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Abstract 

Ensembles of cortical neurons can track fast-varying inputs and relay them in their spike trains, far 

beyond the cutoff imposed by membrane passive electrical properties and mean firing rates. Initially 

explored in silico and later demonstrated experimentally, investigating how neurons respond to 

sinusoidally-modulated stimuli provides a deeper insight into spike-initiation mechanisms and information 

processing than conventional F-I curve methodologies. Besides net membrane currents, physiological 

synaptic inputs can also induce a stimulus-dependent modulation of the total membrane conductance, 

which is not reproduced by standard current-clamp protocols. 

Here we investigated whether rat cortical neurons can track fast temporal modulations over a noisy 

conductance background. We also determined input-output transfer properties over a range of conditions, 

including: distinct presynaptic activation rates, postsynaptic firing rates and variability, and type of 

temporal modulations. We found a very broad signal transfer bandwidth across all conditions, similar large 

cutoff frequencies and power-law attenuations of fast-varying inputs. At slow and intermediate input 

modulations, the response gain decreased for increasing output mean firing rates. The gain also decreased 

significantly for increasing intensities of background synaptic activity, thus generalising earlier studies on F-I 

curves. We also found a direct correlation between the action potentials’ onset rapidness and the neuronal 

bandwidth. Our novel results extend previous investigations of dynamical response properties to non-

stationary and conductance-driven conditions, and provide computational neuroscientists with a novel set 

of observations that models must capture when aiming  to replicate cortical cellular excitability.  

 

Introduction 

The rapidity by which a single cortical neuron relays time-varying information from its input to its 

output spike train has an upper biophysical limit. This limit is roughly determined by its passive membrane 

properties and by its mean inter-spike interval. However, it is well established that, as ensembles, neurons 

can overcome such limitations and transfer rapidly oscillating input components downstream, without any 

significant attenuations. This phenomenon is also reflected in the extremely fast population reaction times 

to input transients, when the innate low-pass filtering properties of isolated single cells are boosted by a 
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form of “team-work”. These properties have been investigated extensively in theoretical (e.g. see Brunel et 

al., 2001; Brunel et al., 2003; Brunel and Wang, 2003; Fourcaud-Trocmé et al., 2003; Fourcaud-Trocmé and 

Brunel, 2005; Naundorf et al., 2005) and experimental studies (e.g. Köndgen et al., 2008; Tchumatchenko et 

al., 2011; Wei and Wolf, 2011; Ilin et al., 2013; Testa-Silva et al., 2014). On a first approximation, the larger 

a population the greater the advantage of a broad heterogeneity of electrical activity across its cells during 

asynchronous spiking regimes. For instance, during sparsely synchronised network rhythms (reviewed in 

Wang, 2010), an individual neuron experiences a periodically-varying net synaptic drive, while it still may 

fail to fire an action potential (AP) during every single oscillation period. Other cells however, which are 

closer at the same moment to their own firing threshold than that neuron, may fire instead. Therefore, 

presynaptic rhythms and rapidly varying signal components can be conveyed downstream through time-

varying collective firing rates. This mechanism could be essential for the emergence (and self-sustenance) 

of brain rhythms (Wang, 2010; Buzsaki and Draguhn, 2004), particularly when cells fire sparsely and at 

much lower mean rates than the dominant Fourier frequency of the associated local field potentials (e.g. 

Brunel and Wang, 2003; Geisler et al., 2005; Wang, 2010). Thus, the accurate measurement of these 

collective transfer properties in single cells is crucial for dissecting the biophysical information processing in 

cortical networks.  

Previous experimental studies have been particularly useful for challenging existing mathematical 

models of action potential (AP) initiation: they all reported very large cutoff frequencies of ~200–400 

cycles/s in rodents (Köndgen et al., 2008; Boucsein et al., 2009; Ilin et al., 2013; Tchumatchenko et al., 

2011) and much larger in human cortical neurons (Testa-Silva et al., 2014). Other studies have linked this 

broad band transfer to the onset rapidity of action potentials in mathematical models (Fourcaud-Trocmé et 

al., 2003; Ilin et al., 2013) and experiments (Naundorf et al., 2006; Testa-Silva et al., 2014). However, only 

current-clamp stimuli have thus far been employed for recreating in vivo-like firing regimes in vitro 

(Giugliano et al., 2008; La Camera et al., 2008) in the context of dynamical response properties. While 

postsynaptic currents are the ultimate contributors to information processing, physiological inputs are 

mediated by ionic conductances that also produce a marked simultaneous effect on the cell input 

resistance. Indeed, quantitative differences are expected to occur in neuronal responses when comparing 

in vivo-like current- and conductance-driven fluctuating regimes (Tiesinga et al., 2000; Destexhe et al., 

2001; Chance et al., 2002; Destexhe et al., 2003), but see (La Camera et al., 2004). A recent study (Litwin-

Kumar et al., 2011) suggested (despite its paucity of experimental data), that care should be taken when 

comparing dynamical responses based on current- versus conductance-driven inputs. 

To extend the previous experimental efforts to more physiologically plausible settings, we 

investigated the input-output dynamical transfer properties of rat cortical L5 pyramidal neurons in vitro by 

dynamic-clamp. Unlike previous attempts where input mean and variance were modulated independently 

(Boucsein et al., 2009; Tchumatchenko et al., 2011), here we used a biophysically-realistic setup in which 
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the main free input parameter was the firing rate of the emulated presynaptic population(s), thus 

controlling simultaneously mean and variance. Neuronal responses were investigated under a recreated 

barrage of irregular synaptic background events as observed in vivo (Destexhe et al., 2003), with the 

information-carrying signal realized either as a superimposed current waveform (as in Chance et al., 2002) 

or as a modulation of the rate of either or both the synthetic presynaptic populations.  

 

Materials and Methods 

Brain tissue slice preparation. Experiments were performed as described previously 

(Köndgen et al., 2008) and in accordance with international and institutional guidelines on animal 

welfare. All procedures were approved by the Ethical Committee of the University of Antwerpen 

(permission no. 2011_87) and licensed by the Belgian Animal, Plant and Food Directorate-General 

of the Federal Department of Public Health, Safety of the Food Chain and the Environment (license 

no. LA1100469). Briefly, Wistar rats of either sex (2–3 weeks old) were anesthetized using 

Isoflurane (IsoFlo, Abbott, USA) and decapitated. Brains were rapidly extracted and immersed in 

ice-cold Artificial CerebroSpinal Fluid (ACSF), containing (in   ): 125 NaCl, 25 NaHCO3, 2.5 

KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 25 glucose, saturated with 95% O2 and 5% CO2, and having 

pH 7.3 and osmolarity of ~315 mOsm. Parasagittal sections (       thick) of the primary 

somatosensory cortex were cut using a vibratome (VT1000 S, Leica Microsystems GmbH, 

Germany) and were subsequently incubated in ACSF at     for 45 minutes. Slices were then 

stored at room temperature, until transfer to the recording chamber.  

Layer 5 (L5) cortical pyramidal cells, with a thick apical dendrite (McCormick et al., 1985), were 

visualized using an upright microscope (SliceScope, Scientifica, UK, or DMLFS, Leica Microsystems) using 

infrared differential interference contrast microscopy (DIC), in a submerged slice recording chamber, under 

40× or 60× magnification. Experiments were performed at a temperature of      , under continuous 

perfusion with ACSF at a rate of         . All chemicals were obtained from Sigma-Aldrich (Diegem, 

Belgium). 

 

Electrophysiological recordings. Whole-cell patch clamp recordings were obtained from the 

soma of L5 pyramidal cells, using filamented borosilicate glass pipettes (World Precision 

Instruments, USA) prepared with a micropipette horizontal puller (P-97, Sutter Instruments, 

Novato, USA). Pipette electrode resistance was in the range       , when filled with an 

intracellular solution containing (in   ): 115 K-gluconate, 20 KCl, 10 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 4 adenosine triphosphate-Mg, 0.3 Na2-guanosine 
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triphosphate, 10 Na2-phosphocreatine, pH adjusted to 7.3 with KOH and having an osmolarity of 

~290 mOsm. Recordings and current injections were performed with a single electrode, using either 

an Axon Multiclamp 700B Microelectrode Amplifier (Molecular Devices, USA) or an EPC 10 

patch clamp amplifier (HEKA Electronics, Lambrecht/Pfalz, Germany) in current-clamp mode, 

controlled by a personal computer running a real-time operating system: either xPC and Simulink 

(The MathWorks, Natick, USA) (Biro & Giugliano, 2015) or real-time Linux (Linaro et al., 2014).  

Recorded voltage waveforms (or external current commands) were sampled (or synthesized) 

at frequencies of 15 or 20 kHz and A/D (D/A) conversion resolution of 16 bit, with an electronic 

board (NI PCI-6221, National Instruments, USA). Neither bridge balance nor capacitance 

neutralisation was used online. Instead, signal transfer properties of each glass microelectrode were 

repeatedly estimated throughout the recording session by a linear non-parametric identification 

method (Brette et al., 2008). Quantified in terms of the impulse response, the transfer properties of 

glass electrodes were employed to compensate for artifacts in the recorded membrane potential 

offline or online (i.e. in conductance-clamp experiments). Data from N=186 L5 pyramidal neurons 

were included in this study: cells had input resistance of 52.4 ± 25 MOhm, capacitance of 470 ± 

183 pF, and membrane time constant of 21 ± 5.6 ms, determined as described previously (Köndgen 

et al., 2008). All numerical data are presented as the mean   standard deviation, unless otherwise 

noted. 

 

Current-clamp and conductance-clamp stimulation. In vivo-like activity was recreated in 

vitro by emulating background synaptic activity as fluctuating somatic input conductances 

(Destexhe et al., 2001). The current      injected into a neuron was computer-generated in real time 

by dynamic-clamp (Biro and Giugliano, 2015; Linaro et al., 2014; Bal and Destexhe, 2009; 

Destexhe et al., 2003; Economo et al., 2010; Robinson and Kawai, 1993) as 

 

(1)                                      

 

where       (     ) represents the amplitude of a randomly fluctuating excitatory (inhibitory) 

synthetic synaptic conductance, whose apparent reversal potential is chosen as         (   

      ), and where      is the membrane potential instantaneously recorded from the cell. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The excitatory (inhibitory) conductance waveform       (     ) evolved in time randomly 

(and independently), as a result of the asynchronous activation of a large number of simulated 

presynaptic afferents, each with peak synaptic conductance    (  ) and exponential decay    (  ) 

and collectively activated as a stationary Poisson point process      with rate parameter    (  ). 

Dropping the suffix E or I, for the sake of simplicity of notation, we define 

 

(2) 
 
     

  
                     

 

 

Such a waveform was numerically generated as a realisation of an independent Ornstein-Uhlenbeck 

stochastic process (Uhlenbeck and Ornstein, 1930), using the diffusion approximation (Bal and 

Destexhe, 2009): 

 

(3) 
 
     

  
                          

 

 

where      is a realization of a delta-correlated independent Gaussian white noise, with zero mean 

and unitary variance. We followed the convention introduced by (Chance et al., 2002) and set the 

value of    (  ) as 2% (6%) of the total neuronal membrane conductance measured for each cell. 

The values for the synaptic decay time constants were chosen as         and         , 

mimicking fast ionotropic glutamatergic and GABAergic synaptic transmission. 

To explore the impact of weak or strong background synaptic activity, we chose two distinct 

values for the excitatory presynaptic activation rate   :   or       . The value of the inhibitory 

presynaptic activation rate    was instead chosen according to 

 

(4) 
      

             

             
  

 

where    is the value at which the mean excitatory and inhibitory components of the injected 

current cancel each other, i.e., the cell is in the “balanced” state (Chance et al., 2002; Abbott and 

Chance, 2005).The value of    was chosen close to the firing threshold of the neuron, leading to a 

very low output mean firing rate, in the range       .  
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We then investigated the dynamical input-output response properties of neurons, extending our 

previous work (Köndgen et al., 2008). Firstly, we investigated the immediate generalization of (Chance et 

al., 2002) and (Köndgen et al., 2008), where a time-varying input current waveform is injected while the 

neuron experiences stationary background conductance fluctuations (Eq. 5): 

 

(5)             s n                                        

 

where    and   are the amplitude and the oscillation frequency of a sinusoidal current term, and    is an 

offset current, whose value was chosen to drive the cells at low          or high (          output 

mean firing rates. 

Secondly, we employed a more biophysically realistic scenario, using Eq. 1 instead of Eq. 5 and 

imposed non-stationary background conductance fluctuations by setting 

 

(6)             s n         

 

In fact, when    and/or    in Eq. 3 become time-varying (i.e. with identical oscillation frequency f 

but not necessarily identical offsets and amplitudes), the two independent Ornstein–Uhlenbeck processes 

corresponding to       and       become non-stationary. Note that in this instance Eq. 4 was still used but 

only applied to      and to     . 

Finally, we aimed to isolate synaptic and neuronal intrinsic filtering properties and thus considered a 

simpler case, by using Eq. 1 while replacing Eq. 3 by  

 

(7) 
 
     

  
                                                      

 

 

for generating the excitatory (inhibitory) conductance waveform       (     ) (i.e. using two independent 

realisations of n(t)). When the stationary case is considered (i.e.       or    ), Eqs. 3 and 7 lead to 

identical statistical and spectral properties for the corresponding stochastic processes. Otherwise, the 

power spectra of the processes generated by Eqs. 3 or 7 differ by an amplitude              that 
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represents the inherent low-pass filtering operated by the model of synaptic transmission of Eq. 2. In the 

deterministic case (i.e.            ), the conductance waveforms generated by Eqs. 3 or 7 differ by the 

(complex) factor of                 .  

Following a well-characterized framework in dynamical systems theory, the amplitude of input 

modulations (   or   ) was kept small (i.e. 5–20% of the respective offset, being    or   ) to maintain the 

neuronal response in a linear regime, with negligible harmonic components (Fourcaud-Trocmé et al., 2003).  

Data analysis and statistics: instantaneous firing rate. Recorded traces were analysed 

using custom MATLAB scripts (The MathWorks, Natick MA, USA) as described by Köndgen et 

al. (2008). Briefly, the times of occurrence      of the spikes fired by the neuron were detected by 

finding the peaks of the intracellular voltage traces exceeding a threshold of       . The 

instantaneous output firing rate      was estimated by first referring the spike times over one period 

of the input oscillation (i.e.             ) (Fig. 1D) and then computing the peri-stimulus spike 

time histogram (Fig. 1E) with bin size equals to one tenth of the input period. A first-order 

approximation of the neuronal dynamical response was best fit on the histogram according to  

 

(8)                            ,  

 

identifying mean   , modulation amplitude      , and phase      of the output firing rate. 

Throughout this paper, the modulation amplitude is reported and graphically represented after 

normalizing it by the mean (i.e.         ) and referred to as response magnitude or gain. 

In our experiments, we explored the range                 for the input oscillation 

frequency f. Given our choice of parameters, cells’ output firing rates and inter-spike interval 

distributions for stationary inputs, we found that spike trains lasting         were necessary for 

reliably estimating       and     , for each value of f. 

We then normalised       by the value of    and computed its level of significance by 

repeating the same analysis on surrogate data. Briefly, for each acquired spike train a set of 100 

surrogate trains was obtained, by randomly shuffling the original inter-spike intervals (Ilin et al., 

2013): mean   , modulation amplitude      , and phase      were best fit on each of the 100 

histograms obtained, and individually averaged for the same frequency f to obtain a mean value and 

a level of minimal significance, defined as the sum of one standard deviation and the mean values.  
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Finally, despite periodic with period of    by definition, the phase      was unwrapped to 

produce smoother plots and emphasize the presence of a linear dependency on   (Köndgen et al., 

2008; Fourcaud-Trocmé et al., 2003). 

Data analysis and statistics: phenomenological model. Consistent with the theory of linear 

dynamical systems, we concisely expressed the modulation amplitude and phase of the output firing rate 

experimentally identified by a phenomenological model (Köndgen et al., 2008). Briefly,          and      

were taken as the magnitude and phase of the impulse response of a linear filter in cascade with a delay 

line, which is completely described by a high order input–output ordinary differential relationship. In 

Fourier’  domain, this takes the form of a complex-valued rational polynomial function, called transfer 

function, 

 

(9) 
       

           
 
   

           
 
   

 
   

 
   

   
 
   

           
 

 

where       is the imaginary unit,   is known as the low-frequency gain,    is a fixed time delay, and 

     and      are called poles and zeros of the transfer function, respectively. These poles and zeros are the 

roots of the complex polynomials at the numerator and denominator of     , and allow the objective 

definition of the cutoff frequencies that are associated with high-pass, band-pass, or low-pass behaviours 

of interest in the neuronal response. In the following experiments, we shall use the term cutoff (low-pass) 

frequency to indicate the largest absolute frequency pole in Eq. 9. We fit Eq. 9 to both single-cell data and 

population averages, identifying the free parameters  ,   ,     , and     , but searching for the minimal 

number of poles and zero with the constraint M < N, thus ensuring causality of the transfer function. For 

the single-cell data set, the mean-square error between experiment and prediction by Eq. 9 was minimised 

while weighing it by the inverse of the confidence interval, returned for each frequency f by the MATLAB 

routine employed to fit the peri-stimulus spike time histogram. In the case of population data, the mean-

square error was instead minimised while weighing it by the inverse of the standard deviation of data 

points across cells for the same frequency f. 

We found that our data could be best fit using a single zero (i.e.    ), usually located at very low 

frequencies, and two or three poles (i.e.      ). The numerical value of the largest pole provides a 

measure for the (low-pass) cutoff frequency and it has been graphically localised on each related subplot as 

a vertical line. In addition, in the limit of very high input oscillation frequency f, this also automatically 

accounts for the power-law decay    observed experimentally in the amplitude modulation, whose 
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exponent            , was previously linked to the non-linearity of spike initiation, in theoretical 

and experimental studies (Köndgen et al., 2008; Fourcaud-Trocmé et al., 2003). 

Finally, the best fit value of the delay    has been previously linked to the AP width and to the distal 

location of action potential generation, i.e. in the axon initial segment (Köndgen et al., 2008). Tables 1-2 

provide the best-fit parameters corresponding to the population summaries of Figs. 6-7. 

Data analyses: AP rapidness. We conventionally defined the threshold of individual APs by the value 

of membrane voltage corresponding to the maximum of the third time derivative of the membrane 

potential as described by Henze and Buzsaki (2001). The AP rapidness was then computed as the slope of 

the line tangent to the AP trajectory plotted in the plane    versus       , at the voltage coordinate 

corresponding to the AP threshold. This amounted to values of        in the range (           , 

which are in line with previous reports (Naundorf et al. 2006). For each cell, we extracted a single value of 

AP onset rapidness by the grand average of the onset rapidness out of only the first two APs emitted in 

each stimulation trial, as the cell received fluctuating conductance inputs. 

Step-changes in the presynaptic firing rate. To measure the response to an abrupt increase in the 

activation rate of the presynaptic populations, we step-changed the instantaneous rate of the presynaptic 

excitatory population while keeping the rate of the presynaptic inhibitory population stationary. In other 

words, in Eq. 7 we set           for    , and                      for    , with     being the 

step onset. Both      and      were kept constant and equal to 0. For this set of experiments, we only 

considered the regime of low output mean firing rate, high coefficient of variation of the inter-spike 

interval distribution (CV), and strong synaptic background, and we instantaneously increased the steady-

state value of the excitatory firing rate by 5 or 10% (i.e.              ). The stimulus was applied for at 

least        before and after the step change in presynaptic firing rate, to ensure the steady-state of the 

cell’  firing rate and to minimize adaptation effects. In total, n=16 neurons were used and each cell was 

stimulated with at least N independent repeated trials. Step-onset detection was performed exactly as 

described in (Tchumatchenko et al., 2011). 

 

Results  

Neuronal output transfer of time-varying inputs. We describe the patch-clamp electrophysiological 

data collected from 186 layer 5 pyramidal neurons in acute tissue slices of somatosensory cortex of juvenile 

rats. In vivo-like irregular activity was recreated in vitro by the dynamic-clamp technique (Fig. 1), following a 

standard method. This proceeds by emulating the irregular activation of presynaptic inputs as randomly 

fluctuating synthetic excitatory and inhibitory input conductance waveforms, injected in real-time into the 

neurons. Instead of examining the neuronal response to fluctuating inputs with stationary statistics (e.g. 
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Chance et al., 2002; La Camera et al., 2008), we rapidly varied the input (Fig. 1A-C) to probe the dynamics 

of input–output transfer properties. We employed four distinct ways for delivering sinusoidally oscillating 

small-amplitude input modulations to the neurons, and consistently use the labels {RE}, {RI}, and 

{RE, RI} for further clarity. These types of input modulations (i-iv) consist in alternatively:  

i) {injecting an additional sinusoidal current-clamp waveform (Fig. 1A; see Eqs. 3,5) 

to the fluctuating conductance background, thus extending Chance et al., 2002;  

ii) RE} – weakly modulating the activation rate of either excitatory (Fig. 1B; Eqs. 1,7) or  

iii) RI}– inhibitory presynaptic synthetic inputs, or 

iv) {RE, RI} – both simultaneously (Eqs. 1,7), thus generalising Köndgen et al., 2008.  

 

Using the (ii) – RE} protocol (Fig. 1B-C), a sample net excitatory conductance       can be computer-

synthesised as a realization of a random stochastic process as displayed as the top trace of Fig. 2A: both its 

mean and variance change rapidly in time, following the small-amplitude sinusoidal modulation of the 

excitatory activation rate      . To this conductance-driven input, neurons responded by firing sparsely in 

individual trials (Fig. 2A, lower trace), but as the spike times are analysed over successive input cycles (Fig. 

2B) the instantaneous output firing probability estimated by the peri-stimulus time histogram (Fig. 2C) 

revealed a prominent output temporal modulation. This occurs at the same frequency f of the input 

sinusoid up to 300 cycle/s in the representative neuron of Fig. 2, above which they become strongly 

attenuated. Also for very slow modulations, the exemplary neuron shown responded with a strong 

attenuation. Note that the neuron does not stop firing, but maintains the same output mean firing rate. 

These output oscillations are quantified in terms of mean, magnitude, and phase (Fig. 2C) and, as 

demonstrated in four panels of Fig. 2C, vary depending on the value of f. Their systematic characterisation 

(i.e. over f = 1 – 1000 cycle/s) is akin to an electronic “filter”, i.e. possessing bandwidth, high- or low-pass 

properties, and a cutoff frequency. 

When considering the (ii) – (iv) protocols, the setup of Fig. 1B is biophysically highly realistic. However, 

such protocols unavoidably induce an additional upfront attenuation and phase shift “in cascade” to the 

neuronal transfer (see Eq. 3), caused by our design of non-instantaneous kinetics of individual synaptic 

excitatory and inhibitory conductances (      ,        ). This effect is present e.g. in the red 

fluctuating trace of       of Fig. 1B’  cartoon (red trace), but it cannot be visually appreciated as f is small 

in that example. The higher f, the stronger the attenuation in the conductance waveforms (      and/or 

     ) injected in the neuron. In other words, the power of the input modulations that are faster than the 

synthetic synaptic time constants (i.e.             ) is attenuated by a factor      before injection into 

the cell. This in fact corresponds to the effect of a low-pass filter, with very low cutoff frequency 
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(                     ,        
               ), and it is represented by the black dotted lines in 

Fig. 3 that represent magnitude and phase of the complex function                , describing 

theoretically the synapses. 

In this study, we aimed to isolate only the cell’  intrinsic contribution to the dynamical transfer 

properties, by measuring magnitude and phase of the neuronal instantaneous output firing rate at the 

highest signal-to-noise ratio possible across all input sinusoidal frequencies f. We then devised a 

modification of the setup of Fig. 1B and turned it into 1C, i.e. we used Eq. 7 instead of Eq. 3 (see the 

Methods), to carefully compensate for the synaptic filtering, without altering the spectral properties of the 

recreated synaptic fluctuations. Figure 3 illustrates this important methodological step, plotting the 

measured dynamical transfer properties—as normalised magnitude and phase—and comparing the 

experimental results obtained with or without the unwanted synaptic filter. This was performed 

considering the (ii) and (iii) protocols, modulating alternatively the excitatory ({RE}; warm colours; left 

panels) or the inhibitory activation rate ({RI}; cold colours; right panels), and setting           and      

as in Eq. 4. As expected, if synaptic filtering is left uncompensated (light-coloured markers and dashed 

lines), its attenuation precludes investigating the effects of modulations faster than 30 or 15 cycles/s.  

Figures 4 and 5 demonstrate our entire data set, plotting population summaries of cell ’ intrinsic 

dynamical responses, employing different input modulation protocols i.e. (i) - (iv) (row-wise) and exploring 

various activity regimes (column-wise), which will be introduced and examined in the next sections (see 

also the Supplemental Material, Fig. S1). Each subplot of Figs. 3, 4 and 5 displays for each value of f the 

normalised magnitude and phase of the neuronal response, averaging over many cells, with markers and 

error bars indicating mean ± s.e.m., respectively. Black dashed lines in Fig. 4 represent the minimal 

significance levels of the output modulation, and red dashed lines are best-fits of the simplest power-law 

(i.e.    ), with the value of the exponent   indicated above each panel, along with the number of cells 

considered in each condition. In most cases, it was possible to record more than one transfer function per 

cell, across different conditions. Horizontal dashed grey lines in Fig. 5 emphasize the location of phase 0 or 

–  and the individual insets zoom in over input modulations. The value of the parameter    (see Methods) 

derived from the slope of the curve is specified above each panel, along with the number of cells 

considered in each condition. 

From the results shown in Figs. 3-5, we outline the key features of the intrinsic neuronal dynamical 

response: (a) a broad bandwidth (up to 200–400 cycles/s), (b) a power-law attenuation    for very fast 

input modulations, with negative exponents (-1.23   -0.15, range [-1.5, -0.9] (see also Fig. 4), (c) a phase-

advance for slow input modulations f (referred to 0 or to –  , for excitatory or inhibitory modulations, 

respectively), and (d) a non-saturating linear phase decrease for large f (Fig. 3C-D; Fig. 5). In Figs. 3-4, 

continuous coloured lines demonstrate best-fit plots of the response of a phenomenological model (see the 
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Methods), which captures simultaneously the magnitude and phase of the neuronal dynamical responses 

with only 6 free parameters (see Tables 1-2), and allows for unbiased estimates of magnitude, cutoff 

frequencies (see Methods), and propagation delays.  

Our data demonstrate that the output modulation remains above the minimal significance level across f 

= 1-1000 cycles/s, indicating that – as ensembles – neurons can track extremely rapid input signals, varying 

in time much faster than single-cell output mean firing rate (<25 spikes/s in our experiments) and passive 

membrane filtering (~50 cycles/s). 

Moreover, consistent with the definition of presynaptic inhibitory control of postsynaptic firing, when 

the input modulation RI(t) was applied only to the inhibitory presynaptic activation rate (see Fig. 3B-D, Fig. 

5 third row), the output phase displayed an additional offset of – , across all frequencies. In fact, the 

output rate reached its minimum when the input rate was maximal (i.e. maximally inhibiting the neuron), 

thus resulting in an opposition of phase. In addition, the phase always reached a peak at low values of f 

(insets of Fig. 5), corresponding to a phase advance described previously (Fuhrmann et al., 2002; Köndgen 

et al., 2008). For faster modulation frequencies, the phase quickly decreased (crossing zero, or the –  

offset, if present), substantially lagging behind the input. Beyond the cutoff frequency, graphically 

represented in Fig. 3A-B by vertical continuous lines, the phase linearly decreases as the product (-t f), 

reminiscent of the effect in the Fourier domain of a fixed time delay t (i.e. 1.08 ± 0.16 ms, range [1; 1.5], 

Fig. 5) (Fourcaud-Trocmé et al., 2003; Köndgen et al., 2008). For the sake of clarity, the same annotation 

labels and colour conventions used for Figs. 3-5 were used in Figs. 6-7 as well. 

 

Output firing rate and synaptic background intensity affect neuronal transfer properties.  

By adjusting the excitatory to inhibitory ratio by the parameter    in Eq. 4, we varied the output mean 

firing rate of the neuron and arbitrarily identified two levels of its activity: low (4–9 spike/s) and high (15–

25 spike/s). As shown in the Supplemental Materials (Fig. S2) the low and high firing rate regimes are also 

naturally associated with high and low (coefficient of) variability of the interspike-intervals (distribution). 

Analogously, by increasing the average excitatory activation rate    from 7 kHz to 14 kHz (   as in Eq. 4), 

we tuned different intensities of the fluctuating synaptic conductances that we termed weak and strong 

background activity, respectively. The combination of mean firing rate (and CV) and background synaptic 

intensity thus define a total of four regimes that we considered when probing the neuronal dynamical 

response properties. Although, Figs. 4 and 5 already display (column-wise) the whole repertoire of data, in 

the following we describe and discuss the response magnitudes (Fig. 4) and plot them again after sorting as 

Figs. 6 and 7. Such a rearrangement of data visualization allows us to more clearly describe how the 
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dynamical response properties are affected by the output mean firing rate or by the intensity of the 

background synaptic activity. 

Regardless of quantitative differences induced by the input modulation protocol (i)-(iv), we found no 

effect of the output mean firing rate for very fast modulation frequencies, as shown in Fig. 6A–D. In this 

figure, results from 106 cells active at very similar (low or high) mean firing rates and receiving strong 

background synaptic activity (i.e.           ), were pooled together and summarized in each panel (A: 

n=14 cells at low rates, 12 at high rates; B: n=10 cells at low rates, 12 at high rates; C: n=17 cells at low 

rates, 12 at high rates; D: n=10 cells at low rates, 19 at high rates). In the figure, continuous lines are best-

fit plots of the response of the phenomenological model, mentioned earlier and described in the Methods 

section, employed here particularly to offer a data-driven estimate of the cutoff frequency (vertical lines). 

Indeed, cutoff frequencies and power-law attenuation profile were barely affected, as apparent from 

comparison of the thick and thin continuous lines. However, for slow and intermediate input modulations, 

an increase in the mean firing rate and associated decrease in spiking variability reduce the transfer gain, 

shrinking the bandwidth and emphasizing a broad peak, located at ~100 cycle/s. 

We next examined how the intensity of the background synaptic activity alters the neuronal dynamical 

response, and summarised in Figure 7 the comparison between regimes, focusing only on the low firing 

rate case.  In this figure, results from 117 cells receiving very similar (weak or strong) background synaptic 

activity and firing at low mean firing rate, were pooled together and summarized in each (A: n=14 cells at 

strong, 19 at weak background activity; B: n=10 cells at strong, 16 at weak background activity; C: n=17 cells 

at strong, 20 at weak background activity; D: n=13 cells at strong, 8 at weak background activity). 

The recreated background synaptic activity evidently shortened the cell effective time constant associated 

with membrane integration properties (             during weak background stimulation, compared 

to             at rest,      cells,         and              during strong background 

stimulation, compared to             at rest,      cells,        ;        for the comparison 

between the two groups of cells at rest, i.e. without background stimulation, two-sample Kolmogorov-

Smirnov test). However, no effect was observed at very fast modulation frequencies and on the cutoff 

frequency of the response. On the other hand, increasing the intensity of background synaptic activity 

reduced the transfer gain for slow and intermediate modulations. 

Taken together, all these results indicate that cortical pyramidal neurons overall behave like band-pass 

filters, with a bandwidth directly influenced both by the firing rate of the presynaptic population and by the 

output mean firing rate of the cell. 
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Bandwidth and spike onset rapidness. Previous theoretical studies have l  ked a  eu o ’  ba dw d h 

with the trajectory of its membrane voltage at the spike initiation (Fourcaud-Trocmé et al., 2003; Ilin et al., 

2013). As mentioned previously, we best-fitted the parameters of a phenomenological model to the 

population averages (shown as continuous lines in Figs. 3, 4, 6-7) and summarized their values in Tables 1 

and 2 (corresponding to Figs. 6 and 7, respectively). The same best-fit procedure can be applied to each 

experiment (not shown) besides to the population averages, allowing us to extract for each individual cell, 

among other observables, the high frequency cutoff of the neuron’s response in a completely data-driven 

manner.  

Thus, we determined whether the value of such a cutoff correlated to any passive or active membrane 

properties of the cell, such as: membrane capacitance, input resistance, membrane time constant, AP half-

width, maximal upstroke velocity, and specifically to AP onset rapidness as predicted. We found significant 

correlations when comparing cutoff with membrane capacitance (r = 0.22, p < 10-2), input resistance (r = -

0.31, p < 10-4), AP ’ half width (r = -0.27, p < 10-3) and maximal upstroke velocity (r = 0.27, p < 10-2). In 

addition, we indeed found that the high frequency cutoff of each neuron strongly correlated with its AP 

onset rapidness (r = 0.39, p < 10-3). This is demonstrated in Fig. 8, where each grey marker represents a cell 

and the red line is a linear fit to the data. These results, based on n = 81 cells, confirm the measurable 

influence of AP rapidness on the bandwidth of the dynamical response, a phenomenon analysed in 

theoretical studies (Fourcaud-Trocmé et al., 2003; Ilin et al., 2013) and anticipated by experimental work in 

human cortical neurons (Testa-Silva et al., 2014).  

 

Detection of abrupt input changes. In analogy to the current-clamp experiments performed by 

Tchumatchenko et al. (2011), we investigated how rapidly neurons can detect abrupt changes in their 

presynaptic input statistics. To this aim, we removed the sinusoidal oscillatory modulation of the 

instantaneous firing rate of the presynaptic excitatory population considered so far and replaced it by a 

step function, as detailed in Eq. 7 and sketched in Fig. 9A. This effectively caused a sudden imbalance in the 

excitation-inhibition ratio and led to a rapid increase in the output instantaneous firing rate, estimated by 

the peri-stimulus time histogram (PSTH) over thousands of trials. This is shown in Fig. 9B-C, where the 

responses to a 5% (left) or to a 10% (right) abrupt change in the presynaptic excitatory drive have been 

summarised over n=16 cells (i.e. n=8 per condition). In both cases, the settling time of the neuronal 

response was shorter than the average inter-spike interval (i.e. 200 ms at 5 spike/s) and the transient 

response displayed an overshoot. These features are consistent with the step-response of a band-pass 

transfer function (Fig. 4C, darker colours), particularly with the location of the cutoff frequency beyond 100 

cycles/s. In fact, a band-pass filter is equivalent to the cascade of a low- and a high-pass filter, processing a 

step-changing waveform in series: intuitively, the former delays and smooths the step – as a sliding window 

integral – while the latter subsequently attenuates any remaining steady components of the response – as 
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a differentiator, ultimately leading to an overshoot as observed in the PSTH. Surprisingly, when the 

stimulus was increased by 5% (but not 10%), we also observed a mild but significant transient decrease in 

the output instantaneous firing rate, lasting       and immediately following the step change of the 

presynaptic rate (Fig. 7B). 

To further quantify the neuronal responses, we applied the analysis proposed by Tchumatchenko et al. 

(2011) that assumes the existence of a downstream theoretical decoder that receives the spike trains of a 

(virtual) population of neurons. Of course, we always experimentally recorded one neuron at the time but, 

on a first approximation, we can swap time with ensemble averages and consider the N trials – collected 

for the same cell – as being representative of simultaneous observations from N (identical and 

independent) neurons. The decoder reports conventionally a detection of the step change in its input, only 

when the ensemble firing rate of the N neurons (i.e. the PSTH of Fig. 9B-C) falls outside the 95% confidence 

boundary, estimated on the distribution of firing rate observed before the step.  

Upon subsequent calculation of the PSTH over increasing number of trials (i.e. N = 0 - 2000 “ eu o  ”) a d 

bin size (i.e. detection windows 4-16 ms) and the conventional detection threshold, we were able to 

compute the probability of threshold crossing (Fig. 9D-G). 

The decrease in the instantaneous firing rate, observed in the 5% condition, effectively delays the 

detection of the step (Figs. 9B–C). This is likely due to a combined effect of the fixed propagation delay t 

and of the biophysical properties of conductance-based inputs: a surge in presynaptic excitation induces an 

effective depolarization of the membrane potential. As the driving force for inhibitory synaptic 

conductances increases for increasing depolarizations, this in turn leads to a decrease in overall firing rate, 

at least immediately after the stimulation onset. After this initial phase, the postsynaptic firing rate 

increased in both cases, leading to the efficient and fast detection of the step-change (Figs. 9D-E): as 

expected, the steepness of the increase in detection probability as a function of time since the step grows 

with the number of postsynaptic neurons considered. We also calculated the probability of step detection 

as a function of the number of neurons across several delay times (Tchumatchenko et al., 2011), ranging 

from 4 to 16 ms (Figs. 9F-G).  

Taken together, our results demonstrate that – as ensembles – neurons can detect subtle changes in 

their inputs with reaction times much faster than intrinsic membrane properties and mean inter-spike 

intervals. Compared to previous results obtained in current clamp experiments (Tchumatchenko et al., 

2011), our experiments show how the detection of an increase in presynaptic firing rate may be slightly 

delayed if its magnitude is small compared to the baseline presynaptic firing rate. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Discussion 

To the best of our knowledge, this is the first study that investigates the properties of dynamical transfer 

of fast time-varying input signals by cortical ensembles in a biophysically realistic in vitro setting. We 

recreated fluctuating conductance-driven background synaptic activity by dynamic-clamp, balancing 

excitation and inhibition, and applied foreground small-amplitude stimuli as current- or conductance-driven 

waveforms across a broad range of experimental conditions. We were particularly interested in how 

neuronal responses are affected by the type of input modulation (i.e. current- or conductance-based), the 

intensity of the recreated synaptic background, and the output firing rate of the neurons, consistently with 

previous works and findings (Köndgen et al., 2008; Broicher et al., 2012; Litwin-Kumar et al., 2011). Our 

results extend previous observations and show that no qualitative differences exist in transferring time-

varying information encoded as conductance or current inputs. 

The impact of the modulation type on dynamical responses was previously explored theoretically in 

integrate-and-fire (IF) models (Richardson, 2007). Upon an effective rescaling of the membrane time 

constant induced by conductance fluctuations, conductance and current stimuli lead to quantitative and 

not qualitative differences in IF models. Then a higher intensity of the recreated synaptic background 

would further increase the membrane time constant and alter the cutoff frequency. In our conductance-

clamp experiments however, despite a reduction of up to 60-75% of the effective membrane time constant 

compared to rest, we observed almost no difference with current-clamp data (Köndgen et al., 2008) and 

particularly no change in the cutoff and attenuation of very fast modulations. In addition, we found no clear 

effect of the output mean firing rate on the cutoff frequency, as described in numerous studies (Fourcaud-

Trocmé et al., 2003). It is possible that these differences may be reconciled by choosing different numerical 

values of IF model parameters (e.g. the sharpness of action potentials in non-linear integrate-and-fire 

model neurons much larger than measured directly) to be interpreted only as indirect correlates of 

biophysical observables. 

In all cases studied experimentally, we found that neurons display a band-pass behaviour with very large 

cutoff frequencies (~200–400 cycles/s), comparable across all conditions. For very fast input modulations, 

neurons attenuated their inputs by a power law with negative exponents in the range [-1.5; -0.9] as 

previously reported (Köndgen et al., 2008) and reminiscent of an effective non-linearity of spike initiation in 

IFs, which is intermediate between exponential and quadratic (Richardson, 2007; Fourcaud-Trocmé and 

Brunel, 2005).  

For slow and intermediate modulations, the gain of the dynamical response appears in direct 

relationship with the variability of inter-spike intervals and to its mean (i.e. in inverse relationship with the 

output firing rate, as shown in Fig. 6). This might be attributable to spike-rate adaptation, due to its known 

higher reduction of the slope of the (stationary) F–I curve at higher firing rates as well as its associated 
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high-pass dynamical behaviour (Fuhrmann et al., 2002) in cascade to neuronal intrinsic filtering. In fact, the 

spike-rate adaptation depends on the accumulation of intracellular free sodium, free calcium or on 

alternative negative-feedback state variables with marked temporal integrative properties of the firing rate 

(Koch, 1998). It follows that these variables cannot track very fast changes of the firing rate over time, thus 

constraining their effect for slow modulations. However, there are known alternative mechanisms to 

account for high-pass dynamical behaviours or resonances, such as morphology (Ostojic et al., 2015) or 

subthreshold membrane properties (Brunel et al., 2003). 

Cortical neurons in vivo are more depolarized and have lower input resistance than in vitro, while 

membrane voltage dynamics are dominated by irregular firing and subthreshold fluctuations in the range of 

3–5 mV (Destexhe et al., 2003; Ho and Destexhe, 2000). These conditions, and in particular the higher 

variability of the inter spike interval, might favour a broadening of the pass-band profile of the transfer 

function while leaving its overall magnitude and cutoff unaffected.  

We then considered an earlier study where the background synaptic activity was shown experimentally 

to modulate the slope of the (stationary) F–I curve (Chance et al., 2002). The conclusions of that study are 

now generalised as follows: the intensity of the background of excitatory and inhibitory synaptic inputs 

within active cortical circuits acts as a modulatory signal, but the extent of its control on cell dynamical 

transfer properties occurs exclusively for slowly changing inputs, allowing rapidly changing inputs to be 

relayed downstream unaffected (Fig. 7). We also remark that, despite a significant reduction of the 

effective membrane time constant, no change in the cutoff frequency or high-frequency behaviour of the 

dynamical response was observed. 

In addition, our data support unambiguously the correlation between the cutoff frequency of individual 

neurons and the rapidness of their spike onset dynamics, in qualitative agreement with theoretical 

predictions (Brunel and Wang, 2003; Fourcaud-Trocmé and Brunel, 2005; Naundorf et al., 2006; Ilin et al., 

2013) and with an experimental comparative work (Testa-Silva et al., 2014). We have evidence, to be 

discussed elsewhere in detail, that the quantitative features of the dynamical transfer properties are 

reproduced in silico by multicompartmental (Markram et al., 2015) but not single-compartmental model 

neurons (Fourcaud-Trocmé et al., 2013). Anatomically and physiologically detailed model neurons, 

algorithmically fitted on independent experimental data (Ramaswamy et al., 2015), display cutoff 

frequencies of ~200–400 cycles/s without parameter adjustments (data not shown). As these models 

include conventional gating of sodium channels and detailed reconstructions of the dendritic but not of the 

axonal trees, only the electrotonic dendritic load (Eyal et al., 2014) and critical resistive coupling theories 

(Brette, 2013), but neither channel gating cooperativity (Naundorf et al., 2006; Ilin et al., 2013) nor AP 

backpropagation from the axon (McCormick et al., 2007; Yu et al., 2008) seem necessary for rapid somatic 

AP onset and broad dynamical bandwidth.  
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Finally, we sought to investigate the rapidness by which neuronal ensembles can detect abrupt 

increases in the firing rate of their presynaptic partners. We found that, despite the rapidness of the 

neuronal response and in contrast to current-clamp inputs (Tchumatchenko et al., 2011) a step-like 

increase in the excitatory presynaptic firing rate RE(t) produces a small but noticeable decrease in the 

output firing rate when the increase in presynaptic excitatory firing rate is small compared to the baseline. 

This constitutes a lower limit to the speed by which changes in the input statistics can be reliably detected 

by a large population of postsynaptic neurons. 

In summary, our systematic study on the input–output dynamical response properties of cortical 

neurons confirms and generalizes previous theoretical and experimental works. It further offers the 

experimental and computational research communities a novel tool to classify and probe intrinsic neuronal 

properties, and constrain the realism of reduced mathematical models of excitability and information 

integration (Brette, 2015). This is important for the advancement of our understanding of the biophysical 

mechanisms underlying fast computations in cortical ensembles, as well as for the emergence of network-

driven oscillations in recurrent microcircuitry.  

 

Acknowledgements 

We are grateful to Mr. D. Van Dyck and M. Wijnants for excellent technical assistance, to Drs. J. Couto, 

M. Negrello, M.J.E. Richardson, A. Neef, P. Vanderhaeghen for helpful discussions, to the anonymous 

referees and Dr. B. Martin for improving the quality of the manuscript. Financial support from the European 

Commission (FP7-ICT-FET p ojec  “ RA NLEAP”, g a    . 306502; H2020-ICT-FET-FLAGSH P “Huma    a   

P ojec ” – SGA1, grant n. 720270), the Interuniver   y A   ac  o  Pole  P og am “Pha e V  ” of  he  elg a  

Science Policy Office, and the Flemish Research Foundation (grant n. G0F1517N) is kindly acknowledged. 

 

Abbreviations 

AP   Action Potential 

CV   Coefficient of Variation of the inter-spike interval distribution 

DIC   Differential Interference Contrast Microscopy 

IF   Integrate-and-Fire  

L5   Layer 5 

PSTH   Peri-Stimulus Time Histogram  
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Figure captions 

Figure 1: The dynamics of neuronal responses was investigated upon injection of time-varying recreated 

synaptic inputs. Dynamic-clamp with active electrode compensation (A.E.C.) recreates the effects of in 

vivo-like activation of presynaptic afferents. We investigated the cell firing in response to a sinusoidal input 

with frequency f, applied (A ext(t), (B) as a modulation of either excitatory RE(t) or 

inhibitory RI(t) presynaptic afferent rates, or both (not represented). Despite (B)’  higher biophysical 

realism than (A), injected synaptic conductances (e.g. GE(t)) displayed significant attenuation and phase lag 

fo  fa     pu  modula  o  . Such a “low-pa  ” f l e   g     olely due  o  he k  e  c  of  he  y  he  c  y ap e , 

it reduces the signal-to-noise ratio of the cell response, but can be compensated for as in (C) while leaving 

the spectral properties of synaptic fluctuations unaltered. 

 

Figure 2: Neuronal instantaneous output firing rates track fast modulations of synaptic inputs. 

Exemplifying one of the stimulation protocols, a realization of the conductance GE(t) is shown (A, upper 

trace): its mean and variance follow the sinusoidal modulation of the input presynaptic rate RE(t). In 

response to it, the neuron fires sparsely (A, lower trace) but its instantaneous firing rate—estimated across 

input cycles and repetitions (B) as the peri-stimulus spike times histogram (PSTH - C)—reveals output 

temporal modulations. These occur at the same frequency f of the input (up to 300 cycle/s) and are 

quantified in terms of mean, magnitude, and phase, as depicted in C. Note that both magnitude and phase 

depend on f.  

 

Figure 3: Accurately probing neuronal dynamical response to fast modulations by compensating for the 

(recreated) synaptic filtering. We used alternatively two stimulation protocols that induce filtered (square 

markers) or instantaneous (circular markers) oscillations in the injected synaptic conductances. Magnitude 

(A-B; normalised to its mean) and phase (C-D) of the output instantaneous firing rate are displayed over a 

wide range of f, upon modulating the excitatory RE(t) (A, C) or inhibitory RI(t) (B, D) presynaptic input rates. 

Circular markers indicate the population transfer function in response to the injection of instantaneously-

modulated conductances, while square markers refer to the transfer function filtered by the transfer 

properties of synthetic synapses (dotted black lines, in all panels). Thin (dashed and continuous) lines are 

optimal fits of a phenomenological model whose cutoff frequencies are indicated by the corresponding 

vertical lines. The black dashed line in (A) indicates the ~1/f slope. 
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Figure 4: Across firing regimes and stimulation protocols, the neuronal gain reveals similar characteristic 

features: high cutoff frequency, broad band-pass profile, and power-law attenuation at very fast 

modulations. Each panel displays the magnitude (normalised to its mean) of the output instantaneous 

firing rate as a function of f across distinct physiological regimes (column-wise). Row-wise, input sinusoidal 

modulations were delivered as an external current amplitude, as both excitatory RE(t) and inhibitory RI(t) 

presynaptic input rates simultaneously, or only one of them at the time. Markers are the magnitude of the 

population transfer function in response to the injection of instantaneously-modulated conductances. The 

solid lines are optimal fits of a phenomenological model (see the Methods), the red dashed lines are best 

fits of f a. The black dashed curves represent data-driven response minimal significance thresholds. For each 

panel, the number of cells and the estimated parameter  are indicated. 

 

Figure 5: Across firing regimes and stimulation protocols, the phase of neuronal response reveals similar 

characteristic features: phase-advance for slow modulations, phase lag at intermediate and fast 

modulations, and a linear increase ~ -  at very fast modulations. Each panel displays the phase (referred 

to the input sine) of the output instantaneous firing rate as a function of f, across distinct physiological 

regimes (column-wise). Row-wise, input sinusoidal modulations were delivered as an external current 

amplitude, as both excitatory RE(t) and inhibitory RI(t) presynaptic input rates simultaneously, or only one 

of them at the time. Markers indicate the phase of the population transfer function in response to the 

injection of instantaneously-modulated conductances. The grey dashed lines represent 0 and -

panel, the number of cells and the estimated parameter  are indicated. 

 

Figure 6: Increasing the output mean firing rate leaves the cutoff of neuronal gain unaltered, and 

attenuates the transfer of slow but not fast input modulations. Each panel displays the magnitude 

(normalised to its mean) of the output instantaneous firing rate as a function of f, under strong background 

fluctuations, while modulating an external current amplitude (A), both excitatory RE(t) and inhibitory RI(t) 

presynaptic input rates simultaneously (B), or only one of them at the time (C, D). Circular (square) markers 

are the magnitude of the population transfer function in response to the injection of instantaneously-

modulated conductances, at low (high) output mean firing rates. The solid lines are optimal fits of a 

phenomenological model (see the Methods) and the vertical lines indicate its cutoff frequency.  

 

Figure 7: Increasing the synaptic background intensity leaves the cutoff and the bandwidth of neuronal 

gain unaltered, and attenuates the transfer of slow but not fast input modulations. Each panel displays 

the magnitude (normalised to its mean) of the output instantaneous firing rate as a function of f at low 
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output mean firing rates, while modulating an external current amplitude (A), both excitatory RE(t) and 

inhibitory RI(t) presynaptic input rates simultaneously (B), or only one of them at the time (C, D). Square 

(circle) markers are the magnitude of the population transfer function in response to the injection of 

instantaneously-modulated conductances, under weak (strong) intensity of background synaptic 

fluctuations. The solid lines are optimal fits of a phenomenological model and the vertical lines indicate its 

cutoff frequency. 

 

Figure 8: The “bandwidth” of neuronal gain is significantly correlated with action potential rapidness at 

onset. For each AP in a sample membrane voltage trace (A), its onset voltage value is highlighted as a dot. 

When represented in the plane   versus d   d , each AP is a closed trajectory and its rapidness is 

expressed as the slope of the trace at the onset voltage (B). For each of 81 cells, average AP onset 

rapidness was correlated and plotted versus the gain cutoff frequency for the same cell: a significant 

Pearson correlation is revealed. Markers represent individual cells, while the red line is a linear fit to the 

data. 

 

Figure 9: The dynamical response underlies fast tracking of step-changes in presynaptic input rates. We 

replaced the sinusoidal modulation of the recreated excitatory presynaptic rate with a step-like increase 

(A). As apparent from the PSTH (B, C), the instantaneous output firing rate reacts to a 5% (B, D, F) or 10% 

(C, E, G) step increase in the presynaptic rate, much faster than inter-spike intervals (i.e. ~200 ms). We then 

set a conventional output detection threshold and mimicked by means of successive PSTH estimates (i.e. 

over 500 to 4000 repetitions) a signal received by a downstream observer (i.e. receiving inputs from a 

population of 500 to 4000 neurons). Doing so, we inferred the probability of postsynaptic detection of the 

presynaptic step-change and found it increases for wider detection windows (i.e. 4-16 ms; D, E) and larger 

population size (F, G). The solid lines are optimal fits with sigmoidal or hyperbolic tangent functions. 
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 Tables  

Input 

Modulation 

Firing 

rate 

Synaptic 

background 

A z1  

(Hz) 

p1  

(Hz) 

p2  

(Hz) 

p3  

(Hz) 

t  

(ms) 

 Low Strong 0.2097 3.94 10.4 490.9 490.9 0.87 

 High Strong 0.1043 4.94 35.0 456.7 456.7 1.04 

RE & RI Low Strong 0.1101 2.40 10.4 363.3 663.5 1.08 

RE & RI High Strong 0.0784 4.88 38.9 460.7 460.7 1.12 

RE Low Strong 0.2139 3.49 9.1 448.3 448.3 1.36 

RE High Strong 0.0565 7.79 252.6 252.6 252.6 0.90 

RI Low Strong 0.4295 3.78 8.95 550.6 550.6 1.10 

RI High Strong 0.1013 3.28 41.2 467.1 467.1 1.16 

 

Table 1: The experimental data (markers) of Figure 6 were compared to the response of a linear filter 

model (Eq. 9 – continuous lines in Fig. 6), with 6 free parameters. The values in the table are the best-fit 

parameters to account for magnitude (normalised to the mean) and phase of the response simultaneously. 
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Input 

Modulation 

Firing 

rate 

Synaptic 

background 

A z1 

(Hz) 

p1 

(Hz) 

p2 

(Hz) 

p3 

(Hz) 

t 

(ms) 

 Low Strong 0.2097 3.94 10.4 490.9 490.9 0.87 

 Low Weak 0.2352 2.55 5.8 593.1 593.1 0.87 

RE & RI Low Strong 0.1101 2.40 10.4 363.3 663.5 1.08 

RE & RI Low Weak 0.2021 2.26 5.7 337.1 542.0 1.02 

RE Low Strong 0.2139 3.49 9.1 448.3 448.3 1.36 

RE Low Weak 0.2777 1.02 2.5 361.6 361.6 1.32 

RI Low Strong 0.4295 3.78 8.95 550.6 550.6 1.10 

RI Low Weak 0.4512 1.59 3.9 481.9 481.9 1.08 

 

Table 2: The experimental data (markers) of Figure 7 were compared to the response of a linear filter 

model (Eq. 9 – continuous lines in Fig. 7), with 6 free parameters. The values in the table are the best-fit 

parameters to account for the magnitude (normalised to the mean) and phase of the response 

simultaneously. 
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