
25/04/2024 16:33

A decision-making machine learning approach in Hermite spectral approximations of partial differential
equations / Fatone, Lorella; Funaro, Daniele; Marco Manzini, Gian. - In: JOURNAL OF SCIENTIFIC
COMPUTING. - ISSN 1573-7691. - 92:1(2022), pp. N/A-N/A. [10.1007/s10915-022-01853-4]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

A decision-making machine learning approach in Hermite spectral
approximations of partial differential equations

L. Fatone, c D. Funaro a,b and G. Manzini b

a Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via campi 103, 41125 Modena Italy;
b Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, via Ferrata 1, 27100 Pavia,

c Dipartimento di Matematica, Università degli Studi di Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy;

Abstract

The accuracy and effectiveness of Hermite spectral methods for the numerical discretization of partial differential equations on un-
bounded domains, are strongly affected by the amplitude of the Gaussian weight function employed to describe the approximation
space. This is particularly true if the problem is under-resolved, i.e., there are no enough degrees of freedom. The issue becomes
even more crucial when the equation under study is time-dependent, forcing in this way the choice of Hermite functions where the
corresponding weight depends on time. In order to adapt dynamically the approximation space, it is here proposed an automatic
decision-making process that relies on machine learning techniques, such as deep neural networks and support vector machines.
The algorithm is numerically tested with success on a simple 1D problem, but the main goal is its exportability in the context of
more serious applications.

Key words: time-dependent heat equation, generalized Hermite functions, machine learning, neural networks, support vector machine, spectral
methods
1991 MSC: 65N35, 35Q83

1. Introduction

The aim of the present paper is to show how Machine Learning (ML) techniques can be employed, via a suitable
implementation, in the field of spectral methods for PDEs, using Hermite polynomials as approximating functions.
To ease the exposition, we approach this subject in an “academic way” by just considering the 1D time-dependent
heat equation. However, we are motivated by precise needs emerging in the context of plasma physics, which we will
explain in the paragraphs to follow. In the first part of this introduction, we provide a quick historical background to
the role of Hermite functions as approximation basis for PDEs, and we postpone to the second part a brief discussion
on the ML algorithms of our interest.

Generalized Hermite functions are constructed as Hnwα, where Hn is the n-th Hermite polynomial and wα(x) =
exp(−α2(x − β)2) is the weight function. We refer to α and β as the scaling and the shifting factors. A first con-
vergence analysis of the Hermite spectral approximation of the 1D heat equation with both Galerkin and collocation
methods was provided in [12], and for the Burgers equation in [16], by assuming α = 1 and β = 0. Hermite ap-
proximations of functions and solutions to PDEs may however perform poorly when there is not a sufficient number
of degrees of freedom, and inappropriate choices of the above parameters do not really help improving the outcome.
For example, if α = 1 and β = 0, the approximation of sinx in the interval [−N,N] requires at least N2 expansion
terms [14, pp. 44–45]. Despite this very pessimistic anticipation, we known nowadays that more effective methods

ar
X

iv
:2

10
4.

02
18

1v
1

 [
m

at
h.

N
A

]
 5

 A
pr

 2
02

1

can be obtained by choosing α and β carefully. As pointed out in [41], we only need a reasonable number of terms N
in the truncated expansion if β = 0 and the scaling factor α is taken as max1≤j≤N

(
ξNj
)
/N , where ξNj , j = 1, . . . , N

are the roots of HN . Such a significant improvement has reopened the way towards the design of Hermite spectral
methods that are computationally efficient for solving physics and engineering problems. On the other hand, this poses
the absolutely nontrivial problem of how to choose acceptable values for the scaling and shifting parameters.

More recently, generalized Hermite functions have been applied to solving time dependent problems, assuming
that α = α(t) and β = β(t) may also change in time. Noteworthy developments in this direction are found for
instance in [24, 23, 48]. Those papers cover a wide range of applications ranging from the discretization of linear
and nonlinear diffusion and convection-diffusion equations, to the generalized Ginzburg–Landau equation and the
Fokker-Planck equation.

It is important to mention that Hermite functions provide the most natural framework for the numerical approx-
imations of the distribution function solving the Vlasov equation, which is the most basic mathematical model in
noncollisional plasma physics [15]. Indeed, Hermite functions are directly linked to the Maxwellian distribution func-
tion that describes a noncollisional plasma close to the equilibrium state. When the plasma develops a strong non-
Maxwellian behavior, an impractical number of Hermite basis functions could be needed, thus making a numerical
solution too expensive. In [34], it was shown through numerical experiments that, even in bad situations, using weight
functions of the form exp

(
− α2(x − β)2

)
with a careful choice of α and β, it is possible to reduce significantly

the computational burden by orders of magnitude. This fact was exploited in successive works for investigating the
properties of Vlasov-based plasma models [1, 6] and developing computationally efficient numerical methods (see,
e.g.: [10, 8, 9, 13, 26, 4], and the code implementations described in [25, 47]).

To the best of our knowledge, however, the selection of reasonable values for α and β (also depending on time) is
still an open problem, since only partial, often unsatisfactory, answers have been given, sometimes limited to specific
coefficients that must be somehow imposed by the user at the beginning of the simulation. Here, our contribution is
finalized to the automatic detection of the most appropriate value of α, whereas, for simplicity β will remain equal to
zero. The methodology is based on a ML approach that tries to recognize the shape of the numerical solution while
it evolves in time, and select dynamically the proper value of α. The ML algorithm is initially trained by means of
a suitable input set, where each one of its elements brings along the correct value of α. As the numerical solution
advances in time, the so instructed ML algorithm evaluates periodically the most reasonable value of α at that time.
The computation then continues with the updated value.

ML algorithms are nowadays widely applied in the numerical treatment of differential equations arising in science
and engineering. Many of such learning algorithms have been designed in recent times for solving classification and
regression problems, in the purpose of achieving better effectiveness and efficiency in tackling physics and engineer-
ing applications with computers [20]. A review of these developments is beyond the scope of this article, so we briefly
recall some background material useful for the discussion of our problem, without any claim of being exhaustive. Neu-
ral Networks (NN) can be used to approximate sufficiently regular functions and their derivatives, as well as solutions
to differential equations [3, 29, 27]. Moreover, NN can reduce the costs of modelling computational domains with
complex geometries when solving forward and inverse problems [31], and can be used as a substitute to conventional
constitutive material models [39]. A detailed introduction to these topics can be found in [49]. In [37], the solutions
of a high-dimensional PDE are approximated through a deep NN, suitably trained to conform the behavior of a given
differential operator (equipped with initial and boundary conditions). Physics-informed neural networks (PINN) are
supervised learning algorithms that constraint a numerical solution to satisfy a given set of physics laws or PDEs, as
studied for example in [30, 22, 19, 28, 36].

As an alternative to the techniques mentioned above, we may consider the Support Vector Machine (SVM) ap-
proach. Originally proposed at the beginning of the sixties [45, 43, 44], the SVM is a class of learning algorithms that
can be used for solving classification and regression problems, after a training over a suitable set of input data [46].
The decision functions is a linear combination of a set of basis functions that are nonlinear and parameterized by the
so called Support Vectors. This approach can also provide a computationally efficient function representation when
the input space is high dimensional [17, 40, 42, 32]. A SVM is trained to minimize the approximation errors, by
searching for a nonlinear function that fits the set of input data within an assigned threshold and is as flat as possible.
The implementation is usually based on special polynomials or Gaussian kernels [18, 33]. An exhaustive review of
SVM algorithms with their practical applications is beyond the scope of this paper, so we refer the interested reader
to [38] and [7, 2] for a more detailed introduction to both theory and usage.

2

The scope of this paper is to implement a couple of ML methods of the type just described. As often happens in
this kind of applications, one of the most crucial issues will be the detection of the appropriate training sets. The
material is organized as follows. In Section 2, we briefly review the basic features of Hermite spectral method for the
1D heat equation on the straight-line. In Section 3 we discuss how the modification of α may impact on the scheme
formulation. In Section 4 we reformulate the problem as a collocation method, and introduce a discretization in time
admitting a scaling factor α = α(t) changing with time. In Section 5 we design an automatic decision-making strategy
for the dynamical determination of α, applied to the numerical resolution of the heat equation with homogeneous
right-hand side. This is performed by training the ML learning algorithm with the help of Gaussian-like profiles. In
Section 6 we apply a similar strategy to the non-homogeneous case by employing a training set containing suitable
spline functions. In Section 7, we provide some final remarks and discuss future projects concerning the application
of this ML strategy to the Vlasov equation.

2. Galerkin approximation of the heat equation

LetR be the set of real numbers. We work with the heat equation, that in strong form is given by:

∂tu− ∂xxu = f, x ∈ R, t > 0, (1a)

u(x, 0) = u0(x), x ∈ R, (1b)

where f is a given forcing term and u0 is the initial guess. We assume that the solution u = u(x, t) has an exponential
decay at infinity, although we do not specify at the moment the exact decay rate. This crucial issue will be discussed
as we proceed with our investigation. For this reason, most of the passages that follow are to be intended in informal
way.

When f = 0, the exact solution of problem (1a)-(1b) is explicitly known:

u(x, t) = 2α(t)wα(x, t) with α(t) =
1

2
√
t+ 1

, wα(x, t) = exp
(
− (α(t)x)2

)
. (2)

As the reader can notice, the behavior of u for x → ±∞ depends on time. This means that it is not easy to define
an appropriate functional space as a natural habitat for u. In particular, we would like to approximate u in (2) by
Gaussian functions that display a different decay rate (with α constant in time for instance). For most of the paper we
will continue to play with the simplified case f = 0, in order to prepare the ground for the non-homogeneous case.

Let us go straight to the approximation. For a positive integer number N , let PN denote the space of polynomials
of degree at most N . Consider then the functional space:

VN (t) :=
{
vN (·, t) = wα(·, t)φN |φN ∈ PN

}
, (3)

where the weight function is given in (2). The classical Galerkin approximation is obtained in the usual way through
the following variational formulation:

For t ∈ [0, T], find uN (t) ∈ VN (t) such that:∫
R

∂uN
∂t

φN dx+

∫
R

∂uN
∂x

∂φN
∂x

dx =

∫
R

fφN dx, ∀φN ∈ PN , (4)

∫
R

(
uN (x, 0)− u0(x)

)
φN (x, 0) dx = 0, ∀φN ∈ PN . (5)

The exponential decrease of the weight function wα(x, t) for x→ ±∞ justifies the omission of the boundary terms
in the integration by parts.

Before proceeding, we need to introduce the set of Hermite polynomials. In fact, we will expand the approximation
uN in the basis of Hermite functions. In the specific case, we first use Hermite polynomials multiplied by the weight
function wα(x, t) introduced in (2). Later on, we will examine other options.

We recall that Hermite polynomials are recursively defined by

3

H0(ζ) = 1, H1(ζ) = 2ζ, (6)

Hn+1(ζ) = 2ζHn(ζ)− 2nHn−1(ζ), n ≥ 2, (7)

with the useful convention that Hs(ζ) = 0 if s < 0 [35]. These polynomials are orthogonal with respect to the
weighted inner product of L2(R) using the weight function wα with α constantly equal to 1. In practice, we have:∫

R

H`(ζ)Hm(ζ)e−ζ
2

dζ = 2mm!
√
π δ`,m, (8)

where δ`,m is the Dirac delta symbol, whose values equals one if ` = m and zero otherwise. By the change of variable
ζ = α(t)x, we are able to express the orthogonality with respect to a general wα, which may depend on time.

From these assumptions, it is natural at this point to represent the unknown uN through the expansion:

uN (x, t) =
wα(x, t)√

π

N∑
`=0

û`(t)H`

(
α(t)x

)
, (9)

with its Fourier coefficients given by:

ûm(t) =

∫
R

uN (x, t)φm(x, t) dx, (10)

where

φm(x, t) =
α(t)

2mm!
Hm

(
α(t)x

)
, 0 ≤ m ≤ N. (11)

In the trivial case where f = 0, the series in (9) only contains the term corresponding to ` = 0, with û0 = 2α(t)
(see (2)). In (11), the choice for φm, 0 ≤ m ≤ N , is the one also suggested for the test functions in (4). Concerning
the right-hand side, we have that the projection fN of f is obtained by:

fN (x, t) =
wα(x, t)√

π

N∑
`=0

f̂`(t)H`(α(t)x). (12)

The Fourier coefficients f̂m(t) are recovered after multiplying by the test functions in (11) and integrating overR, so
obtaining:

α(t)

2mm!

∫
R

fN (x, t)Hm(α(t)x), dx =
1

2mm!
√
π

N∑
`=0

f̂`(t)

∫
R

wα(x, t)H`(α(t)x)Hm(α(t), x), α(t) dx

=
1

2mm!
√
π

N∑
`=0

f̂`(t)

∫
R

exp (−ζ2)H`(ζ)Hm(ζ) dζ =
1

2mm!
√
π

N∑
`=0

f̂`(t) 2mm!
√
πδ`,m = f̂m(t), (13)

where we used the orthogonality properties of Hermite polynomials.
We can go through the computations in order to find out the scheme in finite dimension. The procedure is here

omitted, though it follows from straightforward (but quite annoying) calculations. Some passages are briefly reported
in the appendix . We then arrive at the following result.

Let ûm(t) and f̂m(t) be the m-th time-dependent Fourier coefficients of uN and fN , respectively introduced in (9)
and (13). Then, the Fourier coefficients ûm(t), 0 ≤ m ≤ N , satisfy the system of ordinary differential equations:

∂tûm(t)−
(
α′(t)

2α(t)
+ α(t)2

)
ûm−2(t)− (m+ 1)

α′(t)

α(t)
ûm(t) = f̂m(t). (14)

The same relation between the coefficient of the Fourier expansions is obtained from the following variational
formulation of the heat equation:∫

R

(∂u
∂t
− ∂2u

∂x2

)
φdx =

∫
R

fφ dx ∀φ (generic test function), (15)

where, for the moment, φ denotes a generic test function, and no integration by parts has been performed. The equiv-
alence of the two versions is formally shown in the appendix Nevertheless, the last formulation cannot be easily

4

embedded in the proper functional spaces, so that an analysis of convergence for the corresponding Galerkin approxi-
mation is hard to achieve. A third version has been proposed in [24]. This is based on a rewriting of the heat equation
as follows:

d

dt

∫
R

uφ dx−
∫
R

u
(∂φ
∂t

+
∂2φ

∂x2

)
dx =

∫
R

fφ dx ∀φ (generic test function). (16)

This leads again to the scheme (14). The reason for this last choice is due to an erroneous writing of the relation linking
the Fourier coefficients of the classical Galerkin scheme (4), which led to equation (1.4) in [24]. This flaw suggested
to the authors a modification of the variational formulation according to (16). After a review of the computations, we
consider the alternative version (16) unnecessary. Details of the passages are provided in the appendix . It has to be
remarked however that the work in [24] has been mainly focused to the study of convergence of the scheme (14),
which is exactly the one we are implementing in the present paper. Therefore, the theoretical results developed in [24]
are definitely interesting to us.

The exact solution (2) also satisfies the recursive relation in (14) for f = 0. In fact, we first recall that α(t) = 1/
2
√
t+ 1, which implies α′(t)/2α(t) = −α(t)2. In this way, (14) reduces to:

∂tûm(t) + 2(m+ 1)α(t)2ûm(t) = f̂m(t). (17)

All the Hermite coefficients of u are zero with the exception of the one corresponding to m = 0, where we have
û0(t) = 2α(t). Relation (17) is actually compatible with this choice.

Let us now suppose that the parameter α is constant. In this circumstance, always for f = 0, we can find for
example an explicit expression for the coefficients in (14) for m ≥ 0 (m even):

ûm(t) =

√
παm(
m
2

)
!
tm/2, (18)

from which we get û0 =
√
π, which corresponds to the initial datum u(x, 0) = wα(x, 0). Indeed, by setting α

constant, relation (14) becomes:

∂tûm(t)− α2ûm−2(t) = 0. (19)

Such an equation is verified by noting that:

∂tûm(t) =

√
παm(
m
2

)
!
∂tt

m/2 = α2

√
παm−2(
m−2

2

)
!
t(m−2)/2 = α2ûm−2.

Since, for the initial datum in (1b), only the first mode is different from zero, we have that u0 is an even function that
remains even during all the time evolution (recall that f = 0). Therefore, by using the Fourier coefficients in (18), we
build the sum:

v(x, t) = wα(x)

∞∑
m(even)=0

αm
t
m
2

(m2)!
Hm(αx) = wα(x)

∞∑
`=0

α2` t
`

`!
H2`(αx), (20)

where we dropped the dependence on t in wα, since the weight no longer depends on time. We have that v(x, 0) =
u(x, 0) when α = 1/2.

We can also say that v(0, t) = u(0, t), for 0 ≤ t < 1. We prove this fact by writing the MacLaurin expansion:

u(0, t) = 2α(t) =
1√
t+ 1

=

∞∑
`=0

(−1)`

2``!

(∏̀
k=1

(2i− 1)
)
t`. (21)

Now, the expansions (20) and (21) are the same, as it can be checked by expressing the value of H2`(0) through the
recursion formula for Hermite polynomials. Let us observe that the above mentioned series have a convergence radius
equal to 1, therefore they diverge for t > 1.

We are tempted to deduce that the functions v and u always coincide both in time and space. This kind of equality
is not clear however, since it presumes a correct interpretation of the type of convergence of the series in (20). For
any fixed x and t, we may expect point-wise convergence, but it is hard to conclude that this is going to be true in
some normed functional space. In fact, we are trying to represents a Hermite function with a certain Gaussian decay,

5

through an expansion by other Hermite functions associated to a different Gaussian behavior. To this respect, let us
note that, by choosing α(t) as in (2), only the first mode (m = 0) is activated during the whole computation, so that
the numerical error exclusively depends on the time discretization procedure. On the contrary, for α fixed equal to
1/2, all the Fourier coefficients are involved.

In [24], spectral convergence is proven for a special choice of α(t) (see relation (2.1) in that paper), which includes
the case (2). The analysis for a more general α is at the moment unavailable. Such an extension is rather troublesome
and it is due to the difficulty to find proper Sobolev type inclusions between spaces displaying different decay behav-
iors at infinity of the weight functions. The results of the experiments obtained by truncating the sum in (20) at a fixed
integer N show an excellent agreement with the exact solution u, for t < 1. As t reaches the value 1, oscillations are
observed. Like in the Gibbs’ phenomenon, these do not diminish by increasing N (recall that the convergence radius
of the involved series is equal to 1).

3. Quadrature nodes and other useful formulas

The considerations made in the previous section, rise the question of the passage from the Fourier coefficients
relative to a certain choice of α to those related to a different value of such a parameter. From the practical viewpoint,
we briefly provide a recipe for this kind of basis transformation. Suppose that we are given a function v expressible as
a series of Hermite functions for some α > 0:

v(x) =
wα(x)√

π

∞∑
`=0

v̂`H`

(
αx
)
, (22)

with Fourier coefficients

v̂m =
α

2mm!

∫
R

v(x)Hm(αx) dx =
1

2mm!

∫
R

v(x/α)Hm(x) dx, m ≥ 0. (23)

We would like to express the same function as the series of Hermite functions relative to α = 1:

v(x) =
w1(x)√

π

∞∑
`=0

V̂`H`(x), (24)

with Fourier coefficients

V̂m =
1

2mm!

∫
R

v(x)Hm(x) dx, m ≥ 0. (25)

We can immediately get a formula that provides the set of Fourier coefficient V̂m from the other one. It is enough to
informally substitute expansion (22) in the last integral. So, we find that

V̂m =
1

2mm!
√
π

∞∑
`=0

v̂`

∫
R

H`

(
αx
)
Hm(x)wα(x) dx =

1

α2mm!
√
π

∞∑
`=0

v̂`

∫
R

H`

(
x
)
Hm

(x
α

)
w1(x) dx (26)

and, viceversa, substituting (24) in (23).

v̂m =
α

2mm!
√
π

∞∑
`=0

V̂`

∫
R

H`(x)Hm(αx)w1(x) dx, m ≥ 0. (27)

Explicit formulas are available for the computation of these integrals. The procedure looks however complex and
expensive, so that we provide here below an alternative by using numerical quadrature. As usual, for a fixed integer
N , we introduce the zeros of HN . These nodes will be denoted by ξNj , j = 1, . . . , N . Together with the weights [11,
Eq. (3.4.9)]:

wNj =
√
π2N+1N !

[
H ′n(ξNj)

]−2
, 1 ≤ j ≤ N, (28)

we have the quadrature formula: ∫
R

p(x)dx =

N∑
j=1

p(ξNj)wNj , (29)

6

which is exact for any polynomial p of degree less than 2N . We can pass from the point-values to the Fourier coeffi-
cients by observing that (23) can be rewritten as:

v̂m =
1

2mm!

N∑
j=1

v(ξNj /α)Hm(ξNj)wNj , (30)

provided the product vHm is a polynomial of degree less than 2N . A direct application of the quadrature rule to (26)
yields:

V̂m ≈
1

α2mm!
√
π

N−1∑
`=0

v̂`

N∑
j=1

H`

(
ξNj
)
Hm

(
ξNj /α

)
wNj , 0 ≤ m ≤ N − 1, (31)

where the sum on ` has been suitably truncated. The change of coefficients from a basis to another one is then obtained
at a reasonable cost, although some approximation has been introduced. The writing in (31) may be represented by a
linear operator associated with an N ×N matrix. It must be observed that, once N has been fixed, we can get reliable
approximations only if α stays within a certain range. In fact, it is necessary to have an appropriate amount of nodes
in the support of the Gaussian (we practically define the “support” as the set where the Gaussian is different from zero
for a given machine error precision). If α is too large, the support is narrow and all the nodes are outside the region of
interest. In this case, the interpolating polynomial produces oscillations. On the contrary, for α too small, the support
is wide and the nodes turn out to be concentrated at its interior, so providing a poor approximation. We will return to
these issues in Section 6.

The use of quadrature formulas suggests the collocation method as a possible alternative to the Galerkin scheme (14).
In order to follow this new path, it is customary to introduce the polynomial Lagrange basis:

lNj (x) =
HN (x)

H ′N (ξNj)(x− ξNj)
, if x 6= ξNj , lNj (ξNj) = 1,

so that, for any polynomial p of degree at most N − 1 one has:

p(x) =

N∑
j=1

p(ξNj)lNj (x).

We also recall the N ×N differentiation matrices D(1) =
{
d

(1)
ij

}
and D(2) =

{
d

(2)
ij

}
, with D(2) = D(1)D(1). These

are recovered from the first and second derivatives of the Lagrange polynomials:

d
(1)
ij =

dlNj
dx

(ξNi), d
(2)
ij =

d2lNj
dx2

(ξNi). (32)

The explicit entries of these matrices are well known and can be found in many textbooks, e.g., [11] and [35]. We now
have all the elements to construct an approximation method of collocation type. This will be developed in the next
section.

4. Collocation algorithm and time discretization

We start by writing the unknown u as:

u(x, t) = p(x, t)ωα(x, t), (33)

where we recall that ωα(x, t) = exp
(
−α(t)2x2

)
. Note that in (33) p is not necessarily a polynomial. By substituting

this expression into the heat equation we obtain:

ωα∂tp+ p∂tωα = ωα∂xxp− 2∂xp ∂xωα + p∂xxωα + f. (34)

We then divide both sides of (34) by ωα to obtain:

∂tp+ 2αα′x2p = ∂xxp− 4α2x∂xp+ 2α2
(
2α2x2 − 1

)
p+

f

ωα
, (35)

7

where α′ denotes the derivative of α with respect to time. Finally, we look for an approximating polynomial pN of
degree less than or equal to N − 1, after collocating the above equation at the points ξNj , 1 ≤ j ≤ N :

∂tpN (ξNj , t) + 2α(t)α′(t)(ξNj)2pN (ξNj , t) = (∂xxpN)(ξNj , t)

− 4α2(t)ξNj (∂xpN)(ξNj , t) + 2α2(t)
(
2(α(t)ξNj)2 − 1

)
pN (ξNj , t) +

f(ξNj , t)

ωα(ξNj , t)
. (36)

Here, the derivatives ∂xpN and ∂xxpN can be evaluated with the help of the finite dimensional operators D(1) and
D(2) defined in (32). Note that the approximate solution of the heat equation is recovered as in (33) through the
expression

uN (x, t) = pN (x, t)wα(x, t). (37)

If α(t) is chosen to follow the behavior of the exact solution u for f = 0, i.e. α(t) = 1/2
√
t+ 1 as in (2), the

approximation is excellent. Indeed, in this simple case, pN turns out to be a polynomial of degree zero in the variable
x, i.e., pN (x, t) = α(t), as it can be checked by direct substitution.

Since the exact α(t) is not known a priori, it is interesting to see what happens for different choices of this parameter.
As in the Galerkin method, we start by considering the case of α constant in time. Thus, the scheme (36) becomes:

∂tpN (ξNj , t) = (∂xxpN)(ξNj , t)− 4α2ξNj (∂xpN)(ξNj , t) + 2α2
(
2(αξNj)2 − 1

)
pN (ξNj , t) +

f(ξNj , t)

ωα(ξNj)
. (38)

The next step is to discretize in time for t ∈ [0, T]. To this end we just apply the forward Euler method, though we are
conscious that more sophisticated methods are available. We denote the time step by ∆t and the generic n-th point of
the time grid by tn = n∆t, 0 ≤ n ≤ N , t0 = 0, N∆t = T . We obtain

pn+1
N (ξNj)− pnN (ξNj)

∆t
= (∂xxp

n
N)(ξNj)− 4α2ξNj (∂xp

n
N)(ξNj) + 2α2

(
2(αξNj)2 − 1

)
pnN (ξNj) +

f(ξNj , t
n)

ωα(ξNj)
. (39)

We supplement equation (39) with the initial condition p0
N , which is derived from the initial solution u(x, 0).

Again we take for the moment f = 0, in order to perform some experiments. We would like to have the chance
to modify α during the evolution. The idea is to keep it constant for a certain number of iterations, and then shift to
another constant value. The problem is that the piecewise constant function α(t) is not differentiable at the disconti-
nuity points, so that the scheme (36) cannot be applied, as it requires the knowledge of α′. We then modify the time
advancing procedure in the following fashion.

Starting from a value tn of the time discretization grid, we keep α constantly equal to a given αn, during m
consecutive time steps, i.e. within the interval

[
tn, tn+m

]
. In this way, we find pnN , · · · p

n+m
N solving equation (39).

Correspondingly, we also construct: un+k
N = pn+k

N exp
(
− α2

nx
2
)
, 0 ≤ k ≤ m. At time tn+m we decide to assign a

new α = αn+m (we will see later how this can be done automatically). Before continuing with the scheme (39), we
need to pass from the representation of un+m

N , with the Gaussian associated to αn, to the new one relative to αn+m.
In order to do this, from pn+m

N we build a new polynomial such that:

p̃N (ξNj) = pn+m
N (ξNj) exp

(
(α2
n+m − α2

n)(ξNj)2
)
, 1 ≤ j ≤ N. (40)

This transitory p̃N is used as a new initial guess to advance in time, until the next update of α. Of course, if αn+m =
αn, this last passage is not relevant.

We now discuss the results of a series of numerical experiments, where the exact solution u is compared with its
approximation uN . The errors are evaluated in the followings norms:

N 1 =

 N∑
j=0

|u(ξNj)− uN (ξNj)|2
1/2 , N 2 = max

R

|u− uN |, N 3 =

 N∑
j=0

|u(ξNj)− uN (ξNj)|2wNj

1/2
(41)

with Ej = |u(ξNj) − uN (ξNj)|, 1 ≤ j ≤ N . The maximum in N 2 is computed on a very fine grid on the x-axis and
wNj , 1 ≤ j ≤ N are the quadrature weights introduced in (28). The time step has been chosen small enough in order

8

not to affect the error in space. Since the sum of the weights is equal to
√
π, the error evaluated using norm N 3 is

less than the error evaluated using norm N 1. Therefore, with the exception of Table 1, we will not report the results
related to the last norm in (41).

We continue to consider f = 0 and we integrate in time for t ∈ [0, T] with T = 1, ∆t = 10−7. The first tests
in Table 1, show a spectral decay of the solution when α = α(t) is taken as in (2). Since we do not know a priori
the behavior of α, the interesting part comes when we choose this parameter according to some prescribed law. In
Table 2 we find the results where α has been fixed once and for all. As expected, the errors are not encouraging. An
improvement is obtained by imposing that α(t) is piecewise constant. To this end, we subdivide the time interval in
ten subintervals. In Table 3 (left panel) we have the expression of the errors when α starts from the value 0.5 and
decreases up to 0.3 in 9 equal steps. In Table 3 (right panel), ten guesses of α have been made randomly in the interval
[0.3, 0.5]. The behavior of α in all the above examples is summarized in Fig. 1.

N N 1 N 2 N 3

4 2.6171e-04 2.2846e-04 1.0907e-04

6 1.2092e-05 1.2562e-05 2.2202e-06

8 6.2025e-07 7.0862e-07 5.5019e-08

10 3.0252e-08 4.1672e-08 7.6304e-09

Table 1
Errors at time T = 1 (using ∆t = 10−7) and α(t) = 1/2

√
t+ 1, t ∈ [0, 1].

N N 1 N 2

4 2.6090e-02 6.8507e-02
6 8.7970e-03 2.6723e-03
8 3.0084e-03 1.0619e-02
10 1.0421e-03 4.2718e-03

N N 1 N 2

4 6.6306e-02 8.0850e-02
6 4.8930e-02 7.2890e-02
8 4.0269e-02 7.5228e-02
10 3.5001e-02 8.3357e-02

Table 2
Errors at time T = 1 (using ∆t = 10−7) and α constant in time: α = 0.5 (left); α = 0.3 (right).

N N 1 N 2

4 1.4775e-03 2.0235e-02
6 8.6681e-05 5.2286e-03
8 1.6311e-05 1.5659e-03
10 1.3840e-06 4.6910e-04

N N 1 N 2

4 9.9108e-03 1.2908e-02
6 2.6628e-03 2.2971e-03
8 9.1279e-04 1.1427e-03
10 3.0883e-04 3.9922e-04

Table 3
Errors at time T = 1 (using ∆t = 10−7) and α(t) varying in a step-wise fashion: α decreasing from 0.5 to 0.3 (left); α randomly chosen (right).

5. Automatic decision-making approach

In this section, we still continue to handle the case f = 0, whereas the non-homogeneous case will be treated in the
next section. As we anticipated in the introductory section, we adopt two different ML techniques in order to predict
suitable values of α, able to guarantee stability and good performance. When f = 0, to train the system we take a set
of functions of the following type

ga,H(x) = H exp
(
− a2x2

)
, (42)

where the width a of the Gaussian function is randomly chosen within the interval [0.2, 0.6] and its height H is also
randomly chosen within the interval [0, 1]. In this way we construct a total of 40 functions, that we believe to be
sufficient for our goal. To each choice of the pair (a,H), we assign the two distinct sets

9

Fig. 1. Choices of α in the various experiments.

SPV
a,H =

{
ga,H(ξNj), 1 ≤ j ≤ N

}
and SFC

a,H =
{
ĝm,a,H , 0 ≤ m ≤ N − 1

}
, (43)

where the labels PV and FC respectively stand for Point Values and Fourier Coefficients. The first set clearly contains
the point-values of each Gaussian function at the Hermite nodes. The other set is represented by the first N Fourier
coefficient of ga,H . These are built as follows, for 0 ≤ m ≤ N − 1:

ĝm,a,H =
1

2mm!

∫
R

gm,a,H(x)Hm(x) dx ≈ 1

2mm!
√
π

N∑
j=1

ga,H(ξNj) exp
(
(ξNj)2

)
Hm(ξNj)wNj (44)

In this way, in the special situation corresponding to a = 1, all the quantities ĝm,a,H are zero for m ≥ 1.
The first approach is suitable to the collocation setting and the second one to the Galerkin setting. However, we can

easily move from one setting to the other one through the quadrature formulas of Section 3, so we can advance the
numerical solution by using the scheme in (39), and indifferently make use of SPV

a,H or SFC
a,H . To each set in (43), we

only assign the parameter a, so that Gaussian functions displaying a different height H are considered equivalent. In
this way, the algorithm is tuned on the width of the Gaussian profiles, i.e., on what determines the choice of α in the
discretization of the heat equation.

For the implementation of the SVM algorithm we use the open source machine learning library: LIBSVM [2].We
adopt a ν-SVR (ν-Support Vector Regression) approach with a radial basis function as kernel function. The system
can be either trained by using the representation suggested in SPV

a,H or in SFC
a,H , by varying the parameters a and H in

their domains. The parameter ν allows for the control of the number of Support Vectors. The reader is addressed for
more details to [2] and the references therein.

For the implementation of the deep learning algorithm, we use instead the Matlab function fitting neural network:
fitnet, which is a feed-forward network with the tan-sigmoid transfer function in the hidden layers and linear
transfer function in the output layer. Generally speaking, function fitting is the process of training a NN on a set of
inputs in order to produce an associated set of target outputs. More information can be found in the Deep Learning
Toolbox of Matlab (www.mathworks.com). Based on an “hit & trial” approach we train with the Levenberg-
Marquardt algorithm [21] a NN with two hidden layers of respectively 20 and 10 neurons (see Figure 2). Note that
this network has only one output neuron, because there is only one target value (i.e.: a) associated with each input
vector of size N = 10, chosen either in SPV

a,H or in SFC
a,H .

10

Fig. 2. Matlab neural network

We then return to the experiments of the previous section by fixing N = 10. We recall that the errors, when α(t)
is taken as in (2), are given in the last row of Table 1. We would like to modify α ten times in the time interval [0, 1]
according to the suggestions of the machine. In the notation that follows the subscript SVM stands for Support Vector
Machines and subscript DL stands for Deep Learning.

Table 4 shows the values of α obtained at various times using ∆t = 10−7, the two different representations of
the training sets in (43) and the two different ML algorithms. The errors N 1 and N 2 at time T = 1, ∆t = 10−7,
for various α, obtained with the two different representations of the training sets in (43) and the two different ML
techniques are shown in Table 5. These results are quite satisfactory. The machine is actually capable to guess the
appropriate value of α in a given situation. Of course, the errors improve if we decide to upgrade α more frequently.

Results similar to those presented in this section and the next one were also obtained by trying other choices of the
network parameters, such as for example its configuration. As expected, performances may strongly depend upon the
architecture and the training algorithm. According to our experience, the most critical step is to find the right number
of hidden layers and their respective neurons when a NN is used.

t α = 1/2
√
t+ 1 αFC

SVM αFC
DL αPV

SVM αPV
DL

0 0.5000 0.5000 0.5000 0.5000 0.5000
0.1 0.4767 0.4736 0.4474 0.4888 0.4863
0.2 0.4564 0.4549 0.3639 0.4691 0.4729
0.3 0.4385 0.4383 0.4526 0.4509 0.4613
0.4 0.4226 0.4233 0.4526 0.4340 0.4502
0.5 0.4082 0.4097 0.4526 0.4183 0.4391
0.6 0.3953 0.3972 0.4526 0.4039 0.4276
0.7 0.3835 0.3857 0.4525 0.3905 0.4159
0.8 0.3727 0.3749 0.4456 0.3781 0.4039
0.9 0.3627 0.3649 0.3734 0.3667 0.3918
1 0.3536 0.3555 0.4384 0.3560 0.3800

Table 4
Values of α at different times (using ∆t = 10−7) obtained with the two different representations of the training sets in (43) and two different
Machine Learning techniques.

Choice of α N 1 N 2

αFC
SVM 2.6985e-08 4.6072e-08

αFC
DL 2.9153e-05 5.5487e-04

αPV
SVM 4.3810e-07 5.9742e-07

αPV
DL 6.1306e-06 1.6049e-05

Table 5
Errors at time T = 1 (using ∆t = 10−7) for various α, obtained with the two different representations of the training sets in (43) and two different
ML techniques.

11

6. The non-homogeneous case

Based on the results obtained in the previous sections, we can now discuss the case when f 6= 0. We set the
right-hand side of (1a) in such a way that the exact solution is:

u(x, t) =
(

cos(1
2xt) + 2(t sin(x))2

)
exp

(
− α2(t)x2

)
with α(t) =

√
2√

3t+ 1
. (45)

With this choice α, decays from
√

2 to 1/
√

2 in the time interval [0, T] with T = 1. The behavior of u at different
times is reported in Fig. 3. From a single initial bump, the solution develops by producing two asymmetric bumps. It
is then hard to find the appropriate functional space with weight wα to formalize the theoretical problem. From the
practical viewpoint, we need the help of a ML algorithm.

As far as the approximation is concerned, from now on we set N = 16, that corresponds to polynomials of degree
fifteen. All the zeroes of H16 are contained in the interval [−5, 5]. Moreover we choose ∆t = 10−6 to discretize in
time. Referring to Table 6, we soon note that the results are excellent when we take α as in (45). Nevertheless, this
expression is not known a priori. Always according to Table 6, the choice of α constantly equal to

√
2 (recoverable

from the initial datum u(x, 0)) is a failure. We also tried to guess ten values of α randomly chosen in the interval
[0.7,1.4]. This also turned out to be a bad choice. The successive step is to adopt the ML strategy discussed in
the previous section. Since in the present situation the solution u is not just a Gaussian function, we need a more
representative characterization of the training sets. Indeed, in order to carry out our analysis, we consider the following
variant of the ML approach already experimented.

We start by defining a set of K cubic splines Sk, 1 ≤ k ≤ K. The support of these functions is randomly chosen
in the interval [−c, c], where c is a parameter that must be properly adjusted. Such an interval is subdivided in M + 2
equispaced break points, including the first endpoint at x = −c and the last endpoint at x = c, i.e., M interior break
points. The splines are required to be zero at x = ±c together with their first derivatives, and are uniquely determined
by the values attained at the M internal points. Moreover, they are prolonged to zero outside the interval [−c, c], in
order to form a set of functions with compact support inR. These functions are again denoted by Sk(x), 1 ≤ k ≤ K,
for x ∈ R, and are globally C1(R)-regular functions. If K ≤ M , the dimension of the space generated by these
splines is less than or equal to M ; otherwise, if K > M , the splines are linearly dependent.

A given set of K splines is obtained by assigning the values at the break points in a random way. These values must
be positive and less than or equal to a given upper boundM, which is another parameter that must properly be set in
the algorithm. For our experiments, we choose K = 40, M = 5, c = 4.5,M = 1.

Other sets of K functions can be employed without altering the nature and the main features of the ML algorithm,
e.g., trigonometric functions. However, it is preferable that this family is not constituted by polynomials, since we
want to introduce elements in the training set that are external to the space of the classical Hermite functions.

For each cubic spline Sk and a given value of α, we look for the interpolating polynomial of degree less than or
equal to N − 1 such that:

p̃N,k(ξNj) = Sk(ξNj) exp
(
(αξNj)2

)
, 1 ≤ j ≤ N. (46)

Afterwards, we compute the following quantity on a finer grid:

ΓN,k(α) = max
x∈R

∣∣∣Sk(x)− p̃N,k(x) exp(−α2x2)
∣∣∣. (47)

Assuming that the parameter α is varying within a given interval I , we finally determine:

ΓN,k(αk) = min
α∈I

ΓN,k(α). (48)

The Hermite function corresponding to αk,

gk(x) = p̃N,k(x) exp(−α2
kx

2), (49)

is called the minimizing Hermite function associated to the spline Sk. In this way, for any Sk, we obtains pairs like
(gk, αk), The above procedure extends to larger functional sets as the ones already considered in the previous section.
In particular, if we replace Sk by a Gaussian function of the type ga,H like in (33), the minimax-like procedure just
introduced would suggest taking α = a and p̃N,k constantly equal to H .

12

An essay of this construction is visible in Fig. 4. On the left, three examples of randomly generated splines are
displayed together with their corresponding minimizing Hermite functions. On the right, we show the semi-log plot
of ΓN,k(α) as a function of α. It is clear that there is a minimum value α = αk, which is the one actually used to
detect the function in (49). To obtain these graphs, we assumed that the values attained by the splines were included
in the interval [0,M] = [0, 1]. Moreover, we took I = [0.5, 1.5].

Similarly to (43), we can finally define the two training sets as follows. The minimizing Hermite functions can be
represented through the values attained at the zeroes of the Hermite polynomial HN . In this way, we can build the
first set of training functions:

SPV
k =

{
gk(ξNj) = Sk(ξNj), 1 ≤ j ≤ N

}
, 1 ≤ k ≤ K. (50)

Any SPV
k comes with its own αk, obtained through (48). The network is actually trained with the help of the values

associating Sk to αk. In alternative, it is possible to consider the Fourier coefficients computed through (44). In this
case, we define the elements of a new training set as:

SFC
k =

{
ĝm,k, 0 ≤ m ≤ N − 1

}
, 1 ≤ k ≤ K. (51)

It is worthwhile to anticipate that the experiments are very sensitive to the choice of the values of the various
parameters, which are N , K, M ,M, c, I . In Table 6, we provide the errors at T = 1, using ∆t = 10−6, for different
choices of α. Things go smooth if we take α = α(t) as in (45). However this behavior is not available, with the
exception of the initial value where α(0) =

√
2. On the other hand, if we fix α to be constantly equal to

√
2 the results

are a disaster. Divergence is also observed when α is randomly chosen in the interval [0.5, 1.5] with changes at times
t` = 0.1`, 1 ≤ ` ≤ 9.

With the automatic strategy, we again start from an initial value of α equal to
√

2, but, then, we follow the suggestion
of the machine. We still use the SVM algorithm and the deep learning algorithm described in the previous section. In
particular the results of the following experiments are obtained using a feed-forward Matlab network with two layers
of five neurons each. As done in the previous section, the update of α is made 9 times in the time interval (0, 1). The
final results are rather good. The parameter changes drastically at time t = 0.1, and then, following small variations,
approximately stabilizes around the value α ≈ 0.8 (we do not show this graph). This is why, in the last row of Table 6
we report the errors corresponding to the case where α has been kept fixed for all the computation. Without the help
of the learning procedure, we would not be able to guess that α = .8 is a good choice.

Similar observations were made in [9] regarding the approximation of the 1D-1D Vlasov equation through a peri-
odic Fourier expansion in the space variable x and Hermite functions in the velocity variable v. In that paper, for N
relatively small, it is numerically proven that the impact due to a fixed choice of α is relevant. The results show that
the best performance is obtained for unexpected guesses of α, whereas the natural choice associated with the initial
datum leads to an embarrassing instability.

One may be surprised from observing that the figures of Table 6 look very similar. We can try to give an ex-
planation of this fact. We realized in these numerical investigations, that the spectral collocation method converges
independently of the setting up of the functional spaces if α remains within a certain range, see the end of Section 2.
Proving convergence for a weight wα that does not match the decay of the solution u is a theoretical difficulty that has
little influence on the practical outcome. Changing α during the time-advancing process alters the functional “habitat”
of the approximated solution, but not its capacity to produce reliable results. Therefore, at least in the framework of
the linear problem studied so far, the guided choice of α is primarily useful to achieve stability. This is a nontrivial
requisite, since the brutal choice α =

√
2, which agrees with the initial datum, is far from being effective. This phe-

nomenon is less evident if we examine the tables relative to the case f = 0 (section 5), where the errors are indeed
affected by the modification of α. Those figures were obtained using smaller values of N . In our opinion, even if
the proposed values of α do allow stability, there are still no sufficient nodes ξNj , 1 ≤ j ≤ N , in the support of the
Gaussians, to guarantee an extremely accurate approximation. This fact agrees with the observations made in [41]
and recalled here in the introductory section. We also made similar observations at the end of Section 3. This remark
stresses how critical is the set up of all the parameters involved in such a kind of computations.

What makes the above discussion worthwhile of attention is the fact that to find an optimal value of the parameter
α might not be so crucial for improving the accuracy of the approximation, although it could still be important for
the stability. When N is sufficiently large and α is not exaggeratedly out of range, the discretization method provides

13

Choice of α N 1 N 2

α as in (45) 5.8572e-04 3.2432e-04

α =
√

2 does not converge does not converge

α random does not converge does not converge

αFC
SVM 7.5312e-04 4.4422e-04

αFC
DL 7.5340e-04 4.5743e-04

αPV
SVM 7.5310e-04 4.4997e-04

αPV
DL 7.5330e-04 4.4862e-04

α=0.8 7.5311e-04 4.4292e-04

Table 6
Errors at time T = 1 (using ∆t = 10−6) for different values of α obtained with two different representations of the training sets ((50) and (51))
and two different ML techniques.

results that are very mildly dependent on the choice of α. Of course, there are borderline situations, that can be
frequent in applications, where N cannot be taken too large. In those circumstances, an automatic technique to detect
α comes in handy. It has however to be said that, in general, the difficulty of finding reliable training sets is quite a
crucial issue in the organization of ML strategy. This may actually present a drawback in some circumstances.

We end this section with an observation. Why did we use a ML technique instead of a plain Least Square approach?
By assuming that the couples

(
{Vk,j}1≤j≤N , αk

)
are elements of our training set for 1 ≤ k ≤ K, the standard Least

Square method requires first of all the introduction of some weights W̄ = {Wj}1≤j≤N . By defining the quadratic
functional

F (W̄) =

K∑
k=1

 N∑
j=1

Vk,jWj − αk

2

, (52)

we would like to find the set of weights W̄min = {Wmin,j}1≤j≤N in such a way that

F (W̄min) = min
W̄

F (W̄). (53)

Once this has been done, let {V ?j }1≤j≤N be a new set of entries that correspond to some smooth function having
compact support. We then assign a value α?, according to:

α? =

N∑
j=1

V ?j Wmin,j . (54)

Unfortunately, preliminary numerical results showed that such an estimate of α? is not reliable. The reasons for the
mismatch are the following. IfK � N , there are not enough functions in the training set to appropriately describe the
new entry. IfK > M , there are too few break points to describe the spline set. Thus, the splines are linearly dependent
and the minimization process to determine W̄ does not give satisfactory results, since the determinant of the Linear
Regression matrix associated with the minimization problem (53) turns out to be zero. If M ≈ N , there are too many
break points. For this reason, the splines may present oscillations which are not properly caught by the corresponding
minimizing Hermite function (the situation is even worse if M > N). In all cases, the learning procedure may be
considered unsatisfactory. Instead, a nonlinear ML approach allows us to introduce a larger number of weights in the
system. As a consequence, we can play with more functions in the training set, and this is true also whenK > M , i.e.,
when the splines start to be linearly dependent. The just mentioned situation is rather different from those emerging,
for instance, from problems in Image Recognition. There, the number K of pictures in the training set is much less
that M , which is the number of pixels needed to represent a single image.

14

Fig. 3. The non homogeneous case: the solution u given in (45) at different times.

7. Conclusions and future work

In this work, we proposed an automatic decision-making system for the determination of the scaling factor α
of the weight function in the Hermite spectral method for a PDEs on unbounded domains. An appropriate value
of such parameter is crucial when using this kind of approximations since a bad choice may result in instabilities
or impractical costs of implementation. We employed ML techniques based on either deep NN or SVM, in order
to predict α in automatic way, in the case of a one-dimensional time-dependent equation. After the training of the
machine, the algorithm advances in time by updating periodically α according to a procedure that extracts the value
of the parameter in agreement to the behavior manifested in phase of evolution by the solution itself. The numerical
investigations carried out show that the algorithm is able to determine α and maintain the stability, so improving when
possible the accuracy of the outcome. As a proof of concept and for the exposition sake, we applied this approach to
the 1D heat equation, but we are confident that applications to non-linear multi-dimensional problems can turn out to
be successful, in particular in the domain of plasma physics.

In the case of the 1D-1V Vlasov equation, the best known algorithm to select the shifting and scaling factors
relies on a physically-based criterion, by following the average velocity and temperature of each plasma species, i.e.,
the first and second moments of the plasma phase space density [5]. This time-dependent adaptive strategy has been
proved to preserve the conservation laws of total mass, momentum and energy of the non-adaptive approach. All these
considerations dictate the direction of our future work, i.e., the design of ML strategies for the automatic determination
of both α and β in the spectral approximations of the Vlasov equation. This fulfillment requires additional efforts,
due to the fact that α = α(t,x) and β = β(t,x) now also depend on the location of the particles. A straightforward
implication is that the design of the training set becomes much more complicated.

Acknowledgments

The Authors are grateful to Dr. G. L. Delzanno (LANL) and Prof. C. Pagliantini for many fruitful discussions
and suggestions. The Authors are affiliated to GNCS-INdAM (Italy). The third author was supported by the LDRD
program of Los Alamos National Laboratory under project number 20170207ER. Los Alamos National Laboratory
is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of
Energy (Contract No. 89233218CNA000001).

15

Fig. 4. Plots (left) of some randomly chosen splines overlapped to the corresponding minimizing Hermite function (49) for x ∈ [−5, 5]. Plots
(right) in semi-log scale of ΓN,k(α) as a function of α. The minimizing values αk are respectively 1.11 (top), 0.73 (middle), 0.86 (bottom).

References

[1] E. Camporeale, G. L. Delzanno, G. Lapenta, and W. Daughton. New approach for the study of linear Vlasov stability of inhomogeneous
systems. Physics of Plasmas, 13(9):092110, 2006.

16

[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology,
2:1–27, 2011. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[3] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS), 2:303–314,
1989.

[4] G. L. Delzanno. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete
form. Journal of Computational Physics, 301:338–356, 2015.

[5] G. L. Delzanno, G. Manzini, C. Pagliantini, and S. Markidis. Physics-based adaptivity of a spectral method for the Vlasov-Poisson equations
based on the asymmetrically-weighted Hermite expansion in velocity space. Tech. Report (unpublished) LA-UR-19-29686, Los Alamos
National Laboratory, Los Alamos, New Mexico, USA, 9 2019.

[6] G. L. Delzanno and V. Roytershtein. Spectral approach to plasma kinetic simulation based on Hermite decomposition in velocity space.
Frontiers in Astronomy and Space Sciences, 5, 2018. (LA-UR-18-23813, DOI:10.3389/fspas.2018.00027).

[7] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression machines. Advances in Neural Information
Processing Systems, 9:(7pp), 11 2003.

[8] L. Fatone, D. Funaro, and G. Manzini. Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system.
J. Comput. Phys., 384:349–375, 2019.

[9] L. Fatone, D. Funaro, and G. Manzini. A semi-Lagrangian spectral method for the Vlasov-Poisson system based on Fourier, Legendre and
Hermite polynomials. Comm. Appl. Math. Comput., 1:333–360, 2019.

[10] L. Fatone, D. Funaro, and G. Manzini. On the use of Hermite functions for the Vlasov-Poisson system. In S. J. Sherwin, D. Moxey, J. Peirã,
P. E.; Vincent, and C. Schwab, editors, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, volume 134
of Lecture Notes in Computational Science and Engineering, pages 143–153, London, UK, July, 9-13 2020. ICOSAHOM, LNCSE. Selected
Papers from the ICOSAHOM Conference.

[11] D. Funaro. Polynomial approximation of differential equations, volume 8. Springer Science & Business Media, 1992.
[12] D. Funaro and O. Kavian. Approximation of some diffusion evolution equations in unbounded domains by Hermite functions. Mathematics

of Computation, 57(196):597–619, 1991.
[13] D. Funaro and G. Manzini. Stability and conservation properties of Hermite-based approximations of the Vlasov-Poisson system, 2020.

submitted to J. Sci. Comput.
[14] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods (Theory and Applications) – Front Matter, volume

10.1137/1.9781611970425. SIAM, 1977.
[15] H. Grad. On the kinetic theory of rarefied gases. Communications on Pure and Applied Mathematics, 2(4):331–407, 1949.
[16] B.-Y. Guo. Error estimation of Hermite spectral method for nonlinear partial differential equations. Mathematics of Computation,

68(227):1067–1078, 1999.
[17] I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very large VC-dimension classifiers. In J.D. Cowan S.J. Hanson and C.L.

Giles, editors, Advances in Neural Information Processing Systems, pages 147–155. Morgan Kaufmann Publishers, 1993.
[18] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. The Annals of Statistics, 36:1171–1220, 6 2008.
[19] X. Jin, S. Cai, H. Li, and G. E. Karniadakis. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible

Navier-Stokes equations. J. Comput. Phys., pages 109951–, 11 2020.
[20] G. E. Karniadakis and J. Hesthaven. Machine learning for physical systems (special issue). J. Comput. Phys., 2019.

https://www.sciencedirect.com/journal/journal-of-computational-physics/special-issue/10QSWHT6XHF.
[21] C. T. Kelley. Iterative Methods for Optimization, volume 10.1137/1.9781611970920. SIAM Publications, 1999.
[22] E. Kharazmi, , Z. Zhang, and G .E. Karniadakis. Variational physics-informed neural networks for solving partial differential equations, 2019.

arXiv:1912.00873.
[23] X. Luo, S.-T. Yau, and S. S.-T. Yau. Time-dependent Hermite-Galerkin spectral method and its applications. Appl. Math. Comput.,

264(C):378–391, 2015.
[24] H. Ma, W. Sun, and T. Tang. Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains. SIAM

J. Numer. Anal., 43(1):58–75, 2005.
[25] G. Manzini, G. L. Delzanno, J. Vencels, and S. Markidis. A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-

Poisson system. Journal of Computational Physics, 317:82–107, 2016.
[26] G. Manzini, D. Funaro, and G. L. Delzanno. Convergence of spectral discretizations of the Vlasov-Poisson system. SIAM J. Numer. Anal.,

55(5):2312–2335, 2017.
[27] T. Nguyen-Thien and T. Tran-Cong. Approximation of functions and their derivatives: A neural network implementation with applications.

Applied Mathematical Modelling, 23:687–704, 1999.
[28] G. Pang, M. D’Elia, M. Parks, and G. E. Karniadakis. nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal

universal Laplacian operator. Algorithms and applications. J. Comput. Phys., pages 109760–, 8 2020.
[29] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:143–195, 1 1999.
[30] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-Informed Neural Networks: A deep learning framework for solving forward and

inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, pages S0021999118307125–, 11 2018.
[31] P. Ramuhalli, L. Udpa, and S. S. Udpa. Finite-element neural networks for solving differential equations. IEEE Transactions on Neural

Networks, 16:1381–1392, 2005.
[32] B. Schölkopf, C. Burges, and V. Vapnik. Incorporating invariances in support vector learning machines. In C. von der Malsburg, W. von Seelen,

J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks ICANN-96, volume 1112 of Lecture Notes in Computer Science, pages
47–52, Berlin, 1996. Springer-Verlag.

[33] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimization and beyond. Adaptive
computation and machine learning. MIT Press, 2009.

17

[34] J. W. Schumer and J. P. Holloway. Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys., 144(2):626–661,
1998.

[35] J. Shen, T. Tang, and L.-L. Wang. Spectral Methods: Algorithms, Analysis and Applications. Springer Publishing Company, Incorporated,
first edition, 2011.

[36] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence of physics informed neural networks for linear second-order elliptic and
parabolic type pdes. Communications in Computational Physics, 28(5):2042–2074, 2020.

[37] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational
Physics, pages 1339–1364, 8 2018.

[38] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14:199–222, 08 2004.
[39] M. Stoffel, F. Bamer, and B. Markert. Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled

Structures, 131:102–106, 2018.
[40] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9:293–300, 06 1999.
[41] T. Tang. The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput., 14(3):594–606, 1993.
[42] V Vapnik. The support vector method of function estimation. In J. A. K. Suykens and J. Vandewalle, editors, Nonlinear Modeling. Advanced

Black-Box Techniques, chapter 3, pages 55–85. Springer, 1998.
[43] V. Vapnik and A. Y. Chervonenkis. On a class of perceptrons. Automation and Remote Control, 25(1):103–109, 1964.
[44] V. Vapnik and S. Kotz. Estimation of Dependences Based on Empirical Data. Springer Series in Statistics. Springer-Verlag, Berlin, New

York, first edition, 1982.
[45] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automation and Remote Control, 24:774–780, 1963.
[46] V. N. Vapnik. The Nature of Statistical Learning Theory, volume 10.1007/978-1-4757-3264-1. Springer, New York, second edition, 2000.
[47] J. Vencels, G. L. Delzanno, G. Manzini, S. Markidis, I. Bo Peng, and V. Roytershteyn. SpectralPlasmaSolver: a spectral code for multiscale

simulations of collisionless, magnetized plasmas. J. Phys. Conf. Series, 719(1):012022, 2016.
[48] T.-J. Wang, C. Zhang, and Q. Zhang. Mixed spectral method for heat transfer using generalised Hermite functions and Legendre polynomials.

East Asian Journal on Applied Mathematics, 6:448–465, 11 2016.
[49] Y. Yadav, A. Yadav, and M. Kumar. An Introduction to Neural Network Methods for Differential Equations. SpringerBriefs in Applied

Sciences and Technology / SpringerBriefs in Computational Intelligence. Springer Netherlands, first edition, 2015.

18

Appendix

We begin by collecting some basic relations concerning Hermite polynomials. We denote with a prime the derivative
of a given Hermite polynomial with respect to the argument ζ. Thus, the first and the second derivatives of the `-th
Hermite polynomial, for ` ≥ 2, are given by:

H ′`(ζ) = 2`H`−1(ζ), H ′′` (ζ) = 4`(`− 1)H`−2(ζ). (55)

In addition, we have: H ′0(ζ) = 0, H ′1(ζ) = 2, H ′′0 (ζ) = 0, H ′′1 (ζ) = 0, so that (55) formally holds for any ` ≥ 0.
Useful recursive relations are:

2ζH ′`(ζ) = H ′′` (ζ) + 2`H`(ζ) =

{
2`H`(ζ), ` < 2,

4`(`− 1)H`−2(ζ) + 2`H`(ζ), ` ≥ 2.
(56)

ζH`(ζ) =
1

4(`+ 1)
2ζH ′`+1(ζ) =

1

4(`+ 1)

[
4(`+ 1)`H`−1(ζ) + 2(`+ 1)H`+1(ζ)

]
= `H`−1(ζ) +

1

2
H`+1(ζ), ` ≥ 1. (57)

For completeness, we note that for ` = 0 it holds ζH0(ζ) = H1(ζ)/2.
We now go through the computations relative to the three formulations (5), (15), (16). We start with the second one.
We recall that α depends on t and we denote by α′ its derivative. Concerning Hermite polynomials, the prime will

continue to denote the derivative with respect to ζ. We substitute the definitions (11), (9) of, respectively, φm, uN ,
and we split the integral in three parts that will be computed separately:∫

R

∂tuN φm dx =

∫
R

∂twα(x, t)√
π

[
N∑
`=0

û`(t)H`

(
αx
)] α

2mm!
Hm

(
αx
)
dx

+

∫
R

wα(x, t)√
π

N∑
`=0

[(
∂tû`(t)

)
H`

(
αx
)

+ û`(t)α
′xH ′`

(
αx
)] α

2mm!
Hm

(
αx
)
dx

=
α

2mm!
√
π

(−2αα′)

N∑
`=0

û`(t)

∫
R

x2wα(x, t)H`(αx)Hm(αx) dx

+
1

2mm!
√
π

N∑
`=0

[
∂tû`(t)

∫
R

wα(x, t)H`

(
αx
)
Hm

(
αx
)
αdx

+û`α
′
∫
R

wα(x, t)xH ′`
(
αx
)
Hm

(
αx
)
αdx

]
= (I) + (II) + (III). (58)

To compute (I), we substitute ζ = αx and use the orthogonality properties of the Hermite polynomials to find that:

(I) =
1

2mm!
√
π

−2α′

α

N∑
`=0

û`(t)

∫
R

(αx)2 exp
(
− (αx)2

)
H`(αx)Hm(αx)αdx

= −α
′

α

[
(2m+ 1) ûm(t) + 2(m+ 2)(m+ 1) ûm+2(t) +

1

2
ûm−2(t)

]
.

To compute the term (II), we substitute ζ = αx and use the orthogonality properties:

(II) =
1

2mm!
√
π

N∑
`=0

∂tû`(t)

∫
R

exp(−ζ2)H`(ζ)Hm(ζ) dζ = ∂tûm(t).

To compute term (III) we use (55) and the orthogonality of Hermite polynomials:

19

(III) =
1

2mm!
√
π

N∑
`=0

û`(t)
α′

α

∫
R

exp(−ζ2) ζH ′`(ζ)Hm(ζ) dζ

=
1

2mm!

N∑
`=0

û`(t)
α′

α

[
2`m 2m−1(m− 1)! δ`−1,m−1 + ` 2m+1(m+ 1)! δ`−1,m+1

]
=
α′

α

[
mûm(t) + 2(m+ 2)(m+ 1)ûm+2(t)

]
.

By collecting the results for (I), (II), and (III), we find out that:

(I) + (II) + (III) = ∂tûm(t) +
α′

α

[
− (m+ 1)ûm(t)− 1

2
ûm−2(t)

]
. (59)

In a similar fashion, we split the integral of the second derivative of uN against the test function into three parts:∫
R

∂xxuNφm dx =

∫
R

∂xxwα(x, t)

[
1√
π

N∑
`=0

û`(t)H`(αx)

] [
α

2mm!
Hm

(
αx
)]
dx

+
1√
π

∫
R

[
2∂xwα(x, t)

N∑
`=0

û`(t)∂xH`(αx)

][
α

2mm!
Hm

(
αx
)]
dx

+
1√
π

α

2mm!

∫
R

[
wα(x, t)

N∑
`=0

û`(t)∂xxH`(αx)

] [
Hm

(
αx
)]
dx

= (A) + (B) + (C).

Using the property of the Hermite polynomials, we evaluate these terms as follows:

(A) = 2α2

[
2mûm(t) + 2(m+ 2)(m+ 1)ûm+2(t) +

1

2
ûm−2(t)

]
(B) = −4α2

[
mûm(t) + 2(m+ 2)(m+ 1)ûm+2(t)

]
(C) = 4(m+ 2)(m+ 1)α2ûm+2(t).

Putting all together we arrive at:

(A) + (B) + (C) = 2α2
[
2mûm(t) + 2(m+ 2)(m+ 1)ûm+2(t) +

1

2
ûm−2(t)

]
− 4α2

[
mûm(t) + 2(m+ 2)(m+ 1)ûm+2(t)

]
+ 4(m+ 2)(m+ 1)α2ûm+2(t) = α2ûm−2(t). (60)

By equating (59) and (60) we finally obtain the scheme (14).
We then examine the scheme originating from (5). We must compute:∫

R

∂uN
∂x

∂φm
∂x

dx =
1√
π

α

2mm!

N∑
`=0

û`(t)

∫
R

∂x

(
wα(x, t)H`(αx)

)
∂xHm(αx) dx

=
1√
π

α

2mm!

N∑
`=0

û`(t)

[∫
R

(
∂xwα(x, t)

)
H`(αx) ∂xHm(αx) dx

+

∫
R

wα(x, t)∂xH`

(
αx) ∂xHm

(
αx
)
dx

]

20

=
1√
π

α

2mm!

N∑
`=0

û`(t)

[
− 2α

∫
R

(
αx
)
wα(x, t)H`(αx) 2mHm−1(αx)αdx

+ α

∫
R

wα(x, t)H ′`(αx)H ′m(αx)αdx

]

=
1√
π

α2

2mm!

N∑
`=0

û`(t)

[
− 4m

∫
R

ζH`(ζ)Hm−1(ζ)e−ζ
2

dζ

+

∫
R

exp (−ζ2)H ′`(ζ)H ′m(ζ)e−ζ
2

dζ

]
= α2

(
− 2mûm(t)− ûm−2(t)

)
+ α2

(
2mûm(t)

)
= −α2ûm−2(t). (61)

By changing the sign of the last term in (61) we exactly get the same result in (60) which brings again to the scheme
(14).

We finally examine the scheme originating from (16). The first integral is clearly equal to ûm(t). Successively, we
evaluate: ∫

R

uN
∂2φm
∂x2

dx = α2

∫
R

uN φm−2 dx

= α2 1√
π

α

2m−2(m− 2)!

N∑
`=0

û`(t)

∫
R

wα(x, t)H`(αx)Hm−2(αx) dx

=
α2

√
π

1

2m−2(m− 2)!

N∑
`=0

û`(t)

∫
R

H`(ζ)Hm−2(ζ)e−ζ
2

dζ

=
α2

2m−2(m− 2)!
√
π

N∑
`=0

û`(t) 2m−2(m− 2)!
√
πδ`,m−2 = α2ûm−2(t).

Regarding the last integral, we split it into two parts:∫
R

uN
∂φm
∂t

dx =
1√
π

1

2mm!

N∑
`=0

û`(t)

∫
R

wα(x, t)H`(αx) ∂t

(
αHm(αx)

)
dx

=
1√
π

1

2mm!

N∑
`=0

û`(t)

∫
R

wα(x, t)H`(αx)
(
α′Hm(αx) + αα′xH ′m(αx)

)
dx

=
1√
π

1

2mm!

α′

α

N∑
`=0

û`(t)

[∫
R

H`(ζ)Hm(ζ)e−ζ
2

dζ +

∫
R

H`(ζ) ζH ′m(ζ)e−ζ
2

dζ

]
= (I) + (II). (62)

These are finally evaluated as follows:

21

(I) =
1√
π

1

2mm!

α′

α

N∑
`=0

û`(t)
(
2mm!

√
π
)
δ`,m =

α′(t)

α
ûm.

(II) =
1√
π

1

2mm!

α′

α

N∑
`=0

û`(t)

[∫
R

H`(ζ) ζH ′m(ζ)e−ζ
2

dζ

]

=
1√
π

1

2mm!

α′

α

N∑
`=0

û`(t)
(
2` `!
√
π
)[

2m(m− 1)δm−2,` +mδ`,m

]

=
1√
π

1

2mm!

α′

α

(
2m−2 (m− 2)!

√
π
)[

2m(m− 1)ûm−2(t) +
(
2mm!

√
π
)
mûm(t)

]
=
α′

α

[
1

2
ûm−2(t) +mûm(t)

]
. (63)

The final result of all these computations is again the scheme (14).

22

