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A B S T R A C T

Characterizing sample composition and visualizing the distribution of its chemical compounds is a prominent
topic in various research and applied fields. Integrating spatial and spectral information, hyperspectral imaging
(HSI) plays a pivotal role in this pursuit. While self-modelling curve resolution techniques, like multivariate
curve resolution - alternating least squares (MCR-ALS), and clustering methods, such as K-means, are widely used
for HSI data analysis, their effectiveness in complex scenarios, where the structure of the data deviates from the
models’ assumptions, deserves further investigation. The choice of a data analysis method is most often driven by
research question at hand and prior knowledge of the sample. However, overlooking the structure of the
investigated data, i.e. linearity, geometry, homogeneity, might lead to erroneous or biased results. Here, we
propose an exploratory data analysis approach, based on the geometry of the data points cloud, to investigate the
structure of HSI datasets and extract their main characteristics, providing insight into the results obtained by the
above-mentioned methods. We employ the principle of essential information to extract archetype (most linearly
dissimilar) spectra and archetype single-wavelength images. These spectra and images are then discussed and
contrasted with MCR-ALS and K-means clustering results. Two datasets with varying characteristics and com-
plexities were investigated: a powder mixture analyzed with Raman spectroscopy and a mineral sample analyzed
with Laser Induced Breakdown Spectroscopy (LIBS). We show that the proposed approach enables to summarize
the main characteristics of hyperspectral imaging data and provides a more accurate understanding of the results
obtained by traditional data modelling methods, driving the choice of the most suitable one.

1. Introduction

Understanding the composition and distribution of the chemical
compounds within a sample stands as a priority in many research and
applicative fields [1,2]. In this respect, hyperspectral imaging (HSI) is a
key analytical tool as it combines spatial information about the distri-
bution of the chemicals across the image pixels with the corresponding
spectral signatures. HSI finds applications throughout a wide range of
scientific disciplines, spanning from remote sensing to macro- and
micro-imaging [3–5]. The information provided by HSI is usually
organized in a third-order tensor with two spatial dimensions and a
spectral one. To identify individual sources of spectral variation and
determine their respective contribution to the mixed signal in each pixel,
self-modelling curve resolution techniques are among the most popular
approaches [6–8]. One of the principal algorithms in this category is

multivariate curve resolution - alternating least squares (MCR-ALS) [9].
Based on the matrix formulation of Beer-Lambert’s law, the results of the
data decomposition provided by MCR-ALS can be interpreted as con-
centration distribution maps (spatial distributions) and spectral signa-
tures of the individual components of the spectral mixture. The
MCR-ALS algorithm minimizes the difference between the recon-
structed data and the original data, by iteratively optimizing the con-
centration profiles and the spectra profile in each least square iteration,
until convergence is achieved. Constraints can be imposed on the com-
ponents profiles to enforce physically or chemically meaningful solu-
tions. Imposing constraint would also contribute to reduce rotational
ambiguity which, except in very specific conditions, remains inevitable
[10,11]. MCR-ALS initially found extensive application in spectroscopic
data analysis, particularly in fields such as analytical chemistry and
process analysis. Later, its utility expanded to include image analysis
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and a broad range of other applications [12–14]. However, in complex
scenarios, the MCR bilinear decomposition may not fully capture the
complexity of the physics/chemistry underlying the analyzed data, due
to e.g. interactions between individual species. This and other effects
might result in a deviation from the ideal linear mixture model [15].

Another approach for the analysis of HSI datasets can be found in the
framework of clustering techniques, aiming at grouping pixels based on
their spectral similarity (hierarchical and partitional clustering) [16] or
on density criteria [17], and highlighting spatial patterns in the image.
Unlike spectral unmixing which aim at identifying the contributions of
the individual mixture components for each pixel, clustering methods,
such as K-means [18] assigns each pixel to one cluster only, character-
ized by a centroid, serving as a prototype of the cluster, and results
should be interpreted as spectral pixel classification or image segmen-
tation approaches. The determination of the number of clusters, as well
the algorithm initialization step’s requiring a random selection of the
mean spectrum of each cluster, represent the major challenges for this
method. Even though solutions trying to overcome these issues, such as
the use of indices and replicates, have been proposed over the years,
these questions remain open in the field [19,20].

In practice, although the assumptions and goals of MCR and K-means
approaches are different, both can provide complementary results when
applied to HSI data, the first can be used for data decomposition and the
second for clustering, to obtain interpretable factors or clusters albeit in
different ways [21]. Clustering techniques have been used in conjunc-
tion with other multivariate analysis methods [22,23], for instance, as a
powerful tool for examining data homogeneity, in terms of chemical
composition or properties, together with Principal Component Analysis
(PCA) [24,25]. Other works have explored the use of clustering as a
constraint in unmixing methods such as MCR-ALS or vertex component
analysis (VCA) for complex samples [26,27].

While MCR and clustering methods are powerful tools, the first step
of any multivariate data analysis should be exploratory [28,29], sum-
marizing the main characteristics of the investigated data set, and this is
even more the case for HSI data. Users should be aware of the specific
characteristics of the structure of the data and carefully consider the
methods’ assumptions and limitations in order to ensure the reliability
of their interpretation. To this aim, the extraction of the essential in-
formation (EI) can reveal very useful as it is not based on data variance
but on the geometry of the data points cloud [15,30–34]. Essential in-
formation consists of archetype points that outline the convex hull of the
data points cloud in a normalized abstract data space. Recent studies
have highlighted the potential and usefulness of identifying essential
rows and columns of a data matrix [32,35–37]. A key aspect is that the
corresponding samples (spectral pixels) and variables (single--
wavelength images) contain all the information needed to reproduce the
measured data [38].

This paper introduces an exploratory approach for analysing HSI
data of complex samples, especially for scenarios where the results ob-
tained from MCR-ALS and K-means are difficult to obtain and interpret.
Through identification of the archetype points of the data cloud, we aim
to extract some of the most linearly dissimilar spectra and single-
wavelength images measured. A powder mixture analyzed with
Raman spectroscopy and a mineral sample, characterized mostly by
pyrite, analyzed by Laser Induced Breakdown Spectroscopy (LIBS) were
investigated. The first dataset is a perfect example for using unmixing
approach, the second is a dataset where both the unmixing and clus-
tering approaches could be used considering the analysis task [39].
However, this dataset has an intrinsic complication due to the weath-
ering products of pyrite in LIBS technique and the lack of selectivity,
making the hyperspectral imaging data at hand deviating from the ideal
model underlying both MCR and clustering techniques. Comparison to
the result obtained by applying MCR-ALS [40,41] and K-means [18] is
also provided and discussed. We argue that this approach is very useful
to extract the main characteristics of a hyperspectral imaging dataset
and provide accurate information to be used for spectral unmixing and

clustering. Moreover, it has been observed that spatial distributions and
spectral signatures extracted by this approach are not always retrievable
using conventional methods like MCR-ALS and K-means.

2. Materials and methods

2.1. Datasets

2.1.1. Raman powder dataset
Powders of three salts i.e. calcium carbonate (CaCO3), sodium nitrate

(NaNO3) and sodium sulfate (Na2SO4) were mixed and pressed in a
tablet, obtaining a three-component system. Sample preparation and
Raman imaging acquisition features were described by Coic et al. in
Ref. [31]. The sample was investigated in the range 901.2 cm− 1 to
1280.5 cm− 1 with a spectral resolution of 1.11 cm− 1. A 101× 101 pixels
image was mapped using point-by-point raster-scanning mode with a 1
μm step between successive acquisitions. The dataset corresponds to a
third-order tensor of dimensions 101 × 101 × 341, which was subse-
quently analyzed without any spectral pretreatment.

2.1.2. LIBS mineral dataset
A thin section of a mineral sample from the Nishapur turquoise de-

posit (Iran) was prepared and polished for LIBS imaging. Sample prep-
aration, equipment and LIBS acquisition are detailed inMoncayo et al. in
Ref. [42]. The sample is constituted by three main mineral phases: pyrite
FeS2, silica (mainly quartz) SiO2 and turquoise CuAl6(PO4)4(OH)8⋅4H2O.
The LIBS image was recorded considering a 15 μm step between suc-
cessive acquisitions over 2048 spectral channels in the spectral range
from 250 to 330 nm. From the full acquired dataset, only a region of
interest has been selected, resulting in a third-order tensor of dimensions
300 × 300 × 1930, which was then analyzed without spectral
preprocessing.

2.2. Data analysis

The data analysis methodologies employed in subsequent sections of
the paper are here introduced. Section 2.2.1 provides a detailed
description of the proposed data analysis approach, which investigates
the geometry of the data point cloud resulting from a singular value
decomposition (SVD). Sections 2.2.2 and 2.2.3 describe well-known
chemometric methods: Multivariate Curve Resolution - Alternating
Least Squares (MCR-ALS) and K-means clustering, respectively. These
methods are employed for data analysis to compare with the proposed
approach.

2.2.1. Selection of the most relevant archetype points for exploratory
analysis

The HSI tensor is first unfolded into a matrix D of dimensions (n, p)
with rows corresponding to pixels and columns corresponding to spec-
tral channels (unfolded single-wavelength images). The matrix D is then
decomposed by SVD [43] according to Eq. (1):

D = USVT + E (1)

where U of dimensions (n, k) is the matrix containing the left singular
vectors, S of dimensions (k, k) is the diagonal matrix of singular values
and VT of dimensions (k, p) is the matrix of the right singular vectors
transposed, k is the number of factors of the decomposition and E of
dimensions (n, p) the error matrix. The matrices X and Y of dimensions
(n, k) and (p, k) are calculated as in Eqs. (2) and (3), respectively, and
contain the coordinates of the data points in the column- and row-vector
space, respectively:

X=U× S (2)

Y=V× S (3)
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All column vectors of X (resp. Y) are then normalized to constant
projection on the first column vector of X (resp. Y) to enforce convexity
of the data points cloud [44,45]. The archetypes of the data points cloud
of X and Y can be identified by computing the corresponding convex
hulls, as in Eqs. (4) and (5) [35]. They correspond to the most linearly
dissimilar spectral pixels and single-wavelength images, respectively.

Convex hulls of matrices X and Y are computed:

conv(X)=

{

x ∈ X |

∑
αx; α ≥ 0

and
∑

α = 1

}

(4)

conv(Y)=

{

y ∈ Y

⃒
⃒
⃒
⃒
⃒

∑
βy; β ≥ 0

and
∑

β = 1

}

(5)

where α and β are coefficients of the convex linear combinations. The
number of components to consider into convex hull calculation is left to
the user [44,45]. Analogous to exploratory PCA, inspection of the in-
formation carried by the most dissimilar spectra/images can guide the
selection.

The most relevant archetype points are then selected by visual in-
spection and the corresponding (essential) spectra and (essential) single-
wavelength images extracted, as illustrated in Fig. 1.

2.2.2. Multivariate curve resolution - alternating least squares (MCR-ALS)
The MCR-ALS algorithm provides pure spectral signature of the

components and their corresponding component distribution maps, as in
Eq. (6):

D=CST + E (6)

where D of dimensions (n, p) is the unfolded tensor, C (n, c) is the pure
concentration matrix, with component distribution maps of the c com-
ponents as columns, and ST of dimension (c, p) is the matrix of pure
spectra, with spectra profiles of the c components as rows. E (n, p)
contains the variation unexplained by the MCR model. To solve Eq. (6),
alternating least-squares (ALS) optimization [46] is used as
well-established approach, and both concentration and spectra profiles
are constrained with non-negativity. The first step of the optimization
requires spectra or distribution profiles that will be implemented and
optimized during the iteration process. Simple to use interactive
self-modelling mixture analysis (SIMPLISMA) [47] was used throughout
this work to calculate initial spectral estimates. The optimization

procedure stops when the convergence criterium is reached, expressed
as a threshold (0.1 %) based on the relative difference of the lack of fit
(LOF) during consecutive iterations. The LOF and the explained vari-
ance, defined in Eqs. (7) and (8), are used as parameters to evaluate the
quality of the MCR model:

LOF= 100×

̅̅̅̅̅̅̅̅̅̅̅∑
e2

∑
d2

√

(7)

r2 =100×

(

1 −

∑
e2

∑
d2

)

(8)

where e and d are elements of D and E respectively.

2.2.3. K-means clustering
As one of the most used partitioning clustering techniques in image

analysis, the K-means algorithm can be applied to D. In K-means, once
the number of clusters is defined (c), the first iteration selects c clusters
randomly, then at each iteration samples are reassigned to minimize the
sum of point-to-centroid distances, summed over all c clusters (sumd).
The algorithm stops when clusters assignments do not change, or the
maximum number of iterations is reached. As distance measure, the
Pearson correlation distance, defined as one minus the correlation co-
efficient calculated between the point and centroid spectra, has been
used [48]. In order to stabilize the results, 50 replicate runs of K-means
clustering are performed for each analysis and the run with lowest sumd
has been selected; the number of iterations was set to 200. Silhouette
[49] and Pakhira-Bandyopadhyay-Maulik (PBM) [50] indices were used
to evaluate the optimal number of clusters. These were compared with
the number of most informative pixels/spectral wavelengths suggested
by the proposed exploratory approach. Here, the explicit use of c to
denote both the number of components (MCR-ALS) and clusters
(K-means), is adopted because the results, for sake of comparison, are
presented considering the same number of components and clusters.

2.3. Software

All computations were performed using MATLAB© 2022a (Math-
Works Massachusetts, USA). For the cluster analyses the K-means
function of the Statistical and Machine Learning Toolbox was used, with
the addition of the MATLAB© Parallel Computing Toolbox to improve

Fig. 1. Graphical representation of the data exploratory approach: third-order tensor is unfolded into a matrix (D) and decomposed through SVD algorithm (D =

USVT). Matrices X and Y are calculated and normalized [45], resulting in a unit first column vector X1 (resp. Y1) to which all other column vectors of X (resp. Y) are
orthogonal. Convex hulls of essential spectra and essential variables are computed for X and Y, and the most relevant archetype points are identified by visual
inspection (red circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the speed of the algorithm. Pure and als routines from Tauler and De
Juan (2003) were used for the MCR-ALS analysis and convhulln is the
built in MATLAB© function used to compute convex hulls.

3. Results and discussion

For each dataset, the information extracted from exploratory anal-
ysis is put in perspective of the results obtained by applying both MCR-
ALS and K-means.

3.1. Raman powder dataset

The three-component Raman hyperspectral imaging dataset,
described in 2.1.1, exhibits well-defined characteristics: (i) a clear dis-
tribution of the salts building up the chemical composition of the sample
(Fig. 2A), (ii) good signal-to-noise ratio data (Fig. 2B) and (iii) selective
spectral regions (Fig. 2C).

Fig. 3A provides a representation of the (X2, X3) data points clouds,
where the number 2 and 3 refer to the second and third column of the
normalized matrix X. As expected, the observed data structure corre-
sponds to a triangular geometry (as would be obtained for simplex data),
the 3 vertices being expected to correspond to the pure compounds [45].
Similarly, the data points representation of the second and third column
of the normalized matrix Y, (Y2, Y3), (Fig. 4A), enable to identify
vertices pointing at clearly distinct directions.

Convex-hull computation provided 14 archetypes points in the (X2,
X3) space corresponding to essential spectra and 3 archetype points in
the (Y2, Y3) space corresponding to essential single-wavelength images
(black circles in Fig. 3A and 4A). Considering that the number of com-
ponents is known, 3 archetype points were selected in both sub-spaces
(filled green circles in Fig. 3A and 4A, respectively), which are ex-
pected to correspond to the purest spectral pixels and most selective
wavelengths measured (see Fig. 3B and 4B, respectively). The provided
spectral and image information can be readily interpreted for this simple
data set (1070 cm− 1 maximum selective peak for NaNO3, 1090 cm− 1

maximum selective peak for CaCO3, 996 cm− 1 maximum selective peak
for Na2SO4). For the sake of comparison, the results obtained by SIM-
PLISMA are provided (Fig. S1 in Supplementary Material).

Fig. 5 shows the results obtained for a three-component MCR-ALS
model (LOF = 10 %, r2 = 99 %) and for the application of K-means
considering 3 clusters. The selection of the number of clusters was set as
3 according to the mixture composition. For each cluster the class
assignation vector has been refolded in the original image dimensions
and shown with the pixels recognized as cluster member coloured in
brown (Fig. 5B third column). For the sake of comparison, the results
obtained from the previous archetype identification are also reported
(Fig. 5). The similarity between the essential spectra and essential
single-wavelength images obtained from our approach and the spectra

and component distribution maps obtained applying MCR-ALS is
striking.

Focusing on the spectra provided in Fig. 5A, the ones shown for K-
means correspond to “centroid” spectra and are, as expected, not the
pure ones, though in quite good agreement. It is worth noting that the
centroid spectrum corresponding to the NaNO3 salt is more similar to the
pure one than for the 2 other salts. This can be explained by considering
the density of points for each of the 3 clusters modelled by K-means (see
Fig. S2 in Supplementary Material). As for K-means, the maps (Fig. 5B)
obtained for each cluster are also very comparable (considering that the
information is segmented).

This dataset was introduced to clearly show that in cases in which we
have prior information on the number of components, high spectral and
spatial selectivity, as well as a high number of pure pixels, MCR-ALS and
K-means solutions are very comparable, with selection of the method
depending on specific analysis goals. Also, the information retrieved
with the 2 approaches can be readily extracted from the analysis of the
geometry of the data.

3.2. LIBS mineral dataset

The mean image and the LIBS spectra obtained for the mineral
sample are shown in Fig. 6A and B, respectively. In Fig. 6A it is impor-
tant to note that the pixel size is 15 μm. Considering the scale of mineral
phases, the presence of many pure spectral pixels is, therefore, not ex-
pected. Fig. 6B highlights data characterized by low spectral selectivity.
An additional complexity of this sample arises from its composition,
which includes iron. Iron has numerous emission lines across the entire
spectral range. Additionally, pyrite typically exists in various oxidative
forms [39,42,51], and the iron ions within pyrite can easily exchange
with copper or aluminium ions present in turquoise [52]. In fact, this
kind of rocks are often referred to as “solid mixtures” [53]. Furthermore,
within quartz, the predominant silica phase in this sample, aluminium
impurities are quite common, while iron inclusions are also possible,
albeit less frequent [54]. All these peculiarities translate into a very
challenging LIBS HSI dataset to analyse and investigate with classical
chemometric tool. Indeed, this scenario is not ideal for approaches such
as MCR-ALS as pure pixels may not be present, spectral selectivity is low
and different phases with very similar spatial distribution are present.
Similarly, K-means clustering is not ideal as it may have difficulty
assigning different minority phases to distinct clusters, as pixels may
belong to multiple clusters due to low spectral selectivity.

The geometry of the data in the (X2, X3) and (Y2, Y3) spaces is
illustrated in Fig. 7A and B, respectively. While more complex than the
geometry observed in the previous example, the observed data points
clouds exhibit some degree of structure. However, determining the
appropriate number of components to consider is not straightforward
given the absence of clear a priori information with this dataset. Convex-

Fig. 2. Raman powder dataset: mean image (A), spectra (B) and spectra of pure salts (C).

A. Olarini et al.
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hull computation provided 19 archetype points in (X2, X3), and 13
archetype points in (Y2, Y3), (black circles in Fig. 7A and B, respec-
tively). Considering the geometry of the data observed in Figs. 7A and 6
archetype points were selected (filled green circles) and the corre-
sponding essential spectra are shown. However, considering Fig. 7B–is
clear that some relevant points, corresponding to clear directions, were
not identified as archetypes, as they are not found at vertices of the data
points cloud in the two-dimensional Y-space. It should be noted that by
applying convex hull calculation to a six-dimensional Y matrix (see
Supplementary Material Fig. S3), these points could be selected, but the
total number of archetypes would be very large. This is not really

needed, though, since they can be manually pointed out in the (Y2, Y3)
plot, resulting in the extraction of 7 essential single-variable images.

The spectra corresponding to points labelled A, C and D in Fig. 7A
correspond to the main mineral phases of pyrite, silica, and turquoise
respectively. Spectrum B shows spectral features corresponding to a
phase where silica has iron inclusions, somehow in between the pyrite
and the main phase of silica. Spectrum F features another pyrite phase,
different from the one observed in A. Lastly, the spectrum corresponding
to pixel E characterizes an intermediate phase between turquoise and
pyrite, where iron and mainly aluminium exchanges occur. The spectral
regions used for the identification are highlighted in blue referring to

Fig. 3. 2-D representation of the X-space (A) colour-coded by point density. Black circles mark the archetypes points (some are close and result overlapped in the
plot) at the vertices of the convex hull computed in the (X2, X3) normalized space. Filled green circles are the selected points and black crosses are the projection of
the pure reference spectra in the (X2, X3) normalized space. In panel B, the spectra corresponding to the green points (black line) with overlapped the pure spectrum
(red line) of the corresponding component. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 4. 2-D representation of the Y-space colour-coded by point density (A). Black circles mark the archetypes points of the convex hull computed in the (Y2, Y3)
normalized space. Filled green circles are the points identified looking at the structure of the data. In panel B, the essential single-wavelength images corresponding to
the 3 identified selective wavelengths. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

A. Olarini et al.
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Kurucz LIBS database [55], following the assessed procedure of Mon-
cayo et al. [42]. These spectra are the purest spectra identified and can
be interpreted as such without further analysis of the data.

In the same way, the essential single-wavelength images extracted
correspond to the information obtained at the most selective wave-
lengths. Images λ1, λ3 and λ7 which are linked to point A, C and D in
Fig. 7B, respectively describe pyrite, silica and turquoise. Image λ2,
corresponding to point B, describes a situation where both pyrite and
silica are present and image λ4 shows the distribution of pyrite, tur-
quoise and silica. It is worth noting that when looking at image λ5, which
does not show any correspondence in the (X2, X3) plot, it could be
hypothesised that it represents a mineral phase where both silica and

turquoise are present. In fact, it lies between image λ3 and λ7 in the (Y2,
Y3) plot. Image λ6, linked to point F, is identified as another form of
pyrite. In addition, it can be noticed that in the right area of both the (X2,
X3) and (Y2, Y3) plots, there is a higher density of points (either pixels or
spectral wavelengths). Since points A and F correspond to spectra that
are associated to pyrite phases, it can be concluded that pyrite is iden-
tified as the major phase in this mineral sample. For comparison pur-
poses, the results obtained by SIMPLISMA are also provided (Fig. S4 in
Supplementary Material). A six-component MCR-ALS model could then
be fitted (LOF = 3 %, r2 = 99 %) and the results are shown in Fig. 8.

The spectra of the first 2 components of the MCR-ALS model are
identified as silica and turquoise phases, respectively. The

Fig. 5. Panel A shows the spectra for the purest pixels obtained by the exploratory analysis (black line), the purest components resolved spectra by MCR-ALS (blue)
and the K-means centroids spectra (green). Centroids spectra are calculated as the average of the spectra of all the pixels belonging to a given cluster. For sake of
clarity an arbitrary vertical offset was added to the MCR-ALS and K-means results. Panel B shows the single-wavelength images extracted with the exploratory
approach, the concentration distribution maps retrieved by MCR-ALS and the clustering maps obtained by K-means clustering. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Mean image (A) and overlapped spectra (B) of the mineral sample dataset.

A. Olarini et al.
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Fig. 7. (A) 2-D representation of the X-space of the mineral sample dataset, colour-coded by point density. Black circles mark the archetypes points at the vertices of
the convex hull computed in the (X2, X3) normalized space. Letters and filled green circles represent the selected points, while the corresponding spectra are shown in
the right panel. (B) 2-D representation of the Y-space, colour-coded by point density. Black circles mark the archetypes points of the convex hull computed in the (Y2,
Y3) normalized space. Filled green circles represent the selected wavelengths, the corresponding refolded images are shown in the right panel. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. MCR-ALS solutions for the mineral sample dataset. Refolded concentration profiles (left) and resolved spectra (right) are shown for each of the 6 components
with the corresponding data variance.

A. Olarini et al.
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corresponding concentration distribution are in agreement with the
images retrieved by the exploratory analysis. Pyrite is identified pri-
marily in the spectral profile of the third component. However, the
spectral profiles observed in the remaining 3 components suggest the
potential occurrence of different pyrite phases characterized by ion ex-
changes, which present challenges for interpretation. This is further
complicated by the fact that the corresponding concentration distribu-
tion maps show very similar distributions. The third MCR component is
the one explaining most of the data variance (52 %) confirming that
pyrite is the major phase. By contrast the variance explained by other
components, is very low, less than 3 % for silica, turquoise and the other
phases of pyrite.

For the sake of comparison, a K-means model was computed setting
the number of clusters to 6. The results are shown in Fig. 9. Cluster 1, 2
and 3 can be associated to silica, turquoise and pyrite phases, respec-
tively. The clustering maps for clusters 4 to 6 reveal distributions
spanning the boundaries between pyrite and the phases described by the
first 2 clusters. The centroid spectra of these clusters are challenging to
interpret, suggesting possible exchanges between iron and aluminium.

MCR-ALS and K-means clustering provide complementary informa-
tion that leads to a more complete understanding of the sample. The
proposed methodology allows for observing the potential complexity of
data exploration prior to implementing MCR and/or K-means. It is
important to note that the exploratory approach not only provides the
same information as the one obtained from data modelling, but also
enables to extract the spectral and spatial features related to the pres-
ence of minority components resulting from ion exchanges between the
main mineral phases. The results obtained for silica, turquoise, and
pyrite are comparable. The centroid spectra obtained by K-means and
identified as pyrite is very comparable with the one extracted exploring
the X-space and MCR-ALS, again because of the high number of pure
pixels in that cluster (being pyrite the major phase, high number of
pixels correspond only to pyrite). The concentration maps of 3 of the
MCR-ALS components and the clustering maps of 3 of the clusters show
the same distribution observed in the purest images extracted from the
Y-space, while the other differ and as discussed above, are not easily
interpretable.

Overall, we may remark that in this challenging scenario, that

deviates from the ideal model underlying both MCR and clustering
techniques, exploratory analysis driven by archetypes identification can
provide insight into the number of components (when going for an
unmixing approach) or clusters (when using clustering) to select. In fact,
traditional methods such as eigenvalues, scree plots, and cluster indices
may not provide unambiguous answers, as illustrated in Fig. S5 in the
Supplementary Material. The exploratory approach employed in this
study offers notable advantages, particularly in the extraction of spectra
and images without the need for complex modelling. Also, convex hulls
need to be calculated for more than 2 components, in order to retrieve
the archetype points for each direction in the Y-space. These findings
emphasize the feasibility and efficiency of our methodology in obtaining
informative data without excessive computational load.

4. Conclusion

Understanding the structure of the data is a key step in the data
analysis workflow of any application. In particular, exploring HSI
datasets, because of their nature and dimensionality, is nontrivial. An
exploratory approach, like the one proposed in this work, demonstrate
to be able to guide extracting the useful information encrypted in the
spectral image of complex samples and furnishing a comprehensive
understanding of the investigated system.

Two different datasets were analyzed in this work by the exploratory
approach and compared with the conventional methods of two widely
used approaches in spectral image analysis: spectral unmixing (MCR-
ALS) and clustering (K-means), with the aim of envisioning their
applicability domain. The shared information, among all methods, in
terms of distribution and spectral signature of retrieved common com-
ponents, concerned major phases and/or the one with selective spectral
profile. In cases, where the application of very well-known methodolo-
gies revealed its limits, looking at the geometry of the data resulted in an
extremely easy and fast way to have better and more complete insights,
with respect to the MCR-ALS and/or K-means ones. The analysis of the
structure of the data could be considered, as any exploratory tool, as
preliminary to allow a more rational choice of the next steps of data
analysis and also to help solve all the cases of limitations for the two
methods, such as the choice of the number of components and clusters,

Fig. 9. K-means results for the mineral sample dataset. Cluster membership maps and the mean spectra are shown for each of the 6 clusters.
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and in the retrieval and identification of the purest species as well as
minor components.

This exploratory approach may have limitations when the data
present a quite uniform distribution with no clear structures, thus
rendering difficult finding the archetype points. However, to the best of
our knowledge, applying appropriate spectral pre-processing could
remove those effects, such as baseline, scatter, etc., that go into making
the data less geometrically structured. In this way, a change in the “data
shape” can be obtained making this approach therefore applicable.
Furthermore, while automation of this process could be considered, it
bears the risk of yielding inaccurate results, as extreme points may also
include noise points requiring visual inspection before selection. More-
over, any automated implementation must carefully consider relevant
parameters and considering convex hull algorithm proves significantly
more reliable in this regard.

In conclusion, this paper highlights also the potential synergy be-
tween the exploratory analysis and the unsupervised methods of clus-
tering and unmixing. Further exploration of their combined application,
which remains relatively unexplored in the scientific community, is
warranted, thus paving the way for a new research direction.
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(FDR2020) Università degli Studi di Modena e Reggio Emilia and
Erasmus+ program University of Modena and Reggio Emilia. A.O. ac-
knowledges LASIRE-DyNaChem research team for fruitful discussion.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chemolab.2024.105174.

References

[1] J.M. Amigo, Hyperspectral and multispectral imaging: setting the scene, Data
Handling Sci. Technol. 32 (2020) 3–16, https://doi.org/10.1016/B978-0-444-
63977-6.00001-8.

[2] B. Gaci, F. Abdelghafour, M. Ryckewaert, S. Mas-Garcia, M. Louargant, F. Verpont,
Y. Laloum, R. Bendoula, G. Chaix, J.M. Roger, A novel approach to combine spatial
and spectral information from hyperspectral images, Chemometr. Intell. Lab. Syst.
240 (2023) 104897, https://doi.org/10.1016/j.chemolab.2023.104897.
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brain tumor segmentation of T1w MRI images, Comput. Methods Progr. Biomed.
140 (2017) 19–28, https://doi.org/10.1016/j.cmpb.2016.11.011.

[26] P. Firmani, S. Hugelier, F. Marini, C. Ruckebusch, MCR-ALS of hyperspectral
images with spatio-spectral fuzzy clustering constraint, Chemometr. Intell. Lab.
Syst. 179 (2018) 85–91, https://doi.org/10.1016/j.chemolab.2018.06.007.

[27] D. ChengX, Z. Cai, J. Li, M. Wen, Y. Wang, A. Zeng, spatial-spectral clustering-
based algorithm for endmember extraction and hyperspectral unmixing, Int. J.
Rem. Sens. 42 (2021) 1948–1972.

[28] J.W. Tukey, Exploratory Data Analysis, vol. 2, Addison-Wesley Publishing
Company, 1977.

[29] M. Li Vigni, C. Durante, M. Cocchi, Exploratory Data Analysis, first ed., Elsevier,
2013 https://doi.org/10.1016/B978-0-444-59528-7.00003-X.

[30] M. Ghaffari, N. Omidikia, C. Ruckebusch, Essential spectral pixels for multivariate
curve resolution of chemical images, Anal. Chem. 91 (2019) 10943–10948,
https://doi.org/10.1021/acs.analchem.9b02890.

[31] L. Coic, R. Vitale, M. Moreau, D. Rousseau, J.H. de Morais Goulart, N. Dobigeon,
C. Ruckebusch, Assessment of essential information in the fourier domain to

A. Olarini et al.

https://doi.org/10.1016/j.chemolab.2024.105174
https://doi.org/10.1016/j.chemolab.2024.105174
https://doi.org/10.1016/B978-0-444-63977-6.00001-8
https://doi.org/10.1016/B978-0-444-63977-6.00001-8
https://doi.org/10.1016/j.chemolab.2023.104897
https://doi.org/10.1016/j.aca.2021.338361
https://doi.org/10.1016/j.aca.2021.338361
https://doi.org/10.1117/1.jbo.19.1.010901
https://doi.org/10.3390/RS12162659
https://doi.org/10.3390/RS12162659
https://doi.org/10.1109/79.974727
https://doi.org/10.1016/j.trac.2017.07.004
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref8
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref8
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref8
https://doi.org/10.1016/0169-7439(95)00047-X
https://doi.org/10.1016/0169-7439(95)00047-X
https://doi.org/10.1021/ac8022197
https://doi.org/10.1016/j.chemolab.2010.05.020
https://doi.org/10.1016/j.chemolab.2010.05.020
https://doi.org/10.1016/j.envsoft.2023.105782
https://doi.org/10.1016/j.envsoft.2023.105782
https://doi.org/10.1007/s43939-021-00015-x
https://doi.org/10.1016/j.aca.2023.341761
https://doi.org/10.1016/j.aca.2023.341761
https://doi.org/10.1016/j.trac.2020.116044
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref16
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref16
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref16
https://doi.org/10.9790/3021-0204719725
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref18
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref18
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref18
https://doi.org/10.1109/TPAMI.2002.1114856
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref20
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref20
https://doi.org/10.1109/36.841986
https://doi.org/10.1016/J.ACA.2015.04.053
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref23
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref23
https://doi.org/10.1109/LGRS.2009.2025059
https://doi.org/10.1016/j.cmpb.2016.11.011
https://doi.org/10.1016/j.chemolab.2018.06.007
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref27
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref27
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref27
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref28
http://refhub.elsevier.com/S0169-7439(24)00114-X/sref28
https://doi.org/10.1016/B978-0-444-59528-7.00003-X
https://doi.org/10.1021/acs.analchem.9b02890


Chemometrics and Intelligent Laboratory Systems 252 (2024) 105174

10

accelerate Raman hyperspectral microimaging, Anal. Chem. 95 (2023)
15497–15504, https://doi.org/10.1021/acs.analchem.3c01383.

[32] S.V. Zade, K. Neymeyr, M. Sawall, C. Fischer, H. Abdollahi, Data point importance:
information ranking in multivariate data, J. Chemom. 37 (2023) 1–15, https://doi.
org/10.1002/cem.3453.

[33] V.H.C. Ferreira, V. Gardette, B. Busser, L. Sancey, S. Ronsmans, V. Bonneterre,
V. Motto-Ros, L. Duponchel, Enhancing diagnostic capabilities for occupational
lung diseases using LIBS imaging on biopsy tissue, Anal. Chem. (2024), https://doi.
org/10.1021/acs.analchem.4c00237.

[34] Q. Wu, C. Marina-Montes, J.O. Cáceres, J. Anzano, V. Motto-Ros, L. Duponchel,
Interesting features finder (IFF): another way to explore spectroscopic imaging
data sets giving minor compounds and traces a chance to express themselves,
Spectrochim. Acta Part B At. Spectrosc. 195 (2022), https://doi.org/10.1016/j.
sab.2022.106508.

[35] M. Ghaffari, N. Omidikia, C. Ruckebusch, Joint selection of essential pixels and
essential variables across hyperspectral images, Anal. Chim. Acta 1141 (2021)
36–46, https://doi.org/10.1016/j.aca.2020.10.040.

[36] S. Khodadadi Karimvand, J. Mohammad Jafari, S. Vali Zade, H. Abdollahi,
Practical and comparative application of efficient data reduction - multivariate
curve resolution, Anal. Chim. Acta 1243 (2023) 340824, https://doi.org/10.1016/
j.aca.2023.340824.

[37] M. Sawall, C. Ruckebusch, M. Beese, R. Francke, A. Prudlik, K. Neymeyr, An active
constraint approach to identify essential spectral information in noisy data, Anal.
Chim. Acta 1233 (2022) 340448, https://doi.org/10.1016/j.aca.2022.340448.

[38] R. Vitale, C. Ruckebusch, On a black hole effect in bilinear curve resolution based
on least squares, J. Chemom. 37 (2023) 1–7, https://doi.org/10.1002/cem.3442.
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