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Abstract: Breast cancer (BC) is the most common women cancer and cause of cancer death. De-
spite decades of scientific progress in BC treatments, the clinical benefit of new drugs is modest
in several cases. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian
target of rapamycin (mTOR) pathway mutations are frequent in BC (20–40%) and are significant
causes of aggressive tumor behavior, as well as treatment resistance. Improving knowledge of the
PI3K/AKT/mTOR pathway is an urgent need. This review aims to highlight the central role of PI3K-
mTORC1/C2 mutations in the different BC subtypes, in terms of clinical outcomes and treatment
efficacy. The broad base of knowledge in tumor biology is a key point for personalized BC therapy in
the precision medicine era.
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1. Introduction

Breast cancer (BC) remains the most common cancer diagnosed in women. Despite
the increase of knowledge in cancer biology and treatment, BC is the fifth cause of cancer
mortality worldwide [1].

The development of precision medicine for the management of BC is an appealing
concept; however, major scientific and logistical challenges hinder its implementation in
the clinic. The identification of mutational drivers remains the biggest challenge, because,
with few exceptions, such as estrogen receptor (ER) or human epidermal growth factor
receptor 2 (HER2), no other validated oncogenic drivers of BC tumorigenesis exist.

Of note, the phosphatidylinositol 3-Kinase (PI3K)/protein kinase B (AKT)/mammalian
target of rapamycin (mTOR) pathway is an important signaling pathway involved in
treatment failure. The main causes of pathway deregulation are PIK3CA mutations,
AKT mutations or tensin homolog (PTEN) loss [2]. Pathway dysregulations are known
mechanisms of endocrine resistance, as well as anti-HER2-targeted agent resistance [3–7].
PI3K/AKT/mTOR mutations are more frequent in hormone receptor-positive (HR+) BC
compared to other BC subtypes [5].

For that reason, several targeted drugs are under investigation in order to restore
PI3K/AKT/mTOR pathway activity. Currently, there are only two targeted agents ap-
proved for the treatment of MBC patients, both in HR+/HER2-negative (HER2−) disease.
The first one is Everolimus, an mTOR inhibitor, approved in combination with Exemestane,
based on the BOLERO 2 trial results [8,9]. The second one is Alpelisib, recently approved
in combination with Fulvestrant in endocrine-resistant PI3K-mutated HR+ metastatic
(M)BC [10].
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This review aims to point out the role of PI3K/AKT/mTOR pathway mutations in the
different BC subtypes, with a focus on their clinical impact in terms of survival outcomes
and treatment efficacy.

2. PI3K/AKT/mTOR Pathway

The PI3K/AKT/mTOR pathway is physiologically involved in cell metabolism, growth,
proliferation and apoptosis [11] through the activation of tyrosine kinases receptor (RTK) and
G-protein-coupled receptors [12].

In particular, PI3Ks are a family of intracellular kinases subdivided into three classes
(class I, II and III) according to their sequence homologies and in vitro substrate prefer-
ence [13]. Class I is the major PI3K family of enzymes. It is further subdivided into class
IA and class IB based on the activated receptors [14]. Class IA is composed of different
catalytic and regulatory sub-units that directly interact with several tyrosine kinases recep-
tors, such as the epidermal growth factor receptor (EGFR), platelet-derived growth factor
receptor (PDGFR) and insulin-like growth factor-1 receptor (IGF-1R) [15]. The IA-PI3Ks
are activated by cell surface receptors, such as G protein-coupled receptors, RTKs and the
small G protein RAS [14]. On the contrary, small molecules, such as GTPases, activated
the class II enzymes [15]. The central mediator of the PI3K pathway is the AKT that acti-
vates over 100 substrates, including mTOR [16]. By contrast, PTEN is the main negative
regulator of PI3K signaling [17] (Figure 1). During cancer development, alterations in the
PI3K/AKT/mTOR pathway are mainly due to PIK3CA and AKT mutations, RTKs over-
expression or PTEN loss [18]. Of note, PTEN and AKT1mutations are mutually exclusive
mutations [19,20].
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Figure 1. PI3K signaling pathway. The PI3K signaling pathway has a role in mechanisms such as cell
growth, survival and metabolism. Following growth factor stimulation and subsequent activation of
RTKs, class IA proteins are recruited to the membrane by direct interaction with p85 subunit, with
the activated receptors or by interaction with adaptor proteins associated with the receptors. The
p110β-containing enzymes might be activated by GPCRs converting PIP2 to PIP3 and providing
docking sites for PDK1 and AKT. In particular, PDK1 phosphorylation and AKT activation regulate
a downstream signaling event where PTEN is one of the most important final targets. The figure
underlines where the multi-, pan- or isoform-specific inhibitors work.
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As mentioned before, PI3K/AKT/mTOR mutations are prevalent in HR+ tumors
compared to other BC subtypes (Figure 2). These mutations accord approximately in 40%
of HR+ BC, mainly in the helical and kinase domains of the PIK3CA gene, including three
main hotspot mutations: exon 9 E545K or E542K and exon 20 H1047R [21]. These gene
alterations activate PI3K enzyme, leading to constitutive phosphorylation of AKT and
its downstream effecttors [22]. Mutations in other components of the pathway are less
common and include mutations in AKT1 (2–3%) and PI3K regulatory subunit α (1–2%), loss-
of-function mutations in PTEN (2–4%) and mutations or overexpression of RTKs [20,23].

In HER2-positive (HER2+) disease, PIK3CA mutations occur in nearly 25% of the BC
and represent a well-known mechanism of acquired resistance to HER2-targeted thera-
pies [24]. By contrast, in the TNBC subgroup, the most frequent mutation is PTEN loss
(about 30–50%), while PIK3CA mutations occur in less than 10% of cases, principally in
androgen receptor-positive TNBC [25].
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Figure 2. Frequency of PI3K/AKT/mTOR mutations in different breast cancer subtypes: (A) HR
positive HER2 negative BC, (B) TNBC and (C) HER2 positive BC, respectively.

2.1. Tests

PIK3CA mutations can arise early in tumorigenesis, as well as can be acquired during
disease progression [26]. Available tests for evaluating PI3K status are the Polymerase
Chain Reaction (PCR) single-gene test or the Next-Generation-Sequencing (NGS), both
validated in different platforms [27]. Comparative effectiveness research indicated that NGS
analysis seems to be more sensitive than PCR-based assays [28]. In a retrospective analysis
conducted in the SOLAR-1 population, the PIK3CA mutations detected by PCR were
60% compared to 71% identified with NGS. In fact, the NGS technology is more sensitive
than PCR in the detection of less common spectrums of PI3K alterations [29]. PIK3CA
mutations can be detected in both tissue and/or plasma specimens. Quite high concordance
using formalin-fixed paraffin-embedded (FFPE) tissue- based and plasma testing has been
observed. Additional analysis from BELLE-2 and BELLE-3 trials using the BEAMing PCR
assay showed a similar concordance of PIK3CA mutation status between circulating tumor
(ct)DNA and tumor tissue analysis (77% and 83%, respectively) [30,31]. Similar findings
came from another retrospective study conducted by Chae et al., where the concordance
between ctDNA and tumor tissue using an NGS-based assay was about 75% [32]. The
different PI3K expressions between plasma and tissue specimens reported (about 25% of
cases) was justified by both high tumor heterogeneity and sample contaminations [33]. In
fact, recent evidence seems to suggest that the PI3K alterations assessed by liquid biopsy
better reflect tumor biology and patient prognosis. In the SOLAR-1 population, patients
with PIK3CA mutations in tissue samples had a 35% of risk reduction in disease progression
compared to 45% for those with PIK3CA mutations detected in ctDNA [32]. The available
evidence and the easy accessibility of ctDNA compared to tumor biopsy makes the ctDNA
the possible future primary approach [34].

2.2. PI3K/AKT/mTOR Targeted Agents

The class of PI3K/AKT/mTOR targeted agents includes different drugs classified
according to their mechanisms of action (Figure 1). Drugs mainly investigated in BC are
briefly listed below. Table 1 summarizes all the agents studied for BC treatment.

i. pan-PI3K inhibitors (PI3Kis)
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Table 1. PI3K/AKT/mTOR pathway inhibitors.

Class Target

Pan I PI3K inhibitors
Buparlisib (BKM120) pan-PI3K
Pictilisib (GDC-0941) pan-PI3K

Copanlisib (BAY 80-6946) pan-PI3K
SAR245408 (XL147) pan-PI3K

PX866 pan-PI3K
Isoform-specific PI3K inhibitors

Taselisib (GDC-0032) p110α
Alpelisib (BYL719) p110α

MLN1117 p110α
BAY 1082439 p110α/β
CH5132799 PI3Kα/γ
GSK2636771 p110β

AZD8186 p110β
SAR260301 p110β

Idelalisib (CAL-101) p110δ
IPI-145 p110δ

AMG319 p110δ
Dual-specificity PI3K/mTOR inhibitors

BEZ235 PI3K/mTOR
GDC-0980 PI3K/mTOR

RF-05212384 PI3K/mTOR
PF-0691502 PI3K/mTOR

GSK-2126458 PI3K/mTOR
SAR245409 (XL765) PI3K/mTOR

mTOR inhibitors, rapalogs
Sirolimus mTOR

Nab-rapamycin mTOR
Temsirolimus mTOR
Everolimus mTOR

Radaforolimus mTOR
mTOR inhibitors, catalytic

OSI-027 mTOR
AZD2014 mTOR
MLN0128 mTOR

PP242 mTOR
ML-223 mTOR

AKT inhibitors
Ipatasertib (GDC-0068) AKT1/2/3

MK-2206 AKT1/2/4
Capivasertib (AZD5363) AKT1/2/5

Perifosine (KRX-0401) AKT1/2/6
GSK2141795 AKT1/2/7

ALM301 AKT1/2
Archexin (RX-0201) AKT1

The Pan-PI3K inhibitors inhibited the kinase activity of the four isoforms of class I
PI3Ks: α, β, γ and δ. Preclinical models have reported that suppression of PI3K-signaling
pathway restored endocrine sensitivity [35]. The activity of PI3Kis was firstly evaluated
as single agent in MBC patients showing few treatment benefits with high frequency of
class-specific adverse events (AEs) [36].

Buparlisib is an oral 2,6-dimorpholino pyrimidine derivative that acts as a potent
pan-PI3K inhibitor. It showed efficacy against p110α somatic mutations frequently detected
in human cancers, but it was minimally effective against the PI3K class III and class IV
family members [37]. It was mainly investigated in BELLE2 and BELLE3 trials conducted
in HR+ MBC. Data from the BELLE3 study suggested a moderate clinical benefit with
Buparlisib plus endocrine therapy, but an important safety profile that limited the drug
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development. In particular, the most common toxicities were grade 3/4 hypertransaminas-
mia (40%), hyperglycaemia (12%), hypertension (6%) and fatigue (4%) [38]. Drug-related
AEs were mood alterations with evidence of attempted suicides (2%), depression (1%) and
anxiety (1%).

Pictilisib (GDC-0941; Genentech, San Francisco, CA, USA) is an orally available small
molecule that showed clinically significant activity in preclinical BC models [39]. Pictilisib
combined with paclitaxel or Fulvestrant was evaluated in both PEGGY (NCT01740336) and
FERGI (NCT01437566) trials. Patients in treatment with Pictilisib mainly experienced rash
(4%), pneumonitis (3%), diarrhea (3%), deranged transaminases (3%), abdominal pain (2%)
and stomatitis (2%) [40].

ii. Isoform-Specific PI3K Inhibitors

The Isoform-specific inhibitors link a specific PI3K isoform in order to reduce the
toxicity of pan-PI3K inhibitors. In particular, the PI3Kα inhibitors selectively inhibit the
class I PI3K catalytic subunit α isoform. Alpelisib and Taselisib showed positive results in
clinical trials conducted in PIK3CA-mutated patients.

Alpelisib (BYL719; Novartis Pharmaceuticals, Basel, Switzerland) is the first oral
PI3Kα inhibitor acting against the subunit α isoforms [41]. It has shown synergistic anti-
tumor activity when associated to endocrine therapy in HR+PIK3CA-mutated BC cells in
preclinical and clinical phase III trial (SOLAR-1) [10].

The most common AEs are gastrointestinal disorders (73%), hyperglycemia (62%),
fatigue (54%) and rash (42%). Most of the side effects are dose dependent and cumulative,
and tend to appear in the first weeks of treatment [10].

Taselisib (GDC-0032, Genentech, San Francisco, CA) is an orally PI3Kα inhibitor
targeting α, δ and γ isoforms [42]. The triplet of Taselisib plus Palbociclib and Fulvestrant
was investigated in heavily pretreated PIK3CA-mutant HR+ MBC patients [43]. The most
reported grade 3–4 adverse events are colitis (13.3%), diarrhea (11.7%), hyperglycemia
(6.7%) and pneumonia (5%) [44].

iii. AKT Inhibitors

AKT is a downstream target of PI3K [45]. AKT has three isoforms, AKT 1, 2 and 3,
which have similar structures and are directly linked by the AKT inhibitors.

MK-2206 is an orally bioavailable allosteric inhibitor of AKT (protein kinase B), bind-
ing the domain in a non-ATP competitive manner. It was investigated in early and advanced
settings with modest results [46,47]. For those reasons, it was not further developed.

Capivasertib is an oral agent that binds and inhibits all AKT isoforms. It has demon-
strated promising antitumor activity in a phase I study in patients with solid tumors
harboring AKT1 E17K mutations [48]. The most common grade 3-4 AEs are diarrhea (22%),
hyperglycemia (13%), neutropenia (11%) and maculopapular rash (9%) [49].

Ipatasertib is an orally bioavailable inhibitor of AKT [50]. It is currently under study
in clinical trials conducted in HR+ MBC in combination with endocrine treatment and/or
CD4/6 inhibitors, paclitaxel and immunotherapy (Table 2). The most reported AEs are
diarrhea (23%), neutropenia (18%), peripheral neuropathy (7%), fatigue or asthenia (5%)
and pneumonia (5%) [51].

iv. mTOR Inhibitors
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Table 2. Ongoing Trials in BC.

Trial Phase Population Arms

NCT03959891 I HR+/HER2−
Fulvestrant + Ipatasertib vs. Aromatase
Inhibitor + Ipatasertib vs. Fulvestrant +

Ipatasertib + Palbociclib

NCT04060862 IB-III HR+/HER2−
Stage 3: ipatasertib + palbociclib +

fulvestrant vs. placebo + palbociclib
+ fulvestrant

NCT03337724 III TNBC ipatasertib + paclitaxel vs. placebo
+ paclitaxel

NCT03280563 IB-II HR+/HER2−

Stage 1: Atezolizumab + Ipatasertib +
Fulvestrant vs. Atezolizumab +
Ipatasertib vs. Atezolizumab +
Fulvestrant vs. Atezolizumab +

Entinostat vs. Fulvestrant (placebo)Stage
2: Atezolizumab + Bevacizumab +

Endocrine Therapy

NCT03800836 I TNBC In Cohort 1: ipatasertib + atezolizumab +
paclitaxel (nab-paclit) +/− antra

NCT03424005 IB-II TNBC

Stage 1: Atezolizumab + Nab-Paclitaxel
+/− Tocilizumab vs. Nab-Paclitaxel vs.

Atezolizumab + Sacituzumab
GovitecanStage 2: Capecitabine vs.

Atezolizumab + Ipatasertib vs.
Atezolizumab + SGN-LIV1A vs.
Atezolizumab + Selicrelumab +

Bevacizumab vs. tezolizumab + Chemo
(Gemcitabine + Carboplatin or Eribulin)

NCT03395899 II HR+/HER2−

Atezolizumab vs. Atezolizumab +
Cobimetinib vs. Atezolizumab +
Ipatasertib vs. Atezolizumab +

Ipatasertib + Bevacizumab

NCT02390427 I HER2+

Taselisib + Pertuzumab + Trastuzumab +
Paclitaxel vs. Taselisib + Pertuzumab +

Trastuzumab vs. Taselisib + Trastuzumab
emtansine + Pertuzumab vs. Taselisib +

Trastuzumab emtansine

NCT02167854 I HER2+

Study Evaluating the Safety and
Tolerability of LJM716, BYL719 and

Trastuzumab in Patients with Metastatic
HER2+ Breast Cancer

NCT04208178 III HER2+

Study of Alpelisib (BYL719) in
Combination with Trastuzumab and

Pertuzumab as Maintenance Therapy in
Patients With HER2-positive Advanced
Breast Cancer With a PIK3CA Mutation

(EPIK-B2)
Abbreviations: human epidermal growth factor receptor-2 positive (HER2+), hormone receptor positive (HR+),
triple-negative breast cancer (TNBC).

mTOR is a serine/threonine specific kinase able to regulate cell proliferation and
survival [52]. mTOR forms two multiprotein complexes, mTORC1 and mTORC2, that are
targetable from cancer drugs [53].

Everolimus is an allosteric inhibitor of mTORC1. Based on the results of phase III
BOLERO-2 study, the combination of Everolimus and Exemestane was approved for the
treatment of HR+/ HER2− MBC progressed on endocrine treatment. Class-related AEs are
stomatitis (8%), anemia (7%), pneumonitis (5%), hyperglycemia (5%) and fatigue (3%) [54].

Temsirolimus is a selective mTORC1 inhibitor [55]. It was evaluated in a phase II
study at the dose of 25 mg weekly in heavily treated HR+ and/or HER2+ BC showing
minimal activity [56]. On the contrary, in the phase III HORIZON trial, Temsirolimus, in
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addition to Letrozole, showed a significant advantage compared to ET alone in HR+ MBC
patients. A high rate of grade 3 and 4 class-related AEs have been reported [57].

Knowledge on the PI3K/AKT/mTOR pathway is mandatory not only for developing
targeted agents, but also for innovative treatment strategy. In particular, the role of mTOR as
a metabolic or immune checkpoint regulator may open the opportunity for new therapeutic
approaches [58,59]. For example, some AMP-activated protein kinase (AMPK) activators,
such as metformin, have been studied and are under investigation in preclinical research
due to their ability to stimulate PI3K/Akt and inhibit mTOR/S6K [60]. Available data on the
anticancer activity of metformin in BC patients are still controversial, but promising [61].
Moreover, recent evidence showed that even PLD1, through Rheb, is involved in the
activation of mTOR, suggesting an interesting mechanism of PLD-mTOR signaling cross
talk [62].

2.3. Early Breast Cancer Neoadjuvant Setting

Even if the PI3K/AKT/mTOR-targeted agents have been investigated in a neoadjuvant
setting, none has been approved due to the loss in gain in pathological complete response
(pCR) rate and survival outcomes (Table 3).

Table 3. Clinical trials of PI3K/AKT/mTOR inhibitors in PI3k-mutated early breast cancer.

Trial Phase Population Arms pCR Rate %

LORELEI II HR+/
HER2−

Letrozole + taselisib vs.
letrozole + placebo

pCR:2 %2 taselisib vs. 1%
placebo p = 0.37

NEO ORB I HR+/
HER2−

alpelisib + letrozole vs.
letrozole + placebo

pCR: 1%alpelisib vs. 2%
placebo p = 0.282

FAIRLANE II TNBC paclitaxel + ipatasertib vs.
paclitaxel + placebo

pCR: 18% ipatasertib vs.
12% placebo, p = NA

I-SPY 2 trial I HER2+

MK-2206 + paclitaxel +
trastuzumab vs. MK-2206 +
paclitaxel vs. paclitaxel vs.
paclitaxel + trastuzumab

pCR: 48% MK-2206 arm vs.
29% placebo, p = NA

NEOPHOEBE II HER2+ buparlisib + trastuzumab
vs. placebo + trastuzumab

pCR: 32% buparlisib vs.
40%; p = 0.811

Abbreviations: pathological complete response (pCR), Overall response rate (ORR), human epidermal growth
factor receptor-2 positive (HER2+), hormone receptor positive (HR+), triple-negative breast cancer (TNBC), not
available (NA).

2.4. HR Positive EBC

Two phase II neoadjuvant trials, conducted in HR+/HER2− early BC patients, evalu-
ated the efficacy of Taselisib and Alpelisib in combination with endocrine. In both trials,
the pCR rate was the primary endpoint. In particular, the LORELEI trial, a randomized,
double-blind, placebo-controlled study, investigated the combination of Taselisib plus
Letrozole compared to Letrozole alone [63]. No statistically significant difference in pCR
rate has been reported between the two groups, neither in the overall population, nor in the
PI3K-mutated patients. The addition of Taselisib to Letrozole was associated with a higher
proportion of objective response rate (ORR), independently from the PI3K status (39% in
the placebo group vs. 50% in the Taselisib one, p = 0.049) [64]. Negative results in term of
pCR and ORR were reported in the NEO-ORB study, where Letrozole was combined with
Alpelisib as the primary treatment strategy [65].

2.5. Triple Negative Early BC

The phase II FAIRLANE trial explored the efficacy of Ipatasertib in addition to Pacli-
taxel vs. Paclitaxel alone in early TNBC [66]. The primary endpoint was the pCR rate in the
overall population, PTEN-low population and PIK3CA/AKT1/PTEN-mutated tumors. In
all subgroup analyses, the addition of Ipatasertib to chemotherapy showed only a trend
in pCR rate in favor of sperimental arm: 17% vs. 13% in the overall population, 16%
vs. 13% in the PTEN-low population and 18% vs. 12% in PIK3CA/AKT1/PTEN-altered
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tumors, respectively [66]. Following the pre-clinical evidence that PI3K pathway inhibitions
lead to suppression of BRCA gene transcription through MEK1 and ERK activation, the
combination of PI3K and PARP inhibitors have been studied [67–70].

2.6. HER2 Positive EBC

Considering that PIK3CA mutations lead to HER2-targeted agents resistance, the
association between anti-HER2 therapy and PI3K/AKT/mTOR inhibitors has been widely
tested [69]. A combination of MK-2206 with Paclitaxel and Trastuzumab was investigated
in a HER2+ population enrolled in an I-SPY 2 trial. The reported pCR rate was 48% in the
MK-2206 arm compared with 29% in the control one [48]. In contrast, no clinical advantage
due to Buparlisib addiction to Paclitaxel and Trastuzumab was reported in the phase II
NeoPHOEBE trial [71].

3. Metastatic Breast Cancer

The activity of PI3K/AKT/mTOR-targeted agents seems to be more promising in
a metastatic setting (Table 4). Actually, two PI3K/AKT/mTOR pathway inhibitors are
approved for the treatment of metastatic (M) BC: Everolimus, in combination with Ex-
emestane, in HR+/HER2− endocrine resistant MBC and Alpelisib, in combination with
Fulvestrant in the case of PI3K-mutated tumors.

Table 4. Phase II/III trials of PI3K/AKT/mTOR inhibitors in advanced breast cancer.

Study Phase Population Arms mPFS, Months

SOLAR-1 III HR+/
HER2− Alpelisib + FLV vs. placebo + FLV

PIK3CA not mut: mPFS 7.4 alpelisb vs.
5.6 placebo HR 0.85

PIK3CA mut: mPFS 11.0 alpelisib vs.
5.7 placebo, p < 0.001

BELLE-2 III HR+/
HER2− Buparlisib + FLV vs. placebo + FLV

mPFS 6.9 buparlisib vs. 5.0 placebo p < 0.001
PIK3CA-mut: mPFS 7 buparlisib vs. 3.2 placebo,

p < 0.001

BELLE-3 III HR+/
HER2− Buparlisib + FLV vs. placebo + FLV mPFS 3.9 buparlisib vs. 1.8 placebo, p = 0.00030

BELLE-4 II/III HR+/
HER2− Txl + buparlisib vs. Txl + placebo mPFS 9.2 Buparlisib vs. 8.0 placebo + paclitaxel,

HR 1.18

FERGI II HR+/
HER2− Pictilisib + FLV vs. placebo + FLV

mPFS Part 1: 6.6 Pictilisib vs. 5.1 placebo,
p = 0.096

mPFS Part 2: 5.4 Pictilisib: vs. 10, p = 0.84

SANDPIPER III HR+/
HER2− taselisib + FLV vs. placebo + FLV mPFS 7.4 taselisib vs. 5.4, p = 0.0037

TAMRAD II HR+/
HER2− TAM + everolimus vs. TAM alone mPFS 8.6 everolimus vs. 4.5 placebo, p = 0.002

BOLERO-2 III HR+/
HER2− EXE + everolimus vs. Exe + placebo mPFS 6.9 everolimus vs. 2.8 placebo, p < 0.001

FAKTION II HR+/
HER2− Capivasertib + FLV vs. FLV + placebo mPFS 10.3 capivasertib vs. 4.8 placebo,

p = 0.0018

PEGGY II HR+/
HER2− Txl + pictilisib or Txl + placebo mPFS 8.2 Pictilisib vs. 7.8 placebo, p = 0.83

HORIZON III HR+/
HER2− LET + temsirolimus vs. LET + placebo mPFS 8.9 temsirolimus vs. 9 placebo, p = 0.5

LOTUS II TNBC Txl + ipatasertib vs. Txl + placebo
mPFS 6.2 ipatasertib vs. 4.9, p = 0.037

PTEN-low: mPFS 6.2 months ipatasertib vs. 3.7,
p = 0.18

PAKT II TNBC Txl + capivasertib vs. txl + placebo
mPFS 5.9 capivasertib vs. 4.2 placebo, p = 0.06

PIK3CA/AKT1/PTEN-altered: mPFS 9.3
capivasertib vs. 3.7 placebo, p = 0.01

Abbreviations: advanced breast cancer (ABC), pathological complete response (pCR), Overall response rate (ORR),
Median progression free survival (mPFS), human epidermal growth factor receptor-2 positive (HER2+), hormone
receptor positive (HR+), triple-negative breast cancer (TNBC), Fulvestrant (FLV), Exemestane (EXE), Tamoxifen
(TAM), Taxol (Txl).
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3.1. HR Positive MBC

The first targeted agent approved for the treatment of HR+/HER2− MBC was Everolimus.
The phase III BOLERO 2 trial showed PFS benefits due to the addition of Everolimus to
Exemestane in endocrine resistance MBC (median progression free survival (mPFS) 10.6 months
versus 4.1 months; hazard ratio (HR) 0.43; 95% CI: 0.35–0.54; p < 0.001). No gain in overall
survival (OS) has been observed [57]. Moreover, Everolimus confirmed its activity combined
with Tamoxifen too. In the TAMRAD trial, the combination strategy increased the clinical benefit
rate from 42% to 61%, with an advantage of 4 months in time to progression [72]. Temsirolimus
was the other mTOR inhibitor tested in a metastatic setting. No significant survival benefit has
been reported in the overall population of the HORIZON trial [57]. In the subgroup analysis,
patients younger than 65 years had a slight, but statistically significant PFS benefit (mPFS FS 9.0
months in Temsirolimus arm versus 5.6 months in endocrine therapy (ET) alone; HR 0.75; 95%
CI: 0.60–0.93; p = 0.009) [57].

Based on the SOLAR 1 trial results, the FDA approved the use of Alpelisib with
Fulvestrant for the treatment of HR+/HER2− PI3K-mutated MBC progressed on or after
an endocrine-based regimen. In 2020, EMA approved the use of Alpelisib in association
with Fulvestrant in HR+/HER2− PI3K-mutated MBC patients progressed on endocrine
monotherapy [10]. The mPFS in the PIK3CA-mutant cohort was significantly improved
with Alpelisib compared to endocrine treatment alone (mPFS 11.0 vs. 5.7 months, HR = 0.65;
p = 0.00065). PIK3CA status was determined on both tumor tissue samples and plasma
ctDNA. No benefit from Alpelisib addition was observed in the PIK3CA–non-mutant
population. Of note, only 20 out of 572 patients enrolled were previously treated with a
cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor [10]. The phase II trial (BYlieve),
a multicenter open-label, non-comparative study, showed the efficacy of Alpelisib plus
Fulvestrant in patients with PIK3CA-mutated HR +/HER2− BC also pre-treated with
CDK4/6 inhibitors [73]. In the phase III SANDPIPER trial, the combination of Taselisib
with Fulvestrant in endocrine-resistant PIK3CA-mutant patients significantly improved
mPFS from 5.4 months to 7.4 months (stratified HR 0.70; 95% CI, 0.56–0.89; p = 0.0037) [74].

The BELLE trials investigated the benefit from the addition of Buparlisib to endocrine
therapy or chemotherapy. In the phase III BELLE-2 trial, the safety and the efficacy of
Buparlisib in combination with Fulvestrant was explored in postmenopausal women
with aromatase inhibitor-resistant HR+/HER2− MBC, who had received at least one
previous line of therapy for advanced disease [30]. A significant improvement in mPFS
was observed in the Buparlisib arm versus placebo one (6.9 vs. 5.0 months; HR = 0.78;
p = 0.00021). Patients were stratified according to PI3K status (activated vs. non-activated
vs. unknown): women with a known PIK3CA mutation or an activated PI3K pathway
had better mPFS compared to patients with unknown status [31]. The BELLE-3 trial
investigated the power of Buparlisib to restore endocrine sensitivity in patients progressed
after aromatase inhibitors (AI) or an mTOR inhibitor. Overall, the addition of Buparlisib to
Fulvestrant improved the mPFS (3.9 vs. 1.8 mo; HR = 0.67; p = 0.00030), mainly in those
with PIK3CA mutation detected by ctDNA analysis (mPFS 4.2 months, p = 0.00031) [30].
Data from both BELLE trials show that PIK3CA-mutant BCs had more benefit from the
addition of PI3K inhibitors to endocrine therapy compared to PI3K wild type ones. On the
contrary, the addition of Buparlisib to chemotherapy did not report any survival benefit in
the phase II BELLE-4 population, regardless of the PIK3CA mutation status [75].

Pictilisib activity combined with Fulvestrant or Paclitaxel was investigated in two
phase II trials (FERGI and PEGGY) conducted in HR+/HER2− endocrine resistant BC
patients [42]. In both studies, no significant benefit in term of PFS has been found [42].
Promising results have been reported for Capivasertib added to Fulvestrant in patients
progressed after AI (phase II FAKTION trial). The Capivasertib plus Fulvestrant strategy
showed more than 5 months in PFS benefit compared to Fulvestrant alone (10.3 months
versus 4.8 months; p = 0.0018, respectively). PI3K mutation did not affect the sensitivity to
Capivasertib [76]. Results from the phase III trial CAPItello-291 are still in progress [77].
Less effective seems to be the combination of Capivasertib and Paclitaxel (BEECH trial) [49].
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3.2. Triple Negative MBC

The PI3K/AKT/mTOR inhibitors activity is still at early-phase development in
metastatic TNBC. In particular, data from two phase II trials showed promising results for
the AKT inhibitors class. In LOTUS trial, Ipatasertib was tested with weekly Paclitaxel,
showing a statistically significant PFS advantage independently of PTEN status (6.2 versus
4.9 months, respectively; p = 0.037) [51]. Moreover, in another phase II trial, patients with
mutation in the PIK3CA/AKT1/PTEN pathway had a significant PFS improvement with
Ipatasertib compared to placebo (9.0 months vs. 4.9 months, HR 0.44, 95% CI 0.20–0.99,
p = 0.041). The phase III trial (IPATunity130) conducted in HER2− MBC with a known
PIK3CA/AKT1/PTEN-altered pathway is actually ongoing [78]. Capivasertib in combina-
tion with Paclitaxel was evaluated in a PAKT trial, showing a possible benefit in patients
with genetic alterations of PIK3CA, AKT1 or PTEN. In particular, in the Capivasertib cohort
ORR, clinical benefit rate, mPFS and mOS were 35.3%, 52.9%, 9.3 months and not reached,
respectively, compared to 18.2%, 27.3%, 3.7 months and 10.4 months in the placebo arm [79].

Based on the preclinical data that reported less activity of PD-L1 blockade agents in
PTEN loss cells, trials investigating the combination of PIK3β inhibitors and anti-PD-L1
therapies have been setup (Table 2) [80]. Similar negative results for the association of
PI3k/AKT/mTOR inhibitors and chemotherapy have been reported in triple negative BC
patients. No improvement survival outcomes for Buparlisib plus Paclitaxel (BELLE-4 trial)
and mTOR inhibitors plus liposomal doxorubicin and Bevacizuamb [81].

Finally, data from phase I-II suggest the potential benefit of PI3k inhibitors combined
with different targeted agents (i.e., Palbociclib, Enzalutamide and Olaparib) [82–84]. In
particular, the combination of a PI3K inhibitor and a PARP inhibitor seems to reduce
BRCA1/2 expression, increasing the antitumor effects of Olaparib [66–70,84].

3.3. HER2 Positive MBC

Preclinical evidence supported the involvement of the PI3K/AKT/mTOR pathway in
the mechanism of HER2 resistance [85,86]. These finding are the rationale for combining
PI3K/AKT/mTOR inhibitor agents with anti HER2−targeted therapies [87]. Both BOLERO-
1 and BOLERO-3 trials evaluated the efficacy of Everolimus and Trastuzumab, showing only
a modest PFS advantage (mPFS 7 months vs. 5.78 months) [88,89]. Disappointing results
have also been reported for the combination of Trastuzumab and Buparlisib [90]. On the con-
trary, Buparlisib with Lapatinib showed antitumor activity with a high disease control rate
(79%) [91]. Actually, research efforts are focusing on alfa-specific PI3K inhibitors (Taselisib
or Alpelisib) in association with anti-HER2 agents (Table 2) [92]. In particular, a phase
III trial (EPIK-B2) with alpelisib compared to placebo in combination with trastuzumab
and pertuzumab as maintenance treatment after 1st line therapy with trastuzumab, per-
tuzumab and taxane, in PIK3CA-mutated tumors, is recruiting patients [93]. In a phase I
trial, Alpelisib tolerability was tested in combination with trastuzumab emtansine (TDM-1)
in trastuzumab-resistant patients [92]. In this study, the combination of alpelisib 250 mg
daily and T-DM1 appeared to be safe, with an ORR of 43% in the overall population. Of
note, enrolled patients were not selected based on PIK3CA status [92].

4. Conclusions

The PI3K/AKT/mTOR pathway is frequently mutated in BC, mainly in HR+ tumors. At
present, several studies have demonstrated that mutations on the PI3K/AKT/mTOR pathway
promote treatment resistance. The increasing knowledge of the PI3K/AKT/mTOR molecular
pathway provides a new perspective for the management of BC. In particular, combined therapy
regimens that inhibit parallel pathway activation (i.e., PI3K inhibitors and HER2-targeted agents)
seem to be a valid therapeutic approach. In order to reach the full potential efficacy and avoid
overlapping toxicity, the safety profile of these targeted combinations should be carefully taken
into account. Robust clinical studies regarding class-related side effects and testing different
therapeutic doses, such as intermittent dosing schedules, may be useful in reducing side effects
and improving patients’ treatment adherence.
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Currently, in Europe, only two PI3K/mTOR inhibitors (Everolimus and Alpelisib) are
available for the treatment of HR+/HER2− MBC patients. However, the use of Alpelisib
is limited to PI3K-mutated patients who progressed after endocrine monotherapy alone,
restricting its use in daily practice. Even if ESMO guidelines do not recommend genomic
profiling for the treatment choice of MBC patients, oncologists have to be aware that an
actionable mutation could be useful in future patients’ treatment strategy. Considering
the growing body of evidence from ongoing clinical and preclinical trials, new treatment
strategies and target drugs will likely emerge in future years.
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AKT protein kinase
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CDK4/6 cyclin-dependent kinases 4 and 6
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EGFR epidermal growth factor receptor
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FFPE formalin-fixed paraffin-embedded
GPCR G-protein-coupled receptor
HR hazard ratio
HER2 human epidermal growth factor receptor 2
HER2+ human epidermal growth factor receptor 2 positive
HER2− human epidermal growth factor receptor 2 negative
HR+ hormone receptor positive
IGF-1R insulin-like growth factor-1 receptor
MBC metastatic breast cancer
mPFS median progression free survival
mTOR B mammalian target of rapamycin
NGS Next-Generation-Sequencing
ORR objective response rate
OS overall survival
pCR pathological complete response
PCR polymerase chain reaction
PDGFR platelet-derived growth factor receptor
PI3K phosphoinositide 3-kinase
PIP2 Phosphatidylinositol-4,5-bisphosphate
PIP3 Phosphatidylinositol-3,4,5-trisphosphate
PTEN tensin homolog
RTK tyrosine kinases receptor
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