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1. Introduction

In this paper we consider a periodic system of singular-degenerate parabolic equa-
tions with delayed nonlocal terms and Dirichlet boundary conditions of the form


ut − div(|∇um|p−2∇um) =
(

a(x, t) −
∫

Ω

K1(ξ, t)u2(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)v2(ξ, t − τ2)dξ

)
up−1 in QT ,

vt − div(|∇vn|q−2∇vn) =
(

b(x, t) +
∫

Ω

K3(ξ, t)u2(ξ, t − τ3)dξ

−
∫

Ω

K4(ξ, t)v2(ξ, t − τ4)dξ

)
vq−1 in QT ,

u(x, t) = v(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T )

(1.1)

and we look for continuous weak solutions. Here Ω is an open bounded domain
of R

N with smooth boundary ∂Ω, satisfying the property of positive geometric
density, see [39], QT := Ω × (0, T ), T > 0, τi ∈ (0, +∞), the functions Ki, a, and b

belong to L∞(QT ). The exponents p and q belong to the interval (1, 2), m >p, n >q

and sm = |s|m−1s. Setting Au := div(|∇um|p−2∇um) and l := (m − 1)(p − 1), the
operator Au becomes mp−1 div(|u|l|∇u|p−2∇u), which is the operator considered
by Ivanov in [32–34]. According to the classification proposed in these papers, we
say that the first equation in (1.1) is of

(1) slow diffusion type if m > 1
p−1 ,

(2) normal diffusion type if m = 1
p−1 ,

(3) fast diffusion type if m < 1
p−1 .

Of course, analogous definition in terms of n and q can be given for the second
equation in (1.1).

The aim of this paper is to extend the results of [25, 26], concerning the existence
of nonnegative, nontrivial periodic solutions, to a system of singular-degenerate
parabolic equations. To the best of our knowledge, this is the first result for the case
when 1 < p, q < 2, m > p and n > q, also in the case of a single equation. We recall
that the cases p, q > 2, m, n > 1 and p = q = 2, m, n > 1 were treated respectively in
[25, 26], see also [21, 22] for a system of anisotropic (p(x), q(x))-Laplacian parabolic
equations, with p(x), q(x) > 2 in Ω, and m = n = 1. In the very recent paper [61],
the authors replace the nonlocal terms of (1.1) by

∫
Ω Ki(ξ, t)u(ξ, t)dξ, for i = 1, 3,

and
∫
Ω Ki(ξ, t)v(ξ, t)dξ, for i = 2, 4. By means of local conditions, different from

those proposed in [25, 26], the authors obtain the coexistence of the two species
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via a similar topological approach when p, q ≥ 2, m, n ≥ 1 and, thus, only the
slow and normal diffusion occurs, i.e. m(p − 1) ≥ 1, n(q − 1) ≥ 1. More precisely,
models for the interaction between two biological species sharing the same isolated
territory, with the interactions represented by means of the kernels Ki, i = 1, 2, 3, 4,
were considered in related systems of doubly degenerate parabolic equations in
[25, 61] and in systems of porous medium equations in [26]. On the other hand,
some previous biological models found in the literature, see, e.g., [1, 2, 52, 51],
involve the p-Laplacian with p > 1 (and m = 1). Furthermore, we observe that
the equations of the system we consider treat all the possible types of diffusion:
slow, normal and fast, while in [25, 26, 61] only the slow and normal diffusions were
presented. In fact, as it can be easily checked, if p ∈ (1, 1+

√
5

2 ) one can have all the
three types of diffusion, while if p ∈ [1+

√
5

2 , 2) only the slow diffusion is possible
under the condition m > p.

In the case of the fast diffusion and superlinear growth in u, v of the right-hand
sides, the solutions may blow up or vanish in some finite time depending on the
initial conditions as illustrated in [11, 40, 41, 46] and the references therein for the
simple equation obtained from the first of system (1.1) by letting p = 2, a > 0
constant and all the kernels Ki ≡ 0 (observe that in the case when p = q = 2 no
restrictions on m, n are required, see Remark 2.2). If Ω = R

N for such equation
we have that the solution blows up for any initial condition in the case when the
superlinear growth in u is less than a certain critical exponent, see [46], and the
same occurs for doubly degenerate parabolic equations, see [47]. If the growth is
linear or sublinear we do not have blow up of any solution, see [41], hence solutions
exist for all t ≥ 0 and in the linear case, depending on the initial condition, they may
vanish in finite time or become unbounded as t → +∞ and, thus, the considered
initial conditions cannot give rise to a periodic solution.

The choice of the sublinear exponents p−1 and q−1, respectively, for u and v in
(1.1) is mainly technical since it depends on the topological method employed in the
paper, which is based on a priori bounds of the solutions. Indeed, this choice enable
us to establish the required a priori bounds on the solutions of the approximating
problem (2.1) in a uniform way with respect to the perturbation parameter ε > 0.
We remark that, if the diffusion is slow and Ω ⊂ R

N is a bounded and open
domain, then we can allow a superlinear growth in u, v in order to have both
global existence solutions and periodic solutions, together with their L∞-estimates,
see [61, 8, 13, 14, 45, 48, 49, 57, 62–64] and the references therein. Due to the
singularity of the p, q-Laplacian, the way of proving the a priori bounds deeply
differs from that employed in [25, 26]. Moreover, in order to pass from the L2- to
the L∞-estimates, in Lemma 2.2 we have readapted Moser’s technique to the case
when 1 < p, q < 2. Moreover we have to impose the technical restriction m > p and
n > q in order to get the gradient estimates in Lemma 2.4.

Due to their importance in different physical and other natural sciences such
as non-Newtonian fluid mechanics, flow in porous medium, nonlinear elasticity,
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glaciology, population biology, etc., degenerate and singular parabolic equations
have been the subject of extensive research in the last 25 years, with particular
emphasis on the study of regularity for nonnegative weak solutions. We mention
here, among many others, the papers [32–34, 53] and the monographs [17, 54]. In
particular, we refer to the very recent monograph [18] for a comprehensive treat-
ment of the Harnack inequality for nonnegative solutions to p-Laplacian and porous
medium equations. Moreover, the monograph [18] provides an historical presenta-
tion of the achievements in this research field and many references to the applica-
tions concerning the topics mentioned above.

The regularity results for the singular p-Laplacian are crucial for the appli-
cation of the topological degree approach used in this paper. Similar topological
methods are also employed to a great extent for the existence of nonnegative
periodic solutions of degenerate and doubly degenerate parabolic equations, see
[61, 45, 48, 62–64, 3, 9, 20, 30, 31, 38, 42, 44, 55, 56, 59, 60, 58, 67, 68, 65]. Nonlo-
cal models to study aggregation in biological systems with degenerate diffusion are
proposed in several papers, see [12, 43] and the references therein.

Moreover, we recall that the interest in studying the existence of periodic solu-
tions for degenerate and nondegenerate parabolic equations modeling biological and
physical phenomena relies in the consideration that the periodic behavior of certain
biological and physical nonnegative quantities is the most natural and desirable one,
see, e.g., [25, 26, 21, 22, 61, 57, 3, 31, 42, 56, 67, 68, 5–7, 29, 35, 50]. We also recall
the related problems faced in [23, 24] also for higher-order operators, and in [19]
for p = 2 and N = 1.

The paper is organized as follows. The goal of Sec. 2 is the proof of a coexistence
result based on the explicit knowledge of suitable a priori bounds on the L2-norms
of the solutions. The search for such bounds is carried on in Sec. 3. The reason to
split the argument in this way lies in the fact that our main coexistence conditions,
namely Assumption 2, are applicable regardless of any other assumption on the
terms of the equations. On the other hand, a priori bounds for the periodic solutions
are more easily obtained when we focus on specific situations like the competitive
(i.e. K2, K3 ≤ 0) and cooperative (i.e. K2, K3 ≥ 0) cases and those in which K1, K4

are bounded away from zero or not and other restrictions on the exponents of the
left-hand sides are imposed.

More precisely, in order to deal with the singular-degenerate system (1.1), in
Sec. 2 we introduce an approximating system (2.1) of nondegenerate-singular equa-
tions depending on a small parameter ε > 0. Such equations satisfy structure con-
ditions which, for any ε > 0, allow the use of well-known regularity results, i.e.
Hölder continuity, from, e.g., [33, 34]; we will use this regularity to show that the
map which associates to any couple of functions (f, g) ∈ L∞(QT ) × L∞(QT ) the
solution of the regularized system is a compact map from L∞(QT ) × L∞(QT ) →
L∞(QT ) × L∞(QT ), see Lemma 2.1. Then, for ε > 0, the problem of showing
the existence of a nonnegative solution (uε, vε) to (2.1) is equivalent to showing
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the existence of a nonnegative fixed point of such a solution map. The way we
do this in Proposition 2.2 is based on the classical tools of the Leray–Schauder
topological degree: first, we establish uniform (with respect to ε > 0) a priori
bounds, in this specific case in L∞(QT ) × L∞(QT ), for all possible nonnegative
solutions of (2.1). Then, by the homotopy invariance of the topological degree,
Proposition 2.2 guarantees the existence of a solution (uε, vε) of (2.1) in a large
ball BR ⊂ L∞(QT ) × L∞(QT ). Moreover, by means of suitable conditions on the
first positive eigenvalue of the p-Laplacian and on some estimates on the gradient
of convenient powers of uε and vε established in Lemma 2.4, we are able to prove
that ‖uε‖L∞ and ‖vε‖L∞ are bounded away from zero uniformly for ε > 0 small
enough, see Proposition 2.3. To conclude, by using the uniform bounds of (uε, vε)
in L∞(QT )× L∞(QT ) and the consequent uniform Hölder continuity of (uε, vε) in
QT , we can pass to the limit as ε → 0 and show in Theorem 2.1 that (uε, vε), by
passing to a subsequence if necessary, converges to a solution (u, v) of (1.1) with
u 
= 0 and v 
= 0.

In Sec. 3, we give conditions on the kernels Ki, i = 1, 2, 3, 4, of the nonlocal terms
that suffice for the existence of uniform a priori bounds in L2(QT ) × L2(QT ) for
the solutions (uε, vε) of (2.1). By Lemma 2.2 these a priori bounds imply uniform
a priori bounds of (uε, vε) in L∞(QT ) × L∞(QT ) and so, from now on, we can
proceed as outlined in Sec. 2 in order to apply Theorem 2.1. In terms of the biological
interpretations, system (1.1) is a model of the interactions of two biological species,
with density u and v respectively, disliking crowding, i.e. m, n > 1, see [50, 28, 27],
and whose diffusion involves, as in [1, 2, 52, 51], the singular p-Laplacian, i.e. 1 <

p < 2. The nonlocal terms
∫
Ω Ki(ξ, t)u2(ξ, t − τi)dξ and

∫
Ω Ki(ξ, t)v2(ξ, t − τi)dξ

evaluate a weighted fraction of individuals that actually interact at time t > 0.
Nonlocal terms in biological models were first introduced in [16, 15]. The delayed
densities u, v at time t − τi, that appear in the nonlocal terms, take into account
the time needed to an individual to become adult, and, thus to interact and to
compete. The conditions on Ki, i = 1, 2, 3, 4, have the meaning of competitive
systems if Ki ≤ 0, i = 2, 3, or of cooperative systems if Ki ≥ 0, i = 2, 3; on the
other hand, we always assume that Ki ≥ 0, i = 1, 4, to take into account the intra-
species competition. The term on the right-hand side of each equation in (1.1)
denotes the actual increasing rate of the population at (x, t) ∈ QT . Related results
are presented in the coexistence Theorem 3.1, which considers the coercive case, i.e.
Ki ≥ ki > 0, i = 1, 4, and its consequences: Corollaries 3.1 and 3.2 for the coercive-
cooperative and coercive-competitive cases, respectively. In the noncoercive case we
prove Theorem 3.2 for competitive systems when the diffusion is slow or normal
for both the equations, and Theorems 3.3 and 3.4 under a stronger assumption on
m, p, n, q, but without any conditions on the sign of K2 and K3. Observe that these
results concerning the slow and normal diffusion are relevant for the considered
biological model, in fact the slow and normal diffusion are more realistic for the
biological models as pointed out in [33, 51, 64, 50, 27]. Finally, in Sec. 4, for a
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generalization of system (1.1) which consists in having any power α ≥ 1 of u and
v in the nonlocal terms, we obtain, only in the competitive case, the coexistence
Theorem 4.1 and the related Theorem 4.2 for the coercive case and Theorem 4.3 for
the noncoercive case. Note that such a generalization of system (1.1) is a completely
new contribution with respect to [25, 26].

2. The Approximating Problem

Throughout the paper we will make the following assumptions.

Assumption 1.

(1) The exponents p, q, m, n are such that p, q ∈ (1, 2), m > p and n > q.
(2) The delays τi ∈ (0, +∞), i = 1, 2, 3, 4.
(3) The functions a, b and Ki, i = 1, 2, 3, 4, belong to L∞(QT ) and are extended

to Ω×R by T -periodicity. Moreover, a, b and Ki, i = 1, 4, are nonnegative
functions and there are constants ki, ki ≥ 0, i = 2, 3, such that

−ki ≤ Ki(x, t) ≤ ki for i = 2, 3,

for a.a. (x, t) ∈ QT .

We now recall the definition of weak solution to (1.1).

Definition 2.1. A pair of functions (u, v) is said to be a weak solution of (1.1)
if u, v ∈ C(QT ), um ∈ Lp((0, T ); W 1,p

0 (Ω)), vn ∈ Lq((0, T ); W 1,q
0 (Ω)) and (u, v)

satisfies∫∫
QT

(
−u

∂φ

∂t
+ |∇um|p−2∇um∇φ − aup−1φ

+ up−1φ

∫
Ω

[K1(ξ, t)u2(ξ, t − τ1) − K2(ξ, t)v2(ξ, t − τ2)]dξ

)
dxdt = 0

and ∫∫
QT

(
−v

∂φ

∂t
+ |∇vn|q−2∇vn∇φ − bvq−1φ

+ vq−1φ

∫
Ω

[−K3(ξ, t)u2(ξ, t − τ3) + K4(ξ, t)v2(ξ, t − τ4)]dξ

)
dxdt = 0,

for any φ ∈ C1(QT ) such that φ(x, T ) = φ(x, 0) for any x ∈ Ω and φ(x, t) = 0 for
any (x, t) ∈ ∂Ω × [0, T ].

Here and in the following we assume that the functions t �→ u(·, t) and t �→ v(·, t)
are extended from [0, T ] to R by T -periodicity so that (u, v) is a solution defined
for all t ∈ R

+.
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In order to study system (1.1) we now consider the following nondegenerate-
singular approximating p, q-Laplacian system



∂u

∂t
− div((ε + mp−1u(m−1)(p−1))|∇u|p−2∇u)

=
(

a(x, t) −
∫

Ω

K1(ξ, t)u2(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)v2(ξ, t − τ2)dξ

)
up−1 in QT ,

∂v

∂t
− div((ε + nq−1v(n−1)(q−1))|∇v|q−2∇v)

=
(

b(x, t) +
∫

Ω

K3(ξ, t)u2(ξ, t − τ3)dξ

−
∫

Ω

K4(ξ, t)v2(ξ, t − τ4)dξ

)
vq−1 in QT ,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0 for a.a. t ∈ (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(2.1)

where ε > 0. A solution (u, v) of (1.1) will be then obtained as the limit, for ε → 0,

of the solutions (uε, vε) of (2.1) with uε, vε ≥ 0. For this we give the following
definition.

Definition 2.2. A couple of functions (uε, vε) is said to be a generalized (weak)
solution of (2.1) if

uε ∈ Lp(0, T ; W 1,p
0 (Ω)) ∩ C(QT ), vε ∈ Lq(0, T ; W 1,q

0 (Ω)) ∩ C(QT )

and (uε, vε) satisfies∫∫
QT

(
−u

∂φ

∂t
+ ε|∇u|p−2∇u∇φ + |∇um|p−2∇um∇φ − aup−1

ε φ

+ up−1φ

∫
Ω

[K1(ξ, t)u2(ξ, t − τ1) − K2(ξ, t)v2(ξ, t − τ2)]dξ

)
dxdt = 0

and ∫∫
QT

(
−v

∂φ

∂t
+ ε|∇v|q−2∇v∇φ + |∇vn|q−2∇vn∇φ − bvq−1φ

+ vq−1φ

∫
Ω

[K4(ξ, t)v2(ξ, t − τ4) − K3(ξ, t)u2(ξ, t − τ3)]dξ

)
dxdt = 0

for any φ ∈ C1(QT ) such that φ(x, T ) = φ(x, 0) for any x ∈ Ω and φ(x, t) = 0 for
any (x, t) ∈ ∂Ω × [0, T ].
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To deal with the existence of T -periodic solutions (uε, vε) of system (2.1), with
uε, vε ≥ 0 in QT , we introduce, for any ε > 0, the map Gε : [0, 1] × L∞(QT ) ×
L∞(QT ) → X , where X := Lp(0, T ; W 1,p

0 (Ω)∩L2(Ω))×Lq(0, T ; W 1,q
0 (Ω)∩L2(Ω)),

as follows:

(σ, f, g) �→ (uε, vε) = Gε(σ, f, g)

if and only if (uε, vε) solves the following uncoupled problem:


∂u

∂t
− ε div(|∇u|p−2∇u) − div(|∇(σum)|p−2∇(σum)) = f in QT ,

∂v

∂t
− ε div(|∇v|q−2∇v) − div(|∇(σvn)|q−2∇(σvn)) = g in QT ,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0 for a.a. t ∈ (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ).

(2.2)

For any fixed σ ∈ [0, 1] the operator A : X = Lp(0, T ; W 1,p
0 (Ω) ∩ L2(Ω)) → X ′,

u �→ εdiv(|∇u|p−2∇u)+ div(|∇(σum)|p−2∇(σum)), is hemicontinuous, strictly
monotone (and hence pseudomonotone), coercive and bounded. Thus, by [66, The-
orem 32.D], the map Gε is well defined. Now, consider

f(α, β) :=
(

a −
∫

Ω

K1(ξ, ·)α2(ξ, · − τ1)dξ +
∫

Ω

K2(ξ, ·)β2(ξ, · − τ2)dξ

)
αp−1

and

g(α, β) :=
(

b +
∫

Ω

K3(ξ, ·)α2(ξ, · − τ3)dξ −
∫

Ω

K4(ξ, ·)β2(ξ, · − τ4)dξ

)
βq−1,

where α and β belong to L∞(QT ). Clearly, if the nonnegative functions uε, vε ∈
L∞(QT ) are such that (uε, vε) = Gε(1, f(uε, vε), g(uε, vε)), then (uε, vε) is also a
solution of (2.1) (with uε and vε ≥ 0) in QT . Hence, the existence of a nonnegative
solution of (2.1) is equivalent to the existence of a fixed point (α, β) of the map
(α, β) �→ Gε(1, f(α, β), g(α, β)) with α and β ≥ 0.

Let Tε(σ, α, β) := Gε(σ, f(α, β), g(α, β)). By [33, Theorem 1.1; 34, Theorem 1.3]
we have the Hölder estimate in the interior of QT of the solutions to (2.2). Moreover,
the property of positive geometric density of ∂Ω, the fact that the Dirichlet data
is Hölder continuous and the periodicity condition ensure that one can obtain the
Hölder estimate up to the parabolic boundary of QT , see the comments to [33,
Theorem 1.1; 34, Theorem 7.1].

We will need the following result, which was proved in [26, Lemma 2.1] for the
p, q = 2, m, n > 1, but whose proof is the same, so we omit it.

Lemma 2.1. Let (α, β) ∈ L∞(QT ) × L∞(QT ) and let ε > 0. Then Tε : [0, 1] ×
L∞(QT ) × L∞(QT ) → L∞(QT ) × L∞(QT ), (σ, α, β) �→ Tε(σ, α, β) = (uε, vε) is
compact. Moreover uε, vε ∈ C(QT ).
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Our aim is to prove the existence of T -periodic solutions uε, vε ∈ C(QT ) of
problem (2.1) with uε, vε > 0 in QT , for all ε > 0 small enough, as positive fixed
points of the map (α, β) �→ Tε(1, α, β). As a first step we prove the following result.

Proposition 2.1. If the nontrivial pair (uε, vε) solves

(u, v) = Gε(σ, f(u+, v+) + (1 − σ), g(u+, v+) + (1 − σ)) (2.3)

for some σ ∈ [0, 1], then

uε(x, t) ≥ 0 and vε(x, t) ≥ 0 for any (x, t) ∈ QT .

Moreover, if uε 
= 0 or vε 
= 0, then uε > 0 or vε > 0 in QT , respectively.

Proof. Assume that (uε, vε) solves (2.3) with uε 
= 0 for some σ ∈ [0, 1]. We first
prove that uε ≥ 0. Multiplying the first equation of (2.2), where f(α, β) is replaced
by f(u+

ε , v+
ε ) + (1 − σ), by u−

ε := min{0, uε}, integrating over QT and passing to
the limit in the Steklov averages (uε)h ∈ H1(QT−δ), δ, h > 0, in a standard way
[39, p. 85], we obtain

ε

∫∫
QT

|∇uε|p−2∇uε∇u−
ε +

∫∫
QT

|∇(σum
ε )|p−2∇(σum

ε )∇u−
ε

=
∫∫

QT

(1 − σ)u−
ε ≤ 0,

by the T -periodicity of uε and taking into account that u+
ε u−

ε = 0. Hence we obtain

ε

∫∫
QT

|∇u−
ε |p ≤ ε

∫∫
QT

|∇uε|p−2∇u∇u−
ε +

∫∫
QT

|∇(σum
ε )|p−2∇(σum

ε )∇u−
ε ≤ 0.

Thus ∫∫
QT

|∇u−
ε |p = 0.

The Poincaré inequality gives

0 ≤
∫

Ω

|u−
ε |pdx ≤ 1

µp

∫
Ω

|∇u−
ε |pdx for all t,

where µp is the first positive eigenvalue of the problem{−div(|∇z|p−2∇z) = µ|z|p−2z, x ∈ Ω,

z = 0, x ∈ ∂Ω,

(see, for example, [37]). Integrating over (0, T ), we have

0 ≤
∫∫

QT

|u−
ε |p ≤ 1

µp

∫∫
QT

|∇u−
ε |p = 0,

which, together with the boundary conditions and the fact that u−
ε ∈ C(QT ),

implies u−
ε (x, t) = 0 for all (x, t) ∈ QT .
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Now we prove that uε > 0 in QT . Since uε is nontrivial, there exists (x0, t0) ∈
Ω × (0, T ] such that uε(x0, t0) > 0. Hence uε(x, t) > 0 for all (x, t) ∈ QT (see [10,
p. 3; 36]). In the same way, one can prove that vε 
= 0 implies vε(x, t) > 0 for all
(x, t) ∈ QT .

The next lemma is crucial to prove Proposition 2.2 below.

Lemma 2.2. Let K > 0 and assume that u is a nonnegative T -periodic continuous
function such that x �→ u(x, t) ∈ W 1,p

0 (Ω) for all t ∈ [0, T ] and which satisfies

ut − εdiv(|∇u|p−2∇u) − div(|∇um|p−2∇um) ≤ Kup−1 in QT .

Then there exists R > 0 such that

‖u‖L∞ ≤ R for all ε > 0.

Proof. We follow Moser’s technique to show the stated a priori bounds. Multi-
plying

ut − ε div(|∇u|p−2∇u) − div(|∇um|p−2∇um) ≤ Kup−1

by us+1, with s ≥ 0, integrating over Ω and passing to the limit as h → 0 in the
Steklov averages uh ∈ H1(QT−δ), δ, h > 0, we have

1
s + 2

d

dt
‖u(t)‖s+2

Ls+2(Ω) +
∫

Ω

(ε|∇u|p−2∇u + |∇um|p−2∇um)∇us+1dx

≤ K‖u(t)‖s+p
Ls+p(Ω) ≤ C|Ω|‖u(t)‖s+p

Ls+2(Ω)

and thus
d

dt
‖u(t)‖s+2

Ls+2(Ω) + (s + 1)(s + 2)mp−1

∫
Ω

u(m−1)(p−1)+s|∇u|pdx

≤ (s + 2)C|Ω|‖u(t)‖s+p
Ls+2(Ω),

where C|Ω| := sups≥0 K|Ω|1− s+p
s+2 . Since m, p > 1, it follows

d

dt
‖u(t)‖s+2

Ls+2(Ω) +
s + 2

[m(p − 1) + s + 1]p

∫
Ω

|∇u
m(p−1)+s+1

p |pdx

≤ d

dt
‖u(t)‖s+2

Ls+2(Ω) + (s + 2)mp−1

(
p

m(p − 1) + s + 1

)p ∫
Ω

|∇u
m(p−1)+s+1

p |pdx

≤ d

dt
‖u(t)‖s+2

Ls+2(Ω) + (s + 1)(s + 2)mp−1

∫
Ω

u(m−1)(p−1)+s|∇u|pdx

≤ C|Ω|(s + 2)‖u(t)‖s+p
Ls+2(Ω). (2.4)

For ε fixed and k = 1, 2, . . . , setting

sk := 2pk +
pk − p

p − 1
+ m − 1, αk :=

p(sk + 2)
m(p − 1) + sk + 1

, wk := u
m(p−1)+sk+1

p ,
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we obtain by (2.4)

d

dt
‖wk(t)‖αk

Lαk(Ω) +
(sk + 2)

[m(p − 1) + sk + 1]p
‖∇wk(t)‖p

Lp(Ω)

≤ C|Ω|(sk + 2)‖wk(t)‖αk
sk+p

sk+2

Lαk (Ω) . (2.5)

Now, let us fix s > p such that the continuous Sobolev immersion W 1,p
0 (Ω) ⊂ Ls(Ω)

holds and observe that since sk → +∞, as k → +∞, there exists k0 such that
αk ∈ (1, s) for all k ≥ k0. By the interpolation and the Sobolev inequalities, it
results

‖wk(t)‖Lαk (Ω) ≤ ‖wk(t)‖θk

L1(Ω)‖wk(t)‖1−θk

Ls(Ω) ≤ C‖wk(t)‖θk

L1(Ω)‖∇wk(t)‖1−θk

Lp(Ω)

for all k≥ k0. Here θk =(s − αk)/[αk(s − 1)] and C is a positive constant.
Using the fact that ‖wk(t)‖L1(Ω) = ‖wk−1(t)‖αk−1

Lαk−1 (Ω)
and defining xk := supt∈R

‖wk(t)‖Lαk (Ω), one has

‖wk(t)‖
p

1−θk

Lαk (Ω) ≤ C‖wk−1(t)‖
pαk−1

θk
1−θk

Lαk−1(Ω)
‖∇wk(t)‖p

Lp(Ω)

≤ Cx
pαk−1

θk
1−θk

k−1 ‖∇wk(t)‖p
Lp(Ω)

for all k ≥ k0. Thus, by (2.5),

d

dt
‖wk(t)‖αk

Lαk (Ω)

≤ C|Ω|(sk + 2)‖wk(t)‖αk
sk+p

sk+2

Lαk (Ω) −
(sk + 2)‖wk(t)‖

p
1−θk

Lαk (Ω)

C[m(p − 1) + sk + 1]p
x

pαk−1
θk

θk−1

k−1

=


C|Ω| −

‖wk(t)‖
p

1−θk
−αk

sk+p

sk+2

Lαk (Ω)

C[m(p − 1) + sk + 1]p
x

pαk−1
θk

θk−1

k−1


 (sk + 2)‖wk(t)‖αk

sk+p

sk+2

Lαk (Ω)

(2.6)

for all k ≥ k0. By Lemma 2.3 and (2.6), one has

‖wk(t)‖Lαk (Ω) ≤ (C|Ω|Mkx
pαk−1

θk
1−θk

k−1 )ηk (2.7)

for all k ≥ k0, where ηk := (1−θk)(sk+2)
p(sk+2)−αk(sk+p)(1−θk) and Mk := C[m(p−1)+ sk +1]p.

By definition of xk and (2.7), we get

xk ≤ (C|Ω|Mk)ηkxνk

k−1

for all k ≥ k0, with νk := pαk−1θk(sk + 2)/[p(sk + 2) − αk(sk + p)(1 − θk)].
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If xkn ≤ 1 along a sequence kn → +∞, then one has ‖u‖L∞ ≤ 1 by the very
definition of xk and the lemma is proved. On the other hand, assume xk > 1 for all
k ≥ k0 and observe that there exists k0 such that, for all k ≥ k0,

ηk ≤ 1/(pθ) and νk ≤ αk−1.

Here θ := (s − p)/[p(s − 1)]. Without loss of generality, assume k0 = max{k0, k0}.
Then, there exists a positive constant A such that

xk ≤ (C|Ω|C)ηk [m(p − 1) + sk + 1]pηkxνk

k−1

≤ (C|Ω|C)ηk

(
mp +

2pk+1

p − 1

)pηk

xνk

k−1 ≤ Ap
k+1

θ x
αk−1
k−1

for all k ≥ k0. Thus

log xk ≤ log A +
k + 1

θ
log p + αk−1 log xk−1

≤

1 +

k−k0−1∑
i=1

i∏
j=1

αk−j


 log A +


k + 1 +

k∑
i=k0+2

i

k+1−i∏
j=1

αk−j


 log p

θ

+


k−k0∏

j=1

αk−j


 log xk0 . (2.8)

Since

αk = 1 +
1 − m(p − 1)

m(p − 1) + sk + 1
≤ 1 +

|1 − m(p − 1)|
2pk

,

for i ≤ k, we have that

log


 1

pi

i∏
j=1

αk−j


 =

i∑
j=1

log
αk−j

p

≤
i∑

j=1

log
(

1 +
|1 − m(p − 1)|

2pk−j+1

)

≤ |1 − m(p − 1)|
2pk

i∑
j=1

pj−1

≤ |1 − m(p − 1)|
2(p − 1)

,

which means that
i∏

j=1

αk−j ≤ Mpi with M = exp
|1 − m(p − 1)|

2(p − 1)
.

1450025-12



February 7, 2015 10:15 WSPC/S0219-1997 152-CCM 1450025

Periodic solutions for singular-degenerate parabolic equations

Therefore, from (2.8) we obtain

log xk

M
≤ log A

k−k0−1∑
i=0

pi +
log p

θ

k+1∑
i=k0+2

ipk+1−i + pk−k0 log xk0

≤ log p

θ

pk−k0

(p − 1)2
[k0(p − 1) + 2p − 1] + log A

1 − pk−k0

1 − p
+ pk−k0 log xk0 .

(2.9)

In fact, taking x = 1
p in

x
d

dx

k+1∑
i=0

xi = x
d

dx

(
1 − xk+2

1 − x

)
,

it results

k+1∑
i=k0+2

ipk+1−i =
pk+3

(p − 1)2

[
1

pk+2

(
k + 1

p
− k − 2

)
− 1

pk0+2

(
k0 + 1

p
− k0 − 2

)]

≤ pk+3

(p − 1)2
1

pk0+2

(
k0 + 2 − k0 + 1

p

)

=
pk−k0

(p − 1)2
[k0(p − 1) + 2p − 1].

Then, by (2.9), it follows

x
1/M
k ≤ A

1−pk−k0
1−p p

pk−k0
θ(p−1)2

[k0(p−1)+2p−1]
xpk−k0

k0
.

Since xk = supt∈R
‖u(t)‖

m(p−1)+sk+1
p

sk+2 , we obtain

‖u(t)‖L∞(Ω) ≤ lim
k→∞

‖u(t)‖sk+2

≤ lim sup
k→∞

{A p
m(p−1)+sk+1

1−pk−k0
1−p x

pk−k0+1

m(p−1)+sk+1

k0
p

pk−k0+1(k0(p−1)+2p−1)
θ(p−1)2(m(p−1)+sk+1) }M

=: R ∀ t ∈ R,

where R is a positive constant. Hence supt∈R
‖u(t)‖L∞(Ω) ≤ R. It remains to prove

that R is independent of ε as claimed. To this aim it is sufficient to prove that there
exists C > 0, independent of ε, such that xk0 ≤ C. In fact, by (2.5) with s0 := sk0 ,
it follows

d

dt
‖u(t)‖s0+2

Ls0+2(Ω)
+

(s0 + 2)
∫
Ω
|∇u

m(p−1)+s0+1
p |pdx

[m(p − 1) + s0 + 1]p
≤ C|Ω|(s0 + 2)‖u(t)‖s0+p

Ls0+2(Ω)
.

(2.10)
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Moreover, we have

‖u(t)‖m(p−1)+s0+1

Ls0+2(Ω)
≤ C1

[∫
Ω

(u
m(p−1)+s0+1

p )p
s0+2
s0+p dx

] s0+p
s0+2

by Hölder’s inequality with r = m(p−1)+s0+1
s0+p . Now, without loss of generality, we can

assume that k0 is chosen large enough such that the continuous Sobolev immersion
W 1,p

0 (Ω) ⊂ Lp
s0+2
s0+p (Ω) holds and, hence, we deduce that

‖u(t)‖m(p−1)+s0+1

Ls0+2(Ω)
≤ C2

∥∥∇u
m(p−1)+s0+1

p

∥∥p

Lp(Ω)
,

for a positive constant C2. Thus, using (2.10), one has

d

dt
‖u(t)‖s0+2

Ls0+2(Ω)
+

s0 + 2
C2[m(p − 1) + s0 + 1]p

‖u(t)‖m(p−1)+s0+1

Ls0+2(Ω)

≤ d

dt
‖u(t)‖s0+2

Ls0+2(Ω)
+

s0 + 2
[m(p − 1) + s0 + 1]p

∥∥∇u
m(p−1)+s0+1

p

∥∥p

Lp(Ω)

≤ C|Ω|(s0 + 2)‖u(t)‖s0+p
Ls0+2(Ω)

.

Hence
d

dt
‖u(t)‖s0+2

Ls0+2(Ω)
≤ ‖u(t)‖s0+p

Ls0+2(Ω)
(C|Ω|(s0 + 2) − M‖u(t)‖(m−1)(p−1)

Ls0+2(Ω)
),

where M := s0+2
C2[m(p−1)+s0+1]p . This inequality and Lemma 2.3 below imply that

‖u(t)‖Ls0+2(Ω) ≤ {C2C|Ω|[m(p − 1) + s0 + 1]p} 1
(m−1)(p−1) ∀ t ∈ R.

Thus, there exists C > 0, independent of ε, such that

xk0 = sup
t∈R

‖u(t)‖
m(p−1)+s0+1

p

Ls0+2(Ω)
≤ C,

and this concludes the proof.

Lemma 2.3. Let f : R → (0, +∞) be a differentiable and T -periodic function; sup-
pose that there exist positive constants s, α, β, γ such that

f ′(t) ≤ fs(t)(β − γfα(t)),

for all t ∈ R. Then β − γfα(t) ≥ 0 for all t ∈ R.

Proof. By the periodicity and continuity of f , let t0 be any point in which f

attains its maximum. Then we have:

β − γfα(t) ≥ β − γfα(t0) ≥ f ′(t0)
fs(t0)

= 0 ∀ t ∈ R.

Next, we show that the map I − Gε : {1} × L∞(QT ) × L∞(QT ) → L∞(QT ) ×
L∞(QT ) has the Leray–Schauder topological degree different from zero in the inter-
section of a sufficiently large ball centered at the origin with the cone of nonnegative
functions.
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From now on we make the following assumption.

Assumption 2. There exist two positive constants C1, C2 such that

(1) for all ε > 0 and all solution pairs (uε, vε) of

(u, v) = Gε(1, f(u+, v+), g(u+, v+)), (2.11)

it results

‖uε‖2
L2 ≤ C1 and ‖vε‖2

L2 ≤ C2, (2.12)

(2) we have:

min
{

1
T

∫∫
QT

aep
p − k2C2

T
,

1
T

∫∫
QT

beq
q −

k3C1

T

}
> 0,

where k2, k3 are as in Assumption 1(3), and, for any r > 1, er stands for the
positive eigenvector associated to the first eigenvalue µr of −∆r with Dirichlet
boundary conditions and normalized in such a way that ‖er‖Lr(Ω) = 1.

Remark 2.1. The last assumptions, and in particular statement (2), will grant
the periodic coexistence, that is the existence of a T -periodic solution couple (u, v)
with u, v both nonnegative and nontrivial (see Theorem 2.1). Generally speaking,
the explicit knowledge of the a priori bounds C1, C2 is required to check the validity
of Assumption 2(2). This is the task we will devote ourselves to in the next section.
A notable exception is the case in which K2, K3 are not negative (namely, the
cooperative case), since one can choose k2 = k3 = 0 and, thus, Assumption 2(2) is
readily satisfied regardless of the values of C1, C2, if neither of the coefficients a, b

is trivial.

The next result shows how we can pass from an L2-estimate to an L∞-estimate.

Proposition 2.2. There is a constant R > 0 such that

‖uε‖L∞ , ‖vε‖L∞ < R

for all solution pairs (uε, vε) of (2.11) with ε > 0 sufficiently small. In particular,
one has that

deg((u, v) − Gε(1, f(u+, v+), g(u+, v+)), BR, 0) = 1.

Proof. Assume uε 
= 0, thus uε > 0 and vε ≥ 0 in QT by Proposition 2.1. Multi-
plying by uε the first equation of (2.1), integrating over Ω and using the Steklov
averages (uε)h ∈ H1(QT−δ), δ, h > 0, see [39, p. 85], we obtain

1
2

d

dt

∫
Ω

(uε)2hdx + ε

∫
Ω

|∇(uε)h|pdx + mp−1

∫
Ω

(uε)
(m−1)(p−1)
h |∇(uε)h|pdx
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≤
(
‖a‖L∞ +

∫
Ω

K2(ξ, t)(vε)2h(ξ, t − τ2)dξ

)∫
Ω

(uε)
p
hdx

≤ |Ω|1− p
2

(
‖a‖L∞ +

∫
Ω

K2(ξ, t)(vε)2h(ξ, t − τ2)dξ

)(∫
Ω

(uε)2hdx

) p
2

.

Thus
1
2

d
dt

∫
Ω(uε)2hdx + ε

∫
Ω |∇(uε)h|pdx + mp−1

∫
Ω(uε)

(m−1)(p−1)
h |∇(uε)h|pdx(∫

Ω
(uε)2hdx

) p
2

≤ |Ω|1− p
2

(
‖a‖L∞ + ‖K2‖L∞

∫
Ω

(vε)2h(ξ, t − τ2)dξ

)
. (2.13)

Since t �→ ‖u(t)‖L2(Ω) is continuous in [0, T ], there exist t1 and t2 in [0, T ] such that∫
Ω

u2
ε(x, t1)dx = min

t∈[0,T ]

∫
Ω

u2
ε(x, t)dx

and ∫
Ω

u2
ε(x, t2)dx = max

t∈[0,T ]

∫
Ω

u2
ε(x, t)dx.

Without loss of generality, by periodicity, we can assume that t1 < t2. Then, inte-
grating (2.13) between t1 and t2 and passing to the limit as h → 0, we find∫ t2

t1

(∫
Ω

u2
εdx

)− p
2 d

dt

(∫
Ω

u2
εdx

)
dt

≤ 2|Ω|1− p
2

∫ T

0

(
‖a‖L∞ + ‖K2‖L∞

∫
Ω

v2
ε(ξ, t − τ2)dξ

)
dt.

Thus(∫
Ω

u2
ε(x, t2)dx

) 2−p
2

−
(∫

Ω

u2
ε(x, t1)dx

) 2−p
2

≤ C(T ‖a‖L∞ + ‖K2‖L∞C2),

where C := (2 − p)|Ω|1− p
2 . Hence(∫

Ω

u2
ε(x, t2)dx

) 2−p
2

≤
(∫

Ω

u2
ε(x, t1)dx

) 2−p
2

+ C(T ‖a‖L∞ + ‖K2‖L∞C2),

or, equivalently,

max
t∈[0,T ]

∫
Ω

u2
ε(x, t)dx

≤
{(

min
t∈[0,T ]

∫
Ω

u2
ε(x, t)dx

) 2−p
2

+ C(T ‖a‖L∞ + ‖K2‖L∞C2)

} 2
2−p

.

This implies that there exists a constant γ > 0, independent of ε, such that

max
t∈[0,T ]

∫
Ω

u2
ε(x, t)dx ≤ γ.
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Otherwise, for all γ > 0 there would exist ε > 0 such that the corresponding solution
uε satisfies

γ < max
t∈[0,T ]

∫
Ω

u2
ε(x, t)dx

≤
{(

min
t∈[0,T ]

∫
Ω

u2
ε(x, t)dx

) 2−p
2

+ C(T ‖a‖L∞ + ‖K2‖L∞C2)

} 2
2−p

.

Using the fact that 2
2−p > 1 and integrating the previous inequality on [0, T ] for

sufficiently large γ, one would have

γT ≤
∫∫

QT

u2
ε + CT (T ‖a‖L∞ + ‖K2‖L∞C2),

that is uε is unbounded in L2(QT ), in contradiction with Assumption 2(1). Of
course, an analogous inequality holds for vε.

Now, we have

∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(|∇um

ε |p−2∇uε)

≤
(
‖a‖L∞ + ‖K2‖L∞ max

t∈[0,T ]

∫
Ω

v2
ε(x, t)dx

)
up−1

ε

≤ (‖a‖L∞ + ‖K2‖L∞γ)up−1
ε , (2.14)

i.e.
∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(∇um

ε |∇um
ε |p−2) ≤ Kup−1

ε in QT ,

where K := ‖a‖L∞ + ‖K2‖L∞γ. By Lemma 2.2 we conclude that ‖uε‖L∞ ≤ R1

for some R1 > 0 independent of ε. Analogously, ‖vε‖L∞ ≤ R2 for some constant
R2 > 0. Therefore it is enough to choose R > max{R1, R2}.

The previous calculations also show that any solution pair of

(u, v) = Gε(1, ρf(u+, v+), ρg(u+, v+))

with ρ ∈ [0, 1] satisfies the same inequality (2.14). Therefore, the homotopy invari-
ance property of the Leray–Schauder degree implies that

deg((u, v) − Tε(1, u+, v+), BR, 0)

= deg((u, v) − Gε(1, ρf(u+, v+), ρg(u+, v+)), BR, 0)

for any ρ ∈ [0, 1]. If we take ρ = 0, using the fact that Gε at ρ = 0 is the zero map,
we obtain

deg((u, v) − Tε(1, u+, v+), BR, 0) = deg((u, v), BR, 0) = 1.

In order to prove that the solutions (uε, vε) of (2.1) we are going to find are not
bifurcating from the trivial solution (0, 0), the next estimate will be crucial.
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Lemma 2.4. Let s > 0 be such that

s < min
{

(p − 1)(m − p)
p

,
(q − 1)(n − q)

q

}
.

Then, there exist two positive constants M1 and M2 such that∥∥∥∇u
(p−1)(m−1)−s

p−1
ε

∥∥∥
Lp

≤ M1 and
∥∥∥∇v

(q−1)(n−1)−s
q−1

ε

∥∥∥
Lq

≤ M2,

for all solution pairs (uε, vε) of (2.11) and ε > 0 sufficiently small.

Proof. Let γ := (p−1)(m−p)−ps
p−1 > 0. Multiplying the equation

∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(|∇um

ε |p−2∇um
ε )

=
(

a(x, t) −
∫

Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ +

∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
up−1

ε

by uγ
ε , integrating over QT and passing to the limit in the Steklovy averages, by

the T -periodicity of uε we obtain

ε

∫∫
QT

|∇uε|p−2∇uε∇uγ
ε +

∫∫
QT

|∇um
ε |p−2∇um

ε ∇uγ
ε

=
∫∫

QT

auγ+p−1
ε −

∫ T

0

(∫
Ω

uγ+p−1
ε (x, t)dx

)(∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

)
dt

+
∫ T

0

(∫
Ω

uγ+p−1
ε (x, t)dx

)(∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
dt.

Now, since ∫∫
QT

|∇uε|p−2∇uε∇uγ
ε = γ

∫∫
QT

uγ−1
ε |∇uε|p ≥ 0,

then

γmp−1

(
p − 1

(p − 1)(m − 1) − s

)p ∥∥∇u
(p−1)(m−1)−s

p−1
ε

∥∥p

Lp

= γmp−1

∫∫
QT

u(p−1)(m−1)+γ−1
ε |∇uε|p

≤ ε

∫∫
QT

|∇uε|p−2∇uε∇uγ
ε +

∫∫
QT

|∇um
ε |p−2∇um

ε ∇uγ
ε

≤ ‖a‖L∞

∫∫
QT

uγ+p−1
ε −

∫ T

0

(∫
Ω

uγ+p−1
ε (x, t)dx

)

×
(∫

Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

)
dt

+
∫ T

0

(∫
Ω

uγ+p−1
ε (x, t)dx

)(∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
dt. (2.15)
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Moreover, by the Hölder inequality with β := p (p−1)(m−1)−s
(p−1)(m−1)−ps > 1 and the

Poincaré inequality, one has

∫∫
QT

uγ+p−1
ε ≤ |QT |

1
β′
(∫∫

QT

u
p (p−1)(m−1)−s

p−1
ε

) 1
β

= |QT |
1

β′
∥∥u (p−1)(m−1)−s

p−1
ε

∥∥ p
β

Lp

≤ |QT |
1

β′
(

1
µp

) 1
β ∥∥∇u

(p−1)(m−1)−s
p−1

ε

∥∥ p
β

Lp . (2.16)

Here β′ is such that 1
β + 1

β′ = 1. Thus (2.15) and (2.16) imply

γmp−1

(
p − 1

(p − 1)(m − 1) − s

)p ∥∥∇u
(p−1)(m−1)−s

p−1
ε

∥∥p

Lp

≤ ‖a‖L∞|QT |
1

β′
(

1
µp

) 1
β ∥∥∇u

(p−1)(m−1)−s
p−1

ε

∥∥ p
β

Lp

−
∫ T

0

(∫
Ω

uγ+p−1
ε (x, t)dx

)(∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

)
dt

+
∫ T

0

(∫
Ω

uγ+p−1
ε (x, t)dx

)(∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
dt. (2.17)

By assumptions, there are constants ki ≥ 0, i = 2, 3, such that Ki(x, t) ≤ ki for
a.a. (x, t) ∈ QT . Thus, by (2.16), (2.17) and Proposition 2.2, we have

γmp−1

(
p − 1

(p − 1)(m − 1) − s

)p ∥∥∇u
(p−1)(m−1)−s

p−1
ε

∥∥p

Lp

≤ ‖a‖L∞ |QT |
1

β′
(

1
µp

) 1
β ∥∥∇u

(p−1)(m−1)−s
p−1

ε

∥∥ p
β

Lp + k2|Ω|R2

∫∫
QT

uγ+p−1
ε

≤ (‖a‖L∞ + k2|Ω|R2)|QT |
1

β′
(

1
µp

) 1
β ∥∥∇u

(p−1)(m−1)−s
p−1

ε

∥∥ p
β

Lp .

In particular,

∥∥∇u
(p−1)(m−1)−s

p−1
ε

∥∥
Lp ≤ M1,

where

M1 :=


 (‖a‖L∞ + k2|Ω|R2)|QT |

1
β′ ( 1

µp
)

1
β [(p − 1)(m − 1) − s]p

[m(p − 1)]p−1[(p − 1)(m − p) − ps]




β
p(β−1)

.
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Analogously, one can prove that∥∥∇v
(q−1)(n−1)−s

q−1
ε

∥∥
Lq ≤ M2,

where

M2 :=


 (‖b‖L∞ + k3|Ω|R2)|QT | 1

δ′ ( 1
µq

)
1
δ [(q − 1)(n − 1) − s]q

[n(q − 1)]q−1[(q − 1)(n − q) − qs]




δ
q(δ−1)

.

Here δ and δ′ are such that δ := q (q−1)(n−1)−s
(q−1)(n−1)−qs and 1

δ + 1
δ′ = 1.

Remark 2.2. Observe that in the case when p = q = 2 a priori bounds for
‖∇um

ε ‖L2 , ‖∇vn
ε ‖L2 have been obtained in [25] for sufficiently small ε > 0 under

the conditions that m, n > 1, i.e. in the case of slow diffusion. Under the same con-
dition m, n > 1 a priori bounds for ‖∇um

ε ‖Lp , ‖∇vn
ε ‖Lq have been obtained in [26]

when p, q > 2, which again corresponds to the case of slow diffusion. Therefore the
assumptions m > p and n > q are required in Lemma 2.4 only for the singular case
p, q ∈ (1, 2), which, as already noticed, allows the fast diffusion if p, q ∈ (1, 1+

√
5

2 ).
Finally, observe that, if p, q > 1, we have the fast diffusion when m < 1/(p−1) and
n < 1/(q − 1): to the best of our knowledge, this case is not treated in the existing
literature devoted to this problem.

The following result guarantees that the foreseen solutions (uε, vε) of (2.1) are
not bifurcating from the trivial solution (0, 0) as ε ranges in (0, ε0), where ε0 is such
that

θ(C1, C2) := min
{

1
T

∫∫
QT

aep
p − ε0µp − k2C2

T
,

1
T

∫∫
QT

beq
q − ε0µq − k3C1

T

}
> 0,

(2.18)

where µp, µq, ep, eq, k2 and k3 are as in Assumption 2.
To this aim let

r0 := min



(∫∫

QT
aep

p − ε0Tµp

D1

) 1
2

,

(∫∫
QT

aep
p − ε0Tµp

D1

) 1
s

,

(∫∫
QT

beq
q − ε0Tµq

D2

) 1
2

,

(∫∫
QT

beq
q − ε0Tµq

D2

) 1
s


,

where

D1 := ‖K1‖L1 + ‖K2‖L1 + p‖ep−1
p ‖L∞‖∇ep‖L∞

(
m(p − 1)M1

(p − 1)(m − 1) − s

)p−1

|QT | 1p ,

D2 := ‖K3‖L1 + ‖K4‖L1 + q‖eq−1
q ‖L∞‖∇eq‖L∞

(
n(q − 1)M2

(q − 1)(n − 1) − s

)q−1

|QT | 1q

and M1, M2, s are as in Lemma 2.4. By (2.18), r0 is obviously positive.
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Proposition 2.3. For all solution pairs (uε, vε) of (2.11) and all ε ∈ (0, ε0), it
results

max{‖uε‖L∞ , ‖vε‖L∞} ≥ r0.

Moreover deg((u, v) − Tε(1, u+, v+), Br, 0) = 0 for all r ∈ (0, r0).

Proof. By contradiction, assume that for some r ∈ (0, r0) there exists a pair
(uε, vε) 
= (0, 0) such that (uε, vε) = Gε(1, f(u+

ε , v+
ε ), g(u+

ε , v+
ε )) with ‖uε‖L∞ ≤ r

and ‖vε‖L∞ ≤ r. Assume that uε 
= 0 and take φ ∈ C∞
c (Ω). Since by Proposition 2.1

we have uε > 0 in QT , we can multiply the equation

∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(|∇um

ε |p−2∇um
ε )

=
(

a −
∫

Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ +

∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
up−1

ε

by φp

up−1
ε

, integrate over QT and pass to the limit in the Steklov averages in order
to obtain

−ε

∫∫
QT

φp

up−1
ε

div(|∇uε|p−2∇uε) −
∫∫

QT

φp

up−1
ε

div(|∇um
ε |p−2∇um

ε )

=
∫∫

QT

φpa −
∫∫

QT

φp(x)
(∫

Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

)
dxdt

+
∫∫

QT

φp(x)
(∫

Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
dxdt, (2.19)

by the T -periodicity of uε. By the generalized Picone’s identity due to Allegretto–
Huan, see [4], one has

−ε

∫∫
QT

φp

up−1
ε

div(|∇uε|p−2∇uε)

= ε

∫∫
QT

|∇uε|p−2∇uε∇
(

φp

up−1
ε

)
≤ ε

∫∫
QT

|∇φ|p. (2.20)

Indeed, we have that

|∇uε|p−2∇uε∇
(

φp

up−1
ε

)
≤ p|∇φ|

(
φ

uε
|∇uε|

)p−1

− (p − 1)
(

φ

uε
|∇uε|

)p

=
(

φ

uε
|∇uε|

)p

+ p

(
φ

uε
|∇uε|

)p−1 (
|∇φ| − φ

uε
|∇uε|

)

≤ |∇φ|p,
since the function R � ξ �→ |ξ|p is convex for p > 1.
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Moreover,

−
∫∫

QT

φp

up−1
ε

div(∇um
ε |∇um

ε |p−2)

=
∫∫

QT

∇
(

φp

up−1
ε

)
∇um

ε |∇um
ε |p−2

= mp−1

∫∫
QT

u(m−1)(p−1)
ε |∇uε|p−2∇uε

up−1
ε ∇φp − φp∇up−1

ε

u
2(p−1)
ε

= pmp−1

∫∫
QT

φp−1u(p−1)(m−2)
ε |∇uε|p−2∇uε∇φ

−mp−1(p − 1)
∫∫

QT

φpu(m−2)(p−1)−1
ε |∇uε|p

≤ p‖φp−1‖L∞‖∇φ‖L∞mp−1

∫∫
QT

|∇uε|p−1u(p−1)(m−2)
ε . (2.21)

By (2.19)–(2.21), it follows∫∫
QT

φpa −
∫∫

QT

φp(x)
(∫

Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

)
dxdt

+
∫∫

QT

φp(x)
(∫

Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
dxdt

≤ p‖φp−1‖L∞‖∇φ‖L∞mp−1

∫∫
QT

|∇uε|p−1u(p−1)(m−2)
ε + ε

∫∫
QT

|∇φ|p.

Taking φ(x) = φj(x) → ep(x) in C1
0 (Ω) as j → +∞ and since ε < ε0, one has∫∫

QT

ep
pa −

∫∫
QT

ep
p(x)

(∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

)
dxdt

+
∫∫

QT

ep
p(x)

(∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
dxdt

≤ p‖ep−1
p ‖L∞‖∇ep‖L∞mp−1

∫∫
QT

|∇uε|p−1u(p−1)(m−2)
ε + ε0

∫∫
QT

|∇ep|p.

Taking into account that ‖ep‖Lp(Ω) = 1, the previous inequality implies∫∫
QT

ep
pa − ε0Tµp

≤
∫∫

QT

K1(ξ, t)u2
ε(ξ, t − τ1)dξdt −

∫∫
QT

K2(ξ, t)v2
ε(ξ, t − τ2)dξdt

+ p‖ep−1
p ‖L∞‖∇ep‖L∞mp−1

∫∫
QT

|∇uε|p−1u(p−1)(m−2)
ε . (2.22)
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Now we estimate the term
∫∫

QT
|∇uε|p−1u

(p−1)(m−2)
ε . Since ‖uε‖L∞ ≤ r, using

the Hölder inequality, one has∫∫
QT

|∇uε|p−1u(p−1)(m−2)
ε ≤ rs

∫∫
QT

|∇uε|p−1u(p−1)(m−2)−s
ε

= rs

(
p − 1

(p − 1)(m − 1) − s

)p−1 ∫∫
QT

|∇u
(p−1)(m−1)−s

p−1
ε |p−1

≤ rs

(
p − 1

(p − 1)(m − 1) − s

)p−1

|QT | 1p
∥∥∇u

(p−1)(m−1)−s
p−1

ε

∥∥p−1

Lp . (2.23)

Observe that (p− 1)(m− 1)− s > 0, since, by assumption, s < (p− 1)(m− p)/p <

(p − 1)(m − 1). By Lemma 2.4, (2.22) and (2.23), it follows∫∫
QT

ep
pa − ε0Tµp ≤ (‖K1‖L1

+ ‖K2‖L1)r2 + p‖ep−1
p ‖L∞‖∇ep‖L∞

(
m(p − 1)M1

(p − 1)(m − 1) − s

)p−1

|QT | 1p rs

≤ (‖K1‖L1 + ‖K2‖L1 + C)max{r2, rs},
where C := p‖ep−1

p ‖L∞‖∇ep‖L∞( m(p−1)M1
(p−1)(m−1)−s )p−1|QT | 1p .

Thus, if max{r2, rs} = r2, then

r0 ≤
( ∫∫

QT
ep

pa − ε0µpT

‖K1‖L1 + ‖K2‖L1 + C

) 1
2

≤ r,

which is a contradiction; analogously if max{r2, rs} = rs. The same argument
applies if vε 
= 0. Fix any r ∈ (0, r0). The result above shows that

(u, v) 
= Gε(σ, f(u+, v+) + (1 − σ), g(u+, v+) + (1 − σ)),

for all (u, v) ∈ ∂Br and all σ ∈ [0, 1]. From the homotopy invariance of the Leray–
Schauder degree, we have

deg((u, v) − Tε(1, u+, v+), Br, 0)

= deg((u, v) − Gε(0, f(u+, v+) + 1, g(u+, v+) + 1), Br, 0).

The right-hand side is zero since the equation

(u, v) = Gε(0, f(u+, v+) + 1, g(u+, v+) + 1)

admits neither trivial nor trivial solution in Br, since r < r0.

The next result is our general coexistence result for (1.1).

Theorem 2.1. Problem (1.1) has a T -periodic nonnegative solution (u, v) with
both nontrivial u, v.
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Proof. By Propositions 2.2 and 2.3 and the excision property of the topological
degree, there are R > r > 0, independent of ε, such that

deg((uε, vε) − Gε(1, f(u+
ε , v+

ε ), g(u+
ε , v+

ε )), BR\Br, 0) = 1,

for any ε ∈ (0, ε0).
Let us fix any ε ∈ (0, ε0). There is σ0 = σ0(ε) ∈ (0, 1) such that still

deg((uε, vε) − Gε(σ, f(u+
ε , v+

ε ) + (1 − σ), g(u+
ε , v+

ε ) + (1 − σ)), BR\Br, 0) = 1

for all σ ∈ [σ0, 1], by the continuity of Leray–Schauder degree. This implies that
the set of solution triples (σ, uε, vε) ∈ [0, 1] × (BR\Br) such that

(uε, vε) = Gεη(σ, f(u+
ε , v+

ε ) + (1 − σ), g(u+
ε , v+

ε ) + (1 − σ)) (2.24)

contains a continuum Sε with the property that

Sε ∩ [{σ} × (BR\Br)] 
= ∅ for all σ ∈ [σ0, 1].

Now, all the pairs (uε, vε) such that (1, uε, vε) ∈ Sε are T -periodic solutions of (2.1)
with (uε, vε) 
= (0, 0) and, hence, satisfy (2.12). Since the L2-norm is continuous
with respect to the L∞-norm and Sε is a continuum, for every ν > 0 there is
σν ∈ [σ0, 1) such that

‖uε‖2
L2 ≤ C1 + ν and ‖vε‖2

L2 ≤ C2 + ν

for all (uε, vε) with (σ, uε, vε) ∈ Sε and σ ∈ [σν , 1]. Observe that, if (σ, uε, vε) ∈ Sε

for σ < 1, then uε and vε are positive solutions of (2.24). Moreover, if ν is sufficiently
small, then we still have θ(C1 + ν, C2 + ν) > 0.

Now, setting

Kp :=

[
‖K1‖L1 + p‖ep−1

p ‖L∞‖∇ep‖L∞

(
m(p − 1)M1

(p − 1)(m − 1) − s

)p−1

|QT | 1p
]
,

Kq :=

[
‖K4‖L1 + q‖eq−1

q ‖L∞‖∇eq‖L∞

(
n(q − 1)M2

(q − 1)(n − 1) − s

)q−1

|QT | 1q
]
,

we can prove that, if ν is sufficiently small, then

‖uε‖L∞ , ‖vε‖L∞ ≥ min

{(
Tθ(C1 + ν, C2 + ν)

Kp

) 1
2

,

(
Tθ(C1 + ν, C2 + ν)

Kp

) 1
s

,

(
Tθ(C1 + ν, C2 + ν)

Kq

) 1
2

,

(
Tθ(C1 + ν, C2 + ν)

Kq

) 1
s

}
=: λν

for all uε, vε such that (σ, uε, vε) ∈ Sε and σ ∈ [σν , 1). Indeed, let (uε, vε) be
a solution of (2.24). Arguing by contradiction, assume that ‖uε‖L∞ < λν and
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proceeding as in the proof of Proposition 2.3 (recall that uε > 0 since (uε, vε) solves
(2.24) with σ < 1) we obtain the inequality∫∫

QT

ep
pa − ε0µpT < max{λ2

ν , λs
ν}Kp + k2(C2 + ν).

Thus, if max{λ2
ν , λs

ν} = λ2
ν , using the definition of θ, one has

Tθ(C1 + ν, C2 + ν) ≤
∫∫

QT

ep
pa − ε0µpT − k2(C2 + ν) < λ2

νKp,

that is (
Tθ(C1 + ν, C2 + ν)

Kp

) 1
2

< λν ,

which is a contradiction with the definition of λν ; analogously if max{λ2
ν , λs

ν} = λs
ν .

The same argument shows that ‖vε‖L∞ ≥ λν .
Now, if we let σ → 1 and ν → 0, we obtain that (2.1) has at least a solution

(uε, vε) such that ‖uε‖L∞ , ‖vε‖L∞ ≥ λ0, since Sε is a continuum and λν → λ0 as
ν → 0.

Finally, we show that a solution (u, v) of (1.1) with both nontrivial u, v ≥ 0 is
obtained as a limit of (uε, vε) as ε → 0, since λ0 is independent of ε.

Since uε, vε are Hölder continuous in QT , bounded in C(QT ) uniformly in ε > 0
and the structure conditions of [33, 34] are satisfied for the equations of system
(2.1), whenever ε ∈ (0, ε0), [33, Theorem 1.1; 34, Theorem 1.3] apply to conclude
that the inequality

|uε(x1, t1) − uε(x2, t2))| ≤ Γ(|x1 − x2|β + |t1 − t2|
β
p )

holds for any (x1, t1), (x2, t2) ∈ QT , where the constants Γ > 0 and β ∈ (0, 1)
are independent of ‖uε‖L∞. The same inequality holds for vε. Therefore, by the
Ascoli–Arzelà theorem, a subsequence of (uε, vε) converges uniformly in QT to a
pair (u, v) satisfying

λ0 ≤ ‖u‖L∞, ‖v‖L∞ ≤ R.

Moreover, from (2.14) we have that uε satisfies the inequality

∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(|∇um

ε |p−2∇um
ε ) ≤ Kup−1

ε in QT , (2.25)

where K is a positive constant independent of ε. Multiplying (2.25) by um
ε , inte-

grating over QT and passing to the limit in the Steklov averages (uε)h, one has∫∫
QT

|∇um
ε |p ≤ εm

∫∫
QT

um−1|∇uε|p +
∫∫

QT

|∇um
ε |p

= ε

∫∫
QT

|∇uε|p−2∇uε∇um
ε +

∫∫
QT

∇um
ε ∇um

ε |∇um
ε |p−2
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≤ K

∫∫
QT

up+m−1
ε

≤ M,

(2.26)

by the T -periodicity of uε, its nonnegativity and its boundedness in L∞(QT ).
Here M is positive and independent of ε. An analogous estimate holds for vε.
Thus the sequences um

ε , vn
ε are uniformly bounded in Lp(0, T ; W 1,p

0 (Ω)) and in
Lq(0, T ; W 1,q

0 (Ω)), respectively. Thus, up to subsequence if necessary, (um
ε , vn

ε ) con-
verges weakly in Lp(0, T ; W 1,p

0 (Ω)) × Lq(0, T ; W 1,q
0 (Ω)) and strongly in C(QT ) ×

C(QT ) to (um, vn). In particular (um, vn) ∈ Lp(0, T ; W 1,p
0 (Ω))×Lq(0, T ; W 1,q

0 (Ω)).
We finally claim that the pair (u, v) satisfies the identities

0 =
∫∫

QT

{
−u

∂φ

∂t
+ |∇um|p−2∇um · ∇φ − aup−1φ

+ up−1φ

∫
Ω

[K1(ξ, t)u2(ξ, t − τ1) − K2(ξ, t)v2(ξ, t − τ2)]dξ

}
dxdt

and

0 =
∫∫

QT

{
−v

∂φ

∂t
+ |∇vn|q−2∇vn · ∇φ − bvq−1φ

+ vq−1φ

∫
Ω

[−K3(ξ, t)u2(ξ, t − τ3) + K4(ξ, t)v2(ξ, t − τ4)]dξ

}
dxdt,

for any φ ∈ C1(QT ) such that φ(x, T ) = φ(x, 0) for any x ∈ Ω and φ(x, t) = 0
for any (x, t) ∈ ∂Ω × [0, T ], that is (u, v) is a generalized solution of (1.1). The
approach for doing this is standard, in the sequel we write it in detail for the
reader’s convenience. First of all, observe that

lim
ε→0

ε

∫∫
QT

|∇uε|p−2∇uε∇φ = 0 (2.27)

for all test functions φ. In fact, multiplying the equation

∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(|∇um

ε |p−2∇um
ε )

=
(

a(x, t) −
∫

Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ +

∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

)
up−1

ε

by uε, integrating over QT , using the T -periodicity of uε and its nonnegativity and
passing, as h → 0, to the limit in the Steklov averages (uε)h, we obtain

‖ p
√

ε∇uε‖p
Lp = ε

∫∫
QT

|∇uε|p

≤ ε

∫∫
QT

|∇uε|p + mp−1

∫∫
QT

u(m−1)(p−1)
ε |∇uε|p
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≤ ε

∫∫
QT

|∇uε|p +
∫∫

QT

|∇um
ε |p−2∇um

ε ∇uε

≤ C,

where C := (‖a‖L∞ + ‖K2‖L∞R2)|QT |1− p
2 C

p
2
1 (recall that, by assumption, being

p < 2, ‖uε‖Lp ≤ |QT | 1p− 1
2 ‖uε‖L2 ≤ |QT | 1p− 1

2
√

C1). Thus, by the Hölder inequality,∣∣∣∣ε
∫∫

QT

|∇uε|p−2∇uε∇φ

∣∣∣∣ ≤
∫∫

QT

ε
1
p′ |∇uε|p−1ε

1
p |∇φ|

≤ ‖ p
√

ε∇uε‖
p

p′
Lpε

1
p ‖∇φ‖Lp

≤ p
√

ε
p′√

C‖∇φ‖Lp → 0

as ε → 0, for all test functions φ.
In what follows we will prove that

lim
ε→0

∫∫
QT

|∇um
ε |p−2∇um

ε · ∇φ =
∫∫

QT

|∇um|p−2∇um · ∇φ, (2.28)

for all test functions φ. To this aim, observe that |∇um
ε |p−2∇um

ε is bounded in
(L

p
p−1 (QT ))N . In fact,∫∫

QT

∣∣|∇um
ε |p−2∇um

ε

∣∣ p
p−1 =

∫∫
QT

|∇um
ε |p ≤ M,

as proved in (2.26). Thus there exists H ∈ (L
p

p−1 (QT ))N such that |∇um
ε |p−2∇um

ε

weakly converges to H in (L
p

p−1 (QT ))N as ε → 0. Now, using (2.27), it is easy to
prove that

0 =
∫∫

QT

{
−u

∂φ

∂t
+ H · ∇φ − aup−1φ

+ up−1φ

∫
Ω

[K1(ξ, t)u2(ξ, t − τ1) − K2(ξ, t)v2(ξ, t − τ2)]dξ

}
dxdt (2.29)

for any φ ∈ C1(QT ) such that φ(x, T ) = φ(x, 0) for any x ∈ Ω and φ(x, t) = 0 for
any (x, t) ∈ ∂Ω× [0, T ] (and, by density, for any T -periodic φ ∈ Lp(0, T ; W 1,p

0 (Ω))∩
C(QT )). For this it remains to prove that for every φ ∈ C1(QT )∫∫

QT

|∇um|p−2∇um · ∇φ =
∫∫

QT

H · ∇φ. (2.30)

Consider the vector function H(Y ) := |Y |p−2Y . Then

H ′(Y ) = |Y |p−2I + (p − 2)|Y |p−4Y ⊗ Y

is a positive definite matrix and, taken w ∈ Lp(0, T ; W 1,p
0 (Ω)), there exists a vector

Y such that

0 ≤ 〈H ′(Y )(∇um
ε −∇w),∇um

ε −∇w〉 = 〈H(∇um
ε ) − H(∇w),∇um

ε −∇w〉.
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The previous inequality implies∫∫
QT

{|∇um
ε |p−2∇um

ε − |∇w|p−2∇w} · ∇(um
ε − w) ≥ 0,

for all w ∈ Lp(0, T ; W 1,p
0 (Ω)), that is∫∫

QT

|∇um
ε |p −

∫∫
QT

|∇um
ε |p−2∇um

ε · ∇w −
∫∫

QT

|∇w|p−2∇w · ∇(um
ε − w) ≥ 0,

for all w ∈ Lp(0, T ; W 1,p
0 (Ω)). As in (2.26), one has∫∫

QT

|∇um
ε |p ≤ εm

∫∫
QT

um−1|∇uε|p +
∫∫

QT

|∇um
ε |p

≤
∫∫

QT

[
a −

∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

]
up+m−1

ε dxdt.

Thus, from the previous two inequalities, we obtain∫∫
QT

|∇um
ε |p−2∇um

ε · ∇w +
∫∫

QT

|∇w|p−2∇w · ∇(um
ε − w)

≤
∫∫

QT

[
a −

∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

]
up+m−1

ε dxdt.

Letting ε → 0 and using (2.26), we have∫∫
QT

[H · ∇w + |∇w|p−2∇w · ∇(um − w)]

≤
∫∫

QT

[
a −

∫
Ω

K1(ξ, t)u2(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)v2(ξ, t − τ2)dξ

]
up+m−1dxdt. (2.31)

Observe that, being p > 1, ∇um
ε is also bounded in L1(QT ).

On the other hand, by density we can take um = φ in (2.29) and obtain∫∫
QT

H · ∇um =
∫∫

QT

[
a −

∫
Ω

K1(ξ, t)u2(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)v2(ξ, t − τ2)dξ

]
up+m−1dxdt.
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This equality, together with (2.31), implies

0 ≤
∫∫

QT

(H − |∇w|p−2∇w) · ∇(um − w). (2.32)

Taking w := um − λφ, with λ > 0 and φ ∈ C1(QT ), we get

0 ≤
∫∫

QT

(H − |∇(um − λφ)|p−2∇(um − λφ)) · ∇φ.

Letting λ → 0 yields

0 ≤
∫∫

QT

(H − |∇um|p−2∇um) · ∇φ.

If in (2.32) we take w := um +λφ, with λ > 0, φ ∈ C1(QT ) and letting again λ → 0,
then ∫∫

QT

(H − |∇um|p−2∇um) · ∇φ ≤ 0.

Thus (2.30) holds and (2.28) is proved.

Obviously, the previous result holds also for a single equation. In particular, we
have the following corollary.

Corollary 2.1. Consider the problem


ut − div(|∇um|p−2∇um) =
(

a(x, t) −
∫

Ω

K(ξ, t)u2(ξ, t − τ)dξ

)
up−1 in QT ,

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),

u(·, 0) = u(·, T ),

(2.33)

and assume that

(1) the exponents p, m are such that p ∈ (1, 2) and m > p,

(2) the delay τ ∈ (0, +∞),
(3) the functions a and K belong to L∞(QT ), are extended to Ω×R by T -periodicity

and are nonnegative for a.a. (x, t) ∈ QT ,

(4) there exists a positive constant C such that for all ε > 0 and all the nonnegative
solutions uε of

u = Gε(1, f(u+)),

it results

‖uε‖2
L2 ≤ C.

Then problem (2.33) has a T -periodic nonnegative and nontrivial solution.

Here Gε(1, f(u+)) is defined as before.
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3. A Priori Bounds in L2(QT )

In this section we apply Theorem 2.1 by looking for explicit a priori bounds in
L2(QT ) for the solutions of the approximating problem (2.1) in different situations.
More precisely, under different assumptions on the kernels Ki, i = 1, 2, 3, 4, which
model the interactions between the quantities u, v, we determine the constants
C1, C2 of (2.12) in an explicit form. For this we consider two main different cases.
In the first one, which we call the “coercive case”, we assume that Ki(x, t) ≥
ki > 0 a.a. in QT for i = 1, 4. In the second one, the “noncoercive case”, we
allow the nonnegative functions K1, K4 to vanish on sets with positive measure. We
distinguish also between cooperative and competitive situations by imposing sign
conditions on K2, K3 having in mind the biological interpretation of model (1.1).

3.1. The coercive case

Theorem 3.1. Assume that

(1) Assumption 1 is satisfied,

(2) there are constants ki > 0, i = 1, 4, such that

Ki(x, t) ≥ ki for i = 1, 4,

for a.a. (x, t) ∈ QT , and k1k4 > k2k3, where k2, k3 are as in Assumption 1,
(3) Assumption 2(2) is satisfied with

C1 =
T (k4‖a‖L∞ + k2‖b‖L∞)

k1k4 − k2k3

,

C2 =
T (k3‖a‖L∞ + k1‖b‖L∞)

k1k4 − k2k3

.

(3.1)

Then problem (1.1) has a nonnegative T -periodic solution (u, v) with nontrivial u, v.

Proof. We just need to show that ‖uε‖2
L2 ≤ C1 and ‖vε‖2

L2 ≤ C2 for any solu-
tion (uε, vε) of (2.11). Then, assume uε 
= 0, thus uε > 0 and vε ≥ 0 in QT by
Proposition 2.1. Multiplying the inequality

∂uε

∂t
− ε div(|∇uε|p−2∇uε) − div(|∇um

ε |p−2∇um
ε )

≤
[
‖a‖L∞ −

∫
Ω

K1(ξ, t)u2
ε(ξ, t − τ1)dξ +

∫
Ω

K2(ξ, t)v2
ε(ξ, t − τ2)dξ

]
up−1

ε

by uε, integrating over Ω and using the Steklov averages (uε)h ∈ H1(QT−δ), δ,
h > 0, we obtain

1
2

d
dt

∫
Ω(uε)2h + ε

∫
Ω |∇(uε)h|p + mp−1

∫
Ω(uε)

(m−1)(p−1)
h |∇(uε)h|p∫

Ω
(uε)

p
h

≤
(
‖a‖L∞ −

∫
Ω

K1(ξ, t)(uε)2h(ξ, t − τ1)dξ +
∫

Ω

K2(ξ, t)(vε)2h(ξ, t − τ2)dξ

)
.
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Integrating the previous inequality over [0, T ], and passing to the limit as h → 0,
by the T -periodicity of uε, we have that

0 < (T ‖a‖L∞ − k1‖uε‖2
L2 + k2‖vε‖2

L2). (3.2)

The same procedure, when it is applied to the second equation of (2.1), leads to

0 < (T ‖b‖L∞ − k4‖vε‖2
L2 + k3‖uε‖2

L2). (3.3)

Hence, if uε 
≡ 0 and if vε 
≡ 0, by the positiveness of the right-hand sides of (3.2)
and (3.3), we have(

1 − k2k3

k1k4

)
‖uε‖2

L2 <
T

k1

(
‖a‖L∞ +

k2

k4

‖b‖L∞

)
,

(
1 − k2k3

k1k4

)
‖vε‖2

L2 <
T

k4

(
‖b‖L∞ +

k3

k1

‖a‖L∞

)
,

for any ε ∈ (0, ε0) and the desired bounds follow since k2k3 < k1k4. Obviously, if
vε ≡ 0, then

‖uε‖2
L2 ≤ T

k1

‖a‖L∞ ≤ C1,

or if uε ≡ 0, then

‖vε‖2
L2 ≤ T

k4

‖b‖L∞ ≤ C2.

As an immediate consequence of the previous result we obtain the follow-
ing corollaries for the coercive-cooperative (see Remark 2.1) and the coercive-
competitive cases, respectively.

Corollary 3.1. Assume that

(1) Assumption 1 is satisfied with nontrivial coefficients a, b,

(2) 0 ≤ Ki(x, t) for i = 2, 3, for a.a. (x, t) ∈ QT ,

(3) there are constants ki > 0, i = 1, 4, such that

Ki(x, t) ≥ ki for i = 1, 4,

for a.a. (x, t) ∈ QT , and k1k4 > k2k3, where k2, k3 are as in Assumption 1.

Then problem (1.1) has a nonnegative T -periodic solution (u, v).

Corollary 3.2. Assume that

(1) Assumption 1 is satisfied,

(2) Ki(x, t) ≤ 0 for i = 2, 3, for a.a. (x, t) ∈ QT ,

(3) there are constants ki > 0, i = 1, 4, such that

Ki(x, t) ≥ ki for i = 1, 4,

for a.a. (x, t) ∈ QT ,
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(4) Assumption 2(2) is satisfied with

C1 =
T

k1

‖a‖L∞ and C2 =
T

k4

‖b‖L∞.

Then problem (1.1) has a nonnegative T -periodic solution (u, v).

We observe that the condition k2k3 < k1k4 of Theorem 3.1 is crucial to establish
the a priori L2-bounds on the solution pairs (uε, vε) of (2.1). Roughly speaking this
condition guarantees that the terms in the equations that contribute to the growth
of the respective species do not prevail globally on those limiting the growth.

On the other hand, when the strict positivity of the functions K1 and K4 is
relaxed, obtaining the needed a priori bounds becomes more difficult (at least with
our approach). In fact, we are able to obtain simple a priori bounds in the noncoer-
cive case when the system is competitive, provided that min{n(q−1), m(p−1)} ≥ 1,
i.e. when each equation of (1.1) is of slow or normal diffusion type. Otherwise, we
have to impose one more technical restriction, i.e. min{mp−1

p+1 , n q−1
q+1} ≥ 1 to obtain

a result like Theorem 3.1 with no sign condition on the functions K2 and K3.
Obviously, Theorem 3.1 holds also for a single equation. In particular, we have

the following corollary.

Corollary 3.3. Consider the problem (2.33) and assume that

(1) the exponents p, m are such that p ∈ (1, 2) and m > p,

(2) the delay τ ∈ (0, +∞),
(3) the functions a and K belong to L∞(QT ), are extended to Ω×R by T -periodicity

and are nonnegative for a.a. (x, t) ∈ QT and there exists a constant k > 0 such
that

K(x, t) ≥ k

for a.a. (x, t) ∈ QT ,

(4) hypothesis (4) of Corollary 2.1 is satisfied with

C =
T

k
‖a‖L∞ .

Then problem (2.33) has a T -periodic nonnegative and nontrivial solution.

3.2. The noncoercive case: The competitive system

Theorem 3.2. Assume that

(1) Assumption 1 is satisfied,

(2) k2 = k3 = 0, that is

Ki(x, t) ≤ 0 for i = 2, 3,

for a.a. (x, t) ∈ QT ,
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(3) m, n, p and q are such that m ≥ 1
p−1 and n ≥ 1

q−1 , i.e. both the equations of
system (1.1) have slow or normal diffusion,

(4) Assumption 2(2) is satisfied with

C1 =
|QT |

m(p−1)−1
(p−1)(m−1)

µ
2

(p−1)(m−1)
p

( |Ω|1− p
2 (m(p − 1) + 1)p‖a‖L∞

mp−1pp

) 2
(p−1)(m−1)

,

C2 =
|QT |

n(q−1)−1
(q−1)(n−1)

µ
2

(q−1)(n−1)
q

( |Ω|1− q
2 (n(q − 1) + 1)q‖b‖L∞

nq−1qq

) 2
(q−1)(n−1)

.

Then problem (1.1) has a T -periodic nonnegative solution (u, v) with nontrivial
u, v.

Proof. As a first step we find the bound for the nonnegative solutions uε. Mul-
tiplying the first equation of (2.11) by uε, integrating over QT and passing to the
limit, as h → 0, in the Steklov averages (uε)h, we obtain(

m
p−1

p p

m(p − 1) + 1

)p ∫∫
QT

|∇u
m(p−1)+1

p
ε |p

≤ ε

∫∫
QT

|∇uε|p +
∫∫

QT

|∇um
ε |p−2∇um

ε ∇uε

≤ ‖a‖L∞‖uε‖p
Lp

≤ |Ω|1− p
2 ‖a‖L∞‖uε‖p

L2 , (3.4)

by the T -periodicity of uε and the nonpositivity of the function K2. Using the
Hölder inequality with r := m(p−1)+1

2 , and the Poincaré inequality, one has:

∫∫
QT

u2
ε ≤ |QT |

m(p−1)−1
m(p−1)+1

(∫∫
QT

um(p−1)+1
ε

) 2
m(p−1)+1

= |QT |
m(p−1)−1
m(p−1)+1 ‖u

m(p−1)+1
p

ε ‖
2p

m(p−1)+1
Lp

≤ |QT |
m(p−1)−1
m(p−1)+1

(
1

p
√

µp

∥∥∇u
m(p−1)+1

p
ε

∥∥
Lp

) 2p
m(p−1)+1

.

Thus by (3.4) we get

‖uε‖2
L2 ≤ |QT |

m(p−1)−1
m(p−1)+1

(
1

p
√

µp

∥∥∇u
m(p−1)+1

p
ε

∥∥
Lp

) 2p
m(p−1)+1

≤ |QT |
m(p−1)−1
m(p−1)+1

µ
2

m(p−1)+1
p

( |Ω|1− p
2 (m(p − 1) + 1)p‖a‖L∞

mp−1pp

) 2
m(p−1)+1

‖uε‖
2p

m(p−1)+1

L2 .
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This implies

‖uε‖2
L2 ≤ |QT |

m(p−1)−1
(p−1)(m−1)

µ
2

(p−1)(m−1)
p

( |Ω|1− p
2 (m(p − 1) + 1)p‖a‖L∞

mp−1pp

) 2
(p−1)(m−1)

.

In an analogous way we obtain that

‖vε‖2
L2 ≤ |QT |

n(q−1)−1
(q−1)(n−1)

µ
2

(q−1)(n−1)
q

( |Ω|1− q
2 (n(q − 1) + 1)q‖b‖L∞

nq−1qq

) 2
(q−1)(n−1)

,

if vε is a solution of the second equation of (2.11).

The previous result still holds for a single equation.

Corollary 3.4. Consider problem (2.33) and assume that

(1) the exponents p, m are such that p ∈ (1, 2) and m ≥ 1
p−1 ,

(2) the delay τ ∈ (0, +∞),
(3) the functions a and K belong to L∞(QT ), are extended to Ω×R by T -periodicity

and are nonnegative for a.a. (x, t) ∈ QT ,

(4) hypothesis (4) of Corollary 2.1 is satisfied with

C =
|QT |

m(p−1)−1
(p−1)(m−1)

µ
2

(p−1)(m−1)
p

( |Ω|1− p
2 (m(p − 1) + 1)p‖a‖L∞

mp−1pp

) 2
(p−1)(m−1)

.

Then problem (2.33) has a T -periodic nonnegative and nontrivial solution.

3.3. The noncoercive case: min {mp−1
p+1

, nq−1
q+1

} ≥ 1

In the case that min{mp−1
p+1 , n q−1

q+1} ≥ 1, we are able to find explicit bounds (although
complicated) without any assumption on the sign of the functions K2, K3, as shown
in the next result.

Theorem 3.3. Assume

(1) min {mp−1
p+1 , n q−1

q+1} > 1,

(2) Ki(x, t) ≥ 0, i = 1, 4 and Ki(x, t) ≤ ki, i = 2, 3 for a.a. (x, t) ∈ QT and for
some positive constants ki, i = 2, 3,

(3) Assumption 2(2) is satisfied with

C1 =
√

T

{
(q − 1)(n − 1)(p − 1)(m − 1)

(q − 1)(n − 1)(p − 1)(m − 1) − 4
αp + β

(q−1)(n−1)(p−1)(m−1)
(q−1)(n−1)(p−1)(m−1)−4
p

}1/2

,

C2 =
√

T

{
(q − 1)(n − 1)(p − 1)(m − 1)

(q − 1)(n − 1)(p − 1)(m − 1) − 4
αq + β

(q−1)(n−1)(p−1)(m−1)
(q−1)(n−1)(p−1)(m−1)−4
q

}1/2

,

(3.5)
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where

αp := C
(p−1)(m−1)+2
(p−1)(m−1)

p (2T ‖a‖2
L∞)

2
(p−1)(m−1)

+ C
(p−1)(m−1)+2
(p−1)(m−1)

p (2k
2

2C
(q−1)(n−1)+2
(q−1)(n−1)

q )
2

(p−1)(m−1) (2T ‖b‖2
L∞)

4
(q−1)(n−1)(p−1)(m−1) ,

αq := C
(q−1)(n−1)+2
(q−1)(n−1)

q (2T ‖b‖2
L∞)

2
(q−1)(n−1)

+ C
(q−1)(n−1)+2
(q−1)(n−1)

q (2k
2

3C
(p−1)(m−1)+2
(p−1)(m−1)

p )
2

(q−1)(n−1) (2T ‖a‖2
L∞)

4
(q−1)(n−1)(p−1)(m−1) ,

βp := C
(p−1)(m−1)+2
(p−1)(m−1)

p (2k
2

2C
(q−1)(n−1)+2
(q−1)(n−1)

q )
2

(p−1)(m−1) (2k
2

3)
4

(q−1)(n−1)(p−1)(m−1) ,

βq := C
(q−1)(n−1)+2
(q−1)(n−1)

q (2k
2

3C
(p−1)(m−1)+2
(p−1)(m−1)

p )
2

(q−1)(n−1) (2k
2

2)
4

(q−1)(n−1)(p−1)(m−1) .

Here

Cp :=

(
[(p − 1)(m − 1) + 2]p|Ω| (p−1)(m−1)

2

ppmp−1(3 − p)µp

) 4
(p−1)(m−1)+2

T
(p−1)(m−1)−2
(p−1)(m−1)+2 (3.6)

and

Cq :=

(
[(q − 1)(n − 1) + 2]q|Ω| (q−1)(n−1)

2

qqnq−1(3 − q)µq

) 4
(q−1)(n−1)+2

T
(q−1)(n−1)−2
(q−1)(n−1)+2 . (3.7)

Then problem (1.1) has a nonnegative T -periodic solution (u, v) with nontrivial u, v.

Proof. Let (uε, vε) be a solution of (2.11). We have, by the Poincaré inequality
and the Hölder inequality with r := (p−1)(m−1)+2

2 ,

(∫
Ω

u2
ε

) (p−1)(m−1)+2
2

≤ |Ω| (p−1)(m−1)
2

∫
Ω

u(p−1)(m−1)+2
ε

≤ 1
µp

|Ω| (p−1)(m−1)
2

∫
Ω

∣∣∇u
(p−1)(m−1)+2

p
ε

∣∣p.
Integrating over [0, T ], we have:

∫ T

0

(∫
Ω

u2
ε

) (p−1)(m−1)+2
2

≤ 1
µp

|Ω| (p−1)(m−1)
2

∫∫
QT

∣∣∇u
(p−1)(m−1)+2

p
ε

∣∣p. (3.8)

Now, we estimate the right-hand side of (3.8). Multiplying the first equation of
(2.11) by u3−p

ε , integrating over QT and passing to the limit in the Steklov averages
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(uε)h, we obtain by the T -periodicity of uε

mp−1(3 − p)
[

p

(p − 1)(m − 1) + 2

]p ∫∫
QT

|∇u
(p−1)(m−1)+2

p
ε |p

≤
∫ T

0

[
‖a‖L∞ + k2

∫
Ω

v2
ε(ξ, t − τ2)dξ

](∫
Ω

u2
ε

)
dt

≤
[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
ε(ξ, t − τ2)dξ

)2

dt

] 1
2
[∫ T

0

(∫
Ω

u2
ε

)2
] 1

2

.

Thus∫∫
QT

|∇u
(p−1)(m−1)+2

p
ε |p

≤ Mp

[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
ε(ξ, t − τ2)dξ

)2

dt

] 1
2
[∫ T

0

(∫
Ω

u2
ε

)2
] 1

2

,

(3.9)

where Mp := 1
mp−1(3−p) [

(p−1)(m−1)+2
p ]p. By the Hölder inequality with s :=

(p−1)(m−1)+2
4 (observe that s ≥ 1 by the assumption on m and p) and by (3.8),

(3.9), it follows

∫ T

0

(∫
Ω

u2
ε

)2

≤ T
(p−1)(m−1)−2
(p−1)(m−1)+2


∫ T

0

(∫
Ω

u2
ε

) (p−1)(m−1)+2
2




4
(p−1)(m−1)+2

≤ Cp

{[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
ε(ξ, t − τ2)dξ

)2

dt

]

×
[∫ T

0

(∫
Ω

u2
ε

)2
]} 2

(p−1)(m−1)+2

,

where Cp is the constant defined in (3.6). Therefore, setting U =
∫ T

0
(
∫
Ω

u2
ε)

2, V =∫ T

0 (
∫
Ω v2

ε)2, and using the assumption m > p+1
p−1 , the last inequality implies

U ≤ C
(p−1)(m−1)+2
(p−1)(m−1)

p

[∫ T

0

(
‖a‖L∞ + k2

∫
Ω

v2
ε

)2
] 2

(p−1)(m−1)

≤ C
(p−1)(m−1)+2
(p−1)(m−1)

p [2T ‖a‖2
L∞ + 2k

2

2V ]
2

(p−1)(m−1)

≤ C
(p−1)(m−1)+2
(p−1)(m−1)

p [(2T ‖a‖2
L∞)

2
(p−1)(m−1) + (2k

2

2V )
2

(p−1)(m−1) ].

In an analogous way, we can show that

V ≤ C
(q−1)(n−1)+2
(q−1)(n−1)

q [(2T ‖b‖2
L∞)

2
(q−1)(n−1) + (2k

2

3U)
2

(q−1)(n−1) ],

1450025-36



February 7, 2015 10:15 WSPC/S0219-1997 152-CCM 1450025

Periodic solutions for singular-degenerate parabolic equations

where Cq is the constant introduced in (3.7). Hence, it results

U ≤ C
(p−1)(m−1)+2
(p−1)(m−1)

p [(2T ‖a‖2
L∞)

2
(p−1)(m−1) + (2k

2

2V )
2

(p−1)(m−1) ]

≤ C
(p−1)(m−1)+2
(p−1)(m−1)

p (2T ‖a‖2
L∞)

2
(p−1)(m−1)

+ C
(p−1)(m−1)+2
(p−1)(m−1)

p (2k
2

2C
(q−1)(n−1)+2
(q−1)(n−1)

q )
2

(p−1)(m−1) (2T ‖b‖2
L∞)

4
(q−1)(n−1)(p−1)(m−1)

+ C
(p−1)(m−1)+2
(p−1)(m−1)

p (2k
2

2C
(q−1)(n−1)+2
(q−1)(n−1)

q )
2

(p−1)(m−1) (2k
2

3U)
4

(q−1)(n−1)(p−1)(m−1) .

The last inequality has the form:

U ≤ α + βU
4

(q−1)(n−1)(p−1)(m−1) , (3.10)

with α, β > 0. Since min{mp−1
p+1 , n q−1

q+1}>1 the function f(U) := α +

βU
4

(q−1)(n−1)(p−1)(m−1) is strictly concave, and then

U ≤ f(U) ≤ f(U0) + f ′(U0)(U − U0), (3.11)

where U0 := β
(q−1)(n−1)(p−1)(m−1)

(q−1)(n−1)(p−1)(m−1)−4 . Using the fact that f(U0) = α + U0 and (3.11),
one has

U ≤ (q − 1)(n − 1)(p − 1)(m − 1)
(q − 1)(n − 1)(p − 1)(m − 1) − 4

α + β
(q−1)(n−1)(p−1)(m−1)

(q−1)(n−1)(p−1)(m−1)−4 .

A final application of Hölder’s inequality shows that ‖uε‖2
L2 ≤ T 1/2U1/2 = C1. The

argument for vε proceeds in a similar way.

As a consequence of Theorem 3.3 one has the next corollaries for the cooperative
and competitive cases, respectively.

Corollary 3.5. Assume that

(1) min{mp−1
p+1 , n q−1

q+1} > 1,

(2) Ki(x, t) ≥ 0 for i = 1, 4, for a.a. (x, t) ∈ QT , and there are positive constants
k2, k3 such that

0 ≤ Ki(x, t) ≤ ki for i = 2, 3,

for a.a. (x, t) ∈ QT ,

(3) Assumption 2(2) is satisfied with C1 and C2 as in (3.5).

Then problem (1.1) has a nonnegative T -periodic solution (u, v) with nontrivial u, v.

Corollary 3.6. Assume that

(1) min{mp−1
p+1 , n q−1

q+1} > 1,
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(2) Ki(x, t) ≥ 0 for i = 1, 4, for a.a. (x, t) ∈ QT , and there are nonnegative con-
stants k2, k3 such that

−ki ≤ Ki(x, t) ≤ 0 for i = 2, 3,

for a.a. (x, t) ∈ QT ,

(3) Assumption 2(2) is satisfied with

C1 = (TC
(p−1)(m−1)+2
(p−1)(m−1)

p (2T ‖a‖2
L∞)

2
(p−1)(m−1) )

1
2 ,

C2 = (TC
(q−1)(n−1)+2
(q−1)(n−1)

q (2T ‖b‖L∞)2)
2

(q−1)(n−1) )
1
2 ,

where Cp and Cq are as in (3.6) and in (3.7).

Then problem (1.1) has a nonnegative T -periodic solution (u, v).

The proof of Theorem 3.3 suggests the following result when
min{mp−1

p+1 , n q−1
q+1} = 1.

Theorem 3.4. Suppose that assumptions (2) and (3) of Theorem 3.3 hold true. If,
in addition,

min
{

m
p − 1
p + 1

, n
q − 1
q + 1

}
= 1

and

C
(p−1)(m−1)+2
(p−1)(m−1)

p (2k
2

2C
(q−1)(n−1)+2
(q−1)(n−1)

q )
2

(p−1)(m−1) (2k
2

3)
4

(q−1)(n−1)(p−1)(m−1) < 1, (3.12)

then problem (1.1) has a nonnegative T -periodic solution (u, v).

Proof. First note that, if, for instance, n q−1
q+1 = 1, then (q − 1)(n− 1) = 2, so that

the expression in (3.12) can be simplified. Now the proof proceeds as the one of
Theorem 3.3 up to inequality (3.10), which now reads

U ≤ α + βU,

where β is the left-hand side of (3.12). Since β < 1, we obtain the desired upper
bound on U .

Remark 3.1. Observe that the technique used to prove Theorem 2.1 (or Corol-
lary 2.1), and the a priori estimates in L2(QT ) can be adapted to prove analogous
results if we consider system (1.1) with p, q ≥ 2, that is if we consider a double
degeneracy (or a single degenerate equation) as in [25], but with a p-linear term in
the right-hand side.
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4. A Generalization in the Competitive Case

The techniques used in the previous sections allow us to prove the existence of a
T -periodic nonnegative solution (u, v) with nontrivial u, v for the following system:



ut − div(|∇um|p−2∇um) =
(

a −
∫

Ω

K1(ξ, t)uα(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)vα(ξ, t − τ2)dξ

)
up−1 in QT ,

vt − div(|∇vn|q−2∇vn) =
(

b +
∫

Ω

K3(ξ, t)uα(ξ, t − τ3)dξ

−
∫

Ω

K4(ξ, t)vα(ξ, t − τ4)dξ

)
vq−1 in QT ,

u(x, t) = v(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(4.1)

where α ≥ 1, Ki(t, x) ≤ 0 (i = 2, 3), and m, n, p, q, τi(i = 1, 2, 3, 4), a, b and Ki

(i = 1, 4), are as in Assumption 1.

4.1. The coexistence theorem

As before, one can prove that Lemma 2.1 and Proposition 2.1 still hold for the
associated nondegenerate singular p-Laplacian problem



ut − div(ε|∇u|p−2∇u + |∇um|p−2∇um)

=
(

a −
∫

Ω

K1(ξ, t)uα(ξ, t − τ1)dξ

+
∫

Ω

K2(ξ, t)vα(ξ, t − τ2)dξ

)
up−1 in QT ,

vt − div(ε|∇v|q−2∇v + |∇vn|q−2∇vn)

=
(

b +
∫

Ω

K3(ξ, t)uα(ξ, t − τ3)dξ

−
∫

Ω

K4(ξ, t)vα(ξ, t − τ4)dξ

)
vq−1 in QT ,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0 for a.a. t ∈ (0, T ),

u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(4.2)

where ε > 0 is small enough. Moreover the next result holds.

Proposition 4.1. There is a constant R > 0 such that

‖uε‖L∞ , ‖vε‖L∞ < R
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for all solution pairs (uε, vε) of

(u, v) = Gε(1, f(u+, v+), g(u+, v+)),

and all ε > 0. In particular, one has that

deg((u, v) − Gε(1, f(u+, v+), g(u+, v+)), BR, 0) = 1.

Here Gε is defined as in Sec. 2 and :

f(u+, v+) :=
(

a −
∫

Ω

K1(ξ, ·) (u+)α(ξ, · − τ1)dξ

+
∫

Ω

K2(ξ, ·) (v+)α(ξ, · − τ2)dξ

)
(u+)p−1

g(u+, v+) :=
(

b +
∫

Ω

K3(ξ, ·) (u+)α(ξ, · − τ3)dξ

−
∫

Ω

K4(ξ, ·) (v+)α(ξ, · − τ4)dξ

)
(v+)q−1.

Proof. By the first equation of (4.2), we have

∂uε

∂t
− ε div(|∇uε|p−2∇uε) −div(∇um

ε |∇um
ε |p−2) ≤ Kup−1

ε ,

where K := ‖a‖L∞. By Lemma 2.2, using the Steklov averages (uε)h ∈ H1(QT−δ),
δ, h > 0, and the fact that (uε)h converges to uε in L∞(QT ), we conclude that
‖uε‖L∞ ≤ R1 for some R1 > 0 independent of ε. Analogously, ‖vε‖L∞ ≤ R2 for
some constant R2 > 0. Therefore it is enough to choose R > max{R1, R2}.

The second part of the proposition follows as in the proof of Proposition 2.2.

From now on we make the following assumption.

Assumption 3. The functions a and b are such that

min
{

1
T

∫∫
QT

aep
p −

k2C2

T
,

1
T

∫∫
QT

beq
q −

k3C1

T

}
> 0.

Here k2, k3 are as in Assumption 1(3), µp, µq, ep and eq are as in Sec. 2.

As before, take ε in (0, ε0), where ε0 is such that

θ(C1, C2) := min
{

1
T

∫∫
QT

aep
p − ε0µp − k2C2

T
,

1
T

∫∫
QT

beq
q − ε0µq − k3C1

T

}
> 0.

Then, Lemma 2.4 and Proposition 2.3 still hold with

M1 :=


 |QT |

1
β′ ( 1

µp
)

1
β [(p − 1)(m − 1) − s]p‖a‖L∞

[m(p − 1)]p−1[(p − 1)(m − p) − ps]




β
p(β−1)

,
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M2 :=


 |QT | 1

δ′ ( 1
µq

)
1
δ [(q − 1)(n − 1) − s]q‖b‖L∞

[n(q − 1)]q−1[(q − 1)(n − q) − qs]




δ
q(δ−1)

and

r0 := min



(∫∫

QT
aep

p − ε0Tµp

D1

) 1
α

,

(∫∫
QT

aep
p − ε0Tµp

D1

) 1
s

,

(∫∫
QT

beq
q − ε0Tµq

D2

) 1
α

,

(∫∫
QT

beq
q − ε0Tµq

D2

) 1
s


,

where β, β′, δ, δ′, D1 and D2 are as in Sec. 2. Proceeding as in Theorem 2.1, one
can prove that the next coexistence result holds.

Theorem 4.1. Assume that there exist two positive constants C1, C2 such that for
all ε > 0 and all solution pairs (uε, vε) of (4.2) it results

‖uε‖α
Lα ≤ C1 and ‖vε‖α

Lα ≤ C2.

Then, problem (4.1) has a T -periodic nonnegative solution (u, v) with nontrivial
u, v.

Obviously, the previous result holds also for a single equation. In particular, we
have the following corollary.

Corollary 4.1. Consider the problem


ut − div(|∇um|p−2∇um)

=
(

a −
∫

Ω

K(ξ, t)uα(ξ, t − τ)dξ

)
up−1, in QT ,

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),

u(·, 0) = u(·, T ),

(4.3)

and assume that

(1) the exponents p, m are such that p ∈ (1, 2) and m > p,

(2) the delay τ ∈ (0, +∞),
(3) the functions a and K belong to L∞(QT ), are extended to Ω×R by T -periodicity

and are nonnegative for a.a. (x, t) ∈ QT ,

(4) there exists a positive constant C such that for all ε > 0 and all solutions uε of

u = Gε(1, f(u+)),

it results

‖uε‖α
Lα ≤ C.

Then problem (4.3) has a T -periodic nonnegative and nontrivial solution.
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4.2. A priori bounds in Lα(QT ): The coercive

and the noncoercive cases

In this subsection we apply Theorem 4.1 by looking for explicit a priori bounds in
Lα(QT ) for the solutions of (4.2) in the “coercive case” and in the “noncoercive
case”.

Theorem 4.2. Assume that

(1) Assumption 1 is satisfied,

(2) there exist constants ki > 0, i = 1, 4, such that

Ki(x, t) ≥ ki for i = 1, 4,

for a.a. (x, t) ∈ QT ,

(3) Ki(x, t) ≤ 0 for i = 2, 3, for a.a. (x, t) ∈ QT ,

(4) Assumption 2(2) is satisfied with

C1 =
T

k1

‖a‖L∞ and C2 =
T

k4

‖b‖L∞.

Then problem (1.1) has a nonnegative T -periodic solution (u, v) with nontrivial u, v.

Proof. We just need to show that ‖uε‖α
Lα ≤ C1 and ‖vε‖α

Lα ≤ C2 for any solution
(uε, vε) of (4.2). Proceeding as in Theorem 3.1, one has

0 < (T ‖a‖L∞ − k1‖uε‖α
Lα).

The same procedure, when applied to the second equation of (2.1), leads to

0 < (T ‖b‖L∞ − k4‖vε‖α
Lα),

Hence, we have

‖uε‖α
Lα ≤ T ‖a‖L∞

k1

and ‖vε‖α
Lα ≤ T ‖b‖L∞

k4

.

Theorem 4.3. Assume that

(1) Assumption 1 is satisfied,

(2) Ki(x, t) ≤ 0 for i = 2, 3, for a.a. (x, t) ∈ QT ,

(3) Assumption 2(2) is satisfied with

C1 =
|QT |

µ
α

m(p−1)
p

(
(m(p − 1) + α)p‖a‖L∞

αmp−1pp

) α
m(p−1)

,

C2 =
|QT |

µ
α

n(q−1)
q

(
(n(q − 1) + α)q‖b‖L∞

αnq−1qq

) α
n(q−1)

.
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Here k2, k3, are as in Assumption 1. Then problem (1.1) has a T -periodic nonneg-
ative solution (u, v) with nontrivial u, v.

Proof. We just need to show that ‖uε‖α
Lα ≤ C1 and ‖vε‖α

Lα ≤ C2 for any solution
(uε, vε) of (4.2). Multiplying the first equation of (4.2) by uα−p+1

ε , integrating over
QT and passing to the limit, as h → 0, in the Steklov averages (uε)h, we obtain, as
in Proposition 2.2,

mp−1α

(
p

m(p − 1) + α

)p ∫∫
QT

|∇u
m(p−1)+α

p
ε |p

≤ εα

∫∫
QT

uα−1|∇uε|p +
∫∫

QT

|∇um
ε |p−2∇um

ε ∇uα
ε

≤ ‖a‖L∞‖uε‖α
Lα ,

by the T -periodicity of uε and the nonpositivity of the function K2. Using the
Hölder inequality, with r := m(p−1)+α

α , and the Poincaré inequality, one has:

∫∫
QT

uα
ε ≤ |QT |

m(p−1)
m(p−1)+α

(∫∫
QT

um(p−1)+α
ε

) α
m(p−1)+α

= |QT |
m(p−1)

m(p−1)+α ‖u
m(p−1)+α

p
ε ‖

αp
m(p−1)+α

Lp

≤ |QT |
m(p−1)

m(p−1)+α

(
1

p
√

µp

∥∥∇u
m(p−1)+α

p
ε

∥∥
Lp

) αp
m(p−1)+α

.

Thus

‖uε‖α
Lα ≤ |QT |

m(p−1)
m(p−1)+α

(
1

p
√

µp

∥∥∇u
m(p−1)+α

p
ε

∥∥
Lp

) αp
m(p−1)+α

≤ |QT |
m(p−1)

m(p−1)+α

µ
α

m(p−1)+α
p

(
(m(p − 1) + α)p‖a‖L∞

αmp−1pp

) α
m(p−1)+α

‖uε‖
α2

m(p−1)+α

Lα .

This implies

‖uε‖α
Lα ≤ |QT |

µ
α

m(p−1)
p

(
(m(p − 1) + α)p‖a‖L∞

αmp−1pp

) α
m(p−1)

.

In an analogous way, we obtain that

‖vε‖α
Lα ≤ |QT |

µ
α

n(q−1)
q

(
(n(q − 1) + α)q‖b‖L∞

αnq−1qq

) α
n(q−1)

,

if vε is a solution of the second equation of (4.2).
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An immediate consequence of Theorems 4.2 and 4.3 is the following existence
result for a single equation.

Corollary 4.2. Consider the problem (4.3) and assume that

(1) the exponents p, m are such that p ∈ (1, 2) and m > p,

(2) the delay τ ∈ (0, +∞),
(3) the functions a and K belong to L∞(QT ), are extended to Ω×R by T -periodicity

and are nonnegative for a.a. (x, t) ∈ QT ,

(4) hypothesis (4) of Corollary 4.1 is satisfied with

C =
T

k
‖a‖L∞

if K(t, x) ≥ k > 0, or

C =
|QT |

µ
α

m(p−1)
p

(
(m(p − 1) + α)p‖a‖L∞

αmp−1pp

) α
m(p−1)

if K(t, x) ≥ 0.

Then problem (4.3) has a T -periodic nonnegative and nontrivial solution.

Proof. We just need to show that ‖uε‖α
Lα ≤ C for a positive constant C. Pro-

ceeding as in Theorem 4.2 if K(t, x) ≥ k > 0 or in Theorem 4.3 if K(t, x) ≥ 0,
one has that ‖uε‖α

Lα ≤ T
k1
‖a‖L∞ or ‖uε‖α

Lα ≤ |QT |
µ

α
m(p−1)
p

( (m(p−1)+α)p‖a‖L∞
αmp−1pp )

α
m(p−1) ,

respectively. The thesis follows by Corollary 4.1.

Remark 4.1. We underline the fact that the generalization presented in this sec-
tion can be extended to a single degenerate equation or to a double degenerate
system, namely when p, q ≥ 2, as considered in [25].
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