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Abstract
Benchmark dose (BMD) methodology has been employed as a default dose–response
modeling approach to determine the toxicity value of chemicals to support regulatory
chemical risk assessment. Especially, a relatively standardized BMD analysis frame-
work has been established for modeling toxicological data regarding the formats of
input data, dose–response models, definitions of benchmark response, and model uncer-
tainty consideration. However, the BMD approach has not been well developed for
epidemiological data mainly because of the diverse designs of epidemiological studies
and various formats of data reported in the literature. Although most of the epidemi-
ological BMD analyses were developed to solve a particular question, the methods
proposed in two recent studies are able to handle cohort and case–control studies
using summary data with consideration of adjustments for confounders. Therefore,
the purpose of the present study is to investigate and compare the “effective count”-
based BMD modeling approach and adjusted relative risk (RR)-based BMD analysis
approach to identify an appropriate BMD modeling framework that can be general-
ized for analyzing published data of prospective cohort studies for BMD analysis.
The two methods were applied to the same set of studies that investigated the asso-
ciation between bladder and lung cancer and inorganic arsenic exposure for BMD
estimation. The results suggest that estimated BMDs and BMDLs are relatively con-
sistent; however, with the consideration of established common practice in BMD
analysis, modeling adjusted RR values as continuous data for BMD estimation is a
more generalizable approach harmonized with the BMD approach using toxicological
data.

K E Y W O R D S
arsenic exposure, Bayesian analysis, benchmark dose, bladder cancer, epidemiological risk assessment, lung
cancer

1 INTRODUCTION

Benchmark dose (BMD) methodology (Shao & Shapiro,
2018; US Environmental Protection Agency. Risk Assess-
ment Forum, 2012) is now being employed as a default
dose–response modeling approach to determine the toxic-
ity value of chemicals to support regulatory chemical risk
assessment. The BMD method has been continuously devel-
oped and improved since the proposal of the BMD concept
(Crump, 1984) and has become a relatively mature and stan-
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dardized modeling framework primarily for toxicological
data. It is critical to note that the BMD method in risk assess-
ment is primarily applied to analyze published toxicological
dose–response data (i.e., raw individual animal data are sum-
marized using various statistics for each dose group), even
though the BMD method is completely capable of modeling
individual dose–response data (Shao & Shapiro, 2018). The
standardization of the BMD modeling framework is mainly
reflected through four important aspects. First, well-defined
format of input data clarifies the data requirements for BMD
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2 DE PRETIS ET AL.

modeling. For example, the dose level, the numbers of total
tested animals, and affected animals are the three required
quantities for modeling dichotomous data, whereas for con-
tinuous data, the dose level, number of tested animals in each
dose group, mean, and standard deviation of the responses
in each dose group are the four required quantities. Sec-
ond, empirical models representing various dose–response
shapes are well developed for dichotomous and continu-
ous data. Third, the extra- or added-risk-based benchmark
response (BMR) for dichotomous data as well as the central
tendency- or distribution tail-based BMR definition for con-
tinuous data (Shao & Shapiro, 2018) are widely accepted.
Finally, the “best model” approach or more recently pro-
posed model averaged BMD estimation method is employed
to address model uncertainty in BMD/BMD level (BMDL)
estimation. These strategies mentioned above make the BMD
analysis for toxicological data relatively easy to perform
and interpret. On the other hand, a BMD modeling frame-
work has not been properly established for epidemiological
data because of the complexity of epidemiological studies.
Compared to toxicological studies, epidemiological stud-
ies are more complicated with respect to study design
(e.g., cohort and case–control studies), exposure measure-
ment (e.g., expressed in ranges), and expression of adversity
(e.g., odds ratios [ORs] and relative risks [RRs]). A few
recent studies applied different strategies to estimate BMDs
from epidemiological data. Kullar et al. (2019) applied the
BMD method to estimate water manganese levels associ-
ated with predetermined levels of cognitive impairment in
children. Individual tap water manganese concentration and
performance IQ data (which were adjusted for potential con-
founders or important determinants) of 630 children were
used as input data for BMD estimation. US FDA’s Arsenic
in Rice and Rice Products Risk Assessment Report (US
Food and Drug Administration [US FDA], 2016) proposed
to model incidence ratios of exposure groups as dichotomous
data reported in prospective cohort studies for analyzing
BMD where confounding covariates were taken into account
by using adjusted numbers of cases in BMD modeling. Allen
et al. (2020b) introduced the idea of using “effective counts”
that were adjusted counts for covariates based on the adjusted
ORs or RRs of exposure groups reported in the literature for
BMD analysis. Shao et al. (2021) applied the BMD model-
ing strategy for summary continuous data to model adjusted
ORs or RRs of exposure groups as the continuous response
for BMD estimation.

These BMD estimation methods briefly described above
have different features and adaptabilities. The BMD mod-
eling approach employed in Kullar et al. (2019) was only
suitable when raw epidemiological data are available, so
it is a generally applicable approach in the chemical risk
assessment that heavily relies on published summary data.
The US FDA (2016) approach very precisely follows the
BMD framework developed for toxicological data with the
adjustment for potential confounding factors; however, this
approach is specifically designed for cohort studies (not for
case–control studies) where incidence ratios are available.

The methods presented in Allen et al. (2020b) and Shao et al.
(2021) are both able to handle cohort and case–control studies
using summary data reported in epidemiological studies with
the consideration of adjustments for confounders. Therefore,
the purpose of the present study is to investigate and com-
pare the “effective count”-based BMD modeling approach
(Allen et al., 2020b) and adjusted RR-based BMD analy-
sis approach (Shao et al., 2021) to identify an appropriate
BMD modeling framework that can be generalized for ana-
lyzing published epidemiological data for BMD analysis.
With the goal of making the BMD methodology as consis-
tent as possible between toxicological and epidemiological
studies, the “better” approach will be selected based on its
alignment with the four components of a BMD modeling
framework mentioned above. When handling epidemiolog-
ical data that have been summarized into exposure ranges,
uncertainty in exposure should be properly addressed and
can be applied to the approaches being compared with no
differences. Consequently, the approaches for exposure level
selection and modeling exposure uncertainty are outside
the scope of the present study. High-quality epidemiolog-
ical data are always preferred over toxicological data in
risk assessment for reference dose derivation because no
animal to human extrapolation is needed. Therefore, a stan-
dardized and generalized BMD modeling framework for the
epidemiological study is critically needed and may have a sig-
nificant impact on regulatory risk assessment. In this study,
we will focus on the comparison using dose–response data
from prospective cohort studies, whereas the investigation
for case–control studies will be presented in another publica-
tion. The rest of this article is organized as follows: Section 2
describes the arsenic exposure dataset employed in our anal-
ysis. We detail the methods to pretreat and analyze such data,
based on dichotomous and continuous BMD models (hence-
forth, simply dichotomous and continuous BMD models).
In Section 3, we compare both models and show the main
outcomes of our analysis, exploring their statistical associ-
ation. We discuss further expansions and limitations of our
approach in Section 4.

2 MATERIALS AND METHODS

In this section, we introduce the structure and representa-
tion of prospective cohort data used in this study to compare
two different modeling approaches for BMD estimation from
epidemiological studies. These two modeling methods, that
is, model the epidemiological dose–response data (1) as
dichotomous data (Section 2.3.1) or (2) as continuous data
(Section 2.3.2), are discussed here as well.

2.1 Basics for epidemiological data
representation

Throughout the article, we make use of the notation intro-
duced in Lash et al. (2021, Chapters 16–18) for categorical
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BMD FOR DOSE–RESPONSE ASSESSMENT 3

F I G U R E 1 Common notation for contingency tables categorizing epidemiological data. Tables on the left side (a: a.1 and a.2) are employed to
represent person–time data, whereas those on the right side (b: b.1 and b.2) are used for pure count data. Examples for two exposure groups or a general
number of G groups are provided in subtables.

statistics purposes, except for one case that we detail below.
In particular, we represent absolute frequencies of person–
time data and pure count data by the contingency tables (a)
and (b) shown in Figure 1. Each of these tables is com-
posed by two subtables, outlining the format used for two
exposure groups (exposed and background exposure) and
multiple exposure groups (up to a number G). In these
tables, we express cases by the letter A, number of sub-
jects by N, and person–time by T. The latter quantities
usually appear as denominators in standard epidemiologi-
cal ratio-based measures: We will conform to such notation
as well in the formulas provided here. The superscripts
e and r refer to effective and raw (original) counts; they
also signal if an epidemiological measure is adjusted or
unadjusted. The subscript i marks each of the G exposure
groups, with i = 0 denoting the background exposure (Bkgnd
Exp)/baseline/referent group, as it may be defined in accor-
dance with the context where the latter is used. In this article,
we use two different cohort study data types: incidence rate
and cumulative incidence cohort studies. They are usually
characterized by two different kinds of risk measures, as it
will be now detailed. However, for a more complete descrip-
tion of such studies, we again refer the reader to Lash et al.
(2021, Chapter 7).

Whatever person–time or pure count data to consider, it is
usual to introduce ratio measures based on such data. Should
we identify person–time data as the denominator of interest
in our computations (as is generally the case when analyzing
incidence rate cohort studies), we tend to assume a Poisson
model to fit the number of cases occurring in a stationary pop-
ulation followed for a fixed time span. This leads to defining
a ratio measure for a given exposure group as a ratio, usually
named incidence rate ratio (IRR) or simply IR, as Lash et al.

(2021) do, whose maximum likelihood estimate reads as

IRi =
Ai

Ti
∕

A0

T0
, (1)

and with the standard error (SE) of its logarithmic measure
being:

SE
[
log (IRi)

]
=

√
1
Ai

+
1

A0
. (2)

On the other side, should we consider the number of sub-
jects as the primary denominator in our computations (as it
naturally lands for cumulative incidence cohort studies), we
favor constructing a Binomial model for the number of cases
occurring out of a fixed number of subjects. This leads to
defining a ratio measure for a given exposure group as a risk
ratio, usually known as RR and named RR, whose maximum
likelihood estimate reads as

RRi =
Ai

Ni
∕

A0

N0
, (3)

and with the SE of its logarithmic measure being

SE
[
log (RRi)

]
=

√
1
Ai

−
1
Ni

+
1

A0
−

1
N0

. (4)

Instead of conforming to such notation, several epidemiolog-
ical studies most of the times employ IR—derived through
Cox proportional hazards regression models (e.g., Chen et al.,
2010a)—but use RR as a symbol. Differently from Lash et al.
(2021) but as already done in Allen et al. (2020b), in this
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4 DE PRETIS ET AL.

F I G U R E 2 Flowchart for the identification of prospective cohort studies to be considered for the testing dataset. It maps out the number of records
identified, included and excluded, and the reasons for exclusions.

article, we will abide to this convention, in line with Orsini
et al. (2011) who change the definition of the RR measure in
agreement with the type of summarized data.

2.2 Dose–response data from prospective
cohort studies

To compare the continuous and dichotomous BMD mod-
els (see Section 2.3), we considered a list of 11 systematic
reviews/meta-analyses published in the last 15 years (2006–
2021) and focused on the coupling between arsenic exposure
by water ingestion or inhalation and onset of various forms
of tumors, principally bladder and lung cancer, as they
represent the majority of loci in neoplastic formations
recorded in observational studies, next to kidney and liver
tumors. Therefore, we limited our analysis to such types of
cancer, and from these systematic reviews/meta-analyses, we
extracted data only belonging to prospective cohort studies
(see Figure 2).

Information on extracted data is reported in Table 1:
They are all incidence rate cohort studies and all account

for data coming from the Taiwanese area, which has a
research record in conducting epidemiological studies cen-
tered on arsenic hazard (Morales et al., 2000; Wu et al.,
1989).

From the same initial list, other five studies were reported
as prospective cohort studies but were subsequently dis-
carded, because not fitting some of the requirements needed
for our analysis. More specifically, Baastrup et al. (2008)
(Denmark) did not provide any division by dose groups;
D’Ippoliti et al. (2015) (Italy) and Sawada et al. (2013)
(Japan) presented an aggregated clustering between men
and women for exposure purposes but no detailed informa-
tion pertaining to the general cohort (especially that related
to the dosage); and Chen and Ahsan (2004) (Bangladesh)
shared the same previous issue and furthermore its analysis
employed no internal referent groups, as the dose-specific
RR estimates used in predicting risks were derived from
a Taiwanese study whose data were not retrievable. Raw
data (next to from the selected prospective cohort stud-
ies) are shown in the next section, shown in Tables 2
and 3.
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BMD FOR DOSE–RESPONSE ASSESSMENT 5

TA B L E 1 Prospective cohort studies selection.

Systematic review /
meta-analysis ↓

Prospective
cohort study →

Bogen et al.
(2014)

Chen et al.
(2010a)

Chen et al.
(2010b)

Chiou et al.
(1995)

Chiou et al.
(2001)

Chung et al.
(2013)

Huang et al.
(2008)

Allen et al. (2020a) – B L – – – –

Boffetta and Borron
(2019)

– B L – – B –

Christoforidou et al.
(2013)

– B L – B – –

Chu and
Crawford-Brown
(2006)

– – – B, L B – B

Lamm et al. (2015) L B L – – – –

Lamm et al. (2021) L B L – – – –

Lynch et al. (2017) – B L B, L – – B

Saint-Jacques et al.
(2014)

– B L B, L B B B

Shao et al. (2021) – B L – – – –

Tsuji et al. (2014) – B L – – – –

Tsuji et al. (2019) – B L – – – –

Note: On the left, the first column shows a list of the principal systematic reviews/meta-analyses conducted in the last 15 years (2006–2021) and related to the binding between arsenic
exposure and bladder and lung cancer. The selected prospective cohort studies are reported in the first row. B (bladder) and L (lung) letters mark the studies’ object.

2.3 BMD modeling methods for
epidemiological data

This subsection is further divided into four parts: In the first
two parts, we provide a description of the models; we employ
to analyze dichotomous and continuous data, to then focus
on the pretreatment of the dose (adjusted exposure midpoint
computations) and of the response (BMR calibration).

2.3.1 Model epidemiological data as
dichotomous data

This model works in two steps. Initially, data are pretreated
to derive the effective counts (Allen et al., 2020b), that is, the
effective number of cases A and of subjects N obtained as
we consider the RR and the interval of its SEs both varying
with respect to the different dose groups. As we detail below,
computations are performed differently if the input data come
from incidence rate or cumulative incidence cohort studies,
but the model still requires the same quantities, that is, for
each dose group, the number of cases A, the number of sub-
jects N, and the RR including its upper and lower bound at
a given statistical significance level. Despite some theoretical
assumptions that we make on the person–time T, the latter
are not explicitly entering the required computations. Even-
tually, the effective counts are modeled as dichotomous data
to calculate BMDs as outlined in Shao and Shapiro (2018).
Incidence rate cohort studies: We follow Allen et al.
(2020b)’s effective counts computations by preliminarily set-
ting Ae

0 = Ar
0 and Te

0 = Tr
0, that is, the referent group serves

as an invariant in our analysis. Then, all the subsequent com-

putations hold for i > 0. Assuming a significance level of
ff = 5%, we have

SE
[
log (RRi)

]
L
=

1
Z0.975

⋅ log

(
RRi

RRL
i

)
, (5)

SE
[
log (RRi)

]
U
=

1
Z0.975

⋅ log

(
RRU

i

RRi

)
, (6)

where RRL
i and RRU

i , respectively, represent the lower and
upper bound of the confidence interval at the 95% level for
the adjusted RRi of the Gith group.

To highlight the fact that we are working on an adjusted
measure, and RRi should more correctly read as RRe

i . How-
ever, if not manifestly stated, henceforth, we omit this
superscript for simplicity. Furthermore, if 90% or 99%
instead of most-commonly used 95% CI was reported, Z0.975
in the formula needs to be modified as Z0.95 or Z0.995. Com-
bining the latter formulas with Equation (2), we can explicit
effective cases as

Ae
i =

1
2
⋅

({
SE2

[
log (RRi)

]
L
−

1
Ar

0

}−1

+

{
SE2

[
log (RRi)

]
U
−

1
Ar

0

}−1)
, (7)

in which we average by an arithmetic mean the computa-
tions done considering both RRL

i and RRU
i terms. In addition
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6 DE PRETIS ET AL.

TA B L E 2 Dose–response incidence rate cohort studies and related data for bladder cancer.

Study (location)

Exposure
concentration
group (µg/L)

Water
intake rate
(L/day)

Adjusted
exposure
midpoint (µg/L)

Adjusted RR
(95% CI)

Cases/non-cases Number of subjects

Raw Effective Raw Effective

Chen et al. (2010a)
(NE Taiwan)

<10 3.85 9.63 1 5/2283 5/2283 2288 2288

10–49.9 57.75 1.66
(0.53–5.21)

8/2085 7.15/1863.47 2093 1870.62

50–99.9 144.38 2.42
(0.69–8.54)

5/902 4.72/851.49 907 856.21

100–299.9 385.00 4.13
(1.32–12.90)

8/901 7.24/815.40 909 822.64

≥300 866.25 7.80
(2.64–23.10)

11/680 9.42/582.33 691 591.75

Chiou et al. (1995)a

(SW Taiwan)
<50 3.85 48.13 1 6/610.99 6/610.99 616.99 616.99

50–70 115.50 1.80
(0.60–5.30)

7/542.44 7.04/545.54 549.44 552.58

>70 202.13 3.30
(1.00–11.10)

7/530.17 4.76/360.52 537.17 365.28

Chiou et al. (2001)a

(NE Taiwan)
<10 3.85 9.63 1 3/2818.99 3/2818.99 2821.99 2821.99

10–50 57.75 1.50
(0.30–8.00)

3/2364.81 2.73/2151.98 2367.81 2154.71

50–100 144.38 2.20
(0.40–13.70)

2/1063.76 2.11/1122.27 1065.76 1124.38

>100 288.75 4.80
(1.20–19.40)

7/1839.43 5.86/1539.87 1846.43 1545.73

Chung et al.
(2013)a,b,c (SW
Taiwan)

<50 3.85 48.13 1 1/1071.98 1/1071.98 1072.98 1072.98

50–710 731.50 4.35
(0.56–33.52)

15/86.52 11.17/64.43 101.52 75.60

>710 2050.13 7.22
(0.95–55.04)

22/366.50 13.82/230.23 388.50 244.05

Huang et al. (2008)
(SW Taiwan)

<400 3.85 385.00 1 1/175 1/175 176 176

400–700 1058.75 5.20
(0.70–39.80)

14/263 17.07/320.67 277 337.74

700–900 1540.00 6.70
(0.80–53.40)

9/130 6.96/100.53 139 107.49

>900 2598.75 6.50
(0.80–53.10)

7/112 6.88/110.08 119 116.96

aNumber of subjects estimated from person–years at risk (for Chung et al. (2013), data provided by Chen et al. (1996)).
bHazard ratio (HR) reported, instead of RR.
cMortality study.

to what previously shown in Allen et al. (2020b), we com-
plement our analysis by looking at Te

i and Ne
i terms. The

former constitutes one of the necessary elements to compute
RRi measures, as outlined in Equation (1). However, the very
nature of the related Equation (2) makes the computation of
Te

i unfeasible, as such terms do not appear in the definition
of SE[log(RRi)], differently from what occurs with Ne

i terms
in Equation (4) used in cumulative incidence cohort stud-
ies (see next paragraph). Therefore, we set Te

i = Tr
i , that is,

person–time stay unchanged whether we consider adjusted

or unadjusted RRi measures. With respect to Ne
i terms, we

instead acknowledge that they do not enter the computa-
tion of the RRi measures (hence, they cannot be retrieved
from Equations (1) and (2) ab initio). Being independent
from them, we thus assume Ne

i terms to vary proportionally
via a linear projection as RRi measures do when adjusted.
Clearly, several other projections could have been taken into
account in modeling such a variation but a linear one rep-
resents a cautious assumption that could be also considered
a first approximation to nonlinear others. More explicitly,
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BMD FOR DOSE–RESPONSE ASSESSMENT 7

TA B L E 3 Dose–response incidence rate cohort studies and related data for lung cancer.

Study (location)

Exposure
concentration
group (µg/L)

Water intake
rate (L/day)

Adjusted
exposure
midpoint (µg/L)

Adjusted RR (95%
CI)

Cases/non-cases Number of subjects

Raw Effective Raw Effective

Bogen et al. (2014)
(NE Taiwan)

0–1 3.85 0.96 1 32/1039 32/1039 1071 1071

1–10 10.59 0.57 (0.33–0.97) 23/1348 22.56/1322.21 1371 1344.77

10–49.9 57.75 0.73 (0.47–1.15) 47/1980 48.22/2031.40 2027 2079.62

50–99.9 144.38 0.68 (0.38–1.19) 19/861 18.73/848.76 880 867.49

100–299.9 385.00 1.08 (0.65–1.80) 17/856 27.57/1388.23 873 1415.80

≥300 866.25 1.50 (0.95–2.60) 30/636 32.21/682.85 666 715.06

Chen et al. (2010b)
(NE Taiwan)

<10 3.85 9.63 1 48/2240 48/2240 2288 2288

10–49.9 57.75 1.10 (0.74–1.63) 51/2042 50.64/2027.59 2093 2078.23

50–99.9 144.38 0.99 (0.59–1.68) 20/887 19.84/879.90 907 899.74

100–299.9 385.00 1.54 (0.97–2.46) 28/881 28.16/886.03 909 914.19

≥300 866.25 2.25 (1.43–3.55) 31/660 30.33/645.74 691 676.07

Chiou et al. (1995)a

(SW Taiwan)
<50 3.85 48.13 1 5/611.99 5/611.99 616.99 616.99

50–70 115.50 2.10 (0.70–6.80) 7/542.44 7.52/582.74 549.44 590.26

>70 202.13 2.70 (0.70–10.20) 7/530.17 3.75/284.02 537.17 287.77

aNumber of subjects estimated from person–years at risk.

we have

Ne
i

Nr
i

=
RRe

i

RRr
i

. (8)

With the joint assumption over Te
i terms, we find that

Ne
i =

1
2
⋅

({
SE2

[
log (RRi)

]
L
−

1
Ar

0

}−1

+

{
SE2

[
log (RRi)

]
U
−

1
Ar

0

}−1)
⋅

(Ar
i

Nr
i

)−1

. (9)

Furthermore, we have Ne
0 = Nr

0, in accordance with the
invariant features exhibited by the referent group.
Cumulative incidence cohort studies: In line with what
previously assumed with incidence rate cohort studies, we
initially set Ae

0 = Ar
0 and Ne

0 = Nr
0, as these are the terms now

entering the computation of RRi measures via Equation (3).
Both terms also appear in Equation (4), so in this case, it
is straightforward to compute Ae

i and Ne
i terms. Recalling

Equations (5) and (6) (as they keep unchanged for cumulative
incidence cohort studies), we can write:

Ae
i =

1
2
⋅

⎧⎪⎪⎨⎪⎪⎩
1 −

(
RRr

i ⋅
Ar

0

Nr
0

)
SE2

[
log (RRi)

]
L
+

1

Nr
0

−
1

Ar
0

+

1 −

(
RRr

i ⋅
Ar

0

Nr
0

)
SE2

[
log (RRi)

]
U
+

1

Nr
0

−
1

Ar
0

⎫⎪⎪⎬⎪⎪⎭
, (10)

Ne
i = −

1
2
⋅

⎧⎪⎪⎨⎪⎪⎩
1 −

(
RRr

i ⋅
Ar

0

Nr
0

)−1

SE2
[
log (RRi)

]
L
+

1

Nr
0

−
1

Ar
0

+

1 −

(
RRr

i ⋅
Ar

0

Nr
0

)−1

SE2
[
log (RRi)

]
U
+

1

Nr
0

−
1

Ar
0

⎫⎪⎪⎬⎪⎪⎭
. (11)

Eventually, on a similar manner to that one implemented

for Ne
i terms in incidence rate cohort studies, we can

derive effective person–time terms via the following linear
projection:

Te
i

Tr
i

=
RRe

i

RRr
i

. (12)
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8 DE PRETIS ET AL.

We further omit the explicit computation of Te
i for space

constraints.
Bayesian benchmark dose modeling for dichotomous
data: In this case, we couple the Allen et al. (2020b) “effec-
tive counts” method with the dichotomous case of the Shao
and Shapiro (2018) model. The latter computes the BMDs by
estimating the following quantity:

log
[
P (data|𝜃)

]
=

G−1∑
i=0

{
log

(
ni
yi

)
+ yi log

[
f (di|𝜃)

]
+ (ni − yi) log

[
1 − f (di|𝜃)

]}
, (13)

where 𝜃 represents the parameters that define a dose–
response curve f (di|𝜃) (for our comparison purposes, we will
focus on the Quantal-Linear and Dichotomous Hill models),
di represents the dose level; ni is the number of subjects in
each dose group (i.e., Ne

i ), and yi is the number of subjects
showing response in the corresponding dose group (i.e., Ae

i ).
Differently from its original version, the summation index
is defined from i = 0 to i = G − 1 as the referent group
is here marked by having i = 0. Equation (13) is the log-
transformed likelihood function and serves as the foundation
for the MCMC algorithms to estimate the parameters in the
dichotomous dose–response models.

With respect to input data, to incorporate the “effective
counts” treatment in a dichotomous model, it appears natu-
ral to set ni = Ne

i and yi = Ae
i . However, it is must be noted

that the ni and yi terms might not be anymore integers,
after having undergone such a transformation. Therefore, for
the binomial coefficient term appearing in the previous for-
mula, we consider a classical extension to two real valued
arguments through the Gamma function (for instance, see
Winkelmann (2008), Díaz and Cano (2019)).

2.3.2 Model epidemiological data as
continuous data

Another possible way to model epidemiological dose–
response data in a typical BMD modeling framework is to
model the RR as a continuous response. Four quantities are
required as input data when performing a BMD modeling
using continuous data, that is, dose/exposure level, num-
ber of subjects, the mean value and standard deviation of
the response. A point estimate of exposure for a number
of exposure groups might be reported in the study, or the
method described in Section 2.3.3 can be used to derive
a reasonable point estimate for each exposure group if the
exposure was reported in ranges. The sample size of subjects
in each exposure group is typically reported in epidemio-
logical studies. Then, we need to express the RR as mean
and standard deviation (or its equivalents) to facilitate the
BMD modeling as continuous data. Usually, epidemiolog-
ical studies report the median, lower, and upper bound of

the RR, and the confidence interval is skewed to the upper
end. So, it is reasonable to assume that RR at each exposure
level follows a lognormal distribution, and this distribution
can be characterized by two parameters, ȳi = log(RRe

i ) (i.e.,
the logarithm of the median RR) and s′i (i.e., the standard
deviation of RR on a log scale). Depending on the reported
confidence interval of RR reported, the s′i can be calcu-

lated as (2 ⋅ Z0.975)−1 ⋅ log(RRU
i ∕RRL

i ) for 95th percentile CI
or s′i = (2 ⋅ Z0.95)−1 ⋅ log(RRU

i ∕RRL
i ) for 90th percentile CI.

Then, as described in Shao et al. (2021), these four required
quantities will be used in the following log-likelihood
function to estimate the parameters of a dose–response
model:

log
[
P (data|𝜃)

]
= −

N
2

log (2𝜋) −
G−1∑
i=0

(
ni

2
log

(
𝛾2
)

+
ni
{

ȳ′i − log[f (di|𝜃)]
}2

+ (ni − 1) s′2i
2𝛾2

)
, (14)

where di is the exposure level at each group, ni is the num-
ber of subjects in each group, ȳ′i is the log-transformed mean
value of RR in each group, s′i is the log-transformed stan-
dard deviation of RR in each group, N is the total number of
subjects, and G − 1 is the number of dose groups. f (di|𝜃) rep-
resents a dose–response model with a vector of parameters
𝜃. Given the settings expressed in the log-likelihood func-
tion above, we assume that the mean response of RR on the
log-scale is represented by a chosen dose–response model,
and the within-dose-group standard deviation, 𝛾, is a con-
stant across the exposure groups. In this study, for the purpose
of comparison, one simple dose–response model, the Linear
model, and one complex model, the Hill model as described
in Shao and Shapiro (2018) is used for BMD estimation.
Equation (14) is used as the key component in the MCMC
model fitting process for parameter estimation. Parameters
𝜃 may vary from model to model depending on the model
format.

2.3.3 Adjusted exposure midpoint
computations

Exposure groups are defined by clustering dose levels by
intervals or medians. To ease comparisons among different
epidemiological studies tackling diverse populations, adjust-
ment to the exposure has to be taken into account as well.
In one example reported by Tsuji et al. (2019), Lynch et al.
(2017) estimated midpoint arsenic water exposure concentra-
tions of the dose groups, adjusted to account for differences
in water consumption rates and body weight in some foreign
populations as compared to the United States. To estimate
midpoint exposures for open-ended lowest or highest dose
groups presented as less than or greater than a value, Lynch
et al. (2017) assumed the midpoint between 0 and the low-
est value or the midpoint between the highest value and two
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BMD FOR DOSE–RESPONSE ASSESSMENT 9

times the highest value, respectively. We can formalize this
approach in the following way. For dose intervals data type,
shall 𝛿∗i and 𝛿♢i , respectively, represent the supremum and
infimum (shortly, sup and inf) of a given dose interval refer-
ring to the ith group. Adjustment is done, assuming a certain
water intake rate 𝜔 (measured in L/day) and an average water
intake rate �̂� that works out as a baseline and is usually taken
equal to 2 L/day to account for US standards. In the case of
open lower and upper intervals, we have

di =

⎧⎪⎪⎨⎪⎪⎩

1

2
⋅ 𝛿0 ⋅

(
𝜔

�̂�

)
for i = 0

1

2
⋅ (𝛿∗i + 𝛿♢i ) ⋅

(
𝜔

�̂�

)
for i ≠ 0 ∧ i ≠ G − 1

3

2
⋅ 𝛿G−1 ⋅

(
𝜔

�̂�

)
for i = G − 1

. (15)

Should no open interval be present, the middle formula
di = 2−1 ⋅ (𝛿∗i + 𝛿♢i ) ⋅ (𝜔∕�̂�) can serve for all dose groups.
Eventually, in the case of epidemiological studies reporting
medians instead of intervals, the above formula can be com-
pacted to di = �̄�i ⋅ (𝜔∕�̂�), where �̄�i represents the median
dose of a given exposure group.

2.3.4 Definitions of benchmark response

To better compare these two modeling methods regarding
BMD estimation, we need to carefully define equivalent
BMRs for the dichotomous and continuous data, so that the
impact on the BMD estimates from the BMR definition can
be minimized. Unlike toxicological studies where the control
group (i.e., exposure level is zero) is chosen as the reference
group for BMD estimation, for epidemiological studies, the
lower exposure group (rather than the zero-exposure group)
is more appropriate to be selected as the reference group.
To define equivalent BMRs for these two types of data,
our strategy is to first set the BMR for dichotomous data
and then calculate the corresponding BMR for continuous
data.

For dichotomous data, we set the extra risk-based BMR
at low (0.01%), medium (0.05%), and high (0.1%) three lev-
els. The reason to use small BMR is that the response rates
in the epidemiological studies are relatively small, for exam-
ple, the response rate of bladder cancer in Chen et al. (2010a)
ranges from 0.22% to 1.6%. Accordingly, the BMD can be
calculated based on the following equation:

BMRD =
f (BMD) − f (ref )

1 − f (ref )
, (16)

where f (BMD) and f (ref ) represent the incidence rate at the
BMD exposure level and reference exposure level, respec-
tively, and f (⋅) is a dose–response model for dichotomous
data. The numerator f (BMD) − f (ref ) calculates the differ-
ence in risk between the BMD exposed and background
exposed groups. The denominator 1 − f (ref ) represents the
complement of the risk in the background exposed group and

serves as a scaling factor to express the additional risk as a
proportion or ratio relative to the complement of the risk in
the background exposed group. By dividing the difference in
risk (numerator) by the complement of the risk in the back-
ground exposed group (denominator), we obtain the extra
risk ratio. This formula essentially measures the excess risk
attributable to the BMD exposure under consideration.

For continuous data, we define BMR based on the relative
change in central tendency of the response (i.e., RR in this
case) to calculate the BMD. The following equation can be
expressed as

BMRC =
g (BMD) − g (ref )

g (ref )
, (17)

where g(BMD) and g(ref ) are the RR at the BMD exposure
level and reference exposure level, respectively, and g(⋅) is a
dose–response model for continuous data. Similar to the extra
risk formula employed for dichotomous data, the numerator
g(BMD) − g(ref ) calculates the difference in risk between the
BMD exposed and background exposed groups. However, in
this case, the denominator g(ref ) represents the risk in the
background exposed group, serving as the reference point.
The formula expresses the change in risk relative to the base-
line level, providing a measure of the relative increase in risk
associated with the BMD exposure.

When we calculate the equivalent BMRC, we assume
that the incidence rate at the BMD level in the scenario of
dichotomous data is equal to the incidence rate at the BMD
level in the scenario of continuous data, that is, g(BMD) =
f (BMD)∕f (ref ). Additionally, because the conversion from
BMRD to the equivalent BMRC should be completed before
the model fitting and BMD estimation, we need to directly
use the input data for dose–response modeling, that is, f (ref )
is the incidence rate calculated by the effective counts of
cases and total subjects, and g(ref ) is 1. As the previous
formulas capture different aspects of risk assessment and
provide measures of the additional risk or relative change
associated with the BMD exposure, we use the following
equation to calculate the BMR for continuous data that is
equivalent to the defined BMR in dichotomous data:

BMRC + 1 =
f (BMD)

f (ref )
=

BMRD ⋅ (1 − f (ref )) + f (ref )
f (ref )

.

(18)
Using Chen et al. (2010a) as an example, there are 5 and

2283 effective counts of cases and non-cases, respectively,
indicating f (ref ) = 5/2288, so BMRC is approximately 5%
when BMRD = 0.01%. Therefore, the conversion should be
conducted for each combination of epidemiological datasets
and BMRD values.

3 RESULTS

In this section, we outline the main results of our analysis by
the following three points: (1) refined input data as obtained
by the data pretreatment, that is, computation of effective
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10 DE PRETIS ET AL.

counts and of adjusted exposure midpoints; (2) BMDs com-
puted via the Bayesian BMD analysis, according to the
continuous and dichotomous models; and (3) comparison of
the previous models outcomes.

Regarding the first point, for all considered prospective
cohort studies, in Tables 2 (bladder cancer data) and 3 (lung
cancer data), we compute the effective number of cases (col-
umn 6b) and of subjects (column 7b), and we derive as well
the adjusted exposure midpoints (column 4), basing our com-
putation on the methods previously described, processing the
raw data as shown in columns 1, 2, 5, 6a, and 6b. The water
intake rate (column 3)—necessary to compute the adjusted
exposure midpoints—was taken in agreement with Tsuji et al.
(2019) and Lynch et al. (2017) who set 2.75 L/day as default
assumption for Taiwan further multiplied by a 70/50 kg scalar
factor to adjust for smaller body weight. Furthermore, as
detailed in the tables captions, in a restricted number of cases,
data were adapted to fit our computation; namely, the num-
ber of subjects was derived from person–years at risk only
if this information was not originally present in the single
prospective cohort study. In doing so, we employed the cohort
number size and repurposed it according to the distribution
of the person–time data per group, following in that case a
cautious approach based on a uniform distribution assump-
tion. In one case, we made use of a mortality study providing
hazard ratios instead of RRs, while considering the limita-
tions pointed out by Stare and Maucort-Boulch (2016) in
employing the former measure at the place of the latter.

For the second point, with the data now presented in
Tables 2 and 3, we perform a Bayesian BMD analysis using
the continuous and dichotomous data models outlined in the
previous section. The Bayesian BMD modeling and analyses
were programed and completed in the R program. A more
user-friendly modeling platform for epidemiological BMD
modeling using the continuous data method described in the
present study has been implemented in the online BBMD
modeling system (Shao & Shapiro, 2018). For both model-
ing methods, we employ one simple model and one complex
model for BMD estimation, that is, for the dichotomous data:
Quantal-Linear and Dichotomous-Hill models; and for the
continuous data: Linear and Hill models. As described in Sec-
tion 2.3.4, we set the BMR at 0.01%, 0.05%, and 0.1% for
all datasets when the dichotomous data modeling approach
is applied, and the corresponding BMDs for continuous data
are calculated. This latter information together with the entire
results of the Bayesian BMD analysis are reported in the
Supporting Information. To ease the comparison between the
continuous and dichotomous models outcomes, we present
the results of the BMD analysis, that is, the BMRs and their
lower and upper bounds for a restriction to Quantal-Linear
versus Linear model and Dichotomous-Hill versus Hill model
in the scatterplots reported for each prospective cohort study
in Figures 3a and 4a.

Eventually, regarding the third point, to compare the per-
formances of the dichotomous and continuous models, we
first compare the corresponding BMD estimates (including
the median, lower, and upper bound) obtained from these
two modeling approaches using a same dataset by calcu-

lating the correlation coefficient. These BMD estimates are
visualized in Figures 3a and 4a for the simple model (with
r = 0.849) and complex model (with r = 0.554) scenarios,
respectively. We then employ two standard measures of rank
correlation, that is, Kendall’s 𝜏 − b coefficient and Spear-
man’s 𝜌, quantifying the statistical nonindependence between
the rankings of two variables over the same dose–response
models, namely, Linear and Hill models. Both measures
may take values spanning from −1 to 1; in particular, pos-
itive values assess how well the relationship between two
variables can be described using an increasing monotonic
function (Spearman’s 𝜌) and how well a direct ordinal asso-
ciation between two measured quantities can be established
(Kendall’s 𝜏 − b). We picture the results of such analysis
in Figures 3b and 4b. As shown in these figures, we found
comparable results with an average Spearman’s rank corre-
lation coefficient accounting to 0.939 ± 0.037 (computed
via Fisher’s Z transformation) and an average Kendall rank
correlation coefficient equal to 0.861 ± 0.062.

4 DISCUSSION

In this study, with the purpose of identifying a generaliz-
able and standardizable BMD modeling method for typical
epidemiological data published in the literature, two mod-
eling strategies were deliberated and compared, that is,
modeling the epidemiological data as dichotomous and con-
tinuous data, respectively, after careful data preprocessing.
When modeling epidemiological data as dichotomous dose–
response data, we utilize the commonly reported information
(e.g., adjusted RR) in published studies to convert the raw
counts of cases and non-cases to “effective counts” that
essentially indicate the incidence only caused by exposure
to the study chemical. In this case, the effective counts not
only reflect the weight of each exposure group but also
take the influence on the incidence rate from confounders
into account. On the other hand, when modeling epidemio-
logical data as continuous dose–response data, we treat the
commonly reported adjusted RRs (with respect to important
confounders) as continuous response and convert them to the
format of mean and standard deviation. The adjusted RRs and
sample size of subjects in each exposure show how health
effects can be impacted by the exposure with respect to the
reference group. It is important to note that the modeling
methods we discussed in the study do not directly ana-
lyze raw epidemiological data but utilize the published data
after appropriate processing and adjustment. We also want
to mention that, to demonstrate the proposed methodology,
we employed epidemiological cancer endpoint as an exam-
ple, but it does not mean that this BMD modeling method
can only be used by cancer effect. Additionally, whether the
derived epidemiological BMD should be further extrapolated
to a lower dose or how to perform the low-dose extrapolation
for epidemiological BMD is out of the scope of the present
study.

The adjustment and conversion of the published epi-
demiological dose–response data make them consistent with
standardized data format used as input in BMD analysis. Con-
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BMD FOR DOSE–RESPONSE ASSESSMENT 11

F I G U R E 3 Comparison of dichotomous and
continuous data models via Quantal-Linear and
Linear dose–response models. Panel (a): Benchmark
doses (BMDs) and their lower and upper bounds
computed via dichotomous and continuous data
models. Panel (b): Measures of associations of the
latter models.

sequently, commonly used empirical dose–response models,
as well as typical BMR definitions and settings, can be
employed smoothly in the epidemiological BMD analysis.
Because the focus of the comparison is the data structure for
BMD estimation (dichotomous vs. continuous data), we took
a number of strategies to mitigate the disturbance caused by
other factors on the BMD estimates: (1) choosing compara-
ble dose–response models for these two data types, that is,
Quantal-Linear versus Linear model and Dichotomous-Hill
versus Hill model; (2) equivalent BMR values for continuous
data were calculated based on the specified BMR values for
dichotomous data based on incidence rate and incidence rate
the reference group. Although the format of exposure level

is another key difference between epidemiological and tox-
icological studies, the same adjusted midpoint of exposure
used in both types of data will not cause additional differ-
ence. The corresponding BMD, BMDL, and BMDU values
estimated from these two types of data were analyzed for cor-
relation; the correlation coefficients of 0.849 and 0.554 for
the situations of simple and complex dose–response models,
respectively, indicate that the BMD estimates from these two
modeling methods are relatively consistent. The lower corre-
lation coefficient generated in the situation of complex model
may be caused by larger estimation uncertainty in model
fitting. The compatible BMD estimates from the two meth-
ods are also justified by Kendall’s 𝜏 − b and Spearman’s 𝜌
coefficients.
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12 DE PRETIS ET AL.

F I G U R E 4 Comparison of dichotomous and
continuous data models via Dichotomous Hill and
Hill dose–response models. Panel (a): Benchmark
doses (BMDs) and their lower and upper bounds
computed via dichotomous and continuous data
models. Panel (b): Measures of associations of the
latter models.

From a theoretical perspective, modeling the epidemiologi-
cal data as dichotomous data and as continuous data for BMD
estimation is fairly consistent. However, from a practical per-
spective, modeling RR as continuous response is a more
favorable solution, because converting confidence interval to
mean and standard deviation is much more convenient than
using numerical methods to derive effective counts. Conse-
quently, modeling RR as continuous data for BMD estimation
is easier to be implemented in BMD modeling tools.
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