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Abstract: Enantioselective organocatalysis has quickly established itself as the third pillar of asymmet-
ric catalysis. It is a powerful technology platform, and it has a tremendous impact in both academic
and industrial settings. By focusing on pregabalin, as a case study, this Perspective aims to show how
a process amenable to industry of a simple chiral molecule can be tackled in several different ways
using organocatalysis.
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1. Introduction

Sustainability is a critical goal of modern society. In the frame of the pivotal role played
by chemistry and catalysis toward the sustainability goals, asymmetric organocatalysis is
an important technological platform. Despite being a relatively young field, its high impact
has been recognized recently with the award of a Nobel prize to List and MacMillan [1].
Organic molecules were previously sporadically used as catalysts for asymmetric reactions;
however, it was the two seminal papers by List [2] and MacMillan [3] that conceptualized
the field at its beginning, in 2000. In addition to the breakthrough chemistry shown, the
introduction of the term “organocatalysis” [3] was prophetic of the value of the disclosure.
Several factors may help to understand why asymmetric organocatalysis is relevant to
a sustainable industry; catalysts do not contain endangered elements and can be largely
derived from non-depleting resources, general modes of activation, biomimetic aspects,
low cost and stability of the catalysts, ease of operation, and relative ease of scale-up.

Asymmetric organocatalysis is a prime example of a young and disruptive field [4,5]
that has entered and affected industry just after few years it was discovered; it is routinely
screened in industry when developing a commercial process although, for several reasons,
few of the processes are reported in the primary literature [6–8].

It is interesting to note that some prominent examples of the use of organic molecules
as asymmetric catalysts had been reported years before the advent of organocatalysis. In
the 1970s, Eder, Sauer, Wiechert (Schering AG) [9] and Hajos and Parrish (Hoffmann-La
Roche) [10] developed a Robinson annulation catalyzed by L-proline for the synthesis of
key building blocks for steroids, although the mechanism they proposed was not fully
convincing. Subsequently, in the 1980s, Dolling and Grabowski (Merck Sharp & Dome) [11]
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published the first example of a highly enantioselective phase-transfer alkylation reaction,
as a key step to (+)-indacrinone, using a Cinchona alkaloid derivative as a catalyst.

Despite all the intrinsic advantages of organocatalysis for an industrial process, its
typically high catalyst loadings, due to low TONs and TOFs, have sometimes hampered
its adoption in industry, or at least this has been the perception for most of the scientific
community. Therefore, considerable efforts have been put forward, especially in academic
settings, to address the low productivity exhibited by organocatalysts. Means to recycle
and reuse organocatalysts [12,13], the development of highly active catalysts [14–17], immo-
bilization of organocatalysts over solid supports [18–25], and the combination of different
catalytic cycles [26–32] are some of the strategies that have been reported.

Catalysis is a key technology for the future, and discoveries and developments in
academia bring a high added value to industry. Fortunately, the influence of academia
on industry can also be the reverse. For example, academia has adopted the Design of
Experiments (DoE), a tool used in industry to optimize reactions or verify the robust-
ness of prospective commercial processes and used it in the realm of organocatalysis as
well [33–36].

Driven by our own experience, this Perspective will focus on pregabalin (Lyrica™)
as a representative case study, to showcase how a process for a blockbuster drug may be
tackled from different angles. Selected reports focusing on asymmetric organocatalysis
as the key technology will be discussed, to show how different approaches and solutions
may bring about interesting and successful advancements; the reader may refer to previous
reviews for more comprehensive related literature overviews [6,7,37].

2. Pregabalin

Pregabalin is the active pharmaceutical ingredient (API) of blockbuster drugs [38]
useful for the treatment of many conditions related to the central nervous system, such as
seizure and anxiety disorders, neuropathic pain, fibromyalgia, and epilepsy. The API is a
relatively simple γ-amino acid, (S)-3-aminomethyl-5-methyl-hexanoic acid [6,7,37,39].

Pfizer, pregabalin’s originator, developed an initial manufacturing process that was
based on a classical resolution via mandelic acid in the last step. However, the demand for
large volumes of the API required finding more sustainable alternatives to this approach.
Enantioselective syntheses were evaluated [40–44]; eventually, an enzymatic kinetic resolu-
tion was pivotal to developing an extremely efficient process (Scheme 1) [45]. The route
makes use of low-cost materials, simple chemistry, and high throughput due to the highly
concentrated enzymatic reaction. A Knoevenagel reaction between diethyl malonate and
isovaleraldehyde yields alkylidene malonate 3, which is subjected to cyanide conjugate
addition to generate rac-4. An efficient lipolase kinetic resolution, accompanied by simple
recycling of the off-enantiomer, produces (S)-4 in high ee and conversion. The subsequent
steps are also carried out in water as the reaction medium; decarboxylation, saponification,
and reduction of the nitrile yield pregabalin with a high overall yield and in basically
enantiopure form.

In the following years, many alternative routes to pregabalin have been disclosed. On
one hand, the simple structure of pregabalin—a γ-amino acid—made it an ideal benchmark
to rapidly prove the utility of new catalytic asymmetric methodologies; on the other hand,
more importantly, the huge commercial success of pregabalin stimulated dramatic efforts
towards non-infringing routes for generic market production. Overall, the literature reports
several classical and kinetic resolution approaches, mostly enzymatic [37], accompanied by
several catalytic enantioselective routes [46–48].
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Scheme 1. Pfizer’s process to pregabalin implementing a lipolase kinetic resolution (2008).

The γ-amino acid structure of pregabalin lends itself to several combinations of func-
tional group interconversions and disconnections, which would enable use of simple
starting materials. However, from a commercial perspective, there are several key factors to
consider in addition to the feasibility of the chemistry and the apparent structural simplicity
of the starting materials. These key factors include the actual economic viability of all
materials including the catalysts, along with the amenability of the reaction conditions to in-
dustrialization. In the following paragraphs, we focus on selected relevant organocatalytic
approaches that introduced interesting and inventive solutions.

Maruoka and co-workers employed chiral phase-transfer catalyst 9 to impart enan-
tioselectivity to the same conjugate addition used by Pfizer (Scheme 2) [49]. By using a
biphasic cyclopentane/water mixture, along with sodium or potassium cyanide as cyanide
sources, high ees were obtained. Interestingly, supposedly to quench the enolate resulting
from cyanide addition, the use of protic additives proved to be critical to achieving the
catalyst turnover.
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Scheme 2. Maruoka’s enantioselective conjugate addition of cyanide to alkylidene malonates (2013).

Different but intensely pursued approaches to pregabalin have been based on the
desymmetrization of glutaric anhydride 10, which resulted in a chiral monocarboxylic
acid intermediate such as 11. The downstream chemistry from this intermediate to prega-
balin was rather simplistic and was based on nitrene rearrangements such as Curtius’s or
Hofmann’s (Scheme 3). Hameršak and co-workers [50] applied a previous protocol from
Bolm’s group [51] to the synthesis of pregabalin. Stoichiometric amounts of quinine 14
were used as a chiral promoter in the desymmetrization step; the moderate enantioen-
riched product 11 (ca. 70% ee) was crystallized with (S)-1-phenylethylamine to improve
the enantiomeric excess to 97%. Curtius rearrangement, via acyl azide, and trapping of the
isocyanate with benzyl alcohol afforded 12. Two Pd-catalyzed deprotections in sequence
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yielded pregabalin in essentially enantiopure form. The overall sequence was demonstrated
on a multi-gram scale and did not require chromatographic purifications.
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Scheme 3. Organocatalytic desymmetrization of glutaric anhydride for the synthesis of pregabalin
catalyzed by quinine 14 (2007).

A Cinchona derivative, quaternized at the quinuclidine nitrogen thus inducing a
different type of activation, was also employed by Moccia, Adamo, and co-workers who
demonstrated a process to pregabalin on kg-scale (Scheme 4) [52,53]. They employed the
Cinchona-derived phase-transfer catalyst 20 for the conjugate addition of nitromethane to
17. The key material 17 was based on their brand α,β-unsaturated acid acceptor surrogates
derived from 3,5-dimethyl-4-nitroisoxazole 16 [54]. Phase-transfer catalysis imparted
good enantioselectivity in the Michael addition (72% ee); further recrystallisation was
able to yield enantiopure 18 (>99% ee), with an impact on the yield. Basic hydrolysis
unmasked the carboxylate, with subsequent telescoped reduction and pH adjustment
providing pregabalin. The process afforded pregabalin in 54% overall yield and >99% ee
over six steps, using cost-effective raw materials and catalyst. The possibility to recover and
reuse the phase-transfer catalyst through immobilization on a resin-exploiting electrostatic
interactions was demonstrated too.

Nitromethane was also used in the enantioselective conjugate addition to 5-methyl-
2-hexenal 21. The organocatalytic approach developed by Hayashi and co-workers [55]
exploited the Hayashi/Jørgensen catalyst (R)-23, derived by D-Proline, to deliver intermedi-
ate 22 in moderate yield and good optical purity, which was easily converted to pregabalin
in two steps (Scheme 5). The approach to pregabalin by Hayashi was supposedly used
to demonstrate the usefulness of the developed reaction; in fact, as may be expected by
an academic paper, they did not tackle process related issues, such as enantiopurity, cat-
alyst loading, or the safety of using nitromethane (vide infra). However, the use of the
Hayashi/Jørgensen catalyst 23 is appealing from a commercial point of view; it has been
previously used in an industrial setting [56]. Therefore, issues for its production have been
already assessed, demonstrating the affordability of its production at scale.
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Scheme 5. Enantioselective conjugated addition of nitromethane to 21 catalyzed by (R)-23 (2007).

The enantioselective addition of malonates to nitroalkene 24 (Scheme 6) is another
successful approach to access pregabalin [57]. Many examples are present in the literature,
and they mostly involve the use of bifunctional catalysts, i.e., bearing a tertiary amine
adorned with hydrogen-bond donors. Representative examples are Takemoto’s catalyst [58],
des-methyl quinine and quinidine derivatives [59], (thio)ureas [60,61], and squaramides [62]
derived from Cinchona alkaloids. A selection of representative catalysts and the results
they afforded [63–66] are reported in Scheme 6. Bifunctional catalysts are efficient in
imparting enantioselectivity because they coordinate, activate, and bring together both
reaction partners. An important challenge of this reaction, as opposed to similar ones
using nitrostyrene derivatives, is the instability and the difficulty to prepare and purify
(vide infra) aliphatic nitroalkene 24; furthermore, it is less electrophilic than its aromatic
counterparts, and it can also give rise to secondary reactions via isomerization of the double
bond. This, in turn, is also reflected in higher catalyst loadings needed that will, eventually,
also increase the cost of the process.

The process developed by Dr. Reddy’s laboratories, indeed, was centered on the
enantioselective addition of dimethyl malonate to nitroalkene 24 as the asymmetric step.
The innovation lay in the nontrivial application of two enabling technologies, i.e., continu-
ous chemistry for safe access to nitroalkene 24 and asymmetric organocatalysis to impart
enantioselectivity in the Michael addition (Scheme 7) [67]. In most contributions reviewed,
the production of nitroalkene 24 is a neglected aspect; at Dr. Reddy’s, they showed that an
economically viable route needs to circumvent the costly dehydration of the Henry adduct,
along with chromatographic purification. Furthermore, purification by distillation should
be avoided due to poor thermal stability. Therefore, a flow process was developed to yield
25 of quality high enough for the subsequent step, without requiring purification. The
catalytic step, performed under neat conditions, was demonstrated on a >2 Kg scale at 0.5
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mol% loading of the squaramide catalyst 30. Moreover, the catalyst was recovered in 59%
yield and could be reused without any appreciable loss of activity/selectivity.
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Scheme 7. Process to pregabalin developed at Dr. Reddy’s (2021; patent application 2013).

In lieu of malonates, the addition of acetaldehyde to nitroalkene 24 might also be an
interesting route to pregabalin; in fact, it would avoid some of the downstream associated
with the use of malonates, and it may be catalyzed by Hayashi/Jørgensen catalyst that, as
discussed previously, has already been used on scale and is relatively affordable. However,
the use of acetaldehyde brings additional challenges; both acetaldehyde and the resulting
products are very reactive and can readily give further condensations. Additionally, it is
toxic, flammable, and very difficult to handle at scale. In some cases, careful tuning of
reaction conditions helped to overcome some of the challenges associated with acetalde-
hyde [68,69]. Some successful reports where acetaldehyde was used in combination with a
range of nitroalkenes 31 have been published (Scheme 8). The first two groundbreaking and
successful publications were by List and Hayashi; in one instance, 10 equiv. of acetaldehyde
were needed [70] (Scheme 8a), while in another instance, 5 equiv. were added via syringe
pump [71] (Scheme 8b). In both cases, relatively high loadings of organocatalyst (S)-23
were required, affording products 32 in moderate to good yields and high ees.
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Pericàs and coworkers devised the use of paraldehyde 33 as an acetaldehyde surrogate;
by using immobilized organocatalysts and segregating them in teabags, they were able to
afford the desired products in good yields and ees (Scheme 9a) [72]. In more detail, a com-
bination of polystyrene-supported aminocatalyst 34, capable of activating the acetaldehyde
substrate for the enantioselective addition, was employed in combination with sulfonic acid
resins, essential for the generation of acetaldehyde in situ from the paraldehyde precursor.
While the equivalents of acetaldehyde were high (10 equiv.), they ingeniously tackled the
issue of using a toxic and difficult to handle chemical, providing a good perspective for its
application on scale. Addressing these challenges, our group recently reported the use of
another, possibly safer to handle and more appealing, acetaldehyde precursor for these re-
actions: dimethyl acetal 36 (Scheme 9b) [73]. By using a homogeneous Hayashi/Jørgensen
catalyst (S)-23, in combination with Amberlyst-15, we were able to afford the desired
products in high yields and ees, not only with a range of nitroalkenes 31 but also with the
less reactive nitroalkene 24 required for pregabalin, with relatively low catalyst loadings.
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Although the developed reaction with acetaldehyde dimethyl acetal 36 proved inter-
esting, the use of chloroform as a solvent is desirable to avoid, especially if the process is
aimed for an industrial protocol. Therefore, our group decided to explore the possibility of
using water as a benign solvent. In order to optimize a reaction involving many variables,
many experiments were needed using the one variable at a time (OVAT) approach. With
this in mind, we set out to screen the multidimensional space using Design of Experiments,
a tool that is routinely used in industry to optimize catalytic reactions but rather limited
in academia [34]. Indeed, via a rational exploration of the chemical space, an industrially
appealing protocol for the Michael addition of acetaldehyde to nitroalkenes in water was
developed using DoE (Scheme 9c) [33]. Unfortunately, a limitation of the reaction in water
was its application to aliphatic nitroalkenes; therefore, presently, it cannot be applied to
access pregabalin.

3. Conclusions

Asymmetric organocatalysis is, undoubtedly, a key technology platform both in
academia and in industry. In recognition of its impact in basic as well as in applied
research, a Nobel prize was very recently awarded to leading chemists in the field. By
focusing on selected developments for the preparation of pregabalin as a case study, this
perspective showed how discoveries in academia help to advance industry and vice-versa.
Indeed, organocatalysis proved to be a very powerful multifaceted type of catalysis; in
fact, due to several different organocatalytic activation modes, the preparation of a very
simple chiral molecule, such as pregabalin, can be tackled with a variety of approaches.
Supported by the examples provided as a case study, we believe that collaboration between
academia and industry is crucial for the advancement of the field, and the discoveries and
developments made in the public and private sector can benefit greatly by cooperation.

Author Contributions: Conceptualization, L.B., F.F., A.C., F.P. and F.S.; writing—original draft
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