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Abstract
The tumor microenvironment (TME) constitutes a complex structure comprising different cell types and soluble 
factors that surround the tumor and promote its progression. Primarily for its pivotal role in malignant growth, TME 
has become a potential therapeutic objective for developing new targeted therapy and a marker for assessing 
therapeutic response. In intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver 
malignancy, TME has also gained a central role in understanding the mechanisms underlying tumor progression. In 
this review, we focused on the role of angiogenic factors and their pathway in iCCA and analyzed possible 
therapeutic and prognostic implications.

Keywords: Intrahepatic cholangiocarcinoma, angiogenic factors, VEGF, angiopoietins, thrombospondin 1, 
endothelins

INTRODUCTION
Cholangiocarcinoma (CCA) embraces a highly heterogeneous group of malignancies originating from 
different tracts of the biliary tree, which are classified in intrahepatic (iCCA), perihilar (pCCA) and distal 
(dCCA) CCA[1]. The iCCA can be further subclassified as mass-forming (MF), periductal-infiltrating (PI), 
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and intraductal growing (IG). MF-iCCA subtype identifies a mass grown in the hepatic parenchyma; in the 
PI-iCCA subtype, the tumor originates in the duct wall and spreads longitudinally along the wall, while in 
the IG-iCCA subtype, it grows within the duct lumen[2]. From a histological point of view, it is possible to 
identify two macro subgroups in the conventional iCCA family according to the size of the affected ducts: 
small and large bile duct iCCA. The former type arises in small intrahepatic bile ducts and may derive from 
progenitor cells and cuboidal cholangiocytes. The latter originates in large ducts from columnar 
cholangiocytes or peribiliary glands[1]. Almost all pCCA and dCCA share the same histological derivation 
with large duct iCCA[3,4]. We will focus on iCCA not only due to its standing as the second most frequent 
primary liver cancer but also owing to its swiftly escalating global incidence[5,6]. Surgery is the main 
therapeutic option, with liver transplant offering a curative option for specific cases[7]. However, the 
diagnosis usually occurs at an advanced stage when tumors are unresectable or not transplantable. In these 
cases, classical chemotherapeutic agents are the first-line therapy but with limited benefit for survival[8,9].

Most CCA cases are sporadic and often related to heterogeneous risk factors, distributed differently 
according to the geographical area. Inflammatory damage of the bile duct [e.g., hepatobiliary flukes 
infections, hepatolithiasis, primary sclerosing cholangitis (PSC), and viral hepatitis B and C] are the most 
frequent causes. CCA development also recognizes relevant genetic alterations with different genetic 
profiles among the subtypes. Fibroblast Growth Factor Receptor 2 (FGFR2) alteration and Isocitrate 
Dehydrogenase 1,2 (IDH-1/2) and BRCA-1 associate protein (BAP1) mutation are more commonly found 
in small bile duct iCCA, while KRAS and TP53 mutations cluster in large bile duct iCCA. Protein Kinase 
c-AMP Activated Catalytic Subunit alpha and beta (PRKACA and PRKACB) fusions and ELF3 mutations 
are mainly detected in p/dCCA[10,11].

These data indicate the need and utility of elucidating the molecular biology of iCCA to identify possible 
preventive measures and novel treatment options for these conditions. Recently, the identification of some 
of the above-indicated molecular alterations has paved the way for the development of targeted therapies, 
such as IDH-1, FGFR2, and BRAF inhibitors. Unfortunately, most of these therapies have worked no better 
than chemotherapy alone, and the true effectiveness of these treatments is yet to be proven[12].

The TME surrounding tumor cells has attracted growing interest in the last few years. TME combines 
heterogeneous components, including different infiltrating and resident cell types, secreted factors, and 
extracellular matrix. Each part exerts a specific role in promoting tumor progression, cancer cell survival, or 
metastatic dissemination[13]. TME is increasingly acquiring a greater role as a player both in the progression 
and aggressiveness of iCCA and in the response to therapy. Although the biliary epithelium following 
chronic inflammation is the main target of neoplastic transformation, tumor stroma is also modified by the 
regenerative process during bile duct repair[14,15]. Among the different TME components (myofibroblasts, 
inflammatory cells, endothelial cells, and mesenchymal stem cells), the main role is performed by cancer-
associated fibroblast (CAFs), which secrete several substances that promote both cancer progression and 
tumor proliferation and angiogenesis[16]. Although how this process works in cancer progression is well 
known, it has been underappreciated in iCCA evolution, especially as a potential therapeutic target. 
Therefore, in this review, we will focus on the main angiogenic factors involved in iCCA progression and 
their current and future use in therapy.

ANGIOGENESIS IN ICCA
The relationship between tumor-associated angiogenesis and TME is fundamental for sustaining tumor 
progression. A tumor needs a huge vascular network to nourish itself for a rapid growth. The first 
description of a correlation between cancer development and its sustenance through blood supply was made 



Page 3 of Romanzi et al. Hepatoma Res 2023;9:41 https://dx.doi.org/10.20517/2394-5079.2023.53 13

more than ten years ago[17]. However, not all new blood vessels are functional. Many of them are 
characterized by an immature phenotype with decreased performance, resulting in a low oxygen rate and 
scarce nutrient supply. This deficiency in the vascular compartment is responsible for establishing a hypoxic 
TME. Hypoxia relates closely with tumor progression and metastasis[18]. The main effects associated with 
hypoxia are mediated by Hypoxia Induced Factor (HIF)-1α, whose overexpression positively relates to 
tumor size and decreased disease-free survival in iCCA[19]. HIF-1α expression promotes the expression of 
angiogenic factors, such as the Vascular Endothelial Growth Factors (VEGF) family and Angiopoietin 
(Ang)-2, responsible for the neoangiogenesis process and cholangiocyte proliferation[20,21]. However, the low 
oxygen rate may determine a balance between cell proliferation and apoptosis, which can inhibit tumor 
growth.  This process is orchestrated by growth factors and cytokines secreted by TME in a paracrine 
manner during the angiogenic dormancy[22,23]. It is a balanced condition regulated by both pro- and anti-
angiogenic factors [e.g., Thrombospondin (TPS) -1], which maintain tumors in a sort of avascular or poorly 
vascularized dormant conditions. Any perturbation of this quiescent state determines a disequilibrium 
towards pro-angiogenic factors, called "angiogenic-switch", which favors a hypervascularized phenotype to 
escape dormancy[23,24]. One of the biological events emerging as crucial for dormancy state maintenance is 
autophagy. It has been widely demonstrated that this fundamental physiological process, essential for 
cellular homeostasis and energy balance, also plays a key role during cancer progression[25]. At an early 
tumor stage, functional autophagy grants maintenance of cellular stability by preventing genome damage 
and ROS accumulation. At an advanced stage or in fast-growing tumors, autophagy is essential to promote 
survival and compensate for metabolic requirements due to nutrient deficiency and hypoxia[26,27]. Therefore, 
a hypoxic TME may affect and boost autophagic events strictly correlated to the preservation of the 
dormancy state.

The iCCA is characterized by a dense desmoplastic stroma, the main cellular component of which is CAF 
expressing a-smooth muscle actin (a-SMA)[28]. CAFs promote not only tumor growth and invasion but also 
angiogenesis through the release of several molecules, such as VEGF, fibroblast growth factor (FGF), and 
interleukin-6 (IL-6)[29]. Moreover, the presence of VEGF-A, IL-10 and transforming growth factor beta 
(TGFb) in the TME promotes the polarization of macrophage towards the pro-tumorigenic and pro-
angiogenic phenotype M2[30]. Thus, TME is shaped by cancer cells to be specialized to assist cancer 
progression, becoming, among other things, an ideal target for anticancer treatment[31].

The iCCA was previously considered a hypovascular tumor in contrast to hepatocellular carcinoma 
(HCC)[32]. It is clear that tumor angiogenesis is marked in iCCA and is a feature enhancing biological 
aggressiveness and metastatic capacity[33].  Further knowledge of angiogenic factors and their role in iCCA is 
needed to better understand how they may influence the progression and, eventually treatment of this 
tumor. The data available so far with anti-angiogenic drugs, alone or in combination, are not 
straightforward to interpret, although  individual studies seem to suggest an improvement in outcome, 
especially for iCCA [Table 1].

Different angiogenic factors involved in iCCA
The role of angiogenic factors and their complex interactions in iCCA progression are discussed in the 
following paragraphs and depicted in Figure 1.

VEGF
VEGF is a family of signaling molecules comprising VEGF-A, -B, -C, -D and placental growth factor 
(PLGF), which exert their role through a group of cognate protein, tyrosine kinase receptors (VEGFRs)[58]. 
VEGF-A is the key modulator of angiogenesis in human diseases, including cancer. It exerts its role through 
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Table 1. Main clinical trials with anti-angiogenic drugs (alone or in combination) in advanced biliary cancer

Author Design Drug Regimen Condition Primary outcome Result

Zhu et al.[34] Phase II MAb + CT Bevacizumab + GEMOX 35 pts with metastatic BTC; 22 (62.8%) PFS Median PFS was 7·0 mo and mOS 12.7 mo; 
median PFS in pts with iCCA was 7.6 mo and 
mOS 14.2 mo

Lubner et al.[35] Phase II mAb + TKI Bevacizumab + erlotinib 53 pts with BT; 35 (66.0%) with iCCA Response rate PR 12%; SD 51% 
mOS: 9.9 mo; TTP: 4.4 mo  
iCCA: no differences reported

Guion-Dusserre et al.[36] Phase II mAb + CT Bevacixumab + FOLFIRI 13 pts with iCCA, GEMOX pre-treated Tumor control The disease control rate was 84.5%, PFS 8 
mo, median OS 20 mo

Iyer et al.[37] Phase II mAb + CT Bevacizumab + Cape + 
Gem

50 pts with advanced BTC 
29 with iCCA

Safety/efficacy Grade 3-4 toxicities: 24% of pts. mPFS 8.1 
mo 
No improvement with the addition of 
Bevacizumab 
iCCA: PR 21%; SD 52%

Brechon et al.[38] Phase II mAB + CT 
vs. CT

GEMOX-bevacizumab vs. 
GEMOX

32 pts with advanced BTC PFS CT + Beva vs. CT: 6.48 mo vs. 3.72 mo

Larsen et al.[39] Phase II mAb + CT Bevacizumab + Cape +  
Gem + irinotecan

40 advanced BTC, 29 iCCA PFS Overall: mPFS 3.6 mo, mOS 6.4 mo 
iCCA: no differences reported

Pei et al.[40] Phase II mAb + CT Bevacizumab + Cape + Cis 30 advanced BTC, 28 iCCA ORR ORR was 50.0% 
Partial response: 15 (50.0%) 
Stable disease: 9 (30.0%) 
All but one iCCA

Bengala et al.[41] Phase II TKI Sorafenib 46 pts with advanced BTCs, 27 (60.0%) iCCA Disease control rate 
at 12 weeks

Disease control rate at 12 w: 32.6%; mPFS 
No difference between intra- and 
extrahepatic CCA

Yi et al.[42] Phase II TKI Sunitinib 56 pts with advanced CCA mTTP: 1.7 mo; Objective 
RR: 8.9%; Grade 3-4 toxicities 
in 46.4% of patients

El-Khoueiry et al.[43] Phase II TKI Sorafenib 31 pts with advanced BTCs 
[19, (61%) with CCA, not defined if iCCA or 
eCCA]

ORR ORR: 0% (not achieved primary endpoint); 
SD 
39%; PFS 3 mo; mOS 9 mo 
iCCA: no differences reported

Lee et al.[44] Phase II TKI + CT Sorafenib + Gem/Cis 39 pts with advanced BTC, I line. 23 (59%) had 
iCCA

6-mo PFS PFS 6 mo 51% 
Median PFS: 6.5 
mo 
iCCA: no differences reported

El-Khoueiry et al.[45] Phase II TKI Sorafenib + erlotinib 34 pts with metastatic BTCs I line. 20 (59%) had 
CCA

PFS Early termination for failure to meet 
predefined criteria. mPFS: 2 mo; mOS: 
6 mo 
iCCA: no differences reported

PFS: 4.9 vs. 3.0 mo (P = 0.859); mOS: 11.2 
Subgroup analysis: better 

Moehler et al.[46] Double-blind TKI Sorafenib + Gem vs. 
placebo + Gem

102 unresectable or metastatic BTC. 
iCCA: 33/49 Sor/Gem vs. 29/48 Plac/Gem

PFS
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PFS for patients with iCCA

Santoro et al.[47] Randomized 
phase II

TKI Vandetanib vs. 
vandetanib + 
Gem vs. 
Gem

173 patients with advanced BTCs. 87 (50.6) with 
iCCA

mPFS mPFS: 105 vs. 114 vs. 
148 days (P = 0.18). 
iCCA: no differences reported

Valle et al.[48] Randomized 
phase II

TKI Cediranib vs. placebo + 
cisplatin/Gem

124 pts with advanced BTC, 62 assigned to the 
intervention arm (14 iCCA in the latter)

mPFS mPFS: 8 vs. 7.4 mo 
(P = 0.72) 
iCCA: no differences reported

Dreyer et al.[49] Case report TKI Sunitinb 3 pts with 
progressive advanced CT-resistant intrahepatic 
cholangiocarcinoma 

Disease control Sustained disease control > to 4 mo

Kessler et al.[50] Phase 1 TKI Vandetanib + Gem/Cape 9 pts in the dose escalation (1 CCA) and 14 in the 
dose expansion cohort (6 with CCA) advanced 
BTC.

MTD/safety Satisfactory safety profile

Shroff et al.[51] Open-label, 
multicenter, single-
arm trial

TKI + mek 
inhibitor

Pazopanib +  
trametinib

25 pts with advanced CAA. 5 (20%) iCCA PFS 4-mo PFS not  
significantly different from a prespecified 
null hypothesized 4-mo 25%PFS

Sun et al.[52] Phase II TKI Regorafenib 43 pts with advanced BTC, 27 (62%) with iCCA Grade 3-4 toxicities: 40% of pts. mPFS 
15.6 weeks; mOS 31.8 weeks 
iCCA: no differences reported

Kim et al.[53] Phase II TKI Regorafenib 39 pts with advanced BTCs, 27 (69.2%) iCCA 6-mo OS mPFS 3.7 mo, mOS 5.4 mo 
Three PR, all iCCA

Cousin et al.[54] Phase II TKI + ICI Regorafenib +  
avelumab

34 pts with pre-treated BTC, 26 (76.5%) with 
iCCA 

ORR 4 PR, 11 SD. 14 of these  
patients had an iCCA.

Ding et al.[55] Multicenter 
observational study

TKI + ICI Sintilimab + lenvatinib 41 patients with advanced iCCA TTP Median TTP: 6.6 mo  
TTP was significantly improved (16.9 mo) in 
pts with PD-L1 TPS ≥ 10%, 

Zhu et al.[56] Multicenter real-world 
study

TKI + ICI + 
CT

Lenvatinib+ toripalimab + 
gemcitabine + oxaliplatin

53 patients with advanced ICCA OS and PFS OS 14.3 mo 
PFS 8.63 mo

Shi et al.[57] Phase II TKI + ICI Toripalimab + lenvatinib + 
gemcitabine +  
oxaliplatin

30 pts with 
pathologically confirmed advanced ICC

ORR ORR: 80%

Cape: capecitabin; Cis: cisplatin; CT: chemotherapy; eCCA: extrahepatic cholangiocarcinoma; Gem: gemcitabine; iCCA: intra-hepatic cholangiocarcinoma; ICI: immune checkpoint inhibitors; mAb: monoclonal 
antibody; Mo: months; MTD: maximum tolerated dose; (m)PFS: (median) progression free survival; ORR: objective response rate; OS: overall survival; Plac: placebo; PR: partial response; TKI: tyrosine kinase 
inhibitors; TTP: time to progression.

VEGFR-1 (Flt-1), which, together with VEGFR-2 (Flk-1), represent the two isoforms mainly involved in angiogenesis and vasculogenesis, while VEGFR-3 (Flt-
4) mediates lymphangiogenesis[59]. VEGF has a recognized fundamental role in determining tumor progression. It is overexpressed in many types of tumors 
(i.e., breast, lung, melanoma)[60-62].
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Figure 1. Role of the angiogenic factors in iCCA progression. In this schematic Figure 1 (A) we demonstrate the main function exerted 
by angiogenic factors during iCCA progression. VEGF promotes cancer cell proliferation and metastatic spread, both inhibited by ET-1 
and Ang-1. Ang-2 and TSP1, on the other hand, are mainly involved in vascular remodeling during the neoangiogenic process and 
lymphangiogenesis, respectively, becoming key players in iCCA invasiveness; (B) depicts the complex interplay between angiogenic 
factors in the CCA microenvironment. Only the most relevant complex exchanges and cellular components characterizing TME are 
shown in the figure. TAMs: Tumor-associated macrophages; CCA cells: cholangiocarcinoma cells; CAFs: Cancer-associated fibroblasts. 
The figure was created with Biorender.com

Several studies demonstrate that VEGF signaling has a crucial role in biliary tree development as well as in 
iCCA progression. VEGF/VEGFR signaling pathway is involved in bile duct maturation at the early stage, 
while it is absent in the mature stage. However, this pathway can be reactivated during disease conditions[63].

In response to a hypoxic microenvironment, VEGF can also be secreted by tumor cholangiocytes, especially 
those expressing the angiogenic receptors VEGFR and Tie2 to promote cell proliferation[20,21]. CCA cells also 
secrete and express VEGF and its receptors via the action exerted by other factors, including the estrogen 
receptors through which VEGF stimulates cell proliferation[64]. However, the prognostic relevance of VEGF 
is still under debate due to controversial findings in the literature.

In eCCA patients with VEGF positivity, the overall survival is worse compared to those with negative 
VEGF[65]. Conversely, Kawahara et al. showed evidence of a lower VEGF expression in CCA patients 
compared to control[32]. More recently, Möbius et al. evaluated the potential prognostic role of microvessel 
density (MVD) in eCCA, showing a better prognosis in patients with low MVD than patients with high 
MVD[66]. Moreover, according to Kawahara et al., they found no correlation between VEGF expression and 
survival[32].

In contrast with the studies mentioned above, other research groups have positively associated VEGF levels 
and patients' survival. Yoshikawa et al. demonstrated that both iCCA and eCCA express higher levels of 
VEGF than controls and that high expression of VEGF is clinically correlated to intrahepatic metastasis in 
iCCA[67]. Cai et al. showed that iCCA patients with high expression of VEGF had shorter overall survival[68]. 
Currently, most studies in the literature positively correlate VEGF expression with a worse prognosis in 
patients with iCCA, as also shown by Calastri et al.[69]. Consequently, VEGF overexpression has become a 
strategic therapeutic target, suggesting using anti-VEGF drugs in association with traditional chemotherapy 
treatments. In phase II studies of single-agent sorafenib (a tyrosine kinase inhibitor with a weak VEGF 
capacity), limited benefit has been reported in patients with advanced biliary tract carcinoma[41,45].

In a multicenter prospective open-labeled prospective study conducted to evaluate the effectiveness and 
safety of sorafenib in combination with the best supportive care in patients with advanced iCCA, the 
median progression-free survival was 3.2 months and the median overall survival was 5.7 months[70]. 
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Monoclonal antibody bevacizumab, a recombinant humanized monoclonal antibody against VEGF, is 
currently used in clinical practice for cancer treatment. Recently, a study in patients with metastatic 
carcinoma of the biliary tract demonstrated that the addition of bevacizumab to standard chemotherapy 
(gemcitabine and oxaliplatin) significantly increased the progression-free survival of patients compared to 
chemotherapy alone[38]. Another VEGF inhibitor, Apatinib, has been shown to effectively block 
proliferation, migration, and angiogenesis[71] and promote apoptosis[72] in iCCA cell lines, suggesting 
potential usefulness in patients with advanced iCCA[73]. Conversely, the combination of pazopanib-a 
multikinase inhibitor of VEGFR, platelet-derived growth factor receptor (PDGFR), fibroblast growth factor 
receptor (FGFR)- with trametinib-a highly specific MEK inhibitor- did not achieve a statistically significant 
improvement in PFS in patients with refractory CCA[51]. However, the promising results in this field 
demonstrate that the path of angiogenic pathway inhibition deserves further exploration.

Angiopoietins
The Angiopoietin system comprises Angiopoietin 1 (Ang-1) and Angiopoietin-2 (Ang-2), both acting as 
vascular remodeling mediators through their cognate tyrosine kinase receptor Tie-2 that promote the 
stabilization or destabilization of newly formed vessels in several vascularized tumors[74]. Both Ang-1 and 
Ang-2 interact with VEGF-A, but quite differently. Ang-1 and VEGF-A cooperate to promote angiogenesis. 
Ang-1 can exert a synergistic action with VEGF-A, amplifying its initial pro-angiogenic response[75]. The 
relationship between Ang-2 and VEGF-A is more complex, as these two factors exert a reciprocal influence. 
Ang-2 overexpression results in the loosening of vascular structures and exposure of endothelial cells to 
VEGF, which acts on endothelial cells, allowing further Ang-2 action[76]. The VEGFR and Tie-2 pathway are 
depicted in Figure 2. Tang et al. observed Ang-2 expression in 57.6% of cases and MVD significantly higher 
in VEGF-positive and Ang-2-positive cases, suggesting cooperation in promoting angiogenesis in CCA[77]. 
Ang-2 has been detected in the serum and bile of CCA patients, with a positive correlation with the disease 
only in the former, suggesting its possible use in differentiating CCA against primary sclerosis cholangitis 
(PSA)[78]. Comparing CCA with non-CCA patients, Kimawaha et al. reported that high levels of Ang-2 
could correlate with severe cancer stage and metastasis[79]. Our recently submitted work demonstrated that 
Ang-2 alone or in association with VEGF increased migration and invasiveness in a 3D in vitro model of 
iCCA (personal communication).

Conversely, Ang-1 expression correlates with lower metastatic spread risk in hilar cholangiocarcinoma 
(HC), as well as the presence of Tie2-positive monocytes (TEMs) in proximity to microvasculature is 
associated with reduced tumor recurrence[80]. The positive impact of Ang-1 and TEMs on CCA is further 
confirmed by another study by Atanasov et al.[81]. They hypothesized a possible influence of miR-126 in the 
upregulation of Ang-1, which recruits more TEMs, exerting an inhibitory effect on CCA progression.

Thrombospondin 1
Another important factor involved in the angiogenic process is TSP-1. TSP-1 is a multifunctional matrix 
protein[82] whose inhibitory effect on CCA angiogenesis has already been reported[32,83].

In agreement with these studies, Tang et al. observed that the TSP-1-positive group had a lower MVD than 
the negative group, confirming a possible inhibitory role in CCA angiogenesis[77]. Moreover, TSP-1-positive 
patients were more prone to develop metastasis than negative ones, highlighting an association between 
TSP-1 expression and CCA invasiveness. It has been observed that high TSP-1 expression in iCCA is related 
to increased lymphangiogenesis[83,84]. Conversely, a positive correlation between TSP-1 and VEGF 
expression was found in hepatocellular carcinoma (HCC), together with an increased rate of venous 
invasion[85]. These findings further explain the structural differences between HCC and iCCA, mentioned 
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Figure 2. VEGFR and Tie-2 pathway. On the endothelial cell surface, VEGF binding to its cognate receptor family lead to the activation 
of a variety of signaling pathway involved in survival (PI3K-AKT), migration (P38/MAPK and FAK/Paxillin), and proliferation (MAPK). 
Ang-2 is the main competitor of Ang-1 for Tie-2 binding. Under normal conditions, Ang-1 binds Tie-2 to maintain vascular integrity. In 
pathological conditions, Ang-2 is overexpressed and induces endothelial destabilization, inflammation, and vascular remodeling. Both 
VEGFR and Tie-2 pathways promote the initiation of new vessel formation and maturation. A hypoxic TME determines an 
overexpression of VEGF and Ang-2 and induces neoangiogenic processes. The figure was created with Biorender.com.

previously in terms of tumor vasculature, making the progression of the former strictly dependent on 
neovascularization rather than the progression of the latter, which is more related to lymphatic network 
development. A recent study designates TSP-1 as a potential serological marker predictive of the effect of 
gemcitabine-based chemotherapy in iCCA[86].

Endothelins
In addition to their role as potent endogenous vasoconstrictors and in cardiovascular and renal disorders, 
endothelins (ETs) are also responsible for diverse mechanisms in many types of cancer. For example, they 
play roles in proliferation, escaping from apoptosis, modulating immunity, and contributing to 
angiogenesis. ETs are a group of three peptides of 21aa ET-a, ET-2, and ET-3, which exert their function via 
the activation of two G-protein-coupled receptors (GPCR), ETA receptor (ETAR) and ETB receptor (ETBR)
[87,88].

Different studies demonstrated the blockage of ET axis in different types of cancer. Colorectal carcinoma[89], 
gastric cancer[90], and pancreatic cancer[91] could enhance the effect of conventional chemotherapeutic 
treatments and arrest cancer progression.

In this context, ET1 is particularly active in the neovascularization process, exerting a potent additive effect 
with VEGF[92]. Of note, in certain types of cancer, the overexpression of ET1 is strictly related both to the 
expression of VEGF and its receptors and to MVD[93]. Conversely, in CCA, ET1 inhibits the proliferation of 
malignant cells and the expression of VEGF proteins and their receptors. Considering the previously 
mentioned role of VEGF in CCA progression, these findings corroborate the close relationship between 
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VEGF expression and ET1[94].

Thus, clarifying the role and frequencies of the ET axis makes it possible to use endothelin receptor 
antagonists to improve chemotherapeutic treatments.

CONCLUSION
Angiogenesis is a fundamental process during many physiological and pathological conditions. It is now 
recognized as a crucial aspect of cancer progression and dissemination. It is necessary to point out that 
although the main angiogenic factors involved in the progression of iCCA have been discussed, other 
equally important ones, such as FGF or PDGF, have not been explored in depth in this work. However, 
considering the role of each angiogenic factor in iCCA pathogenesis, as we have done in this review, it is 
possible to identify many controversial aspects in their action. The aforementioned studies highlight the 
opposite effects mediated by thrombospondin and endothelin. For example, they clarify the dual aspect of 
angiogenesis in iCCA, a “good” and a “bad” one, as in the "yin and yang" theory. Going deeper into this 
aspect could be an important goal for therapeutic advancement. As recently highlighted by Rizzo et al., in 
patients with advanced biliary tract cancer, the combination of cisplatin plus gemcitabine remains the only 
therapeutic option, although many targeted therapies developed in recent years have modified therapeutic 
scenarios[95]. Some therapeutic strategies targeting angiogenic pathways are already available, but further 
investigations are needed to develop and optimize tailored therapies. For example, developing technologies 
that improve drug deliverability to the target, such as nanoparticles, could represent a good option in the 
future of iCCA treatment, as the increasing development and use of artificial intelligence in clinical practice 
could improve the diagnosis and management of patients.
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