7.16. Evolution of the CVs, 𝐼(23°) (up) and 𝐼(35°) (bottom), along LS2 simulation at 1800 K using 

two collective variables of the model containing 720 atoms. With the colored region we identify the phases 

different from the melt that we observe: violet regions indicate the ordered/disordered stable crystal LS2 

phase, orange and light green regions indicate two new explored regions. 

The first CV, 𝐼(23°), was used also in the previous application, therefore looking at its evolution solely 

does not provide any further information compared to figure 7.10. Instead, 𝐼(35°) phase space is explored, 

and it allows to identify the formation of new phases, implying that the second CV is essential to observe 

the extra phases. Three colors are used to highlight three distinct phase formations different from the melt 

in figure 7.16. Before analysing the structures associated with the highlighted phases in detail, the 

temporary FES is calculated and reported in figure 7.17. 
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FIG. 7.17. Free energy surface of the explored phase space from the simulation of LS2 with 720 atoms at 

1800 K. 

The free energy profile, FE, provided is not converged, but it is much broader and spreads a wider phase 

space than the case with 1 CV seen in figure 7.11. We can already see a deep minimum associated with the 

melt and a shoulder corresponding to the LS2 crystalline structure. The position of the shoulder is at (305, 

220), which is slightly shifted from the local minimum in the FES obtained with 1 CV. This is due to a 

lower sampling of the interested region and confirmed by the fact that the FES in figure 7.17 is not 

converged. Except for this, the FES reproduces the line-shapes obtained with 1 CV in terms of favorable 

nucleation pathway, and other minima are not found in the new explored region. 

 

FIG. 7.18. Average potential energy of each point of the explored phase space from the simulation of LS2 

with 720 atoms at 1800 K. From “x” and “+” are extracted configurations respectively from zone B and C 

and reported in figure 7.18. 
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In the average potential energy surface (PES) extracted from the simulations with two CVs, shown in figure 

7.18, we find multiple minima not observed with the single CV (see figure 7.11 (b)). The deepest minimum 

marked by A at CVs values (350, 270) corresponds to the perfect stable crystalline phase. In the region B 

(220-300, 50-200), the layered disordered structure is formed. A and B regions were highlighted in violet 

in figure 7.16. A range of structures is located in the B region, which are composed of layers with a different 

level of ordering. In fact, 𝐼(23°) value is higher than 200, while the 𝐼(35°) range between almost 0 and 

200. As observed in the investigation with 1 CV, the first step of nucleation is an increase of the 𝐼(23°), 

arriving in B region, later, with the increasing of the ordering inside layers, the system moves forward to 

region A. In a small box as the one investigated, a few defects can drastically affect the value of the CV, 

but in a realistic system, a few defects in the crystalline structure do not have a pronounced effect on the 

XRD intensity. This minimum of A is not located at the minimum of the FES, even though it is the most 

stable structure that we can obtain in terms of potential energy, while at the position of the minimum we 

can observe some small defects that increase the entropy of the structure, lowering the free energy. 

From the B region of the PES, three structures (marked with “x”) showing layers with a different level of 

ordering were extracted. One of them, at (268, 85), is found in an energy plateau, whose potential energy 

is higher than that of the most stable crystal in about 59 kJ/mol per formula unit (f.u.), with no barriers 

along the path. In figure 7.19 structures extracted are represented in the corresponding area and labeled 

with the values of the CVs in brackets. 
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FIG. 7.19. Structures extracted from the simulation at 1800 K of LS2 containing 720 atoms. The letter in 

each block corresponds to the region of the PES from which the structures are extracted. A melt 

configuration is presented in the G block. The multiple structures from regions B and C are related to the 

points indicated respectively by “x” and “+” in the PES, figure 7.18. In parenthesis the value of the two 

CVs is indicated. Lithium ions are represented with pink spheres, red spheres are oxygen, while silicon are 

presented as tetrahedral or as points to highlight some peculiarities. The symbol “*” indicates structures 

used for the calculation of ionic mobility. 

TABLE 7.1. Distribution of % of Qn species of silicon ions in the five investigated structures at 1000 K. 

 Q0 Q1 Q2 Q3 Q4 

A – LS2 crystal 0.0 0.0 0.9 99.1 0.0 
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B – disordered 

layered  
0.2 2.8 17.2 57.5 22.4 

C – phase 

separation 
2.1 8.0 19.3 29.5 41.2 

D – phase 

separation 
6.4 9.4 9.2 21.7 53.2 

Glass 0.0 7.6 19.0 39.9 33.5 

Moreover, we further identified new regions labeled by C and D, which correspond to a phase separated 

into silica and lithium rich zones, as shown in figure 7.19. In the C region of the PES, highlighted in light 

blue in figure 7.16, the silica-rich phase was made of mainly six membered rings linked by SiO4 tetrahedra, 

which consist of the β-cristobalite-like structure, whereas the lithium-rich part contains Q1 and Q2 silicon 

species, see table 7.1 for percentages. The presence of this kind of Qn species demonstrates the presence of 

silica chains as in the case of metasilicate phase (see figure 7.19 C (195, 242) and 7.20). The difference in 

the potential energy between the minima in regions A and C is approximately 20 kJ/mol per f.u. The 

potential energy barrier to transit from C to A is approximately 2.5 kJ/mol per f.u. An intermediate structure 

is shown in figure 7.19 C at (223, 234), in which silica layers are interconnected by forming 6-membered 

rings, as in the silica-rich region found at the local minimum of the PES. 

 

FIG. 7.20. Two visualizations of structure at (195, 242) extracted from C region. On the left, all silicon 

atoms are represented by tetrahedra; on the right, only silicon atoms that form silica chains are represented 

by tetrahedra. 

On the other hand, the silica-rich phase in the D region, highlighted in orange in figure 7.16, is composed 

of 4 to 6 membered rings, while the lithium rich region mainly contains amorphous lithium oxide and a few 

Q0 and Q1 silicon species (table 7.1). The inhomogeneous structure is dissimilar to LS2 crystal, and the 

potential energy at the minimum in D region is higher than that of the crystalline LS2 of 40 kJ/mol per f.u. 
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A high barrier of approximately 20 kJ/mol per f.u. separates the two minima, which is much higher than 

that from C to A. 

The PES obtained from the simulation of the larger model containing 1440 atoms is reported in figure 7.21 

using the same 2 CVs used in the small model simulation. We observed the same features as in the case of 

the smaller simulation box with minor differences. First, the intensity of the XRD peaks was model-size 

dependent, therefore the stable LS2 was associated with higher values of the CVs than those with the smaller 

model, figure 7.3. During the metadynamics simulation, the microstructure crystallized incompletely in the 

simulation box because the crystal-like silica layers are arbitrarily oriented in the box, as shown in the right 

side of figure 7.21, although the crystalline structure is obviously recognized from these configurations. 

Indeed, a major difference in PESs obtained with the two simulation boxes was the absence of the deep 

minimum of the stable crystal when the larger model was used. Additionally, the region D was wider in the 

phase space (0-200,0-50) when the larger model was used, in comparison with the small model. In contrast, 

for both models, the region C was confined in a limited space at the same coordinate, and the barriers 

between the regions C – A and D – A were reproduced. 

 

FIG. 7.21. Potential energy of each point of the explored phase space from the simulation of LS2 with 1440 

atoms at 1800 K. On the right, two views of the structure extracted from the surface at (380, 170). 
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7.5. Ionic mobility in different phases 

According to the observation of the new minima in the PES, some questions arise about the nucleation path, 

especially when the temperature is in the glass transition range (typical temperatures used to trigger 

crystallization in glasses). The potential energy barriers give only a thermodynamic point of view, 

enthalpic, of the description of the structural transitions, missing the kinetic aspects. The dynamics of the 

atoms is also a key factor for the crystallization. Indeed, higher mobility is essential for the glass-crystal 

transition. In a recent paper of Bradtmuller et al. (68), the structural rearrangements during the 

crystallization of LS2 were investigated. They demonstrated that the lithium environment is more sensitive 

to the heat treatment with respect to the silica network. In fact, lithium exhibited a higher tendency to 

arrange to become more “crystal-like” even with a short heat treatment, while the silicate species unlikely 

completed their relaxation before crystal nucleation intervenes. It means that in the first place, lithium 

movements govern the nucleation. Moreover, a higher kinetic energy of Li ions can facilitate its interaction 

with silica and the breaking of the Si-O-Si bonds of the network. 

Therefore, we performed MD simulations to evaluate the diffusion coefficient of Li ions in representative 

structures at a temperature range from 350 K to 1200 K. One configuration from each region identified in 

the PES was investigated. These configurations were extracted from the MetaD simulation, models marked 

with an “*” in figure 7.18 and relaxed at room temperature. NPT MD simulations were run for each sample 

for 50 ns at each selected temperature. 

In figure 7.22 the diffusion coefficients (logarithmic scale, log 𝐷) are plotted against the inverse of the 

temperature (1 𝑇⁄ ) (multiplied by 1000 for an easier visualization), and the data points were fitted with an 

Arrhenius equation to extrapolate the activation energy (𝐸𝑎) of the diffusive process. 



 7. Metadynamics on lithium disilicate 

118 

 

 

FIG. 7.22. Temperature dependence of diffusion coefficient for Li ions in structures selected from the four 

regions of the potential energy surface, indicated with “*” in figure 7.18 and the glass. The points are fitted 

with Arrhenius temperature dependence: log 𝐷 = log 𝐷0 −
𝐸𝑎

𝑅𝑇
. 

The structure at region D exhibited the largest diffusion coefficients and the lowest activation energy 𝐸𝑎 = 

25.3 kJ/mol thanks to a high concentration of Li in the Li-rich region, as confirmed by the broad first peak 

of the Li-Li partial distribution function (PDF) in figure 7.23. The Li-rich region in the phase separated 

structure in C at (195, 242) has instead a lower concentration of Li ions than in D, resulting in a lower 

diffusivity with activation energy of 27.7 kJ/mol. The crystalline structure with disordered layers, B, has a 

comparable diffusion coefficient to the one in C-region and 𝐸𝑎 = 27.2 kJ/mol. The number of Li ions within 

the first peak of the PDF, which represent the coordination number, is 5.6, 6.8 and 8.8 respectively for B, 

C and D structures, confirming a higher clusterization and local concentration for the phase separated 

structures. Despite a different Li-Li PDF (figure 7.23) between B and C, and a lower Li-Li CN of B, the 

symmetry of the structures confers the same average mobility to Li ions in the two cases; this point will 

also be discussed later. 
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FIG. 7.23, Comparison between Li-Li PDF of extracted structures from all regions of the PES individuated 

and glassy structure at 600 K. 

Since a higher mobility can lead to a faster rearrangement of a structure, both the potential energy barrier 

height and the ionic diffusivity should be considered to determine the kinetically more favored nucleation 

path. On the other hand, the intermediate models, B, C and D, have a higher mobility than the LS2 glass 

model. In the glass model, the Li ions homogeneously dispersed in the network, which can be confirmed 

from the Li-Li PDF where the first peak has a lower subtended area, meaning a lower number of Li ions 

within 4 Å from a central Li. Consequently, the Li ions in LS2 glass have less accessible Li sites and are 

less mobile, exhibiting a higher activation energy of 30.0 kJ/mol, as shown in figure 7.22. If the LS2 glass 

once transforms into the intermediate phases B or C, the structural transition increases the diffusivity of the 

atoms, which might drive the following conversion to stable LS2 crystal. 

The stable crystalline phase, A, has the lowest diffusivity owing to the perfectly ordered structure, 

especially below 900 K. The curve of diffusion coefficient as a function of temperature for the structure A 

exhibits a folding point, indicating two different ionic diffusion mechanisms. This can be explained by 

exploiting the anisotropy of the crystalline structure. In the bottom part of figure 7.24 the total diffusion is 

separated in its components along the x, y and z axis: up to 650 K the diffusive process occurs along the z-

axis, while from 700 K the Li ion diffusion along the x-axis becomes relevant. The y-axis diffusion becomes 

relevant from 900 K, as seen in the orange curve in the bottom part of figure 7.24 or in the mean square 

displacement (MSD) at 1000 K in the upper part. 
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FIG. 7.24. (top) Mean square displacement of Li ions at three different temperatures in the stable crystalline 

LS2 and contributions along the three axes. (down) Temperature dependence of Li diffusion coefficient 

global and along x, y and z axes with calculated activation energy extracted from Arrhenius equation. 

 

FIG. 7.25. Two views of the stable crystalline structure at 600 K with arrows indicating accessible and not 

accessible diffusive pathways. 

The activation energies are different according to the direction and temperature. Below 650 K since x and 

y do not take part of the diffusive process the total 𝐸𝑎 matches 𝐸𝑎 along the z-axis, with a value of 58.8 

kJ/mol. At T > 700 K 𝐸𝑎 are 66.9 kJ/mol and 38.4 kJ/mol along x-axis and z-axis, respectively. The large 

difference in activation energy is attributed to the different distances between Li sites along the two axes. 

In the Li-Li PDF, the first peak at 2.5 Å is associated with the Li-Li distance along the z-axis, while the 
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second peak at 5.0 Å is the distance between the neighboring sites along the x-axis, see figure 7.25. With 

increasing temperature, structural disordering of the lithium sites shortens the distance between in-plane 

lithium ions, and, thus, the Li ions construct a diffusion path in the entire xz plane. Therefore, the diffusion 

coefficient of the most stable crystalline structure got closer to those of the other inhomogeneous structures 

above 900 K. Li ions cannot jump between different layers of the crystalline structure (y direction) until 

900 K, because of the steric hindrance of silicon tetrahedra, and this direction of diffusion remains limited. 

 

FIG. 7.26. Two views of structure with disordered layers extracted from B region, and structures extracted 

from C and D region at 600 K with arrows indicating accessible or not accessible diffusive pathways. 

Except for the homogeneous glass model, all structures studied present diffusion anisotropy (203,204). 

Figure 7.26 shows the favorable and unfavorable directions of Li ion diffusion of systems in B, C and D 

regions. As in crystalline LS2, the ionic diffusion parallel to y direction is not preferred in the disordered 

layered structures (B), whereas the ions can diffuse over the xz plane with less limitation than the crystal 

thanks to the highly disordered configurations at any temperature. In both phase-separated structures (C 

and D), lithium ions diffuse only in the Li-rich region and do not enter the Si-rich zones within the 

timeframe of the simulations. 

Investigating the mobility of Si and O is also interesting, because the mobility of Li ions can play the first 

step toward the nucleation, but then Si tetrahedra must rearrange in a crystalline pattern. Therefore, the 

diffusivity of Si and O is investigated, and the MSD is plotted in figure 7.27. 
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FIG. 7.27. Mean square displacement of silicon and oxygen in the five investigated systems between 900 

K and 1200 K. 

The mean square displacement of Si and O in the five systems is evaluated between 900 and 1200 K. Below 

900 K we observed only the vibration in the Si and O positions, thus the data is not reported. At higher 

temperature even though the diffusion increases, a diffusive regime is never reached in the timeframe of 

the simulation, except for the glass at 1200 K, which is above the glass transition temperature, therefore we 

could not calculate the diffusion coefficient. Moreover, the MSDs of the intermediate structures were 

comparable at the same temperature, although slightly higher values were obtained in the phase-separated 

D region. In the LS2 crystal the mobility of Si and O do not increase with the temperature, confirming the 

greater stability of this phase. 

In figure 7.28 we distinguish the contributions of silicon Qn species to the overall MSD. According to the 

environment of each silicon atom, the mobility can change, presenting structures or regions of a structure 

more suitable to nucleate. 

At 1000 K, Q0 and Q1 species possess a higher mobility in the phase separated structures, C and D, because 

they were located inside the Li-rich region, and they thus easily exchange their sites. In the glass, the less 

linked species had the similar mobility with the higher polymerized Si species, because they were 

constrained by the entire silica network and different Qn species are homogeneously spread in the structure. 

The Q3 and Q4 silicon in the Si-rich region of the phase-separated structures, instead, have the comparable 

mobility with the stable and disordered LS2 and the glass models, implying that only the lower polymerized 
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Si species surrounded by Li ions gain the diffusivity. The significant difference in the mobility among Si 

and O with Li suggests necessity of the longer rearrangement times for silica network; however, the 

appearance of such mobile Si in the Li-rich region is expected to play an important role to proceed the 

transformation of the first crystalline nuclei by bypassing the crystallization through the intermediate 

structures. 

 

FIG. 7.28. First panel is the comparison between silicon mean square displacement at 1000 K among the 

studied system. The following five panels show the mean square displacement of each Si Qn specie in every 

system. The pie charts represent the distribution of Qn species in each system as presented in table 7.1. 

7.6. Summary 

In summary, the employment of two biasing CVs in the MetaD simulations give access to different 

crystallization pathways and information. 

Our simulations show that crystallization in the LS2 system does not rigorously follow CNT assumptions 

and occurs following several cooperative steps, which lowers the energy barrier for nucleation. The 

predominant nucleation pathway in both applications crosses the formation of a disordered layered 

intermediate phase, which transforms into the stable crystalline phase. 

The simulation driven by one CV does not provide any relation between the formation of lithium 

metasilicate, LS, and LS2 crystalline phases as proposed in several experimental papers (57,60,184). At a 
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first sight, any LS germ was observed prior to the LS2 crystallization implying that a LS nucleus is not a 

necessarily precursor of the LS2 precipitation (at least for stoichiometric LS2 melts). And this is also 

consistent with our previous MD investigation, in chapter 5, which found that the chain-like microstructures 

with stoichiometry of LS crystal is formed only at the glass surface (202). 

However, when this system is approached using two CVs new possibilities become accessible, even though 

not energetically accessible at the condition investigated. It is presumable that the other nucleation path 

becomes potentially accessible if the conditions are changed. Combining the potential energy and the 

diffusivity information, the intermediate structures in the C region might also transform to stable LS2 

crystal, while the higher potential energy barrier from D-region would limit the possibility to convert to the 

crystal. Therefore, there exist only two preferable nucleation pathways from LS2 glass to LS2 crystal. 

The temperature, the composition, the presence of heterogeneities may play the principal roles in the choice 

of the nucleation path. In a perfect stoichiometric glass, the nucleation path with phase separation is unlikely 

followed, but, for instance, when defects are present or the glass composition is non-stoichiometric, the 

formation of a cristobalite nucleus could play a pivotal role as reported by experimental studies 

(52,184,205,206). Another crucial factor might be the presence of silicate chains. In the lithium-rich region 

of the configurations in C-region, the silica chains initiated the nucleation of LS crystal. Indeed, in several 

studies on non-stoichiometric compositions, the formation of LS crystal has been proposed as a precursor 

of lithium disilicate. 

In conclusion, we could observe multiple nucleation pathways for crystallization of LS2 crystal owing to 

the enhanced exploration using Metadynamics simulations employed two CVs. The transition paths 

identified explained the different experimental observations on the nucleation mechanism reported in the 

studies for stoichiometric and non-stoichiometric lithium disilicate compositions, respectively. The main 

path involves the direct formation of the LS2 crystal through the intermediate layered structures. In contrast, 

the second pathway is initiated by a nucleation of cristobalite-like nuclei to form LS-like crystal, then the 

LS crystal is converted to LS2 crystal. The latter mechanism might be subserved by more mobile Li ions in 

the intermediate structures.  



 

 

Chapter 8. Conclusions 

During my PhD project I have applied several computational methods and protocols to investigate the 

nucleation and crystallization of lithium disilicate, a well-known system in the glass-ceramics industry. 

Researchers have been attempting to comprehend the mechanism of crystallization of this system for years. 

Although this is one of the silicate glasses presenting homogeneous nucleation, there is a lively and open 

debate on the involvement of metastable phases in the nucleation process. Lithium metasilicate is one of 

the crystalline phases thought to be involved in the nucleation of lithium disilicate. However, nucleation is 

a phenomenon that is by its very nature difficult to study experimentally, and it is challenging to use 

experimental methods to monitor the development of nanometric nuclei. This is the reason why 

computational techniques are usually employed to shed light on the microstructure and atomistic dynamics 

of this process. 

The importance of nucleation and crystallization of the lithium disilicate and the proposed mechanisms 

have been reported and discussed in chapter 1. In chapter 2, we have presented the theories of nucleation 

most used. In chapter 3 we have described the computational techniques used during the project, that is, 

Molecular Dynamics simulations and Metadynamics. Since an important prerequisite to the study of 

nucleation and crystallization is the knowledge of the melting temperature, the computation of melting 

temperature using molecular dynamics simulations has been reported in chapter 4. 

In chapter 5, we tested two different strategies to study nucleation using conventional Molecular Dynamics 

simulations. The first approach assumes that during the quenching of melts, subcritical embryos of the 

crystal phase are more prone to crystallize. Therefore, we have developed an algorithm to seek such 

crystalline-like embryos in glass matrixes and applied it on both the bulk and the surface of LS2 and LS2P1 

(LS2 glass with 1% of P2O5 as nucleating agent) glasses. We observed that LS2 crystalline embryos up to 

4.5 Å of dimension can be easily detected in the bulk of both glasses. The presence of a nucleating agent 

slightly increases the polymerization, increasing the number of Q4 Si species and decreasing LS-like 

embryos. On the contrary, on the surface there is a higher concentration of Li ions, which reduces the 

connections between SiO4 tetrahedra, increasing the amount of Q2 Si species, consequently more embryos 

with LS structure are found. We concluded that while the LS can nucleate on the surface, the LS2 is more 

likely to crystallize in the bulk, assisted by the presence of P2O5. 
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In the same chapter, we have applied the Free-Energy Seeding method (FESM) to determine the nucleation 

free energy of LS2 and LS crystal in the LS2 glass matrix. We recovered the critical radii of the two crystals 

and the activation energy, which agreed fairly well with experimental data. One of the most significant 

drawbacks of Classical Nucleation Theory is overcome by the FESM, which considers the interfacial 

energy to be nucleus-size dependent. Unfortunately, this method provides large errors and thus does not 

provide mechanistic insights on nucleation. 

Nucleation is a rare event that occurs beyond the accessible time range of MD. Therefore, to follow the 

mechanism of nucleation we used Metadynamics simulations, and we have demonstrated in chapters 6 and 

7 that it allows us to overcome the time limitation. 

In chapter 6, investigated the crystallization of β-cristobalite from the silica melt and systematically studied 

the effects of all the metadynamics parameters on the convergence of the simulations. 

The collective variables more effective to drive crystallization were found to be the intensity of particular 

X-ray diffraction peaks. Then in chapter 7, we have applied this powerful technique to lithium disilicate 

using one or two peaks of the X-ray diffraction spectrum. 

We observed that the employment of only one CV allows us to explore a smaller region of the phase space 

and that to obtain only one crystallization pathway. When two CVs are employed, the observation of three 

different nucleation paths from the liquid to the crystal is made possible by the exploration of a significantly 

wider phase space. The first one (observed also with one CV) involves the direct formation of a structured, 

disordered layer that later rearranges internally to transform into an LS2 crystal. The second path begins 

with a phase separation that includes a silica-rich zone, with a β-cristobalite structure and a lithium-rich 

zone that contains silica chains, that resemble the lithium metasilicate crystal. The third path also proposes 

a phase separation; however, it presents a high potential energy barrier between the intermediate and the 

LS2 crystal. The new paths were not energetically favorable under the working conditions and in the 

stoichiometric LS2 glass, but we demonstrated that the intermediate phase with the β-cristobalite core has 

a low potential energy barrier to crystal and a high diffusivity that can promote the transition to LS2 under 

certain conditions. A different composition, temperature, or presence of a nucleating agent can change the 

favorable path, stabilizing one path over another. 

Despite the power of WT-MetaD to study crystallization in low viscous systems, it still exhibits several 

limitations for highly viscous glass-forming systems: (i) the model size is still limited to thousands of atoms; 

(ii) the employment of temperatures higher than the melting point might prevent the observation of 

alternative crystallization pathways at lower temperature; (iii) if more than one CV is employed, the time 

to reach convergence exponentially increases; (iv) the choice of the CV remains a challenging issue, it is 

hard to find a property able to describe the slow degrees of freedom of the transformation in an efficient 

way. To get beyond the limitations, longer simulations and a more effective algorithm are required.  
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In several recent works (146,207) a large number of extensions and variants have been developed and 

described to improve the efficiency of phase space sampling. Metadynamics and Well-tempered 

Metadynamics are adaptive biasing potential methods, in which the biasing potential is built on-the fly, as 

presented in the third chapter. A first approach to improve the performances is to employ the adaptive 

Gaussians (208), where the width of deposited Gaussians changes according to the phase space, accelerating 

the exploration, but not changing the MetaD protocol. VES and OPES are two examples of the evolution 

of Metadynamics. VES (209), variationally enhanced sampling, is based on a variational principle where a 

functional of a bias potential has to be minimized to recover the free-energy surface. OPES (210,211), on-

the-fly probability enhanced sampling, incorporates some idea of the VES and it is designed to be simple 

and robust with also suboptimal collective variables. Is based on adding a bias to the energy of the system, 

so the sampled distribution is no longer the Boltzmann one but an easier-to sample target one. These 

methods have been tested on classical systems, but they proved to be quite promising in improving 

performance. 

The temperature limitation can be addressed using a parallel tempering (212,213). It is a replica exchange 

technique (214) where several copies of the system at different temperatures are run simultaneously. Then, 

based on some criterion, the configurations are exchanged between different temperatures. It allows to 

make configurations at high temperatures available also to the simulation at low temperatures and vice 

versa. Combined with WTMetaD, parallel tempering is an extremely useful technique to reconstruct the 

free-energy surface at lower temperatures. 

The examples listed are only a fraction of all possible variants of Metadynamics or enhanced sampling 

techniques, but there are large possibilities of reducing the computational effort.  

In contrast, changing the method may not be sufficient if the collective variable is not good enough. 

Probably, the biggest limitation and challenge derives from the choice of the CV. Over the years, a 

multitude of CVs have been developed, but depending on the system of interest the list of possibilities may 

decrease sensibly. In multi-atomistic systems, such as in binary oxides as Li2Si2O5, the description of the 

slow degrees of freedom depends on a large number of order parameters that depends on a combination of 

collective variables. Recently, dimensionality reduction and deep learning have been proposed to design 

and optimize the collective variable for the study of the crystallization of different systems, such as CO2, 

metallic Na, Mo, NaCl, small organic molecules (153,154,215–217). Machine learning and neural networks 

are exploited to combine in a non-linear way structural descriptors, to maximize the discriminative power 

of the collective variable, opening new possibilities in the study of phase transition of complex systems. 

Beyond overcoming the aforementioned limitations, future works should be devoted to the investigation of 

crystallization of LS2 in the presence of nucleating agents as well as to extend it to other more complex 

systems. 
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Although, we are still far from having a complete view of the nucleation process in glass-forming liquids, 

with this project we have taken a step forward in understanding how the crystallization process can be 

investigated.
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