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Abstract: In this paper, the existence of a mild solution to the Cauchy problem for impulsive semi-
linear second-order differential inclusion in a Banach space is investigated in the case when the
nonlinear term also depends on the first derivative. This purpose is achieved by combining the
Kakutani fixed point theorem with the approximation solvability method and the weak topology.
This combination enables obtaining the result under easily verifiable and not restrictive conditions on
the impulsive terms, the cosine family generated by the linear operator and the right-hand side while
avoiding any requirement for compactness. Firstly, the problems without impulses are investigated,
and then their solutions are glued together to construct the solution to the impulsive problem step by
step. The paper concludes with an application of the obtained results to the generalized telegraph
equation with a Balakrishnan–Taylor-type damping term.
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1. Introduction

The theory of impulsive differential equations has undergone considerable develop-
ment in recent years since it serves as realistic mathematical descriptions of real situations
containing abrupt changes, as well as other phenomena, such as harvesting or treatment of
diseases. The study of the multivalued case of differential inclusions takes into account the
presence of discontinuous right-hand sides, and it is related to control theory problems,
arising from practical applications concerning population genetics, power-law fluids, and
many other branches.

For the basic theory on impulsive differential equations and inclusions in finite-
dimensional spaces, the reader is referred to the literature [1–3]. The recent results about
impulsive differential equations and inclusions can be found, e.g., in [4–7] or [8] and see
also the references therein.

The investigation of impulsive differential equations and inclusions in infinite-dimen-
sional Banach spaces has been undertaken by a lot of authors starting from the end of
the last century—see, e.g., [9–12] and the references therein for the problems governed by
first-order impulsive equations.

The theory for the first-order problems in Banach spaces has been quite deeply stud-
ied in comparison to the higher-order problems that still possess many unsolved tasks.
In [13,14], the existence of strong solutions to Cauchy problems for implicit linear equations
in Banach spaces with irreversible operators in the main part, i.e., Sobolev-type equations,
was studied by reducing the problem into a system of the two first-order semilinear equa-
tions and introducing the concept of a degenerate semigroup, which extends the classical
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definition of semigroup. In [14], the authors also applied Lyapunov–Schmidt’s method
to singular linear differential equations, which, in the case when the main part consists
of a Fredholm operator, allowed studying the existence of classical solutions by reducing
infinite-dimensional equations into finite-dimensional ones. Moreover, on the basis of the
formulas obtained in [14], it was possible to describe the set of both the initial conditions
and the right-hand sides under which the problem turns out to be solvable in the class of
classical solutions. One of the main advantages of the theorems obtained in [13,14] lies
in the fact that the results have a constructive character and can be easily implemented
on computers. In [15,16], the existence of a classical solution for an implicit evolutionary
inclusion in a separable Hilbert space was obtained by introducing the concept of a resol-
vent and Yosida approximation of a maximal monotone operator with respect to a strongly
linear monotone operator.

Several authors have been also studying the semilinear second-order problems in
Banach spaces—see, e.g., [17–20] or [21]. In these papers, the existence of mild solutions to
the second-order (impulsive) initial value problems in the case when the right-hand side
(r.h.s.) does not depend on the first derivative of a solution was investigated.

Only a few authors have dealt with the second-order problem in a Banach space whose
r.h.s. also depends on the first derivative (sometimes solving the second-order problem by
reducing it to a first-order equation)—see, e.g., [22–31] and the references therein. In [22,23],
the operator A (in Equation (1) below) was supposed to be bounded, and impulses were
not present; however, boundary value problems were studied there instead of the Cauchy
problem. In [24,25], a mild solution to a not impulsive problem with a nonlocal boundary
condition was obtained, and in the second paper, the nonlinearity was allowed to also
depend on an integral term, but in both cases, the r.h.s. must satisfy the Lipschitz condition.
In [27], Lipschitz assumptions were used too—the Lipschitz continuity of the r.h.s. was
required, and the Lipschitz continuity of the impulse conditions and a Lipschitz-type
condition on the derivative of the cosine family generated by the linear part along the
impulses were proposed. Furthermore, in [28], the local Lipschitz continuity put on the
r.h.s. played the key role in the proof of the main result. In [29], the linear operator A
depends on t, and the existence of a mild solution for the Cauchy problem has been studied
in the case of a C1 nonlinear term. In [30,31], the authors, respectively, studied the Cauchy
problem for a functional semilinear integro-differential equation and the Cauchy problem
for an impulsive problem, assuming in both cases that the cosine family generated by the
linear part is compact.

Some of the too strong assumptions put on the r.h.s. and/or the impulsive conditions
(mainly the Lipschitz continuity put on the r.h.s. and on impulse conditions) were removed
in [26], where the second-order impulsive integro-differential evolution equations in Banach
spaces were studied. Conversely, some quite strict or not easily verified conditions, such as
uniform continuity of the r.h.s. or employment of the measure of non-compactness within
the assumptions, remained in the paper.

The aim of this paper is to study the existence of mild solutions to second-order
multivalued impulsive problems in infinite-dimensional Banach spaces without reducing
the second-order problem to a first-order one. The results are obtained under easily
verifiable conditions and without assuming any compactness on the impulsive terms
and/or to the r.h.s., which becomes the main advantage of the paper.

More concretely, the paper deals with the Cauchy problem for impulsive semilinear
second-order differential inclusion in a Banach space of the form

ẍ(t) ∈ Ax(t) + F(t, x(t), ẋ(t)), for a.a. t ∈ [0, T] \ {t1, t2, · · · , tm},
∆x|t=tk = Ik(x(tk), ẋ(tk)), k = 1, 2, . . . , m,
∆ẋ|t=tk = Ik(x(tk), ẋ(tk)), k = 1, 2, . . . , m,

x(0) = x0, ẋ(0) = x0.

 (1)

Throughout the paper, we assume:
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(i) E is a reflexive Banach space that has a Schauder basis;
(ii) A : D(A) ⊂ E→ E, D(A) dense in E, is a closed, linear, and densely defined operator

generating a cosine family {C(t)}t∈R;
(iii) F : [0, T]× E× E ( E is multivalued mapping with nonempty, bounded, closed and

convex values;
(iv) x0, x0 ∈ E;
(v) Ik, Ik ∈ C(E× E, E), for all k = 1, 2, . . . , m.

The proof of our main results will be based on the Kakutani fixed point theorem
for multivalued mappings. The direct use of the fixed point theorem requires strong
compactness conditions, which are usually guaranteed by requiring the compactness of
the cosine family generated by the linear term or assuming some conditions based on
employing the measure of noncompactness of the nonlinear term.

In this paper, the approximation solvability method will be applied, which consists
of introducing a sequence of approximating problems with values in finite-dimensional
spaces, combined with the usage of the weak topology, which will allow avoiding any
requirement of compactness. A limiting argument will then lead to a solution to the original
problem. As a consequence of the used techniques, the obtained solution will be localized
in a suitable bounded set.

The existence of a mild solution for the Cauchy impulsive problem (1) will be obtained
by a step-by-step reduction of the impulsive problem to problems without impulses. The
results will be proven without the transformation of the second-order problem to the
first-order one because such a transformation may lack important information about the
original problem.

The approximation solvability method that will be used was introduced in [32] to study
fully nonlinear first-order problems in Hilbert spaces. Its application was then extended to
first-order semilinear problems in Banach spaces in [33] and to fully nonlinear second-order
problems in Hilbert spaces in [34]. To the best of our knowledge, our paper is the first paper
that applies the approximation solvability method to semilinear second-order problems.

As mentioned before, weak topology will also be employed. It was first exploited to
prove existence results in [35]. A lot of papers then appeared, where the same technique
was applied to study first- and second-order equations and inclusions (of functional and
neutral types), fractional equations, controllability problems, and so on. In particular, it
was used in [36] to obtain the existence of a solution for a semilinear second-order equation
in a Banach space with the r.h.s. not depending on the first derivative. In this paper, we
will extend the results in [36] to differential inclusions with the r.h.s. also depending on the
first derivative.

The paper is organized as follows. In Section 2, the necessary preliminaries about
cosine families and multivalued analysis are mentioned. This section also contains lemmas
and propositions that are used in the proof of our main results. The main theorems for
problems without impulses are contained in Section 3. Subsequently, making use of the
results for non-impulsive problems, the impulsive ones are studied in Section 4. Finally, the
application of the proved theory to a generalized telegraph equation with a Balakrishnan–
Taylor-type damping term is shown in Section 5.

2. Preliminaries

Let E be an infinite-dimensional real Banach space with norm ‖ · ‖, and let us denote
the Banach space dual to E by E∗. The notation L(E) stands for the Banach space of linear
and bounded operators from E into itself. For every x ∈ E and r > 0, Br(x) is the open ball
centered in x with radius r. Throughout this paper, by Eω , we denote the space E endowed
with the weak topology. Given C ⊂ E and ε > 0, the symbol B(C, ε) will denote, as usual,
the set C + εB, where B is the open unit ball in E, i.e., B = B1(0) = {x ∈ E | ||x|| ≤ 1}.
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We denote the C([0, T], E)-norm and the C1([0, T], E)-norm, respectively, by || · ||C and
|| · ||C1 , defined by

||x||C = max
t∈[0,T]

||x(t)||, for all x ∈ C([0, T], E),

||x||C1 = max{||x||C, ||ẋ||C}, for all x ∈ C1([0, T], E)

and the L1([0, T], E)-norm by || · ||L1 defined for all x ∈ L1([0, T], E) by

||x||L1 =
∫ T

0
||x(t)|| dt.

Let PC1([0, T], E) be the space of all functions x : [0, T]→ E such that

x(t) =



x[0](t), for t ∈ [0, t1],
x[1](t), for t ∈ (t1, t2],
.
.
.
x[m](t), for t ∈ (tm, T],

(2)

where x[0] ∈ C1([0, t1], E), x[i] ∈ C1((ti, ti+1], E), x(t+i ), and ẋ(t+i ) exist in E for every
i = 1, . . . , m. For x ∈ PC1([0, T], E), ∆x|t=tk denotes the jump of x(t) at t = tk, i.e., ∆x|t=tk =
x(t+k )− x(t−k ), where x(t+k ) and x(t−k ) represent the right and left limit of x(t) at t = tk,
respectively, and ∆ẋ|t=tk has a similar meaning. In a similar way, we can define the
space PC([0, T], E) as the space of functions x : [0, T] → E, satisfying Definition (2), with
x[0] ∈ C([0, t1], E), x[i] ∈ C((ti, ti+1], E), for every i = 1, . . . , m. The space PC([0, T], E) is a
normed space endowed with the norm

||x||PC := sup
t∈[0,T]

||x(t)|| (3)

and the space PC1([0, T], E) is a normed space with the norm

||x||PC1 := max{||x||PC, ||ẋ||PC}. (4)

Definition 1. A sequence {en}n of vectors in E is a Schauder basis for E if for every x ∈ E, there
exists a unique sequence of real numbers αn = αn(x), n ∈ N, such that∥∥∥∥∥x−

n

∑
i=1

αiei

∥∥∥∥∥→ 0, as n→ ∞.

Given a Schauder basis {en}n for E, let En = span{e1, . . . , en} denote the n-dimensional
Banach space generated by the first n vectors of the basis, and let Pn : E→ En be the natural
projection of E onto En, i.e.,

Pn

(
∞

∑
k=1

αkek

)
=

n

∑
k=1

αkek.

It holds that αn ∈ E∗ for every n ∈ N (see [37], pp. 18–20) and that the sequence {‖Pn‖}n is
bounded, i.e., there exists K ≥ 1, such that

‖Pn(x)‖ ≤ K‖x‖ ∀n ∈ N, ∀x ∈ E (5)

(see [38], (Proposition 1.a.2)). The Schauder basis {en}n is said to be monotone if K = 1, i.e.,
if ‖Pn‖ = 1, for every n ∈ N.
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Remark 1. Trivially, if E is a separable Hilbert space, every orthonormal system of E is a monotone
Schauder basis. Moreover, if a Banach space admits a Schauder basis, it is separable. On the other
hand, it was proven in [39] that there exists a separable Banach space without a Schauder basis.
However, for every 1 < p < ∞ and for each bounded subset Ω ⊂ Rn, Lp(Ω,R) has a monotone
Schauder basis (see, e.g., [40], (Chap. 1.3 and 1.4)).

Some of the main properties of the projection Pn are contained in the following lemma
(see [33] (Lemma 2.2), [34] (Lemma 6), and [41] (Proposition 2.4)).

Lemma 1. The projection Pn : E→ En satisfies the following properties:

(a) Pn : Eω → En is continuous;
(b) If xn → x, then Pn(xn)→ x;
(c) If xn ⇀ x, then Pn(xn) ⇀ x;
(d) If fn ⇀ f in L1([0, T], E), then Pn fn ⇀ f in L1([0, T], E),
(e) For every x ∈ E, ||Pn(x)− x|| → 0.

In the following, the cosine family generated by the operator A will be employed. For
this purpose, its definition and main properties will be discussed now.

A one-parameter family {C(t)}t∈R of bounded linear operators mapping the space E
into itself is called a strongly continuous cosine family if:

• C(t + s) + C(s− t) = 2C(s)C(t), for all t, s ∈ R;
• C(0) = I;
• The map t→ C(t)x is continuous in R for each fixed x ∈ E.

If {C(t)}t∈R is a strongly continuous cosine family, then there exist M ≥ 1 and ω ≥ 0
such that, for all t ∈ R,

‖C(t)‖ ≤ Meω|t| (6)

and moreover, the set

D(A) =

{
x ∈ E : ∃ lim

t→0+

C(t)x− x
t2

}
is dense in E.

The linear closed operator A : D(A) ⊂ E→ E defined by

Ax =
d2

dt2

[
C(t)x

]
t=0

= 2 lim
t→0+

C(t)x− x
t2

is called the infinitesimal generator of the cosine family.
In what follows, we shall also make use of the following set:

X =

{
x ∈ E |C(·)x is continuously differentiable

}
.

The one-parameter family {S(t)}t∈R of the bounded linear operators mapping the
space E into itself defined, for all t ∈ R and x ∈ E, by

S(t)x =
∫ t

0
C(s)x ds (7)

is called the strongly continuous sine family associated with the cosine family.
The families {S(t)}t∈R and {C(t)}t∈R possess several important properties; the most

crucial are summarized in the following lemma.

Lemma 2. (see, e.g., [42] (Propositions 2.1, 2.2)) The families {C(t)}t∈R and {S(t)}t∈R satisfy
the following properties:

(a) C(t) = C(−t), for all t ∈ R;
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(b) S(t) = −S(−t), for all t ∈ R;
(c) The map t→ S(t)x is continuous, for each fixed x ∈ E;
(d) S(s + t) + S(s− t) = 2S(s)C(t), for all t, s ∈ R;
(e) S(s + t) = S(s)C(t) + S(t)C(s), for all t, s ∈ R;
(f) For all t, t̂ ∈ R, ∣∣S(t)− S(t̂)

∣∣ ≤ M
∣∣∣∣∫ t

t̂
eω|s| ds.

∣∣∣∣ (8)

(g) C(s), S(s), C(t), and S(t) commute, for all t, s ∈ R;
(h) S(t)x ∈ X, for every t ∈ R, x ∈ E;

(i) S(t)x ∈ D(A), lim
t→0

AS(t)x = 0, d
dt C(t)x = AS(t)x and d2

dt2 S(t)x = AS(t)x, for every

x ∈ X, t ∈ R;
(j) C(t)x ∈ D(A), d2

dt C(t)x = AC(t)x = C(t)Ax, and AS(t)x = S(t)Ax, for every x ∈
D(A), t ∈ R;

(k) C(t + s)− C(t− s) = 2AS(t)S(s), for all s, t ∈ R.

It follows from the definition of S that S(0) = 0. Therefore, using Equation (8), it is
easy to prove that

‖S(t)‖ ≤
{

M |eω|t|−1|
ω if ω 6= 0

M|t| if ω = 0.
(9)

In the following, we will use the next lemma.

Lemma 3. Let [a, b] ⊂ R be a compact interval and E a Banach space. Then, the map c :
[a, b]× E→ E defined as

c(t, x) = C(t)x

is continuous.

Proof. Fix (t0, xa), (t, x) ∈ [a, b]× E. Then, it follows from Equation (6) that

‖c(t, x)− c(t0, xa)‖ = ‖C(t)x− C(t0)xa‖ ≤ ‖C(t)x− C(t)xa‖+ ‖C(t)xa − C(t0)xa‖
≤ Meω|t|‖x− xa‖+ ‖C(t)xa − C(t0)xa‖.

Since t → C(t)xa is continuous, it is possible to find the constant δ > 0 for every ε > 0,
such that, if |t− t0| ≤ δ, then ‖C(t)xa − C(t0)xa‖ ≤ ε. Thus, assuming without a loss of
generality that δ ≤ ε and taking (t, x) ∈ [a, b]× E with |t− t0| ≤ δ and ‖x− xa‖ ≤ δ, we
obtain that

‖c(t, x)− c(t0, xa)‖ ≤ Meω max{|t0−δ|,|t0+δ|}δ + ε ≤ Meω(|t0|+ε}ε + ε

which yields the thesis.

It was proven in [43] that A is the generator of the cosine family {C(t)}t∈R if and only
if set X endowed with the norm

||x||X = ||x||E + max
t∈[0,1]

||AS(t)x||E (10)

is a Banach space, where the maximum is achieved according the compactness of [0, 1], and
the operator valued function

G(t) =
[

C(t) S(t)
AS(t) C(t)

]
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is a strongly continuous group of bounded linear operators in X× E generated by the operator

A =

[
0 I
A 0

]
defined on D(A)× X. Therefore, AS(t) : X → E is a bounded linear operator, and, similar
to Lemma 3 (and recalling Lemma 2 (i)), it easily follows that the map c1 : [a, b]× X → E
defined by

c1(t, x) = C′(t)x (11)

is continuous as well.
The next result establishes a relationship between the generator of a cosine family and

the generator of a C0 semigroup.

Lemma 4. (see [44] (Theorems 2.5 and 4.9)) Assume that A is the generator of a cosine family
{C(t)}t∈R. Then, A generates a C0 semigroup {T(t)}t≥0. Moreover, {C(t)}t∈R satisfies Equa-
tion (6) if and only if ‖T(t)‖ ≤ 2Meω2t for every t ≥ 0.

We shall now introduce the definitions and notions from the multivalued analysis that
we will need in the sequel. Let X, Y be two metric spaces. We say that H is a multivalued
mapping from X to Y (written H : X ( Y) if, for every x ∈ X, a nonempty subset H(x) of
Y is given.

A multivalued mapping H : X ( Y is called upper semicontinuous (shortly, u.s.c.) if,
for each open subset U ⊂ Y, the set {x ∈ X | H(x) ⊂ U} is open in X. It is called completely
continuous if H(C) is relatively compact for every bounded set C ⊂ X. If H is u.s.c. with
convex values, then H has a closed graph (see [45] (Theorem 1.1.4)). If H is u.s.c. and com-
pletely continuous with compact values, then it has a closed graph ([45] (Theorem 1.1.5)).
Conversely, if H is a completely continuous multivalued mapping with compact values
and has a closed graph, then H is u.s.c. (see [46] (Theorem 1.1.5)).

Let J ⊂ R be a compact interval. A mapping H : J ( Y with closed values, where
Y is a separable metric space, is called measurable if, for each open subset U ⊂ Y, the set
{t ∈ J | H(t) ⊂ U} belongs to a σ-algebra of subsets of J. If Y is separable, the measurability
is indifferent strong and weak measurability (see [47] (Chap. II)).

In the proof of the main result, the measure of non-compactness will be used. For this
purpose, some basic facts concerning this notion will be mentioned now.

Definition 2. Let N be a partially ordered set, E be a Banach space, and P(E) denote the family of
all subsets of E. A function β : P(E)→ N is called a measure of non-compactness (m.n.c.) in E if
β(co Ω) = β(Ω) for all Ω ∈ P(E), where co Ω denotes the closed convex hull of Ω.

An m.n.c. β is called:

(i) Monotone if β(Ω1) ≤ β(Ω2), for all Ω1 ⊂ Ω2 ⊂ E;
(ii) Nonsingular if β({x} ∪Ω) = β(Ω), for all x ∈ E and Ω ⊂ E;
(iii) Regular when β(Ω) = 0 if and only if Ω is relatively compact.

The typical example of an m.n.c. is the Hausdorff measure of noncompactness γ
defined, for all Ω ⊂ E, by

γ(Ω) := inf{ε > 0 | ∃x1, . . . , xn ∈ E : Ω ⊂ ∪n
i=1Bε(xi)}.

The Hausdorff measure of noncompactness is monotone, nonsingular, and regular.

The notion of a solution will be understood in a mild sense. Namely, given x0 ∈ X, by
a mild solution of the non-impulsive problem

ẍ(t) ∈ Ax(t) + F(t, x(t), ẋ(t)), for a.a. t ∈ [0, T],
x(0) = x0, ẋ(0) = x0

}
(12)



Mathematics 2022, 10, 672 8 of 25

we mean a C1-function x : [0, T]→ E such that, for all t ∈ [0, T],

x(t) = C(t) x0 + S(t)x0 +
∫ t

0
S(t− s) f (s) ds, (13)

where

f ∈ S1
F, x = { f ∈ L1([0, T], E) : f (t) ∈ F(t, x(t), x′(t)), for a.a. t ∈ [0, T]}. (14)

Notice that, for every f ∈ L1([0, T], E), the function defined in Equation (13) is continuously
differentiable (according to condition (i) in Lemma 2, to [48] (Lemma II.4.1), and since
x0 ∈ X), and, for all t ∈ [0, T], it holds that

ẋ(t) = AS(t) x0 + C(t)x0 +
∫ t

0
C(t− s) f (s) ds.

In order to ensure that the S1
F, x 6= ∅, an appropriate selection result is needed.

Proposition 1. (see, e.g., [35] [Proposition 2.2]) Let [a, b] ⊂ R be a compact interval, E1, E2 be
Banach spaces and G : [a, b]× E1 ( E2 be a multivalued mapping satisfying:

(A1) G(t, x) is nonempty, convex, and weakly compact, for every t ∈ [a, b] and x ∈ E1;
(A2) For every x ∈ E1, G(·, x) has a measurable selection;
(A3) For a.a. t ∈ [a, b], G(t, ·) : Ew

1 ( Ew
2 is weakly sequentially closed;

(A4) For each bounded Ω ⊂ E1, there exists ηΩ ∈ L1([a, b],R) such that, for a.a. t ∈ [a, b],

sup
x∈Ω
||G(t, x)|| ≤ ηΩ(t).

Then, for every q ∈ C([a, b], E1), there exists f ∈ L1([a, b], E2) such that f (t) ∈ G(t, q(t)) for a.a.
t ∈ [a, b].

Let us note that the previous result was proven in [35] for Banach spaces E1 = E2, but
it is also valid in this more general case.

In the study of the impulsive problem in the sequel, we shall consider the initial
problem starting from tk > 0. In the following proposition, we obtain the mild solution
formula for this case.

Proposition 2. Let xa ∈ X, xa ∈ E, a ∈ (0, T), b ∈ (a, T]. Then, x is a mild solution of
the problem

ẍ(t) ∈ Ax(t) + F(t, x(t), ẋ(t)), t ∈ [a, b]
x(a) = xa, ẋ(a) = xa

}
(15)

if and only if there exists f ∈ S1
F, x, such that

x(t) = C(t− a) xa + S(t− a)xa +
∫ t

a
S(t− s) f (s) ds. (16)

Proof. Observe that x : [a, b] → E is a mild solution of Equation (15) if and only if the
function defined as y(r) = x(r + a) is a mild solution of

ÿ(r) ∈ Ay(r) + G(r, y(r), ẏ(r)) r ∈ [0, b− a]
y(0) = xa, ẏ(0) = xa

}
where G(r, y(r)ẏ(r)) = F(r + a, x(r + a), ẋ(r + a)). According to the definition, there exists
g ∈ S1

G, y such that Equation (13) holds for every r ∈ [0, b− a]. Thus,

y(r) = C(r)y(0) + S(r)ẏ(0) +
∫ r

0
S(r− p)g(p)dp.
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Define f (s) = g(s− a) for every s ∈ [a, b]. Trivially, f ∈ S1
F, x and

x(t) = y(t− a) = C(t− a)xa + S(t− a)xa +
∫ t−a

0 S(t− a− p)g(p)dp
= C(t− a)xa + S(t− a)xa +

∫ t−a
0 S(t− a− p) f (p + a)dp

= C(t− a)xa + S(t− a)xa +
∫ t

a S(t− s) f (s)ds,

which proves the thesis.

Remark 2. Notice that the explicit formula for the mild solution of Equation (15) can be obtained
also as restriction to [a, b] of a mild solution defined in [0, T]. In fact, assume that x : [0, T]→ E
is a mild solution of Equation (12). Then, according to the definition, there exists f ∈ S1

F, x such
that Equation (13) holds for every t ∈ [0, T]. In particular,

xa = C(a)x0 + S(a)x0 +
∫ a

0
S(a− s) f (s)ds

and
xa = AS(a) x0 + C(a)x0 +

∫ a

0
C(a− s) f (s) ds.

Now, exploiting the definition of the cosine family and Lemma 2.2 (e), (j), and (k), we obtain

C(t− a)C(a) + S(t− a)AS(a) = C(t− a)C(a) + AS(t− a)S(a) = C(t− a + a) = C(t),

C(t− a)S(a) + S(t− a)C(a) = S(t− a + a) = S(t),

and
C(t− a)S(a− s) + S(t− a)C(a− s) = S(t− a + a− s) = S(t− s)

which imply

x(t) = C(t)x0 + S(t)x0 +
∫ t

0 S(t− s) f (s)ds
= C(t)x0 + S(t)x0 +

∫ a
0 S(t− s) f (s)ds +

∫ t
a S(t− s) f (s)ds

= [C(t− a)C(a) + S(t− a)AS(a)]x0 + [C(t− a)S(a) + S(t− a)C(a)]x0+∫ a
0 [C(t− a)S(a− s) + S(t− a)C(a− s)] f (s) ds +

∫ t
a S(t− s) f (s)ds

= C(t− a)[C(a)x0 + S(a)x0 +
∫ a

0 S(a− s) f (s)ds]+
S(t− a)[AS(a) x0 + C(a)x0 +

∫ a
0 C(a− s) f (s) ds] +

∫ t
a S(t− s) f (s)ds

= C(t− a)xa + S(t− a)xa +
∫ t

a S(t− s) f (s)ds.

3. Existence of a Mild Solution for the Cauchy Problem without Impulses

In this section, with fixed a, b ∈ [0, T] with b > a, the existence of a mild solution to the
Cauchy problem in [a, b] will be discussed.At first, we will use the natural projections of the
space E onto the finite-dimensional spaces generated by the first n vectors of the Schauder
basis to introduce a sequence of finite-dimensional approximating problems. Then, we will
apply the Kakutani fixed point theorem, obtaining a solution for each finite-dimensional
problem. Our technique will allow obtaining the localization of each solution in a given
bounded set of C1 functions. Finally, we will apply a limiting procedure based on the usage
of the weak topology to obtain a solution to the original problem.

Since both the finite-dimensional spaces and the weak topology in a reflexive Ba-
nach space enjoy natural compactness properties, we will avoid any requirements for
compactness within the assumptions.

In the next section, the obtained results for non-impulsive problems will be used to
study the impulse problem on the interval [0, T].

Theorem 1. Consider the Cauchy problem (15), where xa ∈ X, and assume that F : [a, b]× E×
E ( E satisfies the following assumptions:

(F1) F(t, x, y) is nonempty, convex, closed, and bounded for every t ∈ [a, b] and x, y ∈ E;



Mathematics 2022, 10, 672 10 of 25

(F2) For every (x, y) ∈ E× E, F(·, x, y) has a measurable selection;
(F3) For a.a. t ∈ [a, b], F(t, ·, ·) : Ew × Ew ( Ew is weakly u.s.c.;
(F4) For every n ∈ N, there exists ϕn ∈ L1([a, b],R) with

lim inf
n→∞

‖ϕn‖L1

n
= 0

and such that
||z|| ≤ ϕn(t),

for a.a. t ∈ [a, b], every (x, y) ∈ nB × nB and every z ∈ F(t, x, y), where B = {x ∈
E | ||x|| ≤ 1}.

Then, the Cauchy problem (15) has a solution.

Proof. For the sake of simplicity, we will assume all along with the proof that space E has
a monotone Schauder basis, i.e., that ‖Pm‖ ≤ 1, for every m ∈ N. Let us note that the proof
also works in the general case with little changes.

Since the proof consists of several parts, it will be split into the relevant steps from now on.

Step 1. Introduction of a sequence of approximating operators
To prove the existence of a solution to the problem (15), we will use the approximation

solvability method. Thus, for each m ∈ N, consider the multimap Gm : [a, b]× E× E→ Em
defined as Gm = Pm ◦ F and the operator Σm : C1([a, b], Em) ( C1([a, b], Em) defined as

Σm(q)(t) =
{
PmC(t) xa + PmS(t)xa +

∫ t

a
PmS(t− s) f (s) ds : f ∈ S1

Gm , q

}
. (17)

Let us note that, since Pm is a bounded and linear operator with ‖Pm‖ ≤ 1, the mapping Gm
satisfies properties (F1)− (F4) as well. Therefore, for every q ∈ C1([a, b], Em), the existence
of a selection f ∈ S1

Gm , q is guaranteed by Proposition 1 taking ηΩ = ϕn with Ω ⊂ nB× nB.
We stress that, since the natural projection is bounded and since the function

y(t) = C(t− a) xa + S(t− a)xa +
∫ t

a
S(t− s) f (s) ds

is continuously differentiable and

ẏ(t) = AS(t− a)xa + C(t− a)xa +
∫ t

a
C(t− s) f (s)ds,

Σm is well defined and

ḣ(t) = Pm AS(t− a)xa + PmC(t− a)xa +
∫ t

a
PmC(t− s) f (s) ds,

for every q ∈ C1([a, b], Em) and every h ∈ Σm(q).
In order to show that Σm has a fixed point, we will prove that it satisfies all assumptions

of the Kakutani fixed point theorem ([49] (Theorem 1)). For this purpose, given n ∈ N, we
use the following notation

nBm = {q ∈ C1([a, b]; Em) : ‖q(t)‖, ‖q̇(t)‖ ≤ n, for every t ∈ [a, b]}.

(a) Proving that the solution mapping Σm has convex values.
Let q ∈ C1([a, b], Em) and let h1, h2 ∈ Σm(q). Then, there exist f1, f2 ∈ S1

Gm , q such that

hi(t) = PmC(t− a) xa + PmS(t− a)xa +
∫ t

a
PmS(t− s) fi(s) ds, i = 1, 2.
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Let α ∈ [0, 1]. Then, for each t ∈ [a, b], we obtain that

(αh1 + (1− α)h2)(t) = PmC(t− a) xa + PmS(t− a)xa

+
∫ t

a PmS(t− s)(α f1(s) + (1− α) f2(s)) ds.

Since Gm has convex values and Pm is linear, it holds that

αh1 + (1− α)h2 ∈ Σm(q).

(b) Proving that Σm has a closed graph.
Assume that (qk, hk)→ (q, h) in C1([a, b], Em)×C1([a, b], Em), where hk ∈ Σm(qk), for

all k ∈ N, and let us prove that h ∈ Σm(q).
Since, for all k ∈ N, hk ∈ Σm(qk), there exists, for all k ∈ N, fk ∈ S1

Gm , qk
such that

hk(t) = PmC(t− a)xa + PmS(t− a)xa +
∫ t

a
PmS(t− s) fk(s) ds, for a.a. t ∈ [a, b].

Since every converging sequence is bounded, there exists n ∈ N such that, for every
k ∈ N and every s ∈ [a, b], ‖qk(s)‖ ≤ n, ‖q̇k(s)‖ ≤ n. Then, (F4) and the monotonicity of
the Schauder basis yield that the sequence { fk}k ⊂ L1([a, b], Em) is bounded and uniformly
integrable, and, for a.a. s ∈ [a, b], the sequence { fk(s)}k is bounded in Em. Since Em is
finite-dimensional, according to the Dunford–Pettis Theorem (see [50], p. 294), we have the
existence of a subsequence, denoted as the sequence, and a function f such that fk ⇀ f in
L1([a, b], Em).

Let us now prove that f ∈ S1
Gm ,q. Due to Mazur’s convexity theorem, for each k ∈ N,

there exists pk ∈ N and positive numbers βk,i, i = 0, . . . , pk, such that ∑
pk
i=0 βk,i = 1

and rk := ∑
pk
i=0 βk,i fk+i → f in L1([a, b], E). From the sequence {rk}k, we extract a subse-

quence, denoted as the sequence as usual, such that rk(t)→ f (t) , for all t ∈ [a, b]\N1 with
λ(N1) = 0. Moreover, for all t ∈ [a, b]\N2 with λ(N2) = 0, Gm(t, ·, ·) is weakly u.s.c.

Put N = N1∪N2 and consider t0 ∈ [a, b]\N. Then, for every weak neighborhood
V of Gm

(
t0, q(t0),

.
q(t0)

)
, there exists a weak neighborhood W of

(
q(t0),

.
q(t0)

)
such that

Gm(t, x, y) ⊂ V when (x, y) ∈W. Since the uniform convergence implies the weak point-
wise convergence, it follows that qk(t0)⇀ q(t0) and

.
qk(t0)⇀

.
q(t0). Thus, there exists k such

that, for all k ≥ k, (q k(t0),
.
qk(t0)) ∈W, yielding that fk(t0) ∈ Gm

(
t0, qk(t0),

.
qk(t0)

)
⊂ V,

i.e., that rk(t0) ∈ V, because Gm is convex valued. Since rk(t0)→ f (t0), it follows that
f (t0) ∈ V, for every weak neighborhood V of Gm

(
t0, q(t0),

.
q(t0)

)
. Since Gm is closed

valued, the proof is complete.
Given Φ ∈ E∗ and t ∈ [a, b], consider the operator Φ: L1([a, t], E)→ R defined by

Φ(p) := Φ

(∫ t

a
S(t− s)p(s) ds

)
.

Since S(t− s) is bounded and linear, for every t, s, Φ is clearly linear and bounded.
Moreover, fk ⇀ f also in L1([a, t], E), and hence, we have that

Φ

(∫ t

a
S(t− s) fk(s) ds

)
= Φ( fk)→ Φ( f ) = Φ

(∫ t

a
S(t− s) f (s) ds

)
.

By the arbitrariness of Φ, we conclude that∫ t

a
S(t− s) fk(s) ds ⇀

∫ t

a
S(t− s) f (s) ds.
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Hence, since Pm is a linear and bounded operator taking values in the finite-dimensional
space Em, it holds that∫ t

a
Pm S(t− s) fk(s) ds→

∫ t

a
Pm S(t− s) f (s) ds.

The uniqueness of the limit then imply that

h(t) = PmC(t− a)xa + PmS(t− a)xa +
∫ t

a
PmS(t− s) f (s) ds, for a.a. t ∈ [a, b].

(c) Showing that Σm maps bounded sets into bounded sets.
Let C ⊂ C1([a, b], Em) be bounded, q ∈ C, and h ∈ Σm(q). Then, there exists f ∈ S1

Gm , q
such that

h(t) = PmC(t− a) xa + PmS(t− a)xa +
∫ t

a
PmS(t− s) f (s) ds (18)

and

ḣ(t) = Pm AS(t− a) xa + PmC(t− a)xa +
∫ t

a
PmC(t− s) f (s) ds. (19)

According to Equations (6) and (9), there exists

K0 =

{
M eωb−1

ω if ω 6= 0
Mb if ω = 0

(20)

such that for every t ∈ [a, b],
||C(t)|| ≤ Meωb

and
‖S(t)‖ ≤ K0.

Since xa ∈ X, denoted by

L = max
t∈[a,b]

∥∥∥∥ d
dt

C(t)xa

∥∥∥∥ (21)

from Lemma 2 (i), we obtain, for every t ∈ [0, T], that

||AS(t)xa|| ≤ L.

Now, since C is bounded, there exists n ∈ N such that C ⊂ nBm. Thus, the monotonicity of
the Schauder basis and (F4) yield

||h(t)|| ≤ ‖C(t− a)‖‖xa‖+ ‖S(t− a)‖‖xa‖+
∫ T

0 ‖S(t− s)‖‖ f (s)‖ ds
≤ Meωb||xa||+ K0(||xa||+ ||ϕn||L1)

(22)

and
||ḣ(t)|| ≤ ‖AS(t− a) xa‖+ ‖C(t− a)‖‖xa‖+

∫ t
0 ‖C(t− s)‖‖ f (s)‖ ds

≤ L + Meωb(||xa||+ ||ϕn||L1).
(23)

Therefore, Σm maps bounded sets into bounded sets.

(d) Showing that Σm maps bounded sets into relatively compact sets.
Let C ⊂ C1([a, b], Em) be bounded, q ∈ C, and h ∈ Σm(q). Then, h fulfills

Equations (18) and (19) for some f ∈ S1
Gm , q.

Fix t0 ∈ [a, b]. According to point (c), Equation (23), and (F4), for all t ∈ [a, b], we
obtain that

‖h(t)− h(t0)‖ ≤
∣∣∣∣∫ t

t0

‖ḣ(s)‖ ds
∣∣∣∣ ≤ (L + Meωb(||xa||+ ||ϕn||L1)

)
|t− t0|



Mathematics 2022, 10, 672 13 of 25

which implies the equicontinuity of Σm(C).
Moreover, for all t ∈ [a, b], applying Lemma 2 (i) and Equation (6) and introducing the

constant n as in point (c), we obtain that

‖ḣ(t− a)− ḣ(t0 − a)‖ ≤ ‖Pm(AS(t− a)− AS(t0 − a))xa‖
+‖Pm(C(t− a)− C(t0 − a))xa‖
+‖
∫ t0

a Pm(C(t− s)− C(t0 − s)) f (s) ds‖
+‖
∫ t

t0
PmC(t− s) f (s) ds‖

≤ ‖(C′(t− a)− C′(t0 − a))xa‖
+‖(C(t− a)− C(t0 − a))xa‖
+‖
∫ t0

a Pm[C(t− s)− C(t0 − s)] f (s) ds‖
+MeωT |

∫ t
t0

ϕn(s) ds|.

(24)

Let us now prove that all four summands in Equation (24) are uniformly continuous.
Notice that t0, t ∈ [a, b] ⊂ [0, T] imply that t0 − a, t − a ∈ [0, T]. Since xa ∈ X, the

map t→ C′(t)xa is continuous and hence, uniformly continuous in the compact set [0, T].
Similarly, the map t→ C(t)xa is uniformly continuous in [0, T] as well. Thus, the first two
summands are uniformly continuous.

Applying the properties listed in Lemma 2, we obtain that

C(t− s)− C(t0 − s) = C
(

t + t0

2
− s +

t− t0

2

)
− C

(
t + t0

2
− s− t− t0

2

)
= 2AS

(
t + t0

2
− s
)

S
(

t− t0

2

)
= 2AS

(
t− t0

2

)
S
(

t + t0

2
− s
)

= 2AS
(

t− t0

2

)[
S
(

t + t0

2

)
C(−s) + S(−s)C

(
t + t0

2

)]
= 2AS

(
t− t0

2

)
S
(

t + t0

2

)
C(s)− 2AS

(
t− t0

2

)
C
(

t + t0

2

)
S(s)

=

[
C
(

t− t0

2
+

t + t0

2

)
− C

(
t− t0

2
− t + t0

2

)]
C(s)

−A
[

S
(

t− t0

2
+

t + t0

2

)
+ S

(
t− t0

2
− t + t0

2

)]
S(s)

= [C(t)− C(t0)]C(s)− A[S(t)− S(t0)]S(s)
= [C(t)− C(t0)]C(s)− [C′(t)− C′(t0)]S(s).

Therefore,∥∥∥∥∫ t0

a
[C(t− s)− C(t0 − s)] f (s) ds

∥∥∥∥ ≤ ‖[C(t)− C(t0)]
∫ t0

a C(s) f (s) ds‖

+‖[C′(t)− C′(t0)]
∫ t0

a S(s) f (s) ds‖.

Consider now the set

I1 =

{∫ t0

a
C(s) f (s)ds : q ∈ nBm, f ∈ S1

Gm ,q

}
. (25)

According to (F4), and since Em is finite-dimensional, we obtain that, for every s ∈ [a, b],
the set {

f (s) : q ∈ nBm, f ∈ S1
Gm ,q

}
⊂ Em ⊂ E

is bounded and hence relatively compact. Since C(s) is linear and bounded, for every
s ∈ [a, b], the set

D(s) =
{

C(s) f (s) : q ∈ nBm, f ∈ S1
Gm ,q

}
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is relatively compact as well. Therefore, the separability of E (see Remark 1) and [46]
(Theorem 4.2.3) imply that

γ(I1) ≤
∫ t0

a
γ(D(s))ds = 0.

The regularity of the Hausdorff measure of noncompactness γ then implies that I1 is
relatively compact in E.

According to Lemma 3, (t, x)→ C(t)x is continuous in [a, b] × E and, hence, uni-
formly continuous in the pre-compact set [a, b] × I1.

According to Lemma 2 (h), since S(s) is also linear and bounded, for every s ∈ [a, b],
we obtain by the same reasoning that{

S(s) f (s) : q ∈ nBm, , f ∈ S1
Gm ,q

}
⊂ Em ∩ X ⊂ X

is relatively compact, hence

I2 =

{∫ t0

a
S(s) f (s) ds : q ∈ nBm, , f ∈ S1

Gm ,q

}
is relatively compact in X.

According to (11), (t, x)→ C′(t)x is continuous in [a, b] × X and, hence, uniformly
continuous in the pre-compact set [a, b]× I2. Thus, we also obtained the uniform continuity
of the third term in Equation (24). The equicontinuity of the set {h′ : h ∈ Σm(q), q ∈ C}
then follows from the absolute continuity of the integral contained in the last term of
Equation (24).

Subsequently, it follows from the Arzela–Ascoli theorem that Σm(C) is relatively
compact in C1([a, b], Em) for every bounded C ⊂ C1([a, b], Em).

(e) Showing that there exists N ∈ N independent of m such that Σm(NBm) ⊂ NBm
By Equations (22) and (23), we have that there exist two constants

K1 = max
{

Meωb||xa||+ K0||xa||, L + Meωb||xa||
}

and

K2 = max
{

K0, Meωb
}

(26)

such that, for every n, m ∈ N, q ∈ nBm, and every h ∈ Σm(q),

‖h‖C1 ≤ K1 + K2‖ϕn‖L1 . (27)

According to (F4), there exists a subsequence, still denoted as the sequence, such that

lim
n→∞

K1 + K2‖ϕn‖L1

n
= 0.

Therefore, there exists N > 0 such that

K1 + K2‖ϕN‖L1

N
< 1,

which, combined with Equation (27), implies that

1
N
‖h‖C1 < 1,

i.e., that h ∈ NBm, for every t ∈ [a, b], m ∈ N, q ∈ NBm, h ∈ Σm(q), and the claim is proven.
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Since Σm is closed and maps bounded sets into relatively compact sets, it has compact
values; hence, it is u.s.c. Thus, Σm : NBm ( NBm is a u.s.c. compact map with convex and
closed values. Applying the Kakutani fixed point theorem, we obtain that, for all m ∈ N,
the operator Σm has a fixed point qm. Because of the technique used, we are also able to
localize the fixed point in the set

NB =
{

q ∈ C1([a, b], E) : ‖q(t)‖, ‖q̇(t)‖ ≤ N, for every t ∈ [a, b]
}

.

Step 2. Limiting procedure.
Let us now prove that the sequence {qm}m found in Step 1 admits a subsequence

pointwise weakly converging to a solution q of Problem (15).
The sequence {qm}m satisfies, for all m ∈ N and t ∈ [a, b],

qm(t) = PmC(t− a) xa + PmS(t− a)xa +
∫ t

a
PmS(t− s) fm(s) ds,

where fm ∈ S1
Gm ,qm

, for every m ∈ N. Thus, there exists gm ∈ S1
F,qm

such that fm = Pmgm.
Since qm ∈ NB for every m, we then obtain from (F4) that

‖gm(s)‖ ≤ ϕN(s),

for a.e. s ∈ [a, b]. Therefore, {gm}m is bounded and uniformly integrable and {gm(s)}m
is bounded for a.a s ∈ [a, b]. Since E is reflexive, according the Dunford–Pettis Theorem,
we obtain the existence of a subsequence, denoted as the sequence, and of a function f
such that gm ⇀ f in L1([a, b], E). From Lemma 1 (d), we then also obtain that fm ⇀ f in
L1([a, b], E).

Given φ ∈ E∗ and t ∈ [a, b], consider the operator Φ : L1([a, t], E)→ R defined by

Φ(p) := φ

(∫ t

a
S(t− s)p(s) ds

)
.

According to Equation (9), Φ is clearly linear and bounded. Moreover, fm ⇀ f also in
L1([a, t], E), and hence, we have that

Φ( fm) = φ

(∫ t

a
S(t− s) fm(s) ds

)
→ φ

(∫ t

a
S(t− s) f (s) ds

)
= Φ( f ).

By the arbitrariness of φ, we conclude that S(t− ·) fm ⇀ S(t− ·) f in L1([a, t], E) for every
t ∈ [a, b] and, by applying Lemma 1 (d) again, that PmS(t− ·) fm ⇀ S(t− ·) f in L1([a, t], E).
In particular, ∫ t

a
PmS(t− s) fm(s) ds ⇀

∫ t

a
S(t− s) f (s) ds,

and therefore,

qm(t) ⇀ q(t) = C(t− a) xa + S(t− a)xa +
∫ t

a
S(t− s) f (s) ds.

Similarly, it is possible to prove that q̇m(t) ⇀ q̇(t) for every t ∈ [a, b].
It remains to be proven that f ∈ S1

F,q. Due to Mazur’s convexity theorem, for each

m ∈ N, there exist pm ∈ N and positive numbers βm,i, i = 0, . . . , pm, such that ∑
pm
i=0 βm,i = 1

and rm := ∑
pm
i=0 βm,igm+i → f in L1([a, b], E). From the sequence {rm}m, we extract a

subsequence, denoted as the sequence as usual, such that rm(t)→ f (t), for all t ∈ [a, b] \N1,
with λ(N1) = 0. Since F is convex valued, rm(t) ∈ F(t, qm(t), q̇m(t)) for every t ∈ [a, b].

Moreover, for all t ∈ [a, b] \ N2, with λ(N2) = 0, F(t, ·, ·) is weakly u.s.c. Put N = N1 ∪
N2 and consider t0 ∈ [a, b] \ N. Then, for every weak neighborhood V of F(t0, q(t0), q̇(t0)),
there exists a weak neighbourhood W of (q(t0), q̇(t0)) such that F(t, x, y) ⊂ V when
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(x, y) ∈ W. Since qm(t0) ⇀ q(t0) and q̇m(t0) ⇀ q̇(t0), there exists m such that, for all m ≥
m, (qm(t0), q̇m(t0)) ∈ W, yielding that gm(t0) ∈ F(t0, qm(t0), q̇m(t0)) ⊂ V. Since gm(t0) →
f (t0), it follows that f (t0) ∈ V for every weak neighborhood V of F(t0, q(t0), q̇(t0)), and
since F is closed valued, the proof is complete.

The following theorem shows that it is possible to prove the result when assuming
the growth condition (F4

′
) instead of (F4) in Theorem 1. For a comparison between these

conditions, we refer to [41]. The sketch of the proof is a generalization of the technique
used in [51] for second-order inclusions, where the nonlinear term does not depend on the
first derivative.

Theorem 2. Consider the Cauchy problem (15), where xa ∈ X, and F : [a, b] × E × E ( E
satisfies conditions (F1)− (F3). Moreover, let the following assumption hold:

(F4
′
)There exist α, β ∈ L1([a, b], E) such that, for a.a. t ∈ [a, b] and all x, y ∈ E,

||F(t, x, y)|| ≤ α(t)max{||x||, ||y||}+ β(t). (28)

Then, the Cauchy problem (15) has a solution.

Proof. The result can be proven similarly to Theorem 1 when replacing ϕn(t) by nα(t) +
β(t) and consequently modifying the proof. More concretely, the most difficult point is
showing that there exists a bounded and convex set Hm, such that Σm(Hm) ⊂ Hm for all
m ∈ N.

For this purpose, for every fixed j ∈ N, define

qj = max
t∈[a,b]

∫ b

a
e−j(t−s)χ[a,t](s)α(s) ds,

whose existence is guaranteed by the continuity. For every j ∈ N, let tj be the point
where the maximum is achieved. Since {tj}j ⊂ [a, b], there exists t such that (eventually
passing to a subsequence) tj → t. Thus, the sequence {φj}j ⊂ L1([a, b], E) defined as

φj(s) = e−j(tj−s)χ[a,tj ]
(s)α(s) converges pointwise to 0. The convergence is dominated,

which implies that φj → 0 in L1([a, b], E). In particular, there exists a subsequence, still
denoted as the sequence, such that qj → 0. Take j ∈ N and R ∈ R such that 1−K2qj > 0, and

R >
e−ja

[
max{Meωb‖xa‖, L}+ K2(‖xa‖+ ‖β‖1)

]
1− K2qj

,

where K2 is the constant introduced in Equation (26). Moreover, let us consider the bounded
and convex set

Hm =

{
x ∈ C1([a, b], Em) : max

t∈[a,b]
(e−jt max{‖x(t)‖, ‖ẋ(t)‖}) ≤ R

}
.
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Now, with reasoning like in Equations (22) and (23), we have that, for every q ∈ Hm, h ∈
Σm(q), t ∈ [a, b],

e−jt‖h(t)‖ ≤ e−jt Meωb‖xa‖
+e−jtK0‖xa‖+ e−jtK0

∫ t
a (α(s)max{‖x(s)‖, ‖ẋ(s)‖}+ β(s))ds

≤ e−jt Meωb‖xa‖+ e−jtK0‖xa‖+ e−jtK0‖β‖1

+e−jtK0
∫ t

a ejsα(s)e−js max{‖x(s)‖, ‖ẋ(s)‖}ds
≤ e−jt[Meωb‖xa‖+ K0(‖xa‖+ ‖β‖1)] + K0R

∫ t
a e−j(t−s)α(s)ds

= e−jt[Meωb‖xa‖+ K0(‖xa‖+ ‖β‖1)] + K0R
∫ b

a e−j(t−s)χ[a,t](s)α(s)ds
≤ e−ja[Meωb‖xa‖+ K0(‖xa‖+ ‖β‖1)] + K0Rqj
< R(1− K2qj) + K0Rqj
< R(1− K2qj) + K2Rqj < R

and similarly

e−jt‖ḣ(t)‖ ≤ e−jtL + e−jt Meωb‖xa‖+ e−jt Meωb ∫ t
a (α(s)max{‖x(s)‖, ‖ẋ(s)‖}+ β(s))ds

≤ e−ja
[

L + Meωb(‖xa‖+ ‖β‖1)
]
+ MeωbRqj < R.

Therefore, h ∈ Hm. Since Hm is a subset of the bounded set

H = {x ∈ C1([a, b], E) : max
t∈[a,b]

(e−jt max{‖x(t)‖, ‖ẋ(t)‖}) ≤ R},

the conclusion then follows like in the proof of Theorem 1.

4. Existence of a Mild Solution for the Impulsive Problem

In this section, the existence of a mild solution to the impulsive problem (1) will be
discussed. The solution will be found in the class of piecewise continuously differentiable
functions. We will firstly apply, in each interval of continuous differentiability, the theorems
that were proven in the previous section for the problems without impulses. Then, we
will glue the particular solutions, exploiting Formula (2). The gluing technique will enable
obtaining the conclusions under no compactness requirements on the impulsive terms.

Theorem 3. Consider the Cauchy impulsive problem (1), where x0 ∈ X, Ik(y, e) ∈ X for every
y ∈ X, e ∈ E and F : [0, T]× E× E ( E satisfies conditions (F1)− (F4) or (F1)− (F4

′
) for

[a, b] = [0, T]. Then, the Cauchy impulsive problem (1) has a mild solution x ∈ PC1([0, T], E)
satisfying, for all t ∈ [0, T],

x(t) = C(t) x0 + S(t)x0 +
∫ t

0 S(t− s) f (s) ds
+∑0<ti<t

[
C(t− ti)Ii(x(ti), ẋ(ti)) + S(t− ti)Ii(x(ti), ẋ(ti))

]
,

(29)

where f ∈ S1
F, x.

Proof. The proof will be given in three steps.
Step 1. Let us consider the problem on the interval [0, t1]:

ẍ(t) ∈ Ax(t) + F(t, x(t), ẋ(t)), for a.a. t ∈ [0, t1],
x(0) = x0, ẋ(0) = x0.

}
(30)

According to Theorems 1 or 2 with [a, b] = [0, t1], this problem has a solution x[0](t) ∈
C1([0, t1], E) verifying

x[0](t) = C(t) x0 + S(t)x0 +
∫ t

0
S(t− s) f[0](s) ds, (31)
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and

ẋ[0](t) = AS(t) x0 + C(t)x0 +
∫ t

0
C(t− s) f[0](s) ds, (32)

where f[0] ∈ L1([0, t1], E) and f[0](t) ∈ F(t, x[0](t), ẋ[0](t)), for every t ∈ [0, t1].
Step 2. Let us consider now the following problem on [t1, t2]:

ẍ(t) ∈ Ax(t) + F(t, x(t), ẋ(t)), for a.a. t ∈ [t1, t2],
x(t1) = I1(x[0](t1), ẋ[0](t1)) + x[0](t1),
ẋ(t1) = I1(x[0](t1), ẋ[0](t1)) + ẋ[0](t1).

 (33)

By x0 ∈ X, we obtain that x[0](t) ∈ X for every t ∈ [0, t1]. In particular, x[0](t1) ∈ X, yielding
that I1(x[0](t1), ẋ[0](t1)) ∈ X, because I(y, e) ∈ X for every y ∈ X. Since X is a linear
subspace of E, we then obtain that I1(x[0](t1), ẋ[0](t1)) + x[0](t1) ∈ X and, analogously to
Step 1, it is possible to obtain that there exists a mild solution x[1](t) ∈ C1([t1, t2], E) of
Problem (33) such that

x[1](t) = C(t− t1) [I1(x[0](t1), ẋ[0](t1)) + x[0](t1)]

+S(t− t1)[I1(x[0](t1), ẋ[0](t1)) + ẋ[0](t1)] +
∫ t

t1
S(t− s) f[1](s) ds,

where f[1] ∈ L1([t1, t2], E) and f[1](t) ∈ F(t, x[1](t), ẋ[1](t)), for every t ∈ [t1, t2]. Since,
according to Equations (31) and (32),

x[0](t1) = C(t1) x0 + S(t1)x0 +
∫ t1

0
S(t1 − s) f[0](s) ds,

ẋ[0](t1) = AS(t1) x0 + C(t1)x0 +
∫ t1

0
C(t1 − s) f[0](s) ds,

reasoning like in Proposition 2, and denoted

f (t) =
{

f[0](t), for t ∈ [0, t1],
f[1](t), for t ∈ (t1, t2],

we obtain that

x[1](t) = C(t− t1) [I1(x[0](t1), ẋ[0](t1)) + x[0](t1)]

+S(t− t1)[I1(x[0](t1), ẋ[0](t1)) + ẋ[0](t1)] +
∫ t

t1
S(t− s) f (s) ds,

= C(t− t1)[I1(x[0](t1), ẋ[0](t1)) + C(t1) x0 + S(t1)x0 +
∫ t1

0 S(t1 − s) f (s) ds]
+S(t− t1)[I1(x[0](t1), ẋ[0](t1)) + AS(t1) x0 + C(t1)x0 +

∫ t1
0 C(t1 − s) f (s) ds]

+
∫ t

t1
S(t− s) f (s) ds

= [C(t− t1)C(t1) + S(t− t1)AS(t1)]x0 + [C(t− t1)S(t1) + S(t− t1)C(t1)]x0
+C(t− t1) I1(x[0](t1), ẋ[0](t1)) + S(t− t1)I1(x[0](t1), ẋ[0](t1))

+
∫ t1

0 [C(t− t1)S(t1 − s) + S(t− t1)C(t1 − s)] f (s) ds +
∫ t

t1
S(t− s) f (s) ds

= C(t)x0 + S(t)x0 + C(t− t1) I1(x[0](t1), ẋ[0](t1)) + S(t− t1)I1(x[0](t1), ẋ[0](t1))

+
∫ t1

0 S(t− s) f (s) ds +
∫ t

t1
S(t− s) f (s) ds

= C(t)x0 + S(t)x0 + C(t− t1) I1(x[0](t1), ẋ[0](t1)) + S(t− t1)I1(x[0](t1), ẋ[0](t1))

+
∫ t

0 S(t− s) f (s) ds.
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Step 3. Repeating this procedure for all k = 1, ..., m, we obtain that x defined by

x(t) =



x[0](t), for t ∈ [0, t1],
x[1](t), for t ∈ (t1, t2],
.
.
.
x[m](t), for t ∈ (tm, T],

is a mild solution of Problem (1) satisfying Equation (29) because

f (t) =



f[0](t), for t ∈ [0, t1],
f[1](t), for t ∈ (t1, t2],
.
.
.
f[m](t), for t ∈ (tm, T]

belongs to S1
F,x.

Remark 3. We stress that, since X is a linear subspace, the condition Ik(y, e) ∈ X, for every
y ∈ X, e ∈ E, is satisfied whenever Ik is linear in the first variable.

5. An Application

In this section, we apply the theoretical result obtained in the previous section to the
following problem

z′′tt = ∑n
k,l=1 akl(x) ∂2z

∂xk∂xl
+ ∑n

j=1 bj(x) ∂z
∂xj

+ c(x)z + d(t, x) f (
∫

Ω k(x, s)zt(t, s)ds),

t ∈ [0, T], x ∈ Ω
z(t+k , x) = z(t−k , x) + pkz(tk, x), k = 1, 2, . . . , m, x ∈ Ω
ż(t+k , x) = z(t−k , x) + qkz(tk, x), k = 1, 2, . . . , m, x ∈ Ω
z(0, x) = z0(x), zt(0, x) = z0(x), x ∈ Ω
z(t, 0) = 0,∇z(t, 0) = 0, t ∈ [0, T],


(34)

where Ω ⊂ Rn is a bounded domain with smooth boundary and z0 ∈W1,p(Ω)∩C0(Ω), z0 ∈
Lp(Ω), 1 < p < ∞ . The linear operator in Equation (34) appears frequently in many equa-
tions modeling phenomena, coming from electrostatics, continuum mechanics, and also
other branches. In particular, when the linear operator reduces to the Laplacian and the
integral term is replaced by the first-order time derivative, Equation (34) represents the
multidimensional telegraph equation, which governs both the voltage and current of elec-
trical transmission. Here, we consider a nonlinear Balakrishnan–Taylor-type damping term
like in [52–54], generalizing the results to the case of a strongly elliptic linear part in Rn.

In order to apply previous results to the problem (34), let us consider the following
assumptions on functions akl : Ω → R, bj, c : Ω → R, d : [0, T]×Ω → R, f : R → R and
k : Ω×Ω→ R:

(a1) akl ∈ C(Ω), bj, c ∈ L∞(Ω), akl(x) = alk(x) for every x ∈ Ω;
(a2) There exists C0 ≥ 0 such that ∑n

k,l=1 akl(x)sksl ≥ C0|s|2 for every s ∈ Rn, and a.a.
x ∈ Ω;

(k) k ∈ C(Ω×Ω);
( f ) f ∈ C(R);
(d1) d is measurable;
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(d2) There exists α ∈ L1((0, T),R), γ ∈ Lp(Ω), λ : [0,+∞)→ [0,+∞) increasing, with

lim
c→+∞

λ(c)
c

= 0,

such that |d(t, x)| ≤ α(t)γ(x), for a.a. t ∈ [0, T], x ∈ Ω and | f (c)| ≤ λ(|c|), for every
c ∈ R;

(pq) pk, qk ∈ R, for every k = 1, ..., m.

In order to rewrite the problem (34) into the abstract form, as in Problem (1), it is
necessary to define the Banach space E, the operator A, and the nonlinear term F. The
Banach space E is defined as the space Lp(Ω). Therefore, solution x of the studied problem
will belong to the space PC1([0, T], Lp(Ω)). Moreover, we identify z and d, respectively,
with functions t→ z(t, ·) and t→ d(t, ·).

The mapping F : [0, T]× Lp(Ω)× Lp(Ω)→ Lp(Ω) is defined by

F(t, z, u)(x) := d(t, x) f
(∫

Ω
k(x, s)u(s)ds

)
.

If we denote
k := max{|k(x, s)| : x, s ∈ Ω},

then, according to (d2) and the Holder inequality, it holds that∣∣∣∣d(t, x) f
(∫

Ω
k(x, s)u(s)ds

)∣∣∣∣ ≤ α(t)γ(x)λ
(∣∣∣∣∫Ω

k(x, s)u(s)ds
∣∣∣∣)

≤ α(t)γ(x)λ
(∫

Ω |k(x, s)u(s)|ds
)

≤ α(t)γ(x)λ
(

k|Ω|1−
1
p ‖u‖p

)
.

(35)

Thus, F(t, z, u) ∈ Lp(Ω) for every t ∈ [0, T] and z, u ∈ Lp(Ω).
Moreover, by (d1), we obtain that F(·, z, u) is measurable for every z, u ∈ Lp(Ω).

Consider now a sequence {un} weakly converging to u in Lp(Ω). Notice that, for every
x ∈ Ω, k(x, ·) ∈ Lq(Ω), where q = p

p−1 . Thus,

∫
Ω

k(x, s)un(s)ds→
∫

Ω
k(x, s)u(s)ds.

Condition ( f ) then implies that

f
(∫

Ω
k(x, s)un(s)ds

)
→ f

(∫
Ω

k(x, s)u(s)ds
)

.

Since every weakly converging sequence is bounded, we obtain the existence of a positive
constant L such that, for every n ∈ N, ‖un‖p ≤ L. Hence, recalling Equation (35), we
obtain that ∣∣∣∣d(t, x) f

(∫
Ω

k(x, s)un(s)ds
)∣∣∣∣ ≤ α(t)γ(x)λ

(
k|Ω|1−

1
p L
)

.

The convergence is also dominated, which implies that F(t, ·, ·) is weakly continuous, for
a.e. t ∈ [0, T].

Recalling Equation (35) again, when ‖u‖p ≤ n, we have that

‖F(t, z, u)‖p
p =

∫
Ω

∣∣∣∣d(t, x) f
(∫

Ω
k(x, s)u(s)ds

)∣∣∣∣pdx ≤
∫

Ω

[
α(t)γ(x)λ

(
k|Ω|1−

1
p n
)]p

dx

= α(t)pλ

(
k|Ω|1−

1
p n
)p
‖γ‖p

p.
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Thus, (d2) implies (F4), with ϕn(t) = α(t)λ
(

k|Ω|1−
1
p n
)
‖γ‖p.

The symmetric strongly elliptic linear operator

A : W2,p(Ω) ∩W1,p
0 (Ω)→ Lp(Ω)

is defined as

Au(x) :=
n

∑
k,l=1

akl(x)
∂2u

∂xk∂xl
+

n

∑
j=1

bj(x)
∂u
∂xj

+ c(x)u.

Since there exists a constant D ≥ 0 such that

‖u‖2,p ≤ D(‖Au|0,p + ‖u‖0,p), (36)

for every u ∈ W2,p(Ω) ∩W1,p
0 (Ω) (see [55] (Theorem 7.3.1)), operator A generates an

analytic semigroup {T(t)}t≥0, with

‖T(t)‖ ≤ D,

for every t ≥ 0 (see [55] (Theorem 7.3.5)), and moreover, it generates a cosine family
{C(t)}t∈R (see [48] (Section IV.8)). Lemma 4 then yields that

‖C(t)‖ ≤ D
2

. (37)

Clearly, X = W1,p(Ω) ∩ C0(Ω). Notice finally that the impulse functions Ik(y, e) = pky
depend linearly on y.

The conclusions from previous paragraphs can be summarized in the following result,
which deals with the existence of a mild solution of Problem (34) and which is the direct
consequence of Theorem 3.

Theorem 4. Consider the Cauchy impulsive problem (34), where assumptions (a1) − (pq) are
verified. Assume z0 ∈W1,p(Ω) with compact support. Then, the Cauchy impulsive problem (34)
has a mild solution u ∈ PC1([0, T], Lp(Ω)).

Remark 4. It is possible to generalize the previous result in the case when the condition f ∈ C(R)
is replaced by the following one:

( f2) There exist r1 < r2 < ... < rk such that f (·) is continuous, for r 6= ri, and f (·) has
discontinuities at ri, for i = 1, ..., k, with f (r∓i ) := lim

r→r∓i
f (r) ∈ R and | f (r)| ≤ λ(|r|), for

every r 6= ri, where λ is as in (d2).

In this case, it is appropriate to define the multivalued mapping f̃ : R ( R by the formula

f̃ (r) :=


f (r) if r 6= ri,[
min{ f (ri), f (r−i ), f (r+i )}, max{ f (ri), f (r−i ), f (r+i )}

]
if r = ri,

i = 1, 2, ..., k.

In the abstract form F : [0, T]× Lp(Ω)× Lp(Ω) ( Lp(Ω) is defined as the closed, bounded, and
convex valued multimap

F(t, z, u)(x) := d(t, x) f̃
(∫

Ω
k(x, s)u(s)ds

)
.
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If we fix i = 1, ...k, then for every ε > 0, it is possible to find δ > 0 such that for every r with
0 < |r− ri| ≤ δ, it follows that

f̃ (ri)− ε ≤ f (r−i )− ε < f (r) < f (r+i ) + ε ≤ f̃ (ri) + ε

and f (r) = f̃ (r), i.e., the function r → min{ f (r), f (r−), f (r+)} is lower semicontinuous and
the function r → max{ f (r), f (r−), f (r+)} is upper semicontinuous. Therefore, f̃ is an upper
semicontinuous multimap. Moreover, for every r > rk, f̃ (r) = f (r). Thus, f̃ (r) satisfies

|c| ≤ λ(|r|),

for every c ∈ f̃ (r). Using the same reasoning as in the paragraphs before Theorem 4, it is possible to
prove that F verifies (F3) and (F4). Since all other assumptions hold as well, Theorem 3 yields the
existence of a mild solution for Problem (34).

Remark 5. It is possible to extend the previous result to a nonlinear term satisfying a linear growth
condition. More precisely, instead of the equation contained in Equation (34), consider the equation

z′′tt =
n

∑
k,l=1

akl(x)
∂2z

∂xk∂xl
+

n

∑
j=1

bj(x)
∂z
∂xj

+ c(x)z + p(t)zt + d(t, x) f
(∫

Ω
k(x, s)zt(t, s)ds

)
. (38)

In this case, the nonlinear term F reads as

F(t, z, u)(x) = p(t)u + d(t, x) f
(∫

Ω
k(x, s)u(t, s)ds

)
.

Assume that condition (d2) is replaced by:

(d′2) There exist δ ∈ L1((0, T),R), γ ∈ Lp(Ω), l ≥ 0, such that |p(t)| ≤ δ(t), |d(t, x)| ≤
δ(t)γ(x), for a.a. t ∈ [0, T], x ∈ Ω, and | f (c)| ≤ l|c|, for every c ∈ R.

The result can be proven by similarly modifying the proof. More concretely, it is sufficient to
take into account that Equation (35) is replaced by∣∣∣∣p(t)u(x) + d(t, x) f

(∫
Ω

k(x, s)u(s)ds
)∣∣∣∣ ≤ δ(t)[|u(x)|+ γ(x)lk|Ω|1−

1
p ‖u‖p].

Hence, recalling that for every a, b ≥ 0, p > 1, the estimate (a + b)p ≤ 2p(ap + bp) holds,
we obtain

‖F(t, z, u)‖p ≤ 2δ(t)[1 + (‖γ‖plk|Ω|1−
1
p )p]‖u‖p.

Thus, (F′4) holds with β(t) = 0 and α(t) = 2δ(t)[1 + (‖γ‖plk|Ω|1−
1
p )p]. The existence of a mild

solution for Equation (38) satisfying the Cauchy and the impulsive conditions from Equation (34)
then follows by applying Theorem 3 again.

Similar equations as Equation (38) were considered in [36,53,56], but all of them were related
to a one-dimensional variable x only.

In [53], the authors considered a constant coefficient p in Equation (38) and a kernel k only
depending on s. The nonlinear term also included a Carathéodory function F, independent of zt,
which was asked to satisfy, at most, a linear growth with an additional constraint. Thus, their
nonlinear term cannot completely be compared with our map, but we stress that we can allow it to
have linear growth without the need for any constraint. Moreover, the linear term A in [53] was
equal to z′′xx, and the proof of the existence of a mild solution made use of the compactness of the
cosine family generated by A, while our method does not need any compactness and hence can take
into account the possible presence of first-order derivatives.

In [56], the coefficient p was continuous, as well as the kernel k, which again only depended on
s. The function f did not depend on x, and it was allowed to have a linear growth, but again with an
additional constraint.
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In [36], the coefficient p ∈ L∞((0, T),R). The nonlinear term consisted of a weakly closed
function F only depending on t and z, which, moreover, is assumed to be strictly sublinear.

6. Conclusions and Future Studies

In this paper, the existence of a mild solution to the Cauchy problem for an impulsive
semilinear second-order differential inclusion in a Banach space is investigated. The results
are obtained by the combination of the Kakutani fixed point theorem with the approxima-
tion solvability method and weak topology. The applied method enables obtaining the
conclusions without any requirement of the compactness of the r.h.s. and/or the cosine fam-
ily generated by the linear term and without the transformation of the studied second-order
problem to the corresponding first-order one. The proved theoretical results are applied
to the generalized telegraph equation with a Balakrishnan–Taylor-type damping term.
The conclusions of the paper generalize several previous results dealing with the Cauchy
problem for semilinear second-order differential equations or inclusions in Banach spaces
since the r.h.s. considered also depends on the first derivative and since the conclusions are
proven under less restrictive conditions.

Some directions for possible future research related to the studied topics are the following:

1. Our theoretical result does not only establish the existence of a solution but also
its localization in a bounded set; from the applications point of view, it could be
very interesting to investigate the existence of a bounded solution in an unbounded
interval, which could be obtained thanks to the localization property;

2. Our theoretical result is based on the application of a fixed point result. Thus, at
most, a linear growth condition on the nonlinear term is allowed; the study of the
abstract inclusion by means of a continuation principle would allow relaxing the
growth condition, thereby enlarging the class of models to which it can be applied;

3. As stressed in the Introduction, the interest in studying an inclusion mainly comes
from the possibility of dealing with control problems; we think that it would be
interesting to implement our technique for studying the controllability of the system
due to its importance in real-life problems;

4. We investigated the Cauchy problem associated with the inclusion; several more
general boundary conditions could be introduced, such as, e.g., periodic, antiperiodic,
Dirichlet, multipoint, integral, and so on;

5. As the linear term, we considered the generator A of a cosine family; many applica-
tions involve generators A(t) of fundamental systems possibly perturbed by suitable
linear operators; thus, it is worth applying our techniques to more general problems.
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23. Andres, J.; Malaguti, L.; Pavlačková, M. On second-order boundary value problems in Banach spaces: A bound sets approach.

Topol. Meth. Nonlinear Anal. 2011, 37, 303–341.
24. Byszewski, L.; Winiarska, T. An abstract nonlocal second order evolution problem. Opuscula Math. 2012, 32, 75–82. [CrossRef]
25. Tidke, H.L.; Dhakne, M.B. Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in

Banach spaces. Differ. Equ. Dyn. Syst. 2009, 17, 331–342. [CrossRef]
26. Hao, X.; Liu, L. Mild Solution of Second-Order Impulsive Integro-Differential Evolution Equations of Volterra Type in Banach

Spaces. Qual. Theory Dyn. Syst. 2020, 19, 18. [CrossRef]
27. Hernández, E. A second-order impulsive Cauchy problem. Int. J. Math. Math. Sci. 2002, 31, 451–461.
28. Peng, Y.; Xiang, X. Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls.

J. Ind. Manag. Optim. 2008, 4, 17–32. [CrossRef]
29. Winiarska, T. Extrapolation Banach spaces and abstract semilinear second order differential equations. Int. J. Differ. Equ. Appl.

2002, 6, 449–465.
30. Benchohra, M.; Gatsori, E.; Ntouyas, S.K. Existence results for functional semilinear damped integrodifferential equations. Libertas

Math. 2006, 26, 97–108.
31. Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Existence results for impulsive semilinear damped differential inclusions.

Electron. J. Qual. Theory Differ. Equ. 2003, 11, 19. [CrossRef]

http://doi.org/10.1016/j.amc.2019.04.051
http://dx.doi.org/10.14232/ejqtde.2020.1.13
http://dx.doi.org/10.1186/s13662-021-03474-x
http://dx.doi.org/10.3934/dcdsb.2020200
http://dx.doi.org/10.1016/S0362-546X(03)00117-2
http://dx.doi.org/10.1016/j.jfa.2009.10.023
http://dx.doi.org/10.1186/s13661-018-1086-8
http://dx.doi.org/10.1134/S0037446621030174
http://dx.doi.org/10.1134/S0037446621040170
http://dx.doi.org/10.3390/math7121134
http://dx.doi.org/10.1016/j.amc.2015.11.034
http://dx.doi.org/10.1016/j.camwa.2012.02.015
http://dx.doi.org/10.7494/OpMath.2012.32.1.75
http://dx.doi.org/10.1007/s12591-009-0024-8
http://dx.doi.org/10.1007/s12346-020-00345-w
http://dx.doi.org/10.3934/jimo.2008.4.17
http://dx.doi.org/10.14232/ejqtde.2003.1.11


Mathematics 2022, 10, 672 25 of 25

32. Benedetti, I.; Loi, N.V.; Malaguti, L.; Obukhovskii, V. An approximation solvability method for nonlocal differential problems in
Hilbert spaces. Commun. Contemp. Math. 2017, 19, 1650002. [CrossRef]

33. Benedetti, I.; Loi, N.V.; Taddei, V. An approximation solvability method for nonlocal semilinear differential problems in Banach
spaces. Discr. Cont. Dyn. Syst. Ser. A 2017, 37, 2977–2998. [CrossRef]

34. Benedetti, I.; Loi, N.V.; Malaguti, L.; Taddei, V. Nonlocal diffusion second order partial differential equations. J. Diff. Equ. 2017,
262, 1499–1523. [CrossRef]

35. Benedetti, I.; Malaguti, L.; Taddei, V. Semilinear evolution equations in abstract spaces and applications. Rend. Ist. Mat. Univ.
Trieste 2012, 44, 371–388.

36. Vijayakumar, V.; Murugesu, R. Controllability for a class of second-order evolution differential inclusions without compactness.
Appl. Anal. 2019, 98, 1367–1385. [CrossRef]

37. Singer, I. Bases in Banach Spaces I; Springer: Berlin/Heildelberg, Germany; New York, NY, USA, 1970.
38. Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces I: Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete; No. 92;

Springer: Berlin, Germany; New York, NY, USA, 1977.
39. Enflo, P. A counterexample to the approximation problem in Banach spaces. Acta Math. 1973, 130, 309–317. [CrossRef]
40. Johnson, W.B.; Lindenstrauss, J. Handbook of the Geometry of Banach Spaces Vol. I; North-Holland Publishing Co.: Amsterdam, The

Netherlands, 2001.
41. Malaguti, L.; Perrotta, S.; Taddei, V. Lp exact controllability of partial differential equations with nonlocal terms. Evol. Equ. Control

Theory 2021, 1–32. in press.
42. Travis, C.C.; Webb, G.F. Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung.

1978, 32, 75–96. [CrossRef]
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